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Abstract

This thesis investigates the feasibility of using spatial survival modelling techniques to

develop dynamic space-time predictive models of risk for infectious animal disease epi-

demics. Examples of diseases with potentially vast socioeconomic impacts include avian

influenza, bovine tuberculosis and foot-and-mouth disease (FMD), all of which have re-

ceived wide coverage in the recent media. The relatively sporadic occurrence of such large

scale animal disease outbreaks makes determination of optimal control policies difficult,

and policy makers must balance the relative impacts of different response strategies based

on little prior information. It is in this situation that the use of mathematical and sta-

tistical modelling techniques can provide powerful insights into the future course of an

infectious epidemic.

The motivating example for this thesis is the outbreak of FMD in Devon in 2001, however

we are interested in developing more general techniques that can be applied to other

animal diseases. Many of the models fitted to the 2001 UK FMD data set have focussed

on modelling the global spread of the disease across the entire country and then using

these models to assess the effects of nationwide response strategies. However it has been

shown that the dynamics of the disease are not uniform across the whole of the UK and

can vary significantly across different spatial regions. Of interest here is exploring whether

modelling at a smaller spatial scale can provide more useful measures of risk and guide

the development of more efficient control policies.

We begin by introducing some of the main epidemiological issues and concepts involved
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in modelling infectious animal diseases, from the microscopic through to the farm pop-

ulation level. We then discuss the various mathematical modelling techniques that have

applied previously and how they relate to various biological principals discussed in the

earlier chapters. We then highlight some limitations with these approaches and offer po-

tential ways in which survival analysis techniques could be used to overcome some of these

problems.

To this end we formulate a spatial survival model and fit it to the Devon data set with

some naive initial covariates that fail to capture the dynamics of the disease. Some work

by colleagues at the Veterinary Laboratories Agency, Weybridge (Arnold 2005), produced

estimates of viral excretion rates for infected herds of different species type over time,

and these form the basis for the development of a dynamic space-time varying viral load

covariate that quantifies the viral load acting at any spatial location at any point in time.

The novel use of this covariate as a means of censoring the data set via exposure is then

introduced, though the models still fail to explain the variation in the epidemic process.

Two potential reasons for this are identified - the possible presence of non-localised infec-

tions and/or premise varying susceptibility. We then explore ways in which the survival

approach can be extended to model more than one epidemic process through the use of

mixture and long-term survivor models. Some simple simulations suggest that resistance

to infection is the most likely cause of the poor model fits, and a series of more complex

simulation experiments show that both the mixture and long-term survivor models offer

various advantages over the conventional approach when resistance is present in the data

set. However key to their performance is the ability to correctly capture the mixing, al-

though in the worst case scenario they still replicate the results from the conventional

model.

We also use these simulations to explore potential ways in which space-time predictions

of the hazard of infection can be used as a means of targeting control policies to areas of

‘high-risk’ of infection. This shows the importance of ensuring that the scale of the control

order matches the scale of the epidemic, and suggests possible dangers when using global
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level models to derive response strategies for situations where the dynamics of the disease

change at smaller spatial scales. Finally we apply these techniques to the Devon data set

and offer some conclusions and future work.
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Chapter 1

Introduction

Progressive advances in medical science over the last few centuries have resulted in a

massive decline in mortality from many curable and preventable diseases. This is partic-

ularly true in the developed world where previously endemic diseases such as smallpox

have been almost completely eradicated. However costs associated with disease epidemics

remain extraordinarily high, both in terms of the number of human lives lost and also due

to resulting socio-economic impacts. Although medical science has identified and provided

cures for many established diseases, the recent past has not only seen large numbers of fa-

talities from treatable and preventable diseases such as malaria, tuberculosis and cholera,

but also the emergence of new deadly pathogens such as the Ebola, SARS (Severe Acute

Respiratory Syndrome) and AIDS (Acquired Immune Deficiency Syndrome) viruses.

Of course the effects of disease epidemics on a population of individuals are not solely

limited to human populations, nor are they exclusively caused by infectious human disease.

Animal disease epidemics are also a major issue, the effects of which are wide-ranging

across both human and animal populations. A disease such as Newcastle’s disease for

example will decimate a population of birds, most of which will die before clinical signs

have appeared. The effects of the disease ranges between weight loss and diarrhoea to

almost complete paralysis. The horrifying nature of the virus notwithstanding, clearly

the ecological impact of an outbreak could be devastating to wild and domestic bird
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populations; the latter also constituting a large economic cost with regards the poultry

industry.

Furthermore, epizootic diseases such as rabies and avian influenza have the capacity to

infect and be transmitted between both animals and humans. In these circumstances

such a disease constitutes a major risk to human and animal health. This has been most

recently illustrated by the outbreak of the H5N1 strain of avian influenza across Asia and

Eastern Europe that has so far (October 2006) seen 256 confirmed cases in humans, but

that current evidence suggests has not yet resulted in human-to-human transmission.

In general, diseases tend to belong to one of two main classes: infectious or non-infectious,

but many of the most serious problems that arise are due to infectious diseases with their

capacity for large-scale spread. Here particular reference will be given to animal disease

epidemics (specifically foot-and-mouth disease or FMD).

Note that the terms infectious and contagious are used interchangeably in this discussion,

although in some texts the term infectious disease relates to a disease that is caused by

an invasion of the host organism by a foreign microbe (usually a virus or bacterium), and

a contagious disease relates to a disease that is easily transferred between different host

organisms. In this context the definition of an infectious disease will be based on that laid

down by Bailey (1975), i.e. we are concerned with

...diseases that are infectious in the sense of being capable of transmission at

some stage in the life-cycle of the appropriate organism from an infected host

to an uninfected susceptible, with or without the agency of an intermediate

insect or animal vector.

The nature of this type of disease means that there are many difficulties associated with

disease management, and expertise is required across a wide range of different disciplines.

