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Abstract

Often an organization, government or entity must allocate goods without collecting payment in return.

This may pose a di¢ cult problem when agents receiving those goods have private information in regards

to their values or needs or discriminating among agents is not an option. In this paper, we search for

an optimal mechanism to allocate goods when the designer is benevolent. While the designer cannot

charge agents, he can receive a costly but wasteful signal from them. We show that for a large class of

distributions of valuations, ignoring these costly signals by giving agents equal share (or using lotteries

if the goods are indivisible) maximizes the social surplus. In other cases, those that send the highest

signal should receive the goods; however, we then show that there exist cases where more complicated

mechanisms are superior.

�Corresponding author.
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1 Introduction

And Moses said to them, "It is the bread that the LORD has given you to eat. This is what

the LORD has commanded: �Gather of it.... You shall each take an omer [two quarts], according

to the number of the persons that each of you has in his tent.�" Exodus 16:15-16

One of the basic problems in economics is how to allocate scare resources or goods. One of the funda-

mental di¢ culties a­ icting such allocation is private information: knowing who desires the goods the most.

While markets work well with such allocation, the market is not always a feasible or desired mechanism for

allocation. In case of kidneys it may be unethical to have a market, while in case of sports or concert tickets it

may be undesirable to sell the tickets to the highest bidder.1 Finally, with the allocation of charitable goods,

it is not only undesirable to collect payment in return but those needing it the most are also the least able

to pay for it.2 Hence, we often see markets being replaced with other mechanisms. Psuedo-market systems

exist where exogenously given points are substituted for money such as with the allocation of both interviews

and courses for MBA students (see Brams and Taylor, 1996; Brams and Kilgour, 2001; Sönmez and Ünver,

2005). However, to work, these require more than one type of objects to be allocated (for an alternative use

of points) and may be costly to implement. In addition to market and psuedo-market mechanisms, we see

the use of non-market mechanisms to allocate goods.

One method used is instead of goods being allocated to the person who is willing to pay the most; they

are allocated to who is willing to work the hardest to get them. Sport and concert tickets are given, often

using �rst-come �rst-serve mechanism, that is, whoever is willing to wait the longest before the promoters

start selling, gets the tickets. Allocation of research funds by agencies like National Science Foundation in

USA and Economic and Social Science Research Council in UK to various universities and individuals are
1See Roth et al. (2004) for a description of the current method used to allocate kidneys and the ethical di¢ culties of moving

to a market-based system. With tickets, there is sometimes a desire for a wider audience. Indeed, the Metropalitan Opera in

New York received a several million dollar grant to widen audience by selling prime orchestra tickets for $20 each (10 percent

of their usual price).
2Che and Gale (2006) provide further examples of non-market allocation caused by wealth constrained agents.
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done based on research proposals (where a well-crafted proposal has a higher chance of being funded). A

common feature in these examples is that in order to convey their valuation, individuals must incur a socially

wasteful cost. As with waiting overnight in a long line, generally this e¤ort is socially wasted.

Another mechanism that is common with charity, but, surprisingly, also prevalent elsewhere, is to allocate

evenly or randomly using a lottery (among those appearing identical when classi�ed according to public

information). Often baseball playo¤ tickets are o¤ered via a lottery.3 Likewise, NCAA College bowl tickets

have a lottery amongst only the season ticket holders. Research funds are often handed evenly amongst

certain groups or individuals. Allocating goods equally (ex-ante) has the disadvantage of ignoring any

private information, but has the advantage of saving the potential recipients�e¤ort.

In this paper, we analyze the optimal mechanism to allocate homogeneous, not-necessarily-divisible goods

when the bids made by the players competing for the goods are socially wasted. In our discussion of the

optimal mechanism we seek to maximize the social surplus (ex-ante optimality). For a pure common value it

is optimal to allocate the good through a lottery and for a pure private (or interdependent value) allocation

problem, the optimal mechanism depends on the distribution of the values of the players. We concentrate

on this latter case where values are private. Here we �nd that if a signi�cant part of the bids are wasted

then for a wide class of distributions, allocating the good randomly is optimal. At the same time we show

cases where other mechanisms can be optimal, namely giving the objects to those who work the hardest (the

all-pay auction) or doing so but randomly allocating the objects amongst any that meet a certain threshold

of e¤ort (all-pay auctions with a bid cap). The intuition of our results are that using bids increases the

probability the good will be allocated to the person who values it the most; however, this naturally also

increases the costs due to bids being wasted. The optimal mechanism depends upon this trade-o¤determined

by the distribution of values.

