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Abstract

We study all-pay auctions with variable rewards under incomplete information. In standard

models, a reward depends on a bidder!s privately known type; however, in our model it is also

a function of his bid. We show that in such models there is a potential for paradoxical behavior

where a reduction in the rewards or an increase in costs may increase the expected sum of bids

or alternatively the expected highest bid.

Keywords: All-Pay Auctions, Contests, R & D Races, Rent-Seeking.

JEL classi!cation: D44, O31, O32

¤We are grateful for the insightful comments from George Bulkley, David DeMeza and seminar participants at

Autonoma University of Barcelona, Ben-Gurion University, Haifa University, Hebrew University, Norwegian School of

Economics and Business, Tel Aviv University, and University of Exeter. We also acknowledge the "nancial support

from the Monaster Center for Economic Research.
yCorrespondence to David Wettstein, Department of Economics, Ben-Gurion University of the Negev P.O.B. 653,

Beer-Sheva, Israel 84105; e-mail: wettstn@bgumail.bgu.ac.il

1



1 Introduction

The corporations Boeing and Lockheed Martin were recently engaged in a competition for the contract

to construct the future Joint Strike Fighter. Both corporations incurred large costs associated with

the preparation of their designs for a test #yo¤. Once the planning and experimentation stage was

over, the U.S. government decided to award the project to Lockheed Martin. The other company,

Boeing, will receive nothing and yet bear all the costs of preparing its rejected proposal. In the recent

Democratic primary race, both Bradley and Gore spent large sums of money on advertisements to

increase their chances of winning; however, only Gore enjoyed the bene"t of being the nominee.

These scenarios are ubiquitous. They are encountered in R&D competitions, political contests,

rent seeking and lobbying activities. Previously, economists have modeled these settings as "rst-price

all-pay auctions: every contestant submits and pays a bid for the item being sold, while only the

highest bidder receives the item. Hillman and Samet [1987], Hillman and Riley [1989] analyze rent

seeking activities; Baye et al. [1993], Becker [1983] and Che and Gale [1998] study lobbying activities;

Rosen [1986] investigates job promotion; Snyder [1989] considers political contests; Dasgupta [1986]

examines R&D activity and O!Neil [1986] analyzes an arms race. Baye et al. [1996], Clark and Riis

[1998] and Barut and Kovenock [1998] provide a more general analysis for the complete information

case, while Amann and Leininger [1996], Krishna and Morgan [1997], and Moldovanu and Sela [2000]

provide such analysis for the incomplete information case.

All such studies that use the standard "rst-price all-pay auction capture the important feature that

all participants incur costs; however, they miss another crucial aspect of these environments $ there

is a relationship between the expenditures incurred in the bidding process and the size of the reward

collected by the winning contestant. That is, a larger expenditure increases not only the probability

of winning the contest but the size of the reward gained by winning.1

For instance, in bidding for the Joint Strike Fighter contract, e¤ort put into the proposal can save

e¤ort in delivering the "nal product. Furthermore, the higher quality of the proposal may also increase
1Konrad and Schlesinger [1997] study rent seeking in rent-augmenting games where both the size of the reward and

the probability of winning depend upon the e¤ort (bid). The classes of probability functions and their properties that

are used in such games are described in Skaperdas [1996]. These do not include an all-pay auction where this probability

is either one or zero depending upon whose bid is higher.
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the reward, by having more "ghters purchased, for which estimates ranged from 200 to 400 billion.2

The reward for winning the Democratic primary race is participation in the Presidential election of

which the value depends upon the chances of winning. These chances have a signi"cant dependence

on performance in the primary (both on time of winning and popularity gained). Other examples

may include cases where several agents compete for a client and where there is an industry standard

result-dependent rate (sports agents, estate agents, lawyers in tort cases, investment managers, etc.)

The client will choose the agent with the best proposal. Better initial proposals could mean better

results (or at least savings in additional costs), thus larger rewards for the agent.