For example diseases can be caused by many different types of microbe, primarily viruses

and bacteria, each of which exhibits different characteristics regarding regeneration and

spread. In addition diseases can often be contracted through different strains of the same
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basic pathogen. Understanding the biological nature of the disease in question is important

not only in researching potential cures but also in the development of robust modelling

techniques that can aid understanding and guide the development of control policies to

help prevent spread. Indeed the latter issue may depend on many external factors, for

example environmental landscape, climate, migration or other movement patterns in the

population at risk. Even if treatments and control techniques can be established, the

additional financial and logistical constraints involved in producing and implementing

such procedures exert a major influence on the overall efficacy of these measures. To

overcome these complications each different facet must be dealt with - effective disease

control policies rely on a combination of good science and good management.

Such complexities are, for example, particularly evident in the ongoing HIV/AIDS epi-

demic; which 2005 Global Health Council (GHC) estimates suggest affects upward of 40

million people worldwide. In this case even though anti-viral drugs have been developed

that can be mass-produced and used to help control and slow the progress of the disease in

individual sufferers, the number of infections continues to increase. There are many rea-

sons for this, for example many of the countries worst affected are in the developing world

where poor socio-economic conditions mean that the costs of producing and distributing

these drugs put massive financial strains on governments and aid agencies. Ignorance of

the method of transmission and/or refusal to admit the extent of the problem, perpetual

states of conflict, the use of rape as a weapon of war and the sheer geographical scale

over which the disease is prevalent are just a few examples of issues that are facing those

working to get the epidemic under control.

Examples like this highlight the importance of having properly focussed research across a

variety of different areas, each of which can help with different aspects in the development

of control and treatment policies. Mathematical modelling offers a variety of different

techniques that can help in many of these situations, and when combined with research in

other areas of medical science, such as biology and chemistry, provides a useful repertoire

of tools for the study of infectious diseases and their associated epidemiology. Advances

in information technology have allowed better quality data to be collected and stored and
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more complex mathematical models to be developed and fitted. Increased funding into

epidemic research has resulted in this becoming a fast moving and exciting field of study.

Within this general framework animal disease epidemics offer their own peculiarities and

difficulties. The Office International des Épizooties (OIE) was set up in 1924 by twenty-

eight different states with a mandate to use scientific methodology to explore and under-

stand animal disease. The aim was (and still is) to improve veterinary science and protect

the welfare of animals, the safety of the food chain and to safeguard world trade in animal

products. Until they changed their classification structure in 2006, they split infectious

animal diseases into different lists based on their severity. List A contained the 15 most

contagious diseases and list B the next 80. List A diseases were classified as:

Transmissible diseases that have the potential for very serious and rapid spread,

irrespective of national borders, that are of serious socio-economic or public

health consequence and that are of major importance in the international trade

of animals and animal products (OIE 2005).

Top of list A was FMD, which is estimated to have cost the British government upwards

of £8 billion and resulted in the slaughter of 6 million (possibly as high as 10 million)

animals, predominantly livestock, as a result of the 2001 UK epidemic.

FMD is therefore an extremely contagious and economically dangerous disease that once

established is very hard to control. This is particularly true in the UK which holds a

‘disease-free without vaccination’ status, meaning that livestock have no conferred resis-

tance to the disease (Follett et al. 2002). Other diseases that are similarly dangerous

include classical swine fever, Newcastle’s disease and avian influenza.

This thesis arises from a CASE studentship developed in collaboration with the Veterinary

Laboratories Agency (VLA), Weybridge, in order to develop more sophisticated spatial

survival models than had previously been used to model infectious animal diseases. This

includes extensions to incorporate spatial heterogeneity and multiple sources of infection,

and to explore the feasibility of using these models to predict the future course of an
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epidemic. There is little in the literature regarding the use of survival analysis in modelling

spatio-temporal spread of animal diseases, with perhaps the exception of Sanson and

Morris (1994), who applied survival techniques to model the probability of infection in

discrete time periods - with the spatial aspect reflected by premises being classified into

two groups based on distance from the point source of infection. Survival modelling

has various useful features, such as the ability to predict not only the risk of infection

(hazard), but also the time to infection directly. Recently the use of random effects (see

Oakes and Jeong 1998) in survival models (Li and Ryan 2002, Henderson et al. 2002)

provides a useful starting point for the exploration of new techniques to detect clustering

and spatio-temporal correlation structures in animal disease epidemic data. The models

will be tested on a real data set provided by the VLA for the Devon subset of the 2001

UK FMD epidemic.

Chapter 2 will discuss ideas and particular issues affecting the modelling of animal disease

epidemics in general and some of the biological aspects associated with FMD. A range of

potential modelling techniques that have been applied to animal disease data will be dis-

cussed in chapter 3, along with their various advantages and disadvantages, with particular

reference to survival modelling.

Chapter 4 gives more in-depth mathematical detail about survival modelling and its basic

principals. In addition we discuss various alternative model formulations that can poten-

tially deal with a range of different epidemiological issues. In chapter 5 some of these

techniques are applied to data from the 2001 FMD epidemic in Devon, and a spatially

and temporally varying covariate is derived that attempts to quantify the infectiousness

of the disease through measuring the ‘viral load’ over space and time. This covariate is

also used to censor the data set to help target surveillance and focus the model fit to a

subset of the total population deemed ‘at-risk’ of infection at each point in time.

Chapter 6 extends the basic models of the previous chapter to incorporate ‘resistance to

infection’ into the modelling framework. A range of candidate models are discussed along

with their various advantages and disadvantages. In addition some simple simulations are
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used to investigate their usefulness.

