Adaptation to a changing environment: the response of marshland communities to the late medieval ‘crisis’

Stephen Rippon

ABSTRACT
Coastal marshlands form one of the many distinctive landscapes – or pays – within the British Isles. Their reclamation generally began during the early medieval period, and by the 12th and 13th centuries they were extensively settled and used for mixed agriculture, much like the adjacent dryland areas. It would be expected that the late medieval climatic deterioration, population decline and its associated socio-economic changes would have led to a marked decline in the settlement of such physically challenging areas but this was not generally the case. This paper examines how the communities living in coastal marshlands responded to the increase in flooding, declining population and falling profits from agriculture through a combination of increased investment and agricultural innovation, and that these cultural responses can only be understood by placing these specific landscapes within their wider context.

Key Words: Climatic deterioration; Marshland; Late Medieval; Reclamation

Introduction
One of the major achievements of wetland archaeology has been its integration with other disciplines, notably palaeoecology and sedimentology, and a number of studies have extended this principle to the use of documentary material and its integration with information contained within the historic landscape (e.g. Hall 1996; Rippon 1996; 1997a; 2000a; Silvester 1988; Williamson 1997). This paper hopes to continue this tradition, and was first presented at the British Academy symposium on ‘Wetland Landscapes and Cultural Responses’ in February 2001. Its intention is to show the value of using historical sources in combination with physical (notably historic

Author’s Address: Stephen Rippon, Archaeology Department, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, UK.
landscape) evidence when trying to understand how human communities perceived and responded to the challenges that wetlands present – an essential prerequisite to understanding the archaeological record.

The late medieval crisis in medieval England

The later medieval period (the 14th and 15th centuries AD) saw profound changes in the English countryside as plague and famine caused population and prices to fall, and the practice of agriculture, along with the tenurial structures within which it occurred, adjusted to the new social and economic circumstances. This was also a period of climatic deterioration the significance of which, though probably over-estimated for most of lowland Britain, had a profound impact upon the physically more difficult environments, such as low-lying coastal wetlands.

The decline in population that so characterises the 14th century appears to have started in the early part of that century, notably with the famines of 1315–17 (e.g. Poos 1985, 521; Titow 1961, 220). Though there was some recovery in subsequent decades (e.g. Razi 1980, 45), the Black Death killed c.30–45% of the population, and along with its recurrent outbreaks throughout the later 14th century, there was demographic instability for well over a hundred years (Miller 1991b, 3). Nationally, a population of 4.5–6.0 million in the early 14th century was reduced to 2.5–3.0 m in 1377, and perhaps as low as 2.0–2.5 million in the mid-15th century (Hatcher 1977, 68–70; Miller 1991b, 6). The long term implications were far reaching: falling population led to a decline in food prices, land prices and rents, giving rise to profound changes in the way that lords and their tenants exploited their estates. The profits that lords could achieve through directly managing their own demesne declined, leading to a marked trend towards the more conservative option of leasing – or ‘farming’ – out their lands. Initially, this occurred in a piecemeal fashion, though over time there was a trend towards leasing entire demesnes to one or more individuals. As the length of leases also increased, these ‘farmers’ could have an important part to play in shaping the landscape. Set against a general shift towards pastoralism, there was also increasing regional specialisation in agriculture, culminating with the large-scale conversion of arable to sheep pasture from the later 15th century (Beresford 1954, 83–93; Carus-Wilson and Coleman 1963; Hatcher 1970, 146–7; Miller 1991b, 10–11; Thirsk 1967, 213–38).

The late medieval contraction of settlement

Many of these socio-economic trends impacted upon the historic landscape as it could no longer support as many agricultural units (tenements/farms). The traditional Malthusian view was that agriculture during the 13th century had become unsustainable, leading to a retreat from ‘marginal’ environments during the late medieval period (see Hoskins 1955, 120–1; Postan 1972, 31–9). In certain regions the farming of less profitable areas, which had only come to be cultivated during the
preceding centuries of high population, climatic amelioration and economic prosperity, were indeed abandoned, and although the wholesale desertion of villages was in fact fairly uncommon at this period, the shrinkage of settlements, particularly on areas of poorer soil, was not uncommon (e.g. Britnell 1991, 56–7; Davenport 1906, 52, 78; Dyer 1982; Hatcher 1970, 132, 156–9, 161–4; Hilton 1947, 100; Lomas 1984, 310; Postan 1973, 214–48; Rippon 1997a, 198–200, 248–51).

It might be expected that areas as prone to environmental deterioration as coastal wetlands would have suffered most from settlement shrinkage and desertion. Certain marshland landscapes did see marked depopulation, either because of erosion (e.g. southern Holderness and north east Essex: see below) or particularly severe flooding (e.g. the Pevensey Levels: see below). However, in most other marshland landscapes the extent of settlement desertion appears to have been less than on the adjacent drylands (e.g. the Norfolk Marshland: Figure 1, and see Davison 1994; Silvester 1988, 160). The same is true in Lincolnshire (Start 1993) and the Somerset Levels (Rippon 1997a, 248–51). Why then did these apparently vulnerable coastal areas not suffer greater depopulation?