Under complete information, Kaplan et al. [2000] show that the existence of this relationship may

introduce substantial qualitative changes to the behavior of the contestants. In this paper, we study

such bid-dependent rewards under incomplete information. By studying an environment where the

reward is multiplicatively separable in e¤ort and type, we "nd two paradoxical changes from all-pay

auctions that are only present under incomplete information. Namely, an increase in the rewards for

winning the contest or a decrease in the costs for entering a bid may, in fact, reduce the amounts bid.

We show that such paradoxes do not exist when the reward is additively separable in e¤ort and type

(an environment that generalizes the standard all-pay auction).

These results are surprising. Whenever we use an all-pay auction to analyze a situation, we need

to ask how exactly is the reward determined. Does it only depend upon winning or losing? If not,

then how exactly does the expenditure a¤ect the reward? We see from our results that both questions

are important in deriving implications from analysis.

Consider political races. If society wants to reduce advertisements in political races, increasing

the costs of advertising may, in fact, increase advertisements. Even though the rewards for being

governor are higher than that of being mayor, higher campaign expenses in the mayoral race may not

be an indicator of that competition being closer. In addition, the government may want to reduce

the socially wasteful e¤orts towards competing for government procurement contracts. One may

recommend to reduce the size of the reward by purchasing more on the free-market; however, this
2The initial contract speci"es initial orders only. A higher quality design could lead to additional orders from the

US as well as orders from US allies. Furthermore, it may delay any possible introduction of the next generation "ghter

(Holson [2001]).
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may, to the converse, increase overall e¤ort.

Patent races are another situation that is amenable to our analysis. A "rm choosing a time t of

innovation replaces a contestant choosing a bid x. The time (until innovation) should decrease in x

with x = 0 corresponding to t =1 (for instance if t = 1=x). Clearly, the reward should depend upon

the time of innovation (usually decreasing).

Again, in this situation we may get counter-intuitive results. Decreasing rewards to innovations

(such as shortening the patent) may in fact speed up innovation time. An intermediate innovation

that reduces costs (to all participants) may delay the innovation time.

The paper proceeds as follows. In Section 2 we present the model. In Section 3 we analyze an

additively separable environment and show that paradoxical behavior cannot occur in such settings.

In Section 4 we study a multiplicatively separable environment and obtain paradoxical behavior for

a range of possible cost and reward structures. In Section 5 we discuss the results and o¤er an

explanation for the paradox. In Section 6, we conclude.

2 The model

We now describe the environment of an all-pay auction with bid-dependent rewards. The set of

contestants is N = f1; 2; :::; ng: Each contestant i in N submits a bid xi and, by doing so, incurs a

disutility (or cost) denoted by c(xi), where c : R+ ! R+ is an increasing function with c(0) = 0:

The contestant j that chooses the highest bid wins a reward R(µj ; xj); where R(µj ; xj) : R2+ ! R+,

and individual type µj is independently drawn from the interval [0; 1] according to the distribution

function F . While F is common knowledge, each contestant is privately informed about his own type.

Note that in the standard all-pay auction model R(µj ; x) = R(µj); namely the reward of each

contestant is a function of his own type only.

2.1 Equilibrium

A contestant!s strategy is a function b(µ) that indicates a bid to submit for each realization of µ.

In a Bayesian equilibrium, the bidding function (strategy) chosen by each contestant maximizes his

expected utility given the bidding functions chosen by the other contestants. Hence, a symmetric
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equilibrium consists of a bidding function b(µ) (assumed to be monotonic increasing and di¤erentiable)

where for each µ the bid b(µ) solves the following maximization problem:

max
x
Fn¡1(b¡1(x)) ¢R(µ; x)¡ c(x) (1)

3 Additively separable auctions

We say that an environment is additively separable if R(µ; x) is separable into g(µ) + h(x) where g is

strictly increasing. Note that when h(x) is constant, the environment is the same as a regular all-pay

auction, and when h(x) = ¡x and c(x) = 0, the environment is the same as a "rst-price auction.