In chapter 7 we test two of the approaches discussed in chapter 6, those of the long-term

survivor and mixture models, using both a simulated epidemic based on the dynamics

of the FMD spread in Devon in 2001, and the real data set. In addition the predictive

potential of these two approaches in both situations is explored. Chapter 8 gives some

conclusions and further considerations in the survival modelling of both FMD and other

contagious animal diseases, and highlights potential areas for future work.

Throughout this project the R statistical language (R Development Core Team 2005) has

been used for all data analysis except the MCMC model fitting, which was achieved in

WinBUGS (Spiegelhalter et al. 2003) using the R2WinBUGS (Sturtz et al. 2005) package.

Examples of the R and WinBUGS code used to implement the techniques described in

this thesis are provided on an attached CD-ROM.
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Chapter 2

Infectious disease and FMD

This chapter is intended to be an introductory discussion concentrating on some particular

matters associated with the aetiology and pathogenesis of infectious diseases, and consid-

ers some of the main generic differences between infectious animal and human disease.

Particular reference is given to FMD. The focus is on biological and epidemiological issues

rather than those associated with the mathematical modelling of epidemics, which will

instead be discussed in the next chapter.

The importance of these considerations when designing mathematical models is not to be

underestimated, and in order to be effective in understanding the aetiology of infectious

diseases and their associated dynamics it is vital to consider contributions from a range of

different sources. For example biological knowledge of the disease is essential in developing

reasonable and intuitive mathematical models for modelling infectious processes. Likewise,

the assumptions, requirements and aims used to build such models can greatly influence the

choice and design of associated biological experiments. Effective epidemiological research

relies on effective working relationships across a range of different scientific disciplines.

Although human disease can be thought of as a species subset of general animal disease, in

this context the two will be considered separately, since there are quite marked differences

between them, particularly in the development and implementation of control strategies.
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2.1 General issues

Clearly the dynamics of an infectious disease vary at different levels. Diseases are caused

by pathogenic microbes such as viruses, bacteria or fungi. Once inside the host organism a

pathogen needs to be absorbed by cells in order to reproduce and replicate, both within the

host cell itself and also in the eventual colonisation of other cells. Once this is achieved a

method of excretion and transmission to other potential hosts is required. As an illustrative

example of some of the complexities that must be examined at each stage, we consider

tuberculosis (TB).

Tuberculosis is a disease that affects a variety of different species; common symptoms

include: diarrhoea, vomiting, coughing, weight-loss and eventual death. It is curable

but still causes approximately 5000 deaths per day (WHO 2004), predominantly in the

developing world. In humans it is principally caused by a bacilli (a rod-shaped bacterium)

known as Mycobacterium tuberculosis, itself part of a larger tuberculosis complex that

includes multiple strains, such as M. bovis, M. africanum, M. canetti and M. microti, and

also multiple serotypes within those strains.

Each strain causes TB under different circumstances (e.g. in different species or geographi-

cal locations), however the risk of infection from some strains is not exclusive to one species

and each of the strains is thought to have developed from one common ancestor (Smith

et al. 2006). For example M. bovis is the principal cause of tuberculosis in cattle but can

also affect many other species of animal, including sheep, horses, deer, dogs as well as

humans. M. tuberculosis, in contrast, is almost entirely limited to humans.

When an individual is exposed to the infectious agent, it is generally accepted that the

bacilli are absorbed by macrophage cells, produced by the body as part of the immune

response system. Their task is to absorb and digest foreign pathogens, though in the case of

tuberculosis this can instead result in multiplication of the bacilli within macrophages, and

lead to eventual distribution of the infected cells around the body to secondary infection

sites were they form calcified lesions known as granulomas (or ‘tubercles’ in the case of
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TB).

In many circumstances the bacilli can remain dormant within the cells for long periods of

time (latent TB), only to become active under certain conditions (active TB). In humans,

up to 90% of infections in healthy individuals are latent infections that the immune system

manages to keep under control (WHO 2006). It is estimated that only 10% develop into

active infections. Under certain circumstances - often relating to the strength of the

immune system of the infected individual (HIV sufferers are particularly susceptible for

example) and the virulence of the strain - the probability of a latent infection developing

into an active one is much higher. The length of latent periods for TB can therefore vary

dramatically between individuals.

After colonisation, infectious bacteria are then excreted from the body (through a variety

of means - commonly in the faeces, milk, urine or via respiratory secretion) and transmitted

to a new host. This can happen through direct contact, or through some other process,

such as wind or water carriage for example (Ayele et al. 2004). Usually this secretion

begins before clinical signs appear - which further compounds the issue of preventing

spread.

In certain cases organisms can act as carriers of the disease without succumbing to infection

themselves. An example of this is badgers, who act as potential carriers for M. bovis in

cattle. This has been well documented in the UK press in recent months, with many

farmers calling for a cull of the badger population in order to protect their herds. Many

animal rights groups on the other hand, dispute whether a cull is necessary to reduce

the spread of the disease, arguing that mass livestock movements are more likely to be

the major cause of problem. It is clear that informed scientific research is just one facet

required in order to develop effective disease management strategies.

The cyclical biological process described above is referred to as the life-cycle of the disease.

It results in an individual host organism moving through a series of different states over

time. It is this general principal that underpins most of the modelling work that has

been done on infectious disease transmission. A simple example of a series of transmission
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states for an individual is:

susceptible → exposed → latent → infectious → recovery and/or death.

Factors such as environmental conditions, the physical constitution of the host, the patho-

genesis of the disease and the efficacy of drug treatments can all be important in defining

the various groups and the length of time that an individual remains in each group. For

example, as mentioned before the susceptibility of an individual to develop active TB is

greater if they suffer from HIV/AIDS. Likewise, exposure to TB very much depends upon

socio-economic conditions - it is predominantly a disease of poverty, where unhygienic con-

ditions and a lack of sanitation lead to a higher prevalence of the pathogen. In the case of

M. bovis in cattle, exposure time can vary greatly depending on the environmental condi-

tions; some evidence suggesting that the bacilli can survive in soil for up to two years at a

time (Ayele et al. 2004). The latent and infectious periods also vary greatly. Other factors

include whether or not a disease will confer immunity after recovery (such as measles), or

whether an infected individual will rejoin the susceptible group (e.g. gastroenteritis).