![Fig. 1. Depopulation and settlement desertion in Norfolk. Source: Davison 1994, 85.](image-url)
The late medieval crisis in coastal wetlands

The concept of the ‘margin’ has been much debated, and while the physically deterministic views of earlier scholars such as Postan (1972) can be dismissed, it is undoubtedly true that certain landscapes are more amenable to certain types of agriculture than others due to physical factors, such as soil quality, and a wide range of cultural variables, such as proximity to centres of consumption and the structure of landholding (Bailey 1989; Dyer 1990; Gardiner 1998; Rippon 1997a, 2000a; Young and Simmonds 1995). As described above, late medieval society as a whole faced a series of general challenges, but whenever one studies a particular landscape it is important to consider how those general phenomena may have affected that specific area. Of the various problems experienced during the 14th and 15th century, three may be identified as being of particularly importance for communities living in coastal wetlands: declining population, climatic deterioration, and falling prices.

Life in coastal wetlands during the medieval period can be regarded as high cost, high risk and high return: high cost in terms of maintaining flooding defences, high risk in terms of the threat of flooding, but high return in terms of agricultural productivity (Rippon 2000a, 2–7). Conditions during the late medieval period, however, would certainly have made life more difficult. The costs of sustaining a reclaimed landscape would have increased as the lower population meant lower rent income and agricultural productivity, along with a smaller work-force to maintain the flood defences and deal with the increasingly frequent breaches in sea walls which resulted from the increased storminess.

The risks of living on coastal marshlands were also increasing during the late medieval period even though there is little evidence to suggest a rise in relative sea level (indeed, as temperature fell it appears that mean sea level actually fell: Jensen et al. 1993). Rather, the problem was an increased storminess (short-term weather events) that marked the onset of a longer-term climatic deterioration (Lamb 1995, 191–201). Occasional storm surges will always have caused flooding on coastal marshes, but conditions started to deteriorate appreciably around the mid 13th century with increased frequency of notably serious storms and floods (Bailey 1991; Bowler 1968, 31–4, 115; Grieve 1959, 8; Rippon 1997a, 242–5). Just as coastal landscapes were under increasing attack from the sea, another threat was from inland flooding. Precipitation that falls on the wetlands is not particularly significant; the problem is surface runoff from the adjacent uplands, and the huge catchments of the rivers that flow across coastal marshlands before they reach the sea. As a result, the increase in rainfall over late medieval Britain as a whole would have had a disproportionate impact upon coastal and other lowland wetlands.

With falling agricultural prices, leading to lower manorial income, the return on expenditure also fell. As the costs of maintenance increased, the risks of flooding increased, and the returns from agriculture fell, it might be expected that these landscapes would be amongst the first to be abandoned. That this was rarely the case, suggests that medieval society was well aware of the value and potential of these difficult environments, and it is the responses by human communities living in such areas to the increasingly difficult circumstances in which they found themselves, that will form the subject of this paper.
Coastal erosion: permanent land loss

In a number of areas, the affects of the late medieval storms were disastrous, leading to extensive land loss due to erosion and flooding (Allen et al. 1994). In the Humber Estuary, for example, an area of reclaimed marshland perhaps 3-4 miles wide along with a number of settlements were lost on the southern side of Holderness (Sheppard 1966, 6-7). The shape of North East Essex is also a largely late medieval creation, with up to five miles of land being lost off Walton-on-the-Naze (Faith 1996; Morant 1763–8, 484; for erosion elsewhere around Essex see Andrews and Brooks 1989; Grieve 1959, 12; Morant 1763–8, 296; Nichols 1925; Spurrell 1885, 285). In Sussex, the marshes at Hastings where the Priory was located, were ‘laid waste by the sea’, and in 1407, John Pelham was granted lands in payment for demolishing the church (CPR 1405–7, 322; Ward 1920, 113). To the east, at the mouth of the Combe valley, the settlement at Buverhythe also appears to have been abandoned due to coastal erosion (Burleigh 1973, 65; Holden 1962, 314).

Extensive flooding: reversion to intertidal conditions

Other areas, though not entirely lost to erosion, appear to have been so regularly flooded that they were virtually abandoned by the human communities that had once farmed them, and reverted to seasonally available grazing. In Sussex, for example, the Inquisitiones Nonarum suggests that the 1330s saw extensive flooding with areas ranging from 20 acres in Chidham though to 2,700 acres in Pagham being lost (Baker 1966; Blaauw 1848; Dulley 1966, 33). In total, 3,270 acres in Sussex are specified as having been submerged, although the lost tithe income in parishes where the actual area flooded is not specified, suggests that the actual acreage lost was closer to c.5,500 acres (c.2,226 ha; Blaauw 1848).