In this section, we assume that conditions are such that there exists an equilibrium described in the

previous section where the equilibrium bid function is monotonic increasing.3

Proposition 1 In an additively separable environment, a reduction in the rewards or an increase in

the cost of bidding decrease the expected sum of bids or alternatively the expected highest bid.

Proof. We show that if there are two additively separable environments (ca; ha) and (cb; hb) where

hb¡cb ¸ ha¡ca it must be that the equilibrium bids satisfy xb ¸ xa:We show these properties by using
the Revenue Equivalence Theorem as stated in Klemperer [1999].4 First, the bidder with the highest µ

always wins the auction. A bidder with µ = 0 has zero expected payo¤. This environment is equivalent

to a mechanism (c; h) where the seller takes c(x(µ)) from a buyer reporting µ and pays h(x(µ)) to a

buyer with the highest µ (and value g(µ)) while giving him the object. By revenue equivalence, any

such mechanism should give the same expected surplus to a buyer of type µ: Therefore, if there are

two mechanisms: (ca; ha) and (cb; hb) with hb ¡ cb ¸ ha ¡ ca, then the equilibrium bidding functions

xa(µ) and xb(µ) should satisfy:

F (µ) ¢ [g(µ) + ha(xa(µ))]¡ ca(xa(µ)) = F (µ) ¢ [g(µ) + hb(xb(µ))]¡ cb(xb(µ)) (2)
3This is a standard result for a large class of auctions (see Reny and Zamir [2000]).
4The revenue equivalence theorem in Klemperer [1999] is: %Assume each of a given number of risk-neutral potential

buyers of an object has a privately-known signal drawn from a common, strictly increasing, atomless distribution. Then

any auction mechanism in which (i) the object always goes to the buyer with the highest signal, and (ii) any bidder

with the lowest-feasible signal expects zero surplus, yields the same expected revenue and results in each bidder making

the same expected payment as a function of her signal.&
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If there were a bµ where xb(bµ) < xa(bµ), then by revealed preferences (prefers xb(bµ) to xa(bµ) when
(c; h) = (cb; hb))

F (bµ) ¢ [g(bµ) + hb(xb(bµ))]¡ cb(xb(bµ)) ¸ F (x¡1b (xa(bµ))) ¢ [g(bµ) + hb(xa(bµ))]¡ cb(xa(bµ))
Since xb is monotonic, x¡1b (xa(bµ)) > bµ: Therefore,

F (bµ) ¢ [g(bµ) + hb(xb(bµ))]¡ cb(xb(bµ)) > F (bµ) ¢ [g(bµ) + hb(xa(bµ))]¡ cb(xa(bµ))
Using equation (2) (derived from revenue equivalence) to substitute for the LHS,

F (bµ) ¢ ha(xa(bµ))¡ ca(xa(bµ)) > F (bµ) ¢ hb(xa(bµ))¡ cb(xa(bµ))
Which can only happen if

F (bµ) ¢ [ha(xa(bµ))¡ hb(xa(bµ))] > ca(xa(bµ))¡ cb(xa(bµ))
If this inequality holds for 1 > F (bµ) > 0, then

ha(xa(bµ))¡ hb(xa(bµ)) > ca(xa(bµ))¡ cb(xa(bµ))
This contradicts that hb ¡ cb ¸ ha ¡ ca. ¤

So, in an additively separable environment, an increase in rewards (or a decrease in costs) causes,

as can be expected, an increase in the bids submitted.5 In the next section we examine another

environment with radically di¤erent results.