The efficacy of an epidemic control policy depends greatly on knowledge of how the disease

progresses at each stage in the life-cycle and at each level. A good example of this is the

development of drug treatments for infectious diseases, where a major issue, other than

multiple strains, is the capacity of many pathogens to mutate. With TB this has lead

to the occurrence of multiple drug-resistant strains of the pathogen that are immune to

treatments that are ordinarily very effective in curing the disease. This can happen for

a variety of reasons that are often linked with factors occurring at the administrative

level of the immunisation strategy - inconsistent treatments, variable drug supplies and

wrong diagnoses often result in the pathogen being given enough time to mutate and

render subsequent treatments ineffective. This is a common cause-and-effect difficulty

when developing and implementing large scale immunisation/eradication strategies for

many infectious diseases, and highlights again the importance of effective collaboration

between disciplines.
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Hopefully we have given a brief illustration of the types of complications facing scien-

tists and epidemiologists in the study of infectious diseases in both humans and animals.

However there are a number of problems that are more prevalent in the modelling of

animal epidemics that are of particular interest here, especially the implementation and

consequences of control policies.

Firstly there are inter-species differences to account for, with some diseases species-specific

(such as myxomatosis in rabbits and classical swine fever in pigs) whilst others affect a

variety of species (such as foot-and-mouth disease or rabies for example). This compounds

difficulties in controlling the populations at risk, particularly for a disease such as rabies

that can affect wild and domesticated animals, and for which one of the symptoms of

the disease is often uncharacteristic aggressiveness and a tendency to roam over large

geographical areas.

The inability to control wild animal populations and their movement further exacerbates

these problems. For example myxomatosis has become endemic in the wild rabbit popu-

lation in the UK since its introduction 50 years ago. The virus that causes the disease has

a high capability to mutate and can be passed through an intermediary host such as fleas

or mosquitoes, or through direct contact with an infected rabbit. This makes isolation of

the disease and eventual eradication extremely difficult.

The converse of this is that for diseases that only affect say, domesticated livestock, then

control of population movement should theoretically be much easier. However advances

in the ways in which meat and poultry are farmed and marketed mean that the ease of

movement of livestock over large areas is much greater than it was a few years ago. Despite

the potential to vastly restrict these movements, if response policies are not instigated

quickly enough they can result, as the 2001 FMD epidemic showed, in a localised epidemic

rapidly evolving into a global one.

Many domesticated animals such as livestock can be vaccinated from many diseases but

particularly virulent strains of the microbe can still lead to mass infections. Excessive use

of vaccines and antibiotics in itself can lead to mutated pathogens that become resistant
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to the treatment, or result in animals that are capable of carrying the disease even though

they are not themselves infected (carriers). On top of this, various trading laws exist

hindering the sale of vaccinated meat on the open market. With FMD the European

Union (EU) has in place legislation that prohibits the use of routine vaccination in order to

retain its international trade status of being ‘FMD-free without vaccination’. This balance

is especially crucial when considering animals that will one day enter the food chain, as

many altercations exist regarding the risks involved in eating potentially infected meat

against those involved in eating vaccinated meat.

An additional risk is posed by zoonotic diseases. The Pan American Health Organisation

(PAHO) defines zoonoses to be any communicable disease that is ‘transmissible from

vertebrate animals to man’. These are in addition to those diseases that are common to

both humans and animals (Acha and Szyfres 2003). Particularly relevant cases of this type

of disease include rabies, bovine tuberculosis (as previously discussed), bovine spongiform

encephalopathy (BSE) with its human form of Creutzfeldt-Jacob disease (CJD), and the

current epidemic of the H5N1 strain of avian influenza. The methodology used to model

and control certain animal diseases is therefore intrinsically linked with that of associated

human diseases.

2.2 Foot-and-Mouth Disease

The 2001 UK FMD epidemic was caused by the Type O Pan Asia strain of the virus; one

of seven main strains. It was the first major outbreak of the disease in Britain since 1967.

The virus itself is highly contagious, and given ideal conditions can survive for long periods

outside of the host. It can be transmitted in many ways, commonly through direct (or

indirect) contact with infected animals (Samuel and Knowles 2001) or through dispersion

by an environmental factor such as wind (Ferguson et al. 2001a, Hugh-Jones and Wright

1970, Donaldson 1983).
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Thompson et al. (2002) estimate the total cost of the outbreak on the UK economy to

have been approximately 0.2% of the gross domestic product in 2001. However this does

not reflect the costs to individual industries such as tourism and food, since expenditure

that would previously have gone into these was simply directed elsewhere. It is estimated

that the financial cost of the epidemic to the tourism industry was between £2.7 and

£3.2 billion, with costs of approximately £3.1 billion to the food and agriculture industry.

Much of the latter was covered by compensation from the government, but even then the

remaining uncovered losses amounted to almost 20% (£355 million) of the total estimated

income from farming in 2001.

The ability of the virus to mutate gives rise to limited cover regarding vaccination policies,

and the economic cost of widespread vaccination for all strains of the virus would be huge.

Britain currently holds a ‘disease-free’ status, which affects trading rights and influences

FMD control policies (Follett et al. 2002), however countries that hold this status rely

heavily on strict import regulations to stop entry of the virus (Samuel and Knowles 2001).

Since routine vaccination is not implemented, once the disease gains a foothold it becomes

very difficult to control.