3More precisely, the price is set below the market clearing price. Since the demand exceeds supply, a lottery was used to

determine who has the right to buy tickets. Among the teams that have used a lottery system was 2006 NY Mets (baseball).

Anyone could register by a certain date for an online lottery. Winners were noti�ed by email and allowed to purchase a limited

number of tickets. This was the primary distribution system of tickets available to the general public.
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There is a vast literature on mechanisms to allocate goods as well as many papers which analyze all-pay

auctions and lotteries in di¤erent environments than what we study here. Amongst these Moldovanu and

Sela (2001) study the best way to split prize money in a contest, and Gavious, Moldovanu and Sela (2002)

analyze contests where depending on the nature of the cost function bid caps may be more pro�table or not.

While Goeree et al. (2005) rank lotteries and all-pay auctions in fund raising mechanisms and Fullerton and

McAfee (1999) model research tournaments and show that it is optimal to limit the number of participants

to two.

Close in spirit to our paper, Che and Gale (2006) have also motivated non-market mechanisms for

allocating goods and services. They �nd that when agents have wealth constraints in a pure market those

that value goods the most do not necessarily receive them, and sometimes a random allocation can be

superior. In our paper, the cost of allocating goods competitively is in the wasted e¤ort of signalling one�s

value. Hence, while those that value the goods the most receive them, sometimes the cost of an e¢ cient

ex-post allocation is too high.

In the next section we discuss the allocation problem and convert it into a mechanism design problem

in Section 3. In Section 4, we present the results of our analysis. Finally, in Section 5, we make our �nal

remarks and present our conclusions.

2 Allocation Problem

The designer�s problem is to allocate M homogeneous, not-necessarily-divisible goods among N agents

(bidders) where M < N . The designer is benevolent and wishes to maximize the social surplus. Each agent

i has a privately known type (signal) �i 2 R+ that is drawn independently from cumulative distribution F .

Agent i has value v(�i) � 0 for at most one object, such that v0(�i) � 0. (If goods are divisible, the value to

agent i is minfqi; 1g � v(�i) where qi � 0 is the fraction of good agent i receives.) Each agent i is able to send

a range of costly messages xi 2 R+ to the designer. (The agents are also able to send costless messages.) The

cost to the agent of sending message xi depends upon his type and equals c(xi) �g(�i) � 0. The function g(�i)
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captures how the agent�s type a¤ects the cost of bidding. So if for instance g(�i) = �
�1
i , then the higher the

type of the player, the less costly it is for him to make a high bid. Likewise, if g(�i) = �i, then the higher the

type of the player, the more costly it is for him to make a high bid. When g(�i) depends upon �i; the designer

is able to see the message xi, but does not know the agent�s cost of sending the message. For instance, if

the message is standing in line xi hours, the designer is able to see how long the agent stands in line, but is

unable to determine the (opportunity) cost to the agent. Finally, we assume that v0(�i)=v(�i) > g0(�i)=g(�i)

for �i > 0.

The designer then receives these costly signals (x1; : : : ; xN ) and uses them to allocate theM goods by rule

a : RN+ ! [0; 1]N where
P

i ai(x1; : : : ; xN ) �M guarantees feasibility. (Note that ai indicates the probability

that agent i receives the good when the goods are indivisible and the fraction of the good received.) Denote

A as the set of feasible allocation rules. Given allocation rule a, the agents form a Bayes-Nash equilibrium

by choosing a strategy xi(�i; a) to maximize their expected surplus given the strategies of other agents. The

designer�s problem is to choose rule a to maximize the equilibrium social surplus of the agents given the

future Bayes-Nash equilibria of the agents, that is, the designer solves

max
a2A

X
i

E[v(�i) � ai(x1(�1; a); : : : ; xN (�N ; a))� c(xi(�i; a)) � g(�i)]