4 Multiplicatively separable auctions

We say that an environment is multiplicatively separable if R(µ; x) = µ ¢ R(x), where R(¢) is strictly
increasing and R(0) > 0. Here, µ is the ability of a contestant where the higher µ; the more he is able

to exploit the reward. For instance, the reward may represent the pro"t that a "rm makes for a given

contract. The amount bid (representing quality) a¤ects both probability of winning and, in addition,
5As mentioned, the standard all-pay auction is a speci"c case of our additively separable environment. Gavrious,

Moldovanu and Sela [2001] "nd that adding bid caps improves the revenue of an all-pay auction. This is puzzling since

adding a cap is the equivalent of increasing the cost function (albeit to one with in"nite slope at the cap). However,

the bid function is not strictly monotonic and thus there is a chance that the bidder with the highest µ will lose. We

conjecture that conditions such as continuity of costs will be su¢cient to eliminate such behavior.
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the quantity ordered once a contractor has been chosen. Di¤erent abilities represent di¤erent per unit

pro"t levels.

We now present a paradoxical behavior in multiplicatively separable auctions that di¤ers from

behavior in standard all-pay auctions.

Proposition 2 In a multiplicatively separable all-pay auction, for a large family of possible reward

and cost functions (costs can be linear, concave or convex), a reduction in the rewards may increase

the expected sum of equilibrium bids or alternatively the expected highest bid.

Proof. Assume that µ is uniformly distributed on [0; 1], i.e., F (µ) = µ: In order to characterize

the equilibrium bid functions we show "rst the following lemma.

Lemma 3 In a multiplicatively separable all-pay auction with n bidders, if either c0(x) > R0(x) for all

x or c0(x)=R0(x) is a strictly increasing function of x for all x, then b(µ) = u¡1(µn) is a symmetric

equilibrium bidding strategy where, u(x) = R(x)¡
n

n¡1 [
R x
0

n
n¡1c

0(t)R(t)
1

n¡1 dt].

Proof. See in the Appendix. ¤

Now, we show two cases a and b such that the reward function in case a is smaller than the reward

function in case b (the cost function is identical in both cases) and nevertheless the expected bid of

every bidder as well as the expected highest bid in case a is larger than in case b:

Consider the following cases when n = 2. Case a0 : the reward function is Ra
0
(x) = x1=4 and the

cost function is c(x) = x. Case b : the reward function is Rb(x) = 51=3=2 and the cost function is

c(x) = x.

By Lemma 3, the bid functions ba
0
(µ) = (5=8)4=3 ¢ µ8=3 and bb(µ) = 51=3=4 ¢ µ2 respectively form

equilibria for cases a0 and b.

Now, let Case a be as follows: the reward function is Ra(x) = Minfx1=4; (5=8)1=3g and the cost
function is c(x) = x:

By comparing case a and case b, we will show the paradoxical behavior that if the reward goes down,

both the average bid and the average highest bid may go up. First notice that the reward function

over the range of equilibrium bids in case a0 is less than that in case b. The maximum bid for case a0 is
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ba
0
(1) = (5=8)4=3. Thus, the highest possible reward for case a0 is Ra

0
((5=8)4=3) = (5=8)1=3 where the

reward for case b is (5=8)1=3 for all x. Second notice that ba
0
also forms an equilibrium with reward

function Ra(x). (The points not chosen with Ra
0
will yield less reward with Ra and thus still not be

chosen.) Thus, Ra(x) · Rb(x) for all x ¸ 0.

The expected average bid in case a is Ea =
R 1
0
(5=8)4=3 ¢ µ8=3dµ = 0:14574, while the expected

average bid in case b is Eb =
R 1
0 5

1=3=4 ¢ µ2dµ = 0:1425. That is, the expected average bid in case a is
larger than in case b: In addition, the highest expected bids in cases a and b are

³R 1
0 b

b(µ) ¢ 2µ ¢ dµ =
´

0:22901 and 0:21374; respectively:6

Notice that the costs in the example above are linear. We can use the following lemma to show

that these results apply to a large family of cost and reward functions.