The first confirmed case of FMD was an infected pig found on an abattoir in Essex on

20th February 2001, but it is thought that the index case for the outbreak was a farm

in Northumberland and that the initial entry of the virus was through an infected food

source. Dating the earliest lesions on infected animals suggested that the disease was

certainly present on the index premise on the 12th February but could have been present

as early as the 26th January (DEFRA 2002b). From here it is thought that the movement

of pigs to the abattoir plus airborne movement of the disease to nearby premises led to the

initial spread. A variety of factors, such as the delay in clinical signs appearing and frequent

animal movements allowed the disease potentially up to a month to get established across a

wide area before the initial response orders came into effect. The first set of control policies

commenced on the 23rd February and resulted in the culling of infected premises (IPs) and

dangerous contacts (DCs) with associated movement restrictions. Once the latter were

introduced new infections seemed to primarily come from localised transmission (Ferguson
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et al. 2001a).

On 23rd March contiguous premises (CPs) were included in the cull, just prior to the

epidemic reaching its peak on 26th March (54 cases in one day). 3km ring culling was

introduced in Cumbria on 27th March and on the 29th March the 24/48hr cull policy

meant that IPs were culled within 24hrs and CPs and DCs within 48hrs of report (Keeling

et al. 2001b). June 20th was the first day since the initial report where there were no

reported infections. The last reported case of the disease was on 20th September.

The pathogenesis of FMD is extremely complex, and the infection dynamics at each of the

within-host, within-herd and between-premise levels can vary significantly depending on a

range of factors. The reader is referred to Alexandersen et al. (2003b) for a comprehensive

paper on the pathogenesis and diagnosis of the disease, in which the authors draw on their

own research and a host of other sources to provide an in-depth and detailed account of

the biological nature of the disease and factors affecting reproduction and transmission of

the virus.

The most common way in which the virus can enter a host organism is through airborne

transmission, with the virus usually lodging somewhere in the respiratory tract. Other

possible ways in which the disease can be transmitted include through oral routes (e.g.

through eating contaminated food) or through direct contact with the skin or hooves. It

has been shown that the risk of infection through these latter mechanisms is much smaller

than through respiratory transmission (Donaldson 1987), although the transmission po-

tential is greatly increased if there is damage present at the site of contact e.g. skin

abrasions or mouth ulcers for example.

The transmission mechanism can also have a large effect on the within-host infection

dynamics; affecting factors such as the length of the incubation period, the minimal infec-

tious dose required to initiate infection, the rate of viral colonisation and the level of viral

excretion. Experimental data (Sellers 1971, Donaldson 1987) has shown that animals are

much less susceptible to infection from oral transmission than from airborne transmission.
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Once the initial infection has occurred, the virus is transmitted around the body via the

lymphatic and circulatory systems to secondary infection sites, predominantly in the skin

and mouth. The virus is thought to replicate in the lymph nodes and then cause lesions

to appear (most discernibly around the feet and mouth). The incubation period (i.e. the

period between infection and the appearance of the first clinical signs) can vary between

species and individual. It can range from anywhere between 1 to 14 days under certain

conditions - though for within-herd spread it typically ranges between 2-6 days (Alexander-

sen et al. 2003a,b). In addition there is often a delay between the appearance of suspected

clinical signs and actual (laboratory) confirmation of the disease. Typically an infected

animal will have begun excreting the virus in the pre-clinical phase and will continue

to excrete the virus until recovery (Menach et al. 2005). Though potentially fatal, the

mortality rate for adult animals is very low, the result of infection usually being reduced

weight gain and milk yield (Ferguson et al. 2001a). However it carries a high probability

of fatality in young animals.

The excretion dynamics vary between species, but generally follow a pattern of high initial

viral excretion, followed by a phase of reduced excretion in response to antibody production

before recovery. For example, in contrast to their susceptibilities, experimental data has

shown that once infected pigs excrete far more airborne virus than cattle (Alexandersen

et al. 2003a), though in contrast they require much higher concentrations of airborne virus

to become infected through this means (Donaldson and Alexandersen 2001, Donaldson

et al. 1987). This is partly due to the fact that cattle are more susceptible to respiratory

infection (e.g. the minimal infective dose required is much smaller) and partly due to

cattle having a bigger lung capacity and inhaling a larger volume of air.

It is worth noting that some animals can remain carriers of the disease after recovery, and

under certain environmental conditions the virus can remain active outside of a host for

extended periods of time. The potential risk from carrier animals is also a problem when

considering vaccination strategies, since it has been shown that some vaccinated animals

can still act as carriers even though they don’t contract the disease themselves.
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Infection potential also changes with the particular strain and size of the virus parti-

cles - some strains of the virus (C Novill) are capable of causing spread up to 300km

away (Gloster et al. 1981, Sorensen et al. 2000), though in the case of the type O strain

it is unlikely to cause infections over a distance of greater than 20km (Alexandersen et al.

2003b). Even with the capability of virus carriage over such a distance other factors such

as density (Hugh-Jones and Wright 1970) and type of animal (Keeling et al. 2001a, Don-

aldson et al. 2001), landscape fragmentation (Kao 2001), animal husbandry and welfare

conditions, length of exposure, control orders and biosecurity (Ferguson et al. 2001a,b,

Keeling et al. 2001a), human (and vehicle) interaction, wild animal movements and the

movement of livestock around the UK also have a part to play. The latter point in par-

ticular is thought to have been a significant factor in explaining why the 2001 epidemic

affected a much larger geographical area than the 1967-68 epidemic (DEFRA 2001).

Other unknown external factors that may affect the propensity of disease spread include

temperature, rainfall and wind direction, and often knowledge of these agents is unknown

or incomplete. This can make pre-emptive control strategies, in particular vaccination

strategies, difficult to implement.
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Chapter 3

Mathematical modelling of

infectious diseases

The first recorded use of a mathematical model applied to a contagious disease epidemic

was fitted to smallpox data by Bernoulli (1760). This approach was deterministic and

based upon a series of differential equations, the core principals of which form the basis

of many epidemic models used today (see Bailey 1975, Murray 2003). The literature

regarding the application of mathematical modelling techniques to infectious epidemic

situations is large. Reviews of the history of mathematical epidemiology can be found

in Bailey (1975) and Anderson and May (1991).