The Pevensey Levels provide a well-documented example. During the 1330s some 400 acres in Hooe, the greater part of an estate in Ninfield called ‘Morhale’, and 200 acres in Wartling which used to be cultivated were ‘now submerged by the flood of water and sediment’ (Blaauw 1848, 60). Flooding continued throughout the century, for example in 1371 when a crop of vetch was ‘inundated during growth by an immense sea’ (Brandon 1971b, 81–2). However, despite these problems, marshland arable remained highly valued and there was continued investment in agriculture (Brandon 1971a, 117; 1971b, 81; Searle 1974, 258, 454). Sea walls at Barnhorne were built or repaired in 1353/4, 1374, 1375/6 and 1385/6, and during the 1380s investment in improved drainage for the ‘brookland’ permitted regular cropping for the first time for several decades. Around 40% of Barnhorne’s arable at this time was on the marshlands, rising to 60% between 1396 and 1404 (Brandon 1971b, 82). The first decade of the 15th century, however, saw another period of serious flooding, and in 1408/9 all of Barnhorne’s marshes were flooded, which led to a sudden transition from arable to pastoral farming. Once again, the manor’s response was increased investment, with extra workmen hired to scour the sluices and water channels, repair the walls and replace the gates and bridges that had been washed away. However,
conditions continued to deteriorate and in 1427 there was the greatest flood ever to hit the Pevensey Levels, and subsequent years saw regular inundation (which can be identified in the sedimentological record: Moffat 1986, 85). Cattle farming came to dominate, and by the 1450s the eastern part of the Pevensey Levels appears to have been used for little more than seasonal grazing (Brandon 1971b, 83–4).

In Essex there were also extensive areas of saltmarsh in the 16th century, although there is evidence that some such areas had once been embanked. For example, on New England marsh (near Foulness Island) there is reference in 1598 to 35 acres of pasture within sea walls and 179 acres of saltmarsh which ‘hath bene hertfore moste parte of it imbanked as appears by a mancion [mention] of an olde banke newe deceased’ (cited in Gramolt 1960, 127). In 1594 the topographical writer Norden described Canvey Island as a series of islands of ‘low merishe grounds; and for that the passage over the creeks is unfitt for cattle, it is onlie convierte to the feeding of ewes, which men milke, and therof make cheese (suche as it is), and of the curdes of the whey they make butter’ (Norden 1594, 10). However, during the earlier 16th century there are occasional references to arable cultivation on the Island (Cracknell 1959, 16; Linder 1946, 49; Morant 1763–8, 266–7). The place-name ‘Labworth alias Lubbins Farm’, recorded as Lobwerde in 1260, also hints at earlier reclamation. The werda place-name appears to be related to the Dutch weerd/waard (= island or embanked area of marshland) and in Essex seems to relate to high medieval marshland reclamation (Reaney 1935, 148–9; Rippon 2000a, 207). During the 1430s there are references to embanking in that part of the Island belonging to Southchurch manor (Smith 1970, 27), and in 1437 the Abbey of Christ Church Canterbury spent 38s 6d on repairing 154 perches (774 m) of embankment around its lands on Canvey (Priestley 1984, 4). It would appear, therefore, that although Canvey was an extensive area of intertidal saltmarsh by the late 16th century, this was a relatively recent state of affairs; another casualty of the late medieval crisis.

Such instances of whole marshlands being lost to either erosion or permanent flooding appear, however, to have been rare. Far more common was for concessions to be made by human communities that involved sacrificing certain areas in order to retain others, the process variously called ‘set back’, ‘managed retreat’ and ‘managed realignment’

The response to erosion: managed retreat along coastlines

Along a number of coastlines, the present sea wall clearly cuts unconformably across the pattern of fields (Figure 2). This basic piece of landscape stratigraphy can be used to show that in a number of coastal wetlands, the present sea wall was not the original one behind which the present historic landscape was created. This has been shown most clearly off the Gwent Levels (Allen 1988; Fulford et al. 1994; Rippon 1996) where it appears that the original line of the sea wall lay several hundred metres out in the Severn Estuary (Allen and Rippon 1997). A close inspection of the field-boundary pattern suggests that the same phenomenon is seen in Fenland, though the lack of intertidal exposures prevents the extent of land loss to be assessed. In Cambridgeshire,
Fig. 2. Managed retreat in the Norfolk Marshland (Fenland). The sea wall in various places in Walpole St Andrew clearly cuts across the historic landscape, creating triangular shaped field-junctions (in the same way as the Midland and Great Northern Railway sits unconformably upon the landscape). Source: Ordnance Survey 1st Edition Six Inch Series.
on the western side of the Wisbech inlet, the sea wall appears to have been set back across ‘Newlondes’ and ‘Kakerow’ in Newton (Hall 1981, fig. 4, appendix 1), while in Norfolk, the medieval sea wall is clearly set back in Walpole St Andrew and Terrington (Figure 2; Silvester 1988, 41). Another example of managed retreat can be seen on Romney Marsh. In 1302, for example, it was recorded that Winchelsea Marsh could not be saved, and a new wall 350 rods (1.7 km) in length was ordered to be built leaving 60 acres for formerly embanked land exposed outside (Homan 1938, 223).

The response to erosion: managed retreat in the backfens

Increased rainfall in the late medieval period would have had its greatest impact on the low-lying backfens of the major coastal wetlands, as increased runoff from the adjacent uplands was slow to discharge through the embanked and reclaimed coastal marshes. The survival of relict landscapes in a number of backfens suggest that some areas that had been enclosed and drained were abandoned sometime around the late medieval period, though precisely when is unclear (e.g. West Fen in Norfolk Marshland: Figure 3, Silvester 1988, 32–4; Banwell Moor on the North Somerset Levels: Rippon 1997b, 44–7; Huntspill Moor in the Central Somerset Levels: Rippon 1997a, 210–12). In the Lincolnshire Fens, limited documentary evidence may also suggest that some areas had reverted to fen (Miller 1951, 100).