Lemma 4 If in an environment with cost c(x) and reward R(x) there is an equilibrium bid function

b(µ), then for any continuous, strictly-increasing transformation y = g(x) (where g(0) = 0), the

environment with bc(y) = c(g¡1(y)) and bR(y) = R(g¡1(y)) has an equilibrium bid function bb(µ) =
g(b(µ)).

Proof. See in the Appendix. ¤

Notice that if R1(x) ¸ R2(x) for all x, then bR1(y) ¸ bR2(y) for all y, likewise for costs. Also
notice that for any µ where b1(µ) > b2(µ); then bb1(µ) > bb2(µ) as well. This implies that applying any
transformation to our example will maintain the relationship between the reward functions while also

maintaining the paradoxical relationship for the same range of µ:What happens with the average bids

and expected highest bids is less clear.

In our example above, both equilibrium bid functions are increasing in µ; while the bid function

for case a is higher than the bid function for case b after a certain point. This implies that any convex

transformation, will increase the disparity of the average bid and expected highest bid between the

cases. Furthermore, any concave transformation y = x® where ® = 1 ¡ " will lead to only a slight
deviation in the equilibrium bid functions. Thus, for small enough "; we will have the relationship

between the average and expected highest bids maintained. Therefore, there exist paradoxical reward

examples with both concave and convex costs. ¤
6The disparity for the highest expected bid is always greater than the disparity for the expected bid.
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A set of closely related results to our "ndings here is present in the study of optimal auctions.

Myerson [1981] "nds that revenue in a "rst-price auction with a (suitable) minimum bid is higher

than in one without. A minimum bid can also be represented by a bid dependent reward function.

Formally, a minimum bid of m with reward R is equivalent to a variable reward bR(x) = R when

x > m and 0 otherwise. This reward function is less than R¤(x) = R for all x. Thus, although bR(x)
is not continuous and hence does not satisfy the requirements imposed on the reward functions in our

model, a result similar to ours is obtained, mainly a decrease in rewards may increase revenues.

We now present another paradoxical behavior that di¤ers from behavior in standard all-pay auc-

tions.

Proposition 5 In a multiplicatively separable all-pay auction, and for a large family of possible reward

and cost functions, an increase in the costs may increase the expected sum of equilibrium bids or

alternatively the expected highest bid.

Proof. Assume again that µ is uniformly distributed on [0; 1], i.e., F (µ) = µ: In the following we

show two cases a and b such that the cost function in case a is higher than the cost function in case b

and nevertheless, in equilibrium, the average bids in case a are higher than the average bids in case b:

Consider the following cases for n = 2. Case a0 : R(x) = x1=18 and ca
0
(x) = 3=4 ¢ x1=9. Case b :

R(x) = x1=18 and cb(x) = 3=4 ¢ x1=6.

Using the solution o¤ered by Lemma 3, the equilibrium bid functions are, ba
0
(µ) = µ36 and bb(µ) =

(8=9)9 ¢ µ18.

Now, let case a be as follows: R(x) = x1=18 and ca(x) = maxfca0(x); cb(x)g:

For the same reasoning as with di¤erent reward functions, the bid function ba
0
will be an equilibrium

for a cost function ca(x) = maxfca0(x); cb(x)g. Thus, costs in case a (with cost function ca) are higher
than costs in case b. As with the reward example at µ = 1, the equilibrium bid is higher in case a, as

we see that ba(1) = 1 while bb(1) = (8=9)9:

Now, the expected average bid in case a is Ea =
R 1
0
µ36dµ = 0:027; while the expected average bid

in case b is Eb =
R 1
0
(8=9)9 ¢ µ18dµ = 0:018. That is, the expected average bid in case a is higher than

in case b: In addition, the highest expected bids in cases a and b are approximately 0:053 and 0:035

respectively.
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As before using Lemma 4 implies that this result holds for a large family of cost and reward

functions. ¤

5 Discussion

As we showed, in the multiplicative environment there exist examples of paradoxical behavior. How-

ever, there are simple conditions that yield %regular& behavior. For example, behavior will be regular

if the change in rewards or costs is multiplicative (by a factor of ® > 1). Namely, if R2(x) = ®¢ R1(x)
or c1(x) = ®¢ c2(x); then b2(µ) ¸ b1(µ) for all µ: To see that note that by the solution derived in Lemma
3 (see equation 5 in the appendix), we can easily arrive at u1(x) = ® ¢ u2(x): Since b(µ) = u¡1(µn);
we have b2(µ) ¸ b1(µ): Hence we see that for paradoxical behavior to occur it is necessary to change
more than just the magnitude.