A mathematical model is by its nature a representation of reality and not reality itself, and

in order to develop realistic models for infectious diseases various assumptions must be

made about the physical processes that drive epidemics. There is a wealth of methodology,

from a range of different mathematical backgrounds that can be used to model epidemic

data. In each case it is important that the creation and interpretation of any model is

driven by sound mathematical and physical principals. In an epidemiological context this

means that often the aetiology of the disease must play an important role in guiding model

development.
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To quote Murray (2003):

From a mathematical [sic] point of view, the art of good modelling relies on:

(i) a sound understanding and appreciation of the biological problem; (ii) a

realistic mathematical representation of the important biological phenomena;

(iii) finding useful solutions, preferably quantitative; and what is crucially

important (iv) a biological interpretation of the mathematical results in terms

of insights and predictions. The mathematics is dictated by the biology and

not visa-versa.

This chapter will focus on introducing some of the main techniques that have been used

in the modelling of infectious disease epidemics, including specific references to animal

disease. In particular some more recent developments will be discussed. It is not intended

to be a comprehensive account of the subject but rather to highlight similarities and

differences between contrasting frameworks and their potential uses when modelling this

type of data.

3.1 Compartmental models

Following the discussion in the previous chapter, the most common way to model epidemic

data is to consider that at any time point a population of individuals can be classified into

a series of groups based upon various stages in the life-cycle of the disease. A set of

equations can then be developed that model the rates of transitions between the groups

over time.

Consider the model proposed by Kermack and McKendrick (1927), which assumes that

each member of the population belongs to one of three states: susceptible, infective or

removed, and that individuals can only move between states in that order. The removed

group consists of those individuals that have either recovered and been conferred immunity

from the disease, have died, or have the disease but are no longer infective.

18



In a simple deterministic framework, models based on differential equations can be de-

veloped for modelling the rates of transitions between the groups. The simplest form of

this model assumes that the mixing between the susceptible and infective groups is ho-

mogeneous - i.e. that each susceptible individual has an equal probability of coming into

contact with each infective individual. The transition rates between groups can then be

modelled as:

dS(t)

dt
= −aS(t)I(t),

dI(t)

dt
= aS(t)I(t) − bI(t), (3.1)

dR(t)

dt
= bI(t),

where S(t), I(t) and R(t) are the numbers of susceptibles, infectives and removed indi-

viduals at time t respectively. The infection rate is given by a > 0 and the removal rate

of infectives by b > 0. In this set-up the total population (N) is assumed constant and

the framework ensures that S(t) + I(t) + R(t) = N at each time point. This model also

assumes that there is a negligible incubation period for the disease i.e. that an individual

becomes infectious immediately after contracting the disease.

This framework may be limiting in reality, and many adaptations and extensions of this ba-

sic approach have been developed to deal with different assumptions regarding the disease

dynamics. These include the incorporation of latent periods and exposure (SEIR models),

recurrent susceptibility (SIS models - that is individuals that are not conferred immunity

after recovery), temporary immunity, carriers and host-vectors, models for diseases that

only affect subsets of the population (such as many venereal diseases) and heterogeneous

mixing of populations. A more detailed introduction to all of these approaches can be

found in Murray (2003).

From these models several important quantities can be readily obtained. One example is

the epidemic curve, which gives the rate of new infections over time and is obtained by

plotting dI(t)/dt against t. Also a key interest when modelling infectious diseases is the

ability to predict whether an initial small-scale outbreak will develop into an large-scale
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epidemic. The basic reproductive rate of the disease, denoted R0, is an important quantity

in this respect. It is defined as,

R0 =
aS(0)

b
, (3.2)

where S(0) is the number of initial susceptibles. It measures the number of secondary

infections from each primary infection. A result of this is that if R0 > 1 then an epidemic

situation will occur. In order to control or prevent spread R0 must be reduced to less

than one. The idea of a threshold value that determines the ultimate global course of an

outbreak is of central importance in the development of control strategies.

In order to gauge any useful information from a model, a method is required to estimate

the values of the parameters from the observed data (model fitting). Once this has been

done a simple epidemic model such as the one described by (3.1), in a closed population

with known initial conditions, can be solved analytically. If not all of the parameters can

be estimated from the data, then often the solution must be obtained numerically.

A limiting factor is the quality of the available data, since unreliable data can make the

model fitting and parameter estimation difficult. However technological advances in the

late twentieth-century have resulted in the capacity to collect more complex epidemiolog-

ical data than was previously available; though often in practice numerical methods are

still required to solve the system of equations, in certain cases (i.e. when the epidemic is

small), approximations can be used (see Kermack and McKendrick 1927, Murray 2003).

In addition the system is often non-dimensionalised. This removes any dependence from

physical units of measurement in the model, making relative inferences more meaningful.

A discussion of this technique, including applications, can be found in Segel (1972) or Mur-

ray (2003). A key point to note is that the fitting mechanisms and model formulations

described above attempt to provide an exact solution to the problem. In this sense the

models are deterministic, however in reality this is rarely the case since there are often

many other (unknown) factors that can produce variation in the data. The problem here

is that although parameter estimates can be obtained they do not account for random

variation in the data. One solution could be to increase the complexity of the models;
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possibly incorporating some prior knowledge about the spreading mechanism - this will

improve the parameter estimates but at the cost of making the model harder to fit.