3 Mechanism Design Problem

For simplicity of analysis we will invoke the revelation principle and look at direct mechanisms where each

agent i sends a costless (but not necessarily truthful) message e�i. Given the messages e�i, the mechanism gives
an object to agent i with probability Pwini(e�1; : : : ;e�i; : : : ;e�N ). (Under divisibility, this will represent the
fraction good that agent i receives.) Likewise, the mechanism charges agent i an amount ei(e�i). Note that
this charge depends only on e�i. Feasibility requiresX

i
Pwini(e�1; : : : ;e�N ) �M and Pwini(e�1; : : : ;e�N ) � 0:

Although the agent incurs a cost ei(e�i) � g(�i), the designer just receives the signal e�i; and the cost actually
incurred by the agent is wasted. The above formulation allows for a more general formulation of the mecha-

nism. A lottery charges each agent 0 and allocates objects with probability Pwini(e�1; : : : ;e�N ) =M=N . The
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mechanism is truthful if it is incentive compatible (IC) to report truthfully and individually rational. Once

we solve for the optimal direct mechanism, then we can implement the solution by choosing an appropriate

allocation rule, that is by setting ai(x) = Pwini(e
�1
1 (c(x1)); : : : ; e

�1
N (c(xN ))), we have c(xi(�i; a)) = ei(�i):

Notice that this can be implemented since ei(�i) does not depend upon �j (j 6= i).

By restricting ourselves to symmetric mechanisms, we can denote Pwin(e�i) as the probability of agent i
receiving an object with message e�i when everyone else reports truthfully and e(e�i) as the expected cost given
that everyone else reports truthfully.4 For simplicity of notation, we drop the i subscript. Both Pwin(e�)
and e(e�) are assumed to be increasing in e�. Now an agent of type � reporting e� (with all others reporting
truthfully) has payo¤ �(�;e�) � Pwin(e�)v(�) � e(e�) � g(�). The agent solves �(�) � maxe� �(�;e�) which in a
truthful mechanism should equal �(�; �).

The designer chooses Pwin(e�) and e(e�) to maximize N � E[�(�)] = N � E[Pwin(�) � v(�) � e(�) � g(�)]

subject to Pwin(�) being consistent with feasibility, IC (�(�) � �(�;e�)) and IR (�(�) � 0).
Before getting to our results, we wish to simplify the designer�s problem only as a selection of the Pwin(�)

function subject to feasibility but without incentive constraints. First, satisfying the �rst-order condition

�e�(�; �) = 0; having �(�) � 0 and limiting Pwin(e�) & e(e�) to be increasing is su¢ cient to satisfy incentive
compatibility and individual rationality, since the single-crossing property is satis�ed by our assumption of

v0(�)=v(�) > g0(�)=g(�). Second, we can also take advantage of the �rst-order condition and use the envelope

theorem to �nd the agents�surpluses. By doing so, we have

�0(�) = ��(�; �) + �e�(�; �) = ��(�; �) = Pwin(�)v0(�)� e(�) � g0(�)

Therefore

�(�) =

Z �

�

�0(�̂)d�̂ + �(�) =

Z �

�

h
Pwin(�̂)v0(�̂)� e(�̂)g0(�̂)

i
d�̂ + �(�)

As mentioned before, the designer cares only about the total expected utility of the agents subject to

4This symmetric assumption is not crucial for our results. In addition it is not optimal to restrict the number of participants

as opposed to Fullerton and McAfee (1999)
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feasibility (all collected e(�) is wasted) and has payo¤:

N � E[�(�)] = N

Z �

�

�(�)dF +N�(�) = N

Z �

�

Z �

�

h
Pwin(�̂)v0(�̂)� e(�̂)g0(�̂)

i
d�̂dF +N�(�) = (1)

N

Z �

�

�
1� F (�)
f(�)

(Pwin(�)v0(�)� e(�)g0(�))
�
d� +N�(�)

(the last part by integration by parts.)