An initial economic intuition one may have to explain this is as follows. Increasing one!s bid

changes not only the probability of receiving a reward, but a¤ects the reward itself (d(P (x)R(x)) =

P 0(x)R(x) + P (x)R0(x)). Increasing the slope of the reward function could provide enough incentive

to increase one!s bid even if there is a reduction in the rewards. However, this cannot fully explain

the paradox $ if this explains the paradox in the mulitiplicatively-separable case, it should also imply

the existence of a paradox in additively-separable case, which we proved does not exist. Furthermore,

Kaplan et. al [2000] showed that the paradox does not exist with complete information.

So what is the full (theoretical) explanation? In environments with asymmetric information the

expected payo¤ of a bidder depends on his type (the value of the realized µ). In our setup the expected

payo¤ of a bidder depends positively on his type and only bidders with the lowest type receive a zero

expected payo¤. The higher payo¤s associated with the higher types are referred to as informational

rents (see Macho-Stadler & Perez-Castrillo [1997] and Salanie [1997]). Under (symmetric) complete

information, there are no informational rents (all information is public) and all bidders have zero

expected pro"t. Therefore, any change in rewards or costs must have a corresponding change in bids

to leave pro"t the same: an increase in rewards must imply an increase in bids in order to leave the

bidder with zero expected pro"t and likewise for a decrease in costs.

This logic still holds in the additively separable case. As we used the revenue equivalence to assist
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in the proof, again the main intuition is that the informational rent of each bidder is not a¤ected by

changes in rewards or costs. Therefore, by simple accounting no paradox can occur. Things change

for the multiplicatively separable case. The expected payo¤ (informational rent) of a bidder of type

µ in equibrium, denoted by ¼(µ); is given by ¼(µ) = F (µ)n¡1R(x(µ))µ ¡ c(x(µ)). Using the envelope
theorem we see the informational rents are given by the following.7

F (µ)n¡1R(x(µ))µ ¡ c(x(µ)) =
Z µ

0

F (µ̂)n¡1R(x(µ̂))dµ̂

From this equation we can see why an increase in the rewards may decrease bids. Take for example

an increase in the reward function R only for low values of x. Keeping bids constant, this will increase

the RHS of the equation for all µ: However, again keeping the bids constant the LHS of the equation

does not increase for higher values of µ: For the equation to return to equality, the LHS must increase.

This occurs when bids are lowered.

This also explains why the paradox does not occur when R is multiplied by a positive constant.

Take for instance a change whereby R is doubled. When bids stay "xed the RHS is doubled, but

the LHS is more than doubled. Hence, bids in the new equilibrium must increase. Notice that the

preceeding explanation also applies to the case where R is a constant.

One may have noticed that the RHS is not directly a¤ected by a change in costs. How then can

a decrease in costs in#uence the rents? The answer is that decreasing the costs for low values of µ

increases the LHS for those values. This then means that the bids must be increased for those values.

This then indirectly a¤ects the RHS for not only those values, but higher values as well and we have

the same story as before.