Such examples of landscape abandonment are, however, rare and detailed work around Sedgemoor and the Brue Valley in the Central Somerset Levels produced no such evidence for relict landscapes (Musgrove 1999). In a number of places, what had been described as meadows or arable had reverted to pasture or even waste (notably around Meare) but overall, the documentary evidence suggests that whilst expansion into the backfen had ceased, what had been enclosed and drained was maintained (Musgrove 1999, 104–5, 113, 127–31, 146–8). There may even have been some further enclosure and drainage in a handful of places (e.g. Smallmoor in Walton: Musgrove 1999, 127–8).

Romney Marsh: maintenance of a landscape and continued investment

Despite examples of managed retreat from both coastal areas and the inland backfens, the overall impression is that wetland communities worked hard during the late medieval period to maintain the landscapes into which so much effort had been invested. Romney Marsh provides a particularly well-documented example (Figure 4; Rippon 2000a, 157–67, 190–99). During the late 13th century the western part of Romney Marsh, known as Walland Marsh, was devastated by floods as the town of (Old) Winchelsea, and the shingle barrier upon which it stood, was washed away (Eddison 1998; Gardiner 1988). Rather than forcing the abandonment of this area, however, these floods initiated a remarkable period of investment. In 1292/3, for example, Christ Church Priory rebuilt three perches of wall in Nova Terra (Newland), and in 1298/9 two furlongs and 22 perches of new wall were built at Agney contra mare
Fig. 3. Relict landscape in West Fen (the low-lying backfen of Norfolk Marshland, Fenland). Various of the earthworks appear to continue the line of elements in the historic landscape (such as the droves) and so presumably date to the same period (ie the 13th century). Source: Silvester 1988, fig. 124.
Fig. 4. The development of the landscape on Romney Marsh. ‘Romney Marsh proper’ was reclaimed during the early medieval period. A: During the 12th century a series of innings then started to embank Walland Marsh. B: 13th century inning in the vicinity of Agney and Old Cheyne Court following the diversion of the ‘proto-Rother’ river from New Romney to a new outfall at Winchelsea. The extent of reclamation in Walland Marsh is unclear because of later flooding.
Fig. 4. (continued) C: late 13th/14th century flooding. D: later 14th and 15th century recovery in Walland Marsh and the Guldeford Level. Source: Rippon 2000a, fig. 67.
(against the sea) (Gross and Butcher 1995; Tatton-Brown 1988, 108–10; Smith 1940; 1943). Two dams were added in 1310/2 to regulate the flow of water in the sewers, and by 1315/16 the nova terra was cultivated land, having five and a half acres sown with oats and four with vetch (Smith 1943, 183).

Other great monastic landlords were similarly proactive. In 1309, the Abbey of Robertsbridge was granted a licence to purchase land and rents ‘in consideration of the great loss sustained by that house through the sea having inundated the marshes of Winchelsea, Rye and Broomhill by the sea-coast’ (CPR 1307–13, 152). Canterbury Cathedral Priory invested considerable sums on its estates at Appledore, Ebony and Agney (Smith 1940; 1943; Gross and Butcher 1995), and one example was the major area of pasture at Ebony known as Prioratus. This was surrounded by an embankment, the vetus walla, of which 80 perches were strengthened in 1286/7. During the following year, an adjacent 28 acres were inned at a cost of £3 10s, and a new embankment, the nova walla, was erected at a cost of £8 7s. In 1293–4 a bill of £128 14s 9d was incurred for embanking work in Appledore, even though total manorial income was only £74 3s (Gross and Butcher 1995, 108; Smith 1940, 3, 30; 1943, 173–4).

Overall, a huge amount appears to have been spent restoring flood defences and improving the land. The late 13th century was a time of high population and high grain prices making the direct management of demesne highly profitable, though when the climatic deterioration continued into the 14th and 15th century landlords continued to invest in their estates. Serious flooding returned to Walland Marsh in the mid 14th century, and in 1351, for example, it is recorded that ‘the marsh of Spadelond lying between the Town of Winchelsea and Daunsewalle, and between Pykam Myll [near the top of the Pannel Valley] and Trecherie [below the Strand Gate of Winchelsea] is utterly torn and destroyed by storm of the sea so that the lands of the King and others are inundated at every high tide’ (cited in Homan 1938, 223). The extent of this 14th century flooding can be seen through combining evidence for the complex pattern of sea walls in Walland Marsh and the detailed plotting of medium textured calcified soils (Rippon 2000a, figs 55 and 67).

Initially the major landowners once again set about recovering their flooded lands. In 1399, for example, a survey was carried out that recorded ‘628 acres of marsh, lying in a place called the Becard, which had long been in danger of the sea, and at times were often overflowed, ought to be preserved and defended by a certain bank beginning at Fayrefields Hole [a breach of the old sea wall at Fairfield] extending to the bank of the Prior and Convent of Christchurch to the north’ (Holloway 1849, 725). Prior Goldstone (1449–68) spent £1,200 on this work, a figure far above that spent in Ebony around 1300 (see above). Prior Petham (1471–72) spent a further £300 on the reclamation of a 300 acre marsh, and by the dissolution, Appledore Marsh was completely inned and rendered fit for grazing sheep and cattle. The value to landlords of these new enclosures is clearly shown in the level of rent income they obtained from leasing their lands, a practice which became particularly prevalent from the mid 15th century (Draper 1998).