Finally, we can further simplify (1) since e(�) is dictated in the �rst-order condition �e�(�; �) = 0 by

Pwin(�):

e0(�) = Pwin0(�)
v(�)

g(�)

Hence,

e(�) =

Z �

�

Pwin0(�̂)
v(�̂)

g(�̂)
d�̂ + e(�) (2)

(Note the designer would always want to set e(�) = 0:) The designer�s payo¤ now becomes

N

Z �

�

"
1� F (�)
f(�)

 
Pwin(�)v0(�)� g0(�)

Z �

�

Pwin0(�̂)
v(�̂)

g(�̂)
d�̂

!#
d� +N�(�)

Integrating by parts of the second expression yields:

N

Z �

�

�
1� F (�)
f(�)

Pwin(�)v0(�)

�
d� �N

Z �

�

1� F (�)
f(�)

g0(�)d�

Z �

�

Pwin0(�̂)
v(�̂)

g(�̂)
d�̂ + (3)

N

Z �

�

"
Pwin0(�̂)

v(�̂)

g(�̂)

Z �

�

1� F (�̂)
f(�̂)

g0(�̂)d�̂

#
d� +N�(�)

The designer wants to maximize this expression by choosing Pwin(�) (and implicitly choosing e(�) by

equation (?))) that is increasing and consistent with feasibility. By choosing such a Pwin(�), he will also

satisfy the IC and IR constraints of the agents.5

We recognize that any mechanism that is feasible with increasing Pwin(�) can be decomposed into a mech-

anism Pwini(e�1; : : : ;e�N ) that is symmetric and satis�es monotonicity: if e�i > e�0i then Pwini(e�1; : : : ;e�i; : : : ;e�N ) �
Pwini(e�1; : : : ;e�0i; : : : ;e�N ). Likewise, any mechanism that satis�es monotonicity and symmetry has an in-

creasing Pwin(�): Henceforth, we look at mechanisms that satisfy this monotonicity condition.

5We assume that the designer is able to commit to the mechanism.
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4 Results

We now use the simpli�ed designer�s problem to derive our �rst results about the optimal mechanism.

Proposition 1 If 1�F (�)
f(�) v

0(�) is decreasing in � and g0(�) � 0; then a lottery is socially optimal. If

1�F (�)
f(�) v

0(�) is increasing in � and g0(�) = 0; then an all-pay auction is socially optimal.

Proof. Let us �rst prove the �rst part. Note that if g0(�) � 0, then
R �
�
1�F (�̂)
f(�̂)

g0(�̂)d�̂ is increasing w.r.t.

�. This then implies that

N

Z �

�

"
Pwin0(�)

v(�)

g(�)

Z �

�

1� F (�̂)
f(�̂)

g0(�̂)d�̂

#
d� � N

Z �

�

1� F (�)
f(�)

g0(�)d�

Z �

�

Pwin0(�̂)
v(�̂)

g(�̂)
d�̂

Examining the social surplus in (3), the second + third expression is negative and hence maximized (at

zero) when Pwin0(�) = 0. Now notice that the �rst expression of (3) is maximized when Pwin0(�) = 0;

since 1�F (�)
f(�) v

0(�) is decreasing and it is best to allocate as many objects as possible to the lower valuations.

Finally, notice that again the last expression of (3), N�(�); is maximized when Pwin0(�) = 0 (a lottery gives

the highest possible surplus to the lowest type.) The second part of the proposition is easily shown since the

second and third expressions of (3) vanish when g0(�) = 0; the remaining is maximized by, whenever possible

giving the object to the highest-value player.

Note that the conditions given by the above proposition, are su¢ ciency conditions for lotteries to be

an optimal mechanism to allocate goods.6 All-pay auctions or other combined mechanisms can be a better

mechanism to allocate goods when one or both of these conditions doesn�t hold. However, when these do

not hold, other mechanisms can also be optimal. We provide two stylized examples here for exposition of

the above proposition:

Example 1 F is uniform on [0; 1]; N = 2, M = 1; v(�) = �; and g(�) = 1:

6Without monotonicity, a lottery is not a unique optimal mechanism. For instance, when N = 2 , M = 1 and F is uniform

on [0; 1], one can ask players to send a costly signal si of their types. If si > sj then only if si � sj < 0:5, the mechanism

would allocate it to i:If players truth tell, the expected probability of winning will be the same. Monotonicity is violated since

if s2 = 0:8; player 1 wins with a signal of s1 = 0:1, but loses with a signal of s1 = 0:4:
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In this case 1�F (�)
f(�) v

0(�) = 1 � � decreases on [0; 1]. Here the social planner does better by running a

lottery
R 1
0
(1� �) d� = 1

2 than the all-pay auction 2
R 1
0
(1� �)�d� = 1

3 (or any other mechanism). �

Example 2 F is uniform on [0; 1]; N = 2, M = 1, v0(�) = 1
(1��)1:5 ; and g(�) = 1.