While we now see that such a paradox can occur in theory, we should ask if there is any common

policy that may result in such a paradox against the wishes of its creators. For instance, changing

the duration of a patent alters the rewards. Can this result in a paradox? If the market size were

constant over time, then reducing the length L to ° ¢L would be equivalent to multiplying the rewards
7The bidder!s payo¤ is given by: ¼(µ) = MaxxFn¡1(b¡1(x)) ¢ µ ¢R(x)¡ c(x). Invoking the envelope theorem we get

d¼(µ)
dµ

= Fn¡1(b¡1(x(µ))) ¢ R(x(µ)). Since equilibrium strategies are assumed to be symmetric, b¡1(x(µ)) = µ and we

get d¼(µ)
dµ

= Fn¡1(µ) ¢ R(x(µ)). Integrating this expression we get the integral representation of informational rent as:
¼(µ) =

R µ
0 F (µ̂)

n¡1R(x(µ̂))dµ̂. Note that a similar formula can be derived for general R(µ; x): In this case the envelope

theorem yields the derivative F (µ)n¡1Rµ(µ; x). It can also be derived for ability-dependent costs where the derivative

is F (µ)n¡1Rµ(µ; x)¡ cµ(µ; x):
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by ® where ® > 1 if ° > 1 and ® < 1 if ° < 1:8 Thus, as shown before, this has been shown to lead

to standard results. However, if the market size is not constant the paradox might occur.

The example we presented has an increase in the rewards function with a greater increase for

low-bid winners than for high-bid winners. How does this correspond to a change in patent life?

This occurs when the market is growing fast enough (at least temporarily) such that the present

value is also growing. This is common for (although not limited to) goods associated with network

externalities. The Internet was growing so fast that the present value of each year!s market was

growing and thus a year of a patent (for example, PriceLine!s auction) is worth more towards the

end of its life. Likewise, if the number of births in a country is growing at 10 percent per year, then

an additional year for a patent of a baby product would be worth more in present value the later

it is (assuming the discount rate is less than 10 percent). We also see certain products that weren!t

successful because the market/technological conditions weren!t right and years later a similar product

was a hit. A noticable example of this is the palm computer. The Palm Pilot was a hit in the late

90!s, but its predecessors (GO or Apple Newton) of the early 90!s were failures.9 In these examples,

an increased patent life would bene"t low-bid winners (late innovators) more than high-bid (early

inventors).10

6 Conclusions

We study an all-pay auction with bid-dependent rewards under incomplete information. We "nd

results that di¤er from both a regular all-pay auction under incomplete information and an all-pay

auction with bid-dependent rewards and complete information. In particular, we "nd the paradoxical

behavior that a reduction in the rewards may increase e¤ort, while a decrease in the costs to bidding

may decrease e¤ort. An important insight implied by these "ndings is that it is possible to achieve an

increase in e¤ort (bid) by only lowering the reward for each winning and by doing so modifying the
8The value of holding a patent from time t until time t+ °L is

R t+ °L
t

e¡rxRdx = (1¡ e¡r°L)Re¡rt=r: Notice that
this expression is increasing in °.

9 See Kaplan [1996] for a description of the early competition in this market.
10One may "nd that the ability parameter on the rewards is unpalatable for such a patent example; however, one

can just as easily put the ability parameter on the cost function and have the same examples if one divides by µ. The

equlibrium bid functions would not change, and in this environment rewards are the same for all "rms while costs

depend on the "rm!s type.
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shape of the reward function. Such paradoxical behavior does not exist for all environments, as we

showed for any additively-separable environment; however, we mention in our discussion indications

as to why the paradox should exist for a variety of situations.

Our "ndings cast suspicions on policy recommendations such as subsidies to R&D or patent pro-

tection as a means to increase innovative activity. It may also cause doubts on conclusions in many

other areas such as government procurement and congressional lobbying. Thus, we hope that this

and further work in turn should help improve policy recommendations regarding regulation of such

aforementioned contests.
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8 Appendix

Proof of Lemma 3.

We prove the Lemma in the following manner. First, we show that the above bid function solves

the di¤erential equation derived from the bidder!s maximization problem. Second, we show that either

of the two conditions on c(x) and R(x) mentioned is su¢cient for the proposed bid function to be

strictly monotonic and di¤erentiable.