An alternative is to use a stochastic framework. This regards the numbers of susceptibles,

infectives and removed individuals as random variables and models the transmission rates

between groups through probability distributions (see Bailey 1975). These have the ad-

vantage that they incorporate random variation into the model, which removes some of the

rigid assumptions about the data required in the deterministic framework. Point estimates

for the parameters can also be obtained, but also information about their variability. In

addition predictions produced from stochastic models are often more informative, due to

the inclusion of random variation in the generation of the predicted values.

The model formulation for the stochastic framework is slightly different to the deterministic

approach, and so for illustrative purposes consider the case when there are only two groups:

susceptibles and infectives. Here the total population size is still fixed to be N , but this

time S(t) and I(t) are treated as random variables. In the deterministic case the number

of new infective cases in a small time period ∆t (∆t≪ 1) is given by aS(t)I(t)∆t. That is

the contact rate, a, multiplied by the number of potential contacts and the length of the

time period. In the stochastic case it is now the probability of infection that is measured

in this way, i.e. the probability of infection in a time period of length ∆t is aS(t)I(t)∆t.

Assuming that the mixing between the groups is homogeneous, the probability of s sus-

ceptibles remaining at time t is given by ps(t). After non-dimensionalising (by re-scaling

time so that one unit equals at), the probability of s susceptibles remaining at time t+∆t

(∆t≪ 1) is:

ps(t+ ∆t) = {(s + 1)(n − s− 1)∆t}ps+1(t) + {1 − s(n− s)∆t}ps(t). (3.3)

This follows from the fact that in order to have s susceptibles at t + ∆t, there must

have either been s + 1 susceptibles at time t followed by one infection in (t, t + ∆t), or

s susceptibles at t and no infections in (t, t + ∆t). This then gives a set of equations for

dps/dt and dpn/dt which can be solved subject to given initial conditions, though again
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solving analytically in practice is often tricky, and as such numerical methods are usually

used to overcome this.

The models described in this section so far have focussed on modelling the temporal

spread of the disease but not the spatial spread. Using the simple SI model described

above, Murray (2003) considers a spatially-varying compartmental model where the spatial

aspect of the epidemic spread is modelled through a simple diffusion term. For a simple

one-dimensional case this corresponds to:

∂S(t)

∂t
= −aS(t)I(t) +D

d2

ds2
S(t),

∂I(t)

∂t
= aS(t)I(t) − bI(t) +D

d2

ds2
I(t), (3.4)

where S(s, t) and I(s, t) are now distributed over space (s) and time (t). The parameters a

and b are as before and the diffusion coefficient D > 0 controls the degree of spatial spread.

Furthermore the model assumes that both the susceptible and infective populations are

uniformly spread over space and gives a wavefront solution for the spatial advance of the

disease over time. More complex spatial spreading mechanisms have been developed and

applied extensively in the study of diseases such as rabies (e.g. Murray et al. 1986).

Turning attention to recent applications of compartmental models to animal disease epi-

demic studies: Haganaars et al. (2006) use a deterministic compartmental approach to

model the spread of scrapie between sheep flocks in the UK; Cox et al. (2005) use a similar

approach to model the spread of bovine tuberculosis (TB) in cattle and badgers; Stege-

man et al. (1999) use a stochastic framework to model transmission of classical swine fever

between herds in the 1997-1998 outbreak in The Netherlands and Meester et al. (2002)

extend the model of Stegeman et al. (1999) to include temporal autocorrelation and pre-

diction of the future path of the epidemic by using a discrete-time multitype branching

process (Harris 1963, Athreya and Ney 1972). Applications to FMD in particular are

discussed in more detail in section 3.4.
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3.2 Cellular automata

An alternative approach to modelling epidemics through differential equations is to con-

sider the use of cellular automata (CA). CAs discretise time and space and model the

evolution of complex physical systems through local neighbourhood interactions (usually)

based on a lattice structure.

In general each cell in the automaton is assigned to a specific state dependent on the

application of the model. Transitions between states are governed by a set of rules relating

to the state of the local neighbourhood surrounding each cell. In epidemic modelling a

very simple example would be to represent space as a 2-dimensional regular lattice, where

each cell represents an individual in the process, and takes the values 0 if susceptible or 1

if infected. At each time point t the cells are updated according to a function, f(·), that

relates to the number of neighbouring infected cells at the previous time point.

In reality of course the aetiology of the disease can be used to define more realistic update

functions and neighbourhood criteria. These can relate to temporal characteristics of the

disease (e.g. latency periods or length of infection), covariates or spatial structure and

lags in the definition of the local neighbourhood. Using prior knowledge of the spatial

distribution of the individuals can also help to generate a more realistic model (e.g. inclu-

sion of ‘empty’ cells). In addition stochastic extensions to CA models exist in which the

transitions between states for the cells over time are governed by a probabilistic process

rather than a deterministic one.

Algorithms for models based on CA often have a fast computation time due to the regu-

larity in their structure (Sirakoulis et al. 2000). They can also produce many of the same

quantities as the differential equation approach, for example the idea of a threshold for

R0 which determines the conditions under which an epidemic will ensue can be replicated

using CA (Ahmed and Agiza 1998).

There are also various disadvantages with the differential equation approach that can

be overcome using CA. As Ahmed and Agiza (1998) note, the former neglect the local
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character of the spreading process which is modelled through localised interactions in

CA. Variable total population sizes and susceptibility, external infections and complex

initial and boundary conditions all cause computational problems in a differential equation

setting, but can be dealt with relatively straightforwardly through the CA structure (see

also Sirakoulis et al. 2000, Fuentes and Kuperman 1999).

The text by Mikler et al. (2005) gives a good introduction to the use of cellular automata in

infectious epidemic modelling. It includes discussion on the formulation of neighbourhood

structures and the inclusion of information relating to the pathogenesis of the disease (e.g.

incubation/latency periods etc.) in the definition of the update functions. A particular

issue with using CA in epidemic modelling is the problem of neighbourhood saturation,

where the localised structure of traditional CA models can result in the rapid removal of

the susceptible populations in the model. Mikler et al. (2005) deal with this problem by

extending the local neighbourhood structure to a global one, in which all cells are included

but are weighted according to a probability process based on intra-cell distance.