Whilst some landlords continued to manage their own lands, others adopted a different solution as they started to lease their estates, shifting the responsibility for flood defence – and the opportunity to make a profit through renting the land – to the
emerging class of ‘yeoman’ farmers. In 1359, for example, the Archbishop of Canterbury granted John de Gosebourn of Appledore ‘72 acres of land in his marsh lying outside the walls of his hinnings of La Cheyn called Eastwall between the land of the Abbot of Boxley on the south and land called Newlonde on the north’ so that it might be embanked, creating the entirely new manor of New Cheyne (Tatton-Brown 1988, 110, 261). The greatest reclamation occurred in an area later to be called East Guldeford. In 1478 the Abbot of Robertsbridge granted Richard Guldeford 1,300 acres of saltmarsh in the parishes of Playden, Iden and Broomhill in Sussex. In 1497, Guldeford acquired further land, and in 1499 he was given permission to build a church in ‘Guylforde Innynge, formerly Branchings, which had been submerged for 300 years and lately recovered by him at great expense’. By his death in 1506 this area had become the parish of ‘New Guldford’, with 6 messuages, a church, and a mill (Salzman 1937, 151).

These various late medieval reclamations on Walland Marsh can still be identified in today’s ‘historic landscape’, as they possess a distinctive morphology (Figure 5). The old reclamations, dating up to the later 13th century and still protected by the sequence of sea walls that were constructed up to that date, are characterised by a complex pattern of small fields. This arrangement reflects both the process of reclamation (often carried out piecemeal by individual tenants), the use to which the fields were put (high medieval agriculture on the Marsh including a considerable amount of arable cultivation), and the way in which the landscape was managed (with strong communal regulation and a long tradition of tenant’s parcels being widely scattered). The late medieval reclamation, in contrast, were characterised by far larger fields which also reflect the process of reclamation (more systematic), the use to which the land was put (pasture) and the pattern of landholding (larger, more unified tenancies) (Draper 1998, fig. 7.3; Eddison 2000, 88–9; Gardiner 1998).

Adapting to circumstances: economic re-orientation

It has been shown that during the 14th and 15th centuries, communities living on reclaimed coastal marshland were under enormous pressure from the deteriorating late medieval climate but that, in most cases, the response of these communities, and their landlords, was not to abandon these lands but to invest heavily in their continued survival. This strategy can be thought of in terms of balancing the perceived cost of maintaining a reclaimed landscape, the risks of continued flooding, and the benefits of continued occupancy: clearly, based upon contemporary understanding of the situation, the benefits were thought to outweigh the costs and risks.

Those areas that were not totally lost to flooding largely continued in agricultural production, though there was a shift towards pastoralism. This was a general phenomenon in the late medieval period, as grain prices fell and wool prices rose, but coastal marshlands were particularly suited to pastoral farming with their high grass yields and rich meadows. Another factor, which has not received the attention that it deserves, is the extent to which leguminous crops were also grown (Tables 1 and 2). Beans were certainly cultivated in early medieval England, having been recovered
from ‘Middle Saxon’ settlements in Fenland (Crowson et al. 2000, 216–7, 220, 223; Murphy 1993, 76; 1995, 29; and see Hooke 1985, 126), and their use in an area south east of a line from Dorset to the Wash was widespread by the later 13th century (Campbell 1988, 200–201; Rippon forthcoming; and see Currie 1988). Overton and Campbell (1999, tab. 7.4) estimate that in 1300 4.9% of arable was sown with legumes, which rose to 8.7% by 1380 and 10.2% in 1600. Though most of the data we have relates to demesne farming, it would appear that the cultivation of legumes was also becoming increasingly widespread in certain areas amongst the tenantry, as gauged for example, through tithe payments (e.g. the estates of Leicester Abbey; Hilton 1947,

Fig. 5. The impact of landholding and landuse on the historic landscape of Romney Marsh. The older reclamations around Brookland are characterised by a complex pattern of small fields reflecting the process of reclamation (by individual tenants), landuse (including a considerable amount of arable cultivation), and the way in which the landscape was managed (with strong communal regulation and a long tradition of tenant’s parcels being widely scattered). The late medieval reclamation to the south west (in a detached parcel of Brenzett parish), were characterised by far larger fields which also reflect the process of reclamation (more systematic), the use to which the land was put (pasture) and the pattern of landholding (larger, more unified tenancies). Source: Ordnance Survey First Edition Six Inch Series.
65-6). Set against this generally upward trend, however, there was significant spatial and temporal variation with some areas showing a fall in the proportion of arable put down to legumes in the 15th century (e.g. Wisbech Barton: Stone 1998, app. 1; the Sussex manors of Battle Abbey: Brandon 1971a, tab. 1).

Similar quantified data is not available for many other areas in the late medieval period, though anecdotal evidence does point to the widespread cultivation of legumes on reclaimed coastal marshland. For example, of all the manors of St Augustine’s Abbey (Bristol), Portbury, which included extensive areas of reclaimed marshland beside the River Avon, appears to have specialised in the cultivation of beans (Sabin 1960, 5). The account rolls of Glastonbury Abbey’s manors in the Somerset Levels do not unfortunately extend into the late medieval period (see Harrison 1997; Keil 1964), though in the 16th century the topographical writer Leland said: ‘From Combane to the Sterte most parte of the shore is hilly ground, and nere the shore is no store of wood: that that is ys al in hegge rowes of enclosures. There is great plenty of benes in this quarter and inward to the landes. And of these benes ther is yn a maner a staple at Bridgwater when corn is dere in the parties beyond the se’ (Toulmin Smith 1907, 168).