Before examining the "rst-order condition, we use the above assumptions on R(µ; x) and F to

reduce (1) to

max
x
µ ¢ (b¡1(x))n¡1R(x)¡ c(x) (3)

Di¤erentiating with respect to x we obtain the "rst order condition:

µ(n¡ 1)(b¡1(x))n¡2(b¡1)0(x)R(x) + µ(b¡1(x))n¡1R0(x)¡ c0(x) = 0

In a symmetric equilibrium it must be that b¡1(x) = µ, hence the above reduces to:

(n¡ 1)(b¡1(x))n¡1(b¡1)0(x)R(x) + (b¡1(x))nR0(x)¡ c0(x) = 0

We now let u(¢) equal (b¡1(¢))n. The "rst order condition is then:

u0 + u
nR0(x)

(n¡ 1)R(x) =
nc0(x)

(n¡ 1)R(x) (4)

The solution of this di¤erential equation and boundary condition u(0) = 0 is given by:11

u(x) = R(x)¡
n

n¡1

Z x

0

n

n¡ 1c
0(t)R(t)

1
n¡1 dt (5)

11The solution of the di¤erential equation u0 + f(x)u = g(x) is given by u(x) = e¡
R x
0 f(t)dt[c+

R x
0 g(t)e

R t
0 f(y)dydt]
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Thus, the proposed bid function is b(µ) = u¡1(µn). However, this bid function must be strictly

increasing to form a symmetric Bayesian equilibrium. The bid function b(¢) is strictly increasing if
and only if the function u(x) is strictly increasing as well. Following, we "nd su¢cient conditions for

u(¢) to be a strictly increasing function. Let us "rst show that c0(x) > R0(x) is su¢cient for u to be
strictly increasing. The derivative u0(x) equals

n

n¡ 1(
c0(x)
R(x)

¡ R
0(x)u(x)
R(x)

)

Since u(x) · 1 for all possible x; we obtain:

u0(x) ¸ n

n¡ 1(
c0(x)
R(x)

¡ R
0(x)
R(x)

)

Consequently, c0(x) > R0(x) implies that u(x) is strictly increasing. That is, c0(x) > R0(x) is a

su¢cient condition for the existence of symmetric Bayesian equilibrium.

Second, we show that if c0(x)=R0(x) is a strictly increasing function, then u0(x) > 0: Notice that

from (4); the sign of u0(x) is the same as c0(x)¡u(x)R0(x). Through algebraic manipulation we have:

c0(x)¡ u(x)R0(x) = c0(x)¡R0(x)
·
R(x)¡

n
n¡1

Z x

0

n

n¡ 1c
0(t)R(t)

1
n¡1 dt

¸

= c0(x)¡
R x
0

n
n¡1R(t)

1
n¡1R0(t) c

0(t)
R0(t)dt

R(x)
n

n¡1
R0(x)

= c0(x)¡
R(x)

n
n¡1 c

0(x)
R0(x) ¡

R x
0
R(t)

n
n¡1 ( c

0(t)
R0(t))

0dt

R(x)
n

n¡1
R0(x)

=
R0(x)
R(x)

n
n¡1

Z x

0

R(t)
n

n¡1 (
c0(t)
R0(t)

)0dt

Thus, we see that if c0(x)=R0(x) is an increasing function, u(x) is increasing as well and, thereby, there

exists a symmetric Bayesian equilibrium. ¤

Proof of Lemma 4.

Since b(µ) is an equilibrium bid function, x = b(µ) must solve

max
x
µ ¢ (b¡1(x))n¡1 ¢R(x)¡ c(x)

However, by transformation of variables y = g(x) = g(b(µ)) must solve

max
y
µ ¢ (b¡1(g¡1(y)))n¡1 ¢R(g¡1(y))¡ c(g¡1(y))

Thus, y = bb(µ) must solve maxy µ ¢ (bb¡1(y))n¡1 ¢ bR(y)¡ bc(y): ¤
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