Notice that 1�F (�)f(�) v
0(�) = 1

(1��)0:5 is increasing on [0; 1]. Surplus from a pure all-pay auction is 2
R 1
0

1
(1��):5 �d� =

2 23 and is more than that from a lottery
R 1
0

1
(1��):5 d� = 2. Here, the all-pay auction does best. �

Note that in the examples for simplicity g(�) is taken as constant, i.e., the cost of bidding is just the bid

e(�): As in the proposition, if 1�F (�)f(�) v
0(�) is increasing, then the social surplus may increase if the good gets

allocated to the player who values the good more (as the case when g0(�) = 0). In reverse, if 1�F (�)f(�) v
0(�);

falls and g0(�) � 0 then surplus decreases as the good is allocated to the higher valued player. In this case

the bids made by the higher valued players are too costly for the society to waste and therefore it is better

to run a lottery or allocate the good randomly. If the above conditions are not met then we get the following

result.

Proposition 2 If 1�F (�)
f(�) v

0(�) is non decreasing in � or g0(�) is strictly decreasing, then another more

complicated mechanism such as an all-pay auction with a bid cap can be optimal.

We illustrate the variety of possible mechanisms by means of examples. In example 3, we show that

an all-pay auction with bid caps can be optimal, while in example 4 we indicate that a lottery, when all

values are low, followed by an all-pay auction for higher values is optimal. Finally, in example 5, we show

that an all-pay auction followed by a lottery and then again followed by an all-pay auction is the optimal

mechanism. Note that in all the examples the main intuition for the use of a particular mechanism, is if the

virtual surplus increases or falls. If the virtual surplus increases then it means that e¢ ciency increases with

a non-cooperative bidding mechanism while if the surplus falls a random allocation is better.

Example 3 F is uniform on [0; 1]; N = 2; M = 1; v(�) = �2

2 and g(�) = 1:

Notice here that 1�F (�)
f(�) v

0(�) = (1� �) � increases and then decreases in �. Consider the following

allocation where �1 and �2 denote the types of the players. If �1; �2 � ��; then the good is allocated randomly,
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otherwise whichever � is higher gets the good. Such an allocation results from running an all-pay auction

with an appropriate bid cap. Under such an allocation the social surplus is N
R ��
0

h
1�F (�)
f(�) �Pwin(�)

i
d� +

N
R 1
��

h
1�F (�)
f(�) �P

i
d�: A bid cap allows us to implement the above allocation by choosing ��, the probability

of winning with � � �� is (1 + ��)=2: Surplus is then 2
R ��
0
(1 � �)2�2d� + 2

R 1
��
(1 � �)(1 + ��)�d� = 1

3�
� �

��2 + ��3 � 1
3�
�4 + 1

3 which achieves its maximum of 0:36849 at �� = 1=4:7 This is an optimal mechanism

in order to maximize the designer�s surplus under the limitation that any incentive-compatible mechanism

must have an increasing probability of receiving the object.

Examine the thin line in Figure 1. This represents the virtual surplus of giving the object to an agent of

type �. For all �, it is also worthwhile to give the object than not to give the object. Notice that for points

to the right of the graph, such as � = 0:9 and � = 0:8; one would prefer to give the object to the player

with lower �: However, with the restriction in probability, the designer can at most keep the probability of

receiving the object the same (holding a lottery). While the surplus reaches the peak at � = 0:5; we would

still want to hold a lottery between someone with someone with � = 0:5 and someone with � = 0:4; since

under the increasing probability restriction (monotonicity), we must choose between either holding a lottery

amongst someone with � = 0:4 and all those with � � 0:5 or always giving the object to all those with