In Fenland, beans were grown on manors such as Gedney in 1364/5 (Campbell 1988, 203) and Gayton le Marsh in 1482-3 (Owen 1996, No. 84), and production in the region as a whole was at a level for a surplus to have been exported to London (Rigby

<table>
<thead>
<tr>
<th>County</th>
<th>Later 13th/early 14th century</th>
<th>Later 14th/15th century</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. manors</td>
<td>% arable sown with legumes</td>
</tr>
<tr>
<td>Somerset Levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brent</td>
<td>1</td>
<td>45.4%</td>
</tr>
<tr>
<td>Sowy</td>
<td>1</td>
<td>32.6%</td>
</tr>
<tr>
<td>Withy</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>Pevensey Levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pevensey Castle demesne</td>
<td>1</td>
<td>16.4%</td>
</tr>
<tr>
<td>Romney Marsh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agney and Ogarswick</td>
<td>1</td>
<td>36.8%</td>
</tr>
<tr>
<td>Dengemarsh</td>
<td>1</td>
<td>37.5%</td>
</tr>
<tr>
<td>Udimore</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>Norfolk Broads</td>
<td>1</td>
<td>33.0%</td>
</tr>
<tr>
<td>East Kent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lydden</td>
<td>1</td>
<td>31.0%</td>
</tr>
<tr>
<td>Fenland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downham-in-the-Isle</td>
<td>1</td>
<td>30.0%</td>
</tr>
<tr>
<td>Wisbech Barton</td>
<td>1</td>
<td>5.2%</td>
</tr>
<tr>
<td>Gedney</td>
<td>1</td>
<td>15%</td>
</tr>
</tbody>
</table>

** in some years legumes comprised more than half the total acreage sown: Gardiner 1998, 133
Sources: see Rippon forthcoming

Table 1. Percentage of arable sown with legumes on marshland manors during the high and late medieval periods.
From the 13th century rents were sometimes paid in beans (e.g. Foster 1920, Nos 128, 259), and they were amongst the most common crops recorded in cases of theft (McLane 1988, Nos 17, 46, 219, 222, 230, 247, 291, 897, and 908). By the 16th century, 30.6% of cultivated land in the marshland districts of Lincolnshire were sown with legumes, compared to 28.6% in the fenlands, 16.4% on the wolds and heaths and 30.9% on the clay vales (Thirsk 1967, tab. 14).

A variety of evidence, therefore, points to a relatively high proportion of the arable on many coastal marshlands having been put down to legumes. In a number of areas where quantified data is available, legumes comprised around 30% of cultivated land, a figure matched only by a handful of dryland regions (Table 2), and well above Overton and Campbell’s (1999, tab. 7.4) national average of 8.7%. So what does the extent of bean cultivation on reclaimed coastal marshlands suggest? Liking heavy soils and being relatively salt-tolerant, they are an ideal crop for coastal wetlands (Bland 1971, 269). Being a member of the Leguminosae, they can add nitrogen into soil

<table>
<thead>
<tr>
<th>County</th>
<th>Later 13th/early 14th century</th>
<th>Later 14th/15th century</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. manors</td>
<td>% arable sown with legumes</td>
</tr>
<tr>
<td>Durham</td>
<td>4</td>
<td>1.50%</td>
</tr>
<tr>
<td>Suffolk</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Huntingdonshire</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leicestershire</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>W. Midlands +</td>
<td>33</td>
<td>0.90%</td>
</tr>
<tr>
<td>Kent</td>
<td>26</td>
<td>21.70%</td>
</tr>
<tr>
<td>Northamptonshire</td>
<td>10</td>
<td>8.30%</td>
</tr>
<tr>
<td>Cambridgeshire</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sussex</td>
<td>9</td>
<td>22.70%</td>
</tr>
<tr>
<td>Yorkshire</td>
<td>5</td>
<td>0.80%</td>
</tr>
<tr>
<td>Gloucestershire</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Norfolk</td>
<td>2</td>
<td>16.80%</td>
</tr>
<tr>
<td>Essex</td>
<td>3</td>
<td>1.50%</td>
</tr>
<tr>
<td>Wessex (bishop of Winchester)</td>
<td></td>
<td>0.97%</td>
</tr>
<tr>
<td>Devon</td>
<td>14</td>
<td>2.20%</td>
</tr>
<tr>
<td>Cornwall</td>
<td>4</td>
<td>4.30%</td>
</tr>
<tr>
<td>Nottinghamshire</td>
<td>1</td>
<td>20.80%</td>
</tr>
<tr>
<td>Dorset</td>
<td>5</td>
<td>5.10%</td>
</tr>
<tr>
<td>Oxfordshire</td>
<td>8</td>
<td>4.00%</td>
</tr>
<tr>
<td>Lancashire</td>
<td>3</td>
<td>2.40%</td>
</tr>
<tr>
<td>Somerset</td>
<td>18</td>
<td>2.00%</td>
</tr>
<tr>
<td>Wiltshire</td>
<td>19</td>
<td>1.80%</td>
</tr>
<tr>
<td>Northumberland</td>
<td>4</td>
<td>0.70%</td>
</tr>
<tr>
<td>Cumberland</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