� � 0:5 over someone with � = 0:4: This is necessary to be consistent with monotonicity. For instance, if we

choose someone with � = 0:6 over someone with � = 0:4 while choosing someone with � = 0:4 over someone

with � = 0:7; then Pwin1(0:6; 0:4) > Pwin1(0:7; 0:4). This leads us to the thick line in the graph. This line

represents the average virtual surplus of all �0 � �: The optimal mechanism will weigh this average against

the virtual surplus of �: When the surplus of � is higher, then � will be added to the lottery. When the

average above � is higher, then higher � will be preferred as in an all-pay auction. �
7The equivalent bid cap of x sets c(x) = 0:00716:
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10.750.50.250

0.25

0.2

0.15

0.1

0.05

0

theta

surplus

theta

surplus

Figure 1: In example 3, the winner is by highest signal and after a threshold �� = 1=4, by lottery. Thin

line is virtual surplus and thick line is average virtual surplus above �

Example 4 F is uniform on [0; 1]; N = 2; M = 1; v(�) = 1

2
p
(1��)

+ � and g(�) = 1:

Here and 1�F (�)
f(�) v

0(�) = (1 � �)
�

0:25
(1��)1:5 + 1

�
�rst decreases till � = 0:75; and then increases till � = 1.

Consider the following allocation where �1 and �2 denote the types of the players. If �1; �2 � ��; then the good

is allocated randomly, otherwise whichever � is higher gets the good. Such an allocation results from running

an all-pay auction with a minimum bid and allocating the good randomly if no one meets the minimum bid.

From this, the social surplus is
R ��
0

h
(1� �)

�
0:25

(1��)1:5 + 1
�
��
i
d� + N

R 1
��

h
(1� �)

�
0:25

(1��)1:5 + 1
�
�
i
d�: We

will now see that this is the optimal mechanism under the probability limitation.

In Figure 2, as before, the thin line in the graph represents the virtual surplus of giving the object to an

agent of type �. Again, for all �, it is also worthwhile to give the object than not to give the object. Notice

that now for points to the left of the graph, such as � = 0:2 and � = 0:1; a designer prefers to give the object

to the player with lower �: Hence, under the probability restriction, the designer would choose a lottery for

those points. While the surplus reaches the minimum at � = 0:75; we would still want to hold a lottery

beyond this point, for example between someone with � = 0:75 and � = 0:8: This is for similar reasons to

those in example 3. Namely, since under the monotonicity restriction, we need to make the choice between
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holding a lottery amongst someone with � = 0:8 and all those with � � 0:75 or always giving the object to

someone with � = 0:8 over all those with � � 0:75: Otherwise, monotonocity is broken. For instance, if we

choose someone with � = 0:2 over someone with � = 0:8 while choosing someone with � = 0:8 over someone

with � = 0:75; then Pwin1(0:2; 0:8) > Pwin1(0:75; 0:8).

This leads us to the thick line in the graph that represents the average virtual surplus of all �0 � �: The

optimal mechanism will weigh this average against the virtual surplus of �: When the surplus of � is higher,

then � will be preferred. When the average below � is higher, then � will be added to the lottery. �

0.750.50.250

1.75

1.5

1.25

1

0.75

theta

surplus

theta

surplus

Figure 2: In Example 4, the winner is by lottery, and then by highest signal. Thin line is virtual surplus

and thick line is average virtual surplus above �:

Example 5 F is uniform on [0; 1]; N = 2, M = 1; v(�) = 1
2(1��)0:5 +

3
2�
2 and g(�) = 1:

Here 1�F (�)
f(�) v

0(�) = (1� �)
�

0:25
(1��)1:5 + 3�

�
. This �rst increases, then decreases, and then again increases

till � = 1. In this case, the following mechanism is optimal, where the social planner �rst runs an all-pay

auction then a lottery and then runs an all-pay auction for the high value players. This yields the following

allocation: �1 and �2 denote the types of the players. If �1; �2 are in [0:45; 0:91], then the good is allocated

randomly. Otherwise, it is allocated to the one with the highest �: Note that from � = 0:45 to � = 0:91 the

social planner will run a lottery and in the rest of the range an all pay auction will be used. Therefore, the
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social surplus is

2

Z 0:45

0

�
(1� �)

�
0:25

(1� �)1:5 + 3�
�
�

�
d� +

Z 0:91

0:45

�
(1� �)

�
0:25

(1� �)1:5 + 3�
�
(0:91� 0:45)

�
d�

+2

Z 1

0:91

�
(1� �)

�
0:25

(1� �)1:5 + 3�
�
�

�
d�:

This is a combination of our two previous examples with the lottery range in the middle. Denote the lottery

range from �a to �b. We must compare the average virtual surplus of those in the range to those out of the

range. We would prefer a � in [�a,�b] to those below �a if the average surplus is higher than the surplus of

all those below and prefer those above �b if the average surplus is lower than the surplus of all these values.