* Number of manors not specified
+ West Midlands: Herefordshire, Monmouthshire, Warwickshire and Worcestershire
Sources: see Rippon forthcoming

Table 2. Percentage of arable sown with legumes in various English counties during the high and late medieval periods, arranged in ascending order in late medieval period.
and their introduction into medieval agriculture may have started as part of crop rotations in order to improve soil fertility (e.g. Brandon 1972, 418; Campbell 1988, fig. 1; 1991, 144–5; Currie 1988; Gross and Butcher 1995, 109; Mate 1991; 1997; Postan 1966, 583; Titow 1969, 41). Contemporary medieval writings certainly show that the potential for growing legumes for this purpose was recognised (Thornton 1997, 196), though only when sufficient acreages (20–25%) of legumes were grown in suitable rotations does it suggest that improving fertility was the prime intention (Farmer 1977, 564).

Comparison with the rest of medieval England suggests that the c.30–40% of sown acreages on many marshland demesnes represents a highly specialised form of agricultural production. Beans are a protein-rich source of food for both humans or animals that can easily be stored dry or turned into bread/cake (Dyer 1989, 58, 154; Grieg 1988, 112–13; Howell 1983, 164; Searle and Ross 1967, 17, 126, 131; Tusser 1557, 57; Wretts Smith 1931/32, 171). In a number of medieval accounts, it is specifically mentioned that beans were fed to pigs (e.g. Battle Abbey, Sussex: Searle and Ross 1967, 44; Chalvington in Sussex: Mate 1991, 82; Forncett in Norfolk: Davenport 1906, 31; Milton in Essex: Nichols 1932, 122–3, 149). Glastonbury Abbey’s bean-growing manors on the Somerset Levels, notably Brent and Sowy, certainly had large herds of pigs (Keil 1964, 79, 81, 125). Of all Glastonbury’s manors, the three largest herds of cattle (both for breeding and dairy production) were also located on these bean-growing marshland manors (Keil 1964, tab. 19). The preferential growing of beans on certain manors may also have been associated with the raising of horses. Glastonbury Abbey’s only stud farms in Somerset were located at Brent and Sowy (Keil 1964, 81), and a tradition of horse breeding may be evident in Domesday, for manors in the Brent Marsh had a relatively high number of horses, including unbroken mares (Round 1906, 423).

From the discussion above, it appears that reclaimed marshland was highly valued as agricultural land, but that although large areas are recorded as arable, when detailed data on cropping is available it appears that beans were a major crop. Medieval estate managers were clearly making careful choices as to how they could most effectively utilise these distinctive environments, and the perception of landlords such as Glastonbury Abbey was that the high, particular pastoral, productivity of their marshland estates justified the costs and risks of maintaining flood defences.

The paradox of Romney Marsh: investment and depopulation

This discussion started with the observation that most marshland landscapes appear to have suffered less depopulation than their adjacent dryland areas. It has also been shown above how Romney Marsh was one of those marshland landscapes that saw the investment of considerable resources during the medieval period in order to combat the effects of flooding. Indeed, there was a similar degree of investment in other aspects of the landscape, notably ecclesiastical building programmes at Lydd, Ivychurch, Newchurch and Snargate (Tatton-Brown 1989, 261).

In the light of all this investment, it is curious that the Marsh was becoming steadily
depopulated. In 1462, it was stated that 'in the Marsh of Romney, in the County of Kent, which lies and is situate near the sea, where there is now not so great an abundance of people and inhabitants or labourers, as there used to be' (quoted in Furley 1874, 301). In the early 16th century, it was said that 'Romney Marsh, where corn and cattle were plentiful, has fallen into decay. Many great farms and holdings are held by persons who neither reside on them ... nor breed cattle, but use them for grazing trusting to the Welsh cattle' (quoted Sheail 1968, 226). The economic decline of Romney Marsh is reflected in the Lay Subsidy Returns of 1524/5, when the Marsh paid an average of 26–29 shillings per square mile, while few areas in the rest of Kent averaged less than 50 (Sheail 1968, 224, 331; and see Pearson 1994, 144). Blackmanstone, Broomhill, Eastbridge, and Orgarswick churches were probably abandoned by 1500, and two of the three parish churches in New Romney were pulled down by the mid 16th century (Robertson 1880; Tatton-Brown 1989, 262). Snave had no communicants by 1557 whilst Hurst church was converted into a pig sty (Gardiner 1998, 132); Hope All Saints and Midley churches were abandoned by the late 16th/early 17th century (Figure 6; Bennell 1995, 99; Tatton-Brown 1989, 262). Limited fieldwalking has also demonstrated a major thinning out the mainly dispersed settlement pattern with 52 sites in the Newchurch area dating to c.1250–1400/1450, falling to just 15 with occupation from 1400/1450 to 1500/1550; only a handful of these sites continued to be occupied into the 16th or 17th centuries before they too were abandoned (Reeves 1995, 84–5; and see Gardiner 1994). Excavations at Lydd Quarry suggest a slightly earlier date for the contraction of settlement there, around the mid 14th century (Barber 1998, 101).