Since the virtual surplus is increasing (and continuous) outside of this range, this can only happen if the

average virtual surplus is equal to the virtual surplus on both ends:
R �b
�a
s(�)d� = s(�a) = s(�b): We see this

in Figure 3. Again, the thin line is the virtual surplus. Here, the thick line helps demonstrate the range of

types where a lottery should be used. With this line, both endpoints have the same virtual surplus. This

virtual surplus should also equal the average virtual surplus in the range of the thick line. In order for this

to happen, the area above it and below the thin line and below it and above the thin line should cancel (be

equal).

10.750.50.25

1.3

1.2

1.1

1

theta

Surplus

theta

Surplus

Figure 3: In Example 5, the winner is by highest signal except for the interval � 2 [0:45; 0:91] Thin line is

virtual surplus and thick line is the interval [0:45; 0:91] : The area below the thin line and above the thick
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line is equal to the area above the thin line and below the thick line.

Note that with all the above examples 1�F (�)
f(�) v

0(�) is non-monotonic and since g(�) is constant, we can

design the allocation mechanism with the help of the function 1�F (�)
f(�) v

0(�). We know that we can rank

all-pay auctions and lotteries according to their social surplus by analyzing the slope of 1�F (�)f(�) v
0(�) . In case

of an upward sloping 1�F (�)
f(�) v

0(�); the gains from allocating the good to higher valued players increase and

therefore all-pay auctions are optimal for those regions of the distribution of �; and if 1�F (�)f(�) v
0(�) falls then

waste of the bids are more than the gains from allocating it to the high value players, therefore lottery is

optimal for those regions of �:�

We observe in numerous instances where goods are allocated by one of the more complicated methods

of examples 3 to 5, that is, a method beyond a straight lottery or contest. For instance, the way example 3

could work in practice, is to allocate tickets for an event by having a lottery for anyone that waits x hours for

tickets and if there are tickets left after that allocate the tickets through lottery. Another illustration of this

is the ticket distribution by All England Tennis and Croquet Club for the Wimbledon tennis tournament.

The club �rst holds a lottery to allocate the tickets almost six months before the Wimbledon tournament

and then gives them away in �rst come serve or person willing to stand longest in the queue. (We presume

that buying tickets six-months prior takes more e¤ort.) We see a system like example 4 with the distribution

of entries in the New York marathon.8 Those that put in greater e¤ort can qualify automatically (by

completing a number of sanctioned races or making a qualifying time), remaining entries are distributed by

a lottery system. Finally, example 5, we see where it is optimal to run an all-pay auction �rst, and then

allocate the good randomly and for the higher values again run an all-pay auction. One possible example

of this is admissions to top US universities among students with high test scores. Writing an essay is part

of the application. As most lecturers know, most essays are indistinguishable in level. A few good ones

stand out as well as a few bad ones. It is possible that an admissions o¢ cer would �rst admit the good

8Some may be surprised to discover that the right to run in the major marathons needs to be rationed. There are logistic

limits to supply and demand for 26 miles of punishment is high. We also note that transfer of numbered bibs is currently

prohibited on both medical and fairness grounds (see Blecher, 2006 for details).
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essays and then randomly select among the middle pile. If there are still slots left, the o¢ cer may start to

o¤er admissions to the top of the lower group. Similarly, there are more students that apply to Oxford or

Cambridge Universities with the highest score on the admissions tests (three As in the A-level exams) than

places. To select students, interviews are held. We can interpret the interviews (where preparation can help)

as the socially wasteful but necessary to signal the type of the students.

5 Concluding remarks

This paper makes a contribution in the allocation of goods when signalling one�s desire for the good is

a wasteful activity. Under such conditions, there is a trade-o¤ between e¢ cient allocation and wasted

resources. A mechanism such as an all-pay auction, which allocates by the highest signal, will allocate goods

to the people who value them the most but the act of signalling will be wasteful. Allocating an equal share

to everyone (or a random allocation by a lottery) saves any waste from signalling, but leads to an ex-post

ine¢ cient allocation. Here, we have analyzed when the waste of signalling will exceed the bene�t of e¢ ciency

in an independent private value environment. In di¤erent environments such as common values or where a

signi�cant part of the valuation is common, the optimal mechanism will further favour lotteries. Changing

the environment by relaxing our key assumption of wasteful signalling such as when there isn�t complete

waste of the signals, will favour the all-pay auctions. However, as long as some of the valuation is private

and some of the bids are wasted, there is a possibility that an even allocation or lottery will be optimal. We

can also partially relax the assumption on payments to the designer. The necessary element for our analysis

to apply is that there is a maximum price that the designer can charge and at this price, there is an excess

demand (as the case with playo¤ tickets). The timing of the signals in our mechanism can also be changed

while keeping the same nature of our results. For instance, a war of attrition can be used to allocate goods

in place of an all-pay (�rst-price) auction. A war of attrition with a time limit can be used in lieu of an

all-pay auction with a bid cap.

This analysis has many applications. We have already referred to allocation of concert and sport tickets,
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and distribution of research grants. Standing in line or �lling in paper work for grant application can be

socially wasteful. Contests are also used to grant the Olympic games, where the individual cities submit bids,

and part of the bids are often socially wasted. In the UK, governmental research funds are distributed through

two main channels: research councils or quality-related (QR) funding. Research councils allocate funds to

institutions by gathering private signals through research grant applications, which are costly to make. QR

funding allocates funds through publicly available information such as publications, which presumably is

less costly to gather (this is done through the Research Assessment Exercise, RAE). Our analysis can help

design an appropriate mechanism. If the cost incurred by the institutions to make the case for grants is too

high, the government should favour QR funding. Policy research into which system is best is an important

area in which our paper contributes.

Our results also has implications for bidding rings (cartels) in auctions. In this literature, McAfee and

McMillan (1992) �nd an optimal mechanism for collusion that agrees with our results. Namely, if the hazard

rate is decreasing, bidders should participate in the auction non-cooperatively; however, if the hazard rate is

increasing, then bidders should bid the reserve price whenever they value the object more than the reserve.

In this application, the cartel�s objective is congruent to that of our designer while the bids are analogous to

our wasteful signal. Hence, our results indicate that the McAfee and McMillan results apply more generally.9

Moreover, a connection would show that in may cases the optimal collusive policy would be something more

complicated such as an increasing bid function that reaches a peak or bidding the reserve price for low values

and then jump to bidding higher values.

While in this paper, we examined only the case where each agent has one of two possible allocations:

with an object or without an object, we can apply this in any case with two possible outcomes. Think of

the case where a course is o¤ered twice and students have to decide which time they want to be scheduled

for (with all students being assigned to one of the two slots). If there is an excess demand for one of the

time slots, then one can use our analysis to determine how to allocate the slots to the students demanding

the popular time slot. (All students demanding the less popular slot will get it.)

9There is still the discrepancy of the all-pay nature of our signals vs. the �rst-price payments in an auction
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A natural extension for our paper would be to consider several types of goods. Doing so would make it

possible to explore a link to papers on pseudo-markets (markets using points rather than money), except

we will optimize the method for obtaining points as a function of e¤ort (better grades yield more points in

course markets). An exogenous allocation of points is similar to a lottery while points solely as a function

of e¤ort is like an all-pay auction.

As a concluding remark, we will further explain the title of the paper. When God sends manna (food)

from heaven, it �oats to earth and is evenly distributed (two quarts per day per person). This refers to the

lottery mechanism of our paper, where the expected amount per agent is also even. The second mechanism

from the bible can be interpreted as God wanting only those worthy entering the holyland. To determine

who is worthy, God has the Jews wander the desert for forty years. This was a weeding out process. Only

those families that where willing to put forth the costly signal of wandering the desert were permitted to

enter the Holy Land. This refers to the all-pay auction mechanism of our paper. We will leave it to the

theologists to why omniscient God didn�t make use of the agents types and just decide. For this, we presume

that God wished to use a non-discriminatory mechanism.
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