Beresford (1971, 20) found the depopulation of Romney Marsh 'mysterious', because

Fig. 6. Hope All Saints church, Romney Marsh (see Bennell 1995). The Marsh contains numerous isolated and even ruinous churches in what is now a sparsely populated area.
of its scale: outside the region 'it is rare to find deserted villages with other deserted
villages on every side of it'. A number of factors would appear to account for this
economic decline, some of which were local in their effect. Like a number of areas,
Romney Marsh suffered from recurrent bouts of plague, such as that which devastated
the population of Hythe during the reign of Henry V (1413–22; Riley 1876b, 429–31;
and see Dobson 1998). The Romney Marsh ports were suffering from the wars with
France, and as trade became increasingly focused upon London and Southampton
(Butcher 1974, 19; Lovegrove 1994, 5). At the same time both the Romney and Rother
Estuaries were silting up despite strenuous efforts to keep them open (Eddison 1995b;
Hipkin 1995, 138; Page 1937, 54; Riley 1874; 1876b; Vollans 1988). The loss of the local
port towns meant that there was little local demand for labour, goods and services
that might otherwise have allowed economic diversification (Gardiner 1998, 141).

Whilst local conditions on Romney Marsh were affecting its prosperity, the region
was also responding to the general decline in demand for grain and increased demand
for meat, dairy produce and particularly wool (see above). In a number of areas in
Britain, economic diversification and the presence of towns, providing a market for
goods and services, allowed communities to survive and even flourish (e.g. the
Breckland of Suffolk: Bailey 1989). The rich pastures of the Marsh, in contrast, lay next
to the established woolen industry of the Kentish Weald, and as sheep farming was
much less labour intensive, a population decline was inevitable. Alongside this trend,
there was also the policy of major ecclesiastical estate owners leasing their demesne
(see above), allowing the peasantry to accumulate larger holdings, with butcher-
graziers, many of whom lived off the Marsh, being the most innovative of the new

Thus, decline in settlement on Romney Marsh can only be understood when this
individual wetland is placed in its wider landscape context. The structure of land
ownership and growing physical isolation meant that it was suddenly ill-placed to
cope with the changing economic environment, in contrast to other marshlands such
as Fenland and the Somerset Levels which lay within economically more vibrant
regions with a flourishing urban network. The considerable investment by the great
ecclesiastical landowners and their lessees in restoring drainage and flood defence
appears to have been a commercial concern, which had little benefit to the local
population.

Conclusions

This paper has examined just one type of wetland, coastal marshlands, during a very
short period of time – the 14th and 15th centuries – and the human responses to a
series of profound environmental and socio-economic changes: climatic deterioration,
falling population and grain prices, and the changing relationships between lords and
their tenants. The way in which any particular landscape evolves at any particular
time can only be understood by placing it in its wider context, and these coastal
marshlands provide a good example. All communities were affected by the general
socio-economic phenomena of falling population which led to lower agricultural prices,
though like the deteriorating climate this will have had a differential impact depending on regional factors such as the structure of landholding (e.g. the leasing of demesne), the willingness of landlords and tenants to adopt innovative agricultural practices (e.g. the cultivation of beans and specialisation on raising livestock), and proximity to centres of consumption (flourishing towns, ports and markets).

It has been shown that despite the socio-economic background of recession, and environmental conditions that made coastal wetlands increasingly difficult, life in what have traditionally been called ‘marginal’ landscapes had not become untenable. The cost and risks of the traditional pattern of mixed agriculture increased, and the returns decreased, but the overwhelming response was continued investment and innovation, not desertion. This must reflect the way in which society perceived the relative value of different strategies towards landscape exploitation, and suggests two possibilities: that late medieval society was highly conservative and had little idea of economic or environmental reality, or it suggests that coastal wetlands were highly valued by contemporary society and were regarded as worthy of continued investment. That other, far less challenging, landscapes suffered greater depopulation suggests that the latter is true, and that the cost, risks and returns of life in a wetland landscape were fully appreciated.

Abbreviations

CPR Calendar of Patent Rolls

References

Blaauw, W.H. 1848. Remarks on the Nonae of 1340, as relating to Sussex, Sussex Archaeological Collections 1, 58-46.
Cracknell, B.E. 1959. Canvey Island; the history of a marshland community. Leicester: Leicester University Press.
Adaptation to a Changing Environment

McLane, B.W. 1988. The 1341 Royal Inquest in Lincolnshire. Lincolnshire Records Society 78.

Poos, L.R. 1985. The rural population of Essex in the later middle ages, Economic History Review, 2nd ser., XXXVIII.

Reaney, P.H. 1935: The Place-Names of Essex. English Place-Names Society XII.

Round, J.H. 1906. The Domeday Survey, Victoria County History of Somerset 1, 333–598.

Sabin, A. 1960. Some manorial Accounts of St Augustine’s Abbey, Bristol being the Computa of the Manors for 1491–2 and 1496–7. Bristol Records Society XXII.

Titow, J.Z. 1961 Some evidence of thirteenth-century population increase, Economic History Review, 2nd ser., XIV,

Toulmin Smith, L. 1907. The Itinerary of John Leland in or about the years 1535–1543. London: George Bell and Sons.