Authors that have considered the use of CA in the study of animal epidemiology in-

clude Fuks and Lawniczak (2001) who develop a model that can be fitted to generic

epidemics in both humans and animals, and Doran and Laffan (2005) who fit a determin-

istic CA model to the spread of FMD in feral pigs and livestock in Australia. Morley and

Chang (2004) apply a stochastic CA model to investigate the consequences of the British

government policy in the 2001 UK FMD epidemic.

3.3 Statistical modelling approaches

When modelling any type of epidemic situation a compelling argument for the use of

stochastic model formulations is that knowledge of many agents responsible for the dynam-

ics of the outbreak are unknown or incomplete. Stochastic versions of compartmental and

CA models work around the notion that mathematical laws governing physical processes

are subject to random influence, however the field of statistical modelling is concerned
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with modelling, accounting for, and reducing this random variation directly.

Various statistical modelling approaches have been used to model epidemic data; including

simple time series, purely spatial models, space-time approaches and survival modelling.

Typically in epidemic situations measurements are taken over a series of discrete time

points. In this case the order in which the observations are recorded is of principal impor-

tance since consecutive observations are often dependent, with the degree of dependence

across the time periods known as the lag.

A common way to model this type of data is through an ARMA (autoregressive moving

average) framework (Box and Jenkins 1976), which models the values at each point in the

time series through a combination of two independent processes; the first (autoregressive)

treats the observed values as a weighted linear sum of their values at previous time points,

and the second (moving average) corrects for the error in the previous forecasts through

a weighted linear sum of past error terms. The number of components in each case is

variable and is related to the temporal lag.

For an observed ordered time series Yt, t = 1, . . . , T , an ARMA model with 2 AR and 2

MA components takes the form:

Yt = µ+ β1Yt−1 + β2Yt−2 + ǫt − γ1ǫt−1 − γ2ǫt−2, (3.5)

where µ is a constant intercept. The β parameters correspond to the effects of the au-

toregression and the γ parameters to the effects of the moving average. The stochastic

part of the model is governed by the error terms (ǫ), which follow independent and iden-

tically distributed normal distributions with mean 0 and variance σ2. The assumption of

normality is key to the theory supporting the ARMA framework, though in certain cases

transformations (e.g. Box-Cox transformation) can be used to correct when the data is

non-normal.

Another key requirement is that the data is stationary (i.e. the probabilistic structure

of the process Yt is unaffected by a shift in the time origin - Diggle 1990) over time.
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Non-stationary data can often be made stationary by differencing between successive time

points, which attempts to remove the trend from the data. The degree of differencing

required acts as an additional parameter in the model, now known as an ARIMA (autore-

gressive integrated moving average) model. Variance stabilisation transformations can

also be used to correct for heteroscedascity (i.e. non-constant variance along the regres-

sion line).

Other issues include accounting for seasonal variation (localised trends), cyclical variation

(trends over longer time periods) and irregular fluctuations (due to unknown factors). In

addition, forecasting the future evolution of the time series involves extrapolating (i.e.

predicting outside of the normal data range) the data set, which carries its own set of

modelling difficulties.

For a good introductory text on the subject of time series modelling see Chatfield (2004).

For more comprehensive accounts see Chatfield (2001), Box and Jenkins (1976) and An-

derson (1971).

In epidemic situations, the ARMA/ARIMA framework can be limiting. Epidemic time

series are often measurements on the number of infected individuals over time, and these

are not normally distributed. A natural way to model this type of data would be through

the use of generalised linear models (GLMs) (Nelder and Wedderburn 1972); allowing the

simple linear model framework to be extended to include non-normal error terms.

In the simplest case the data are assumed to be binomially distributed; since each ob-

servation measures the number of ‘successes’ (infections) from a fixed number of ‘trials’

(total population of susceptibles). Let It, t = 1, . . . , T , be an observed ordered series of

the numbers of new infections at each time point i.e. It ∼ B(nt, pt) with the probability of

infection, pt, modelled through a logistic link function (see McCullach and Nelder 1989):

log

(

pt

1 − pt

)

= ηt, t = 1, . . . , T and 0 6 pt 6 1. (3.6)

Here ηt is a linear combination of regression terms thought to directly affect the probability
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of infection. (Note that other link functions such as the probit or complementary log-log

links could be used instead of the logistic if required.)

If the probability of infection is small and the population ‘at-risk’ large, then a Poisson ap-

proximation to the binomial can be used i.e. It ∼ Po(λt), where now the regression terms

are included through a log link function in the mean, λt = ntpt = ηt. Note that an advan-

tage of these techniques is that all parameter estimates can be estimated simultaneously

in the model framework.

So far this model contains no spatial structure or temporal correlation and is treating

each observation as independent of the others. Spatio-temporal structure can be included

in various ways, for example through an autoregressive process in the mean, space-time

dependent covariates, or perhaps through the inclusion of random effects.

Alternatively, if collected at the individual level, epidemic data can be viewed as a spatio-

temporal point process. Here the probabilistic phenomena of interest are the time and

locations of infections (Diggle 2003, 2005). Typical aims involve locating clustering or

regularity in recorded events over space and time, estimating and mapping relative risk of

the event incidence or identifying clustering around a point source of infection. Techniques

are developed around the notion that a completely random point pattern will follow a

homogeneous Poisson process over both space and time.

A spatial analogy of the time series count model also exists if the data can be aggre-

gated over space into a set of (regular or irregular) areal units. In this case a range of

methods exist that allow patterns or trends in the relative risks of event incidence to be

modelled (Lawson 2001). These techniques are widely used in spatial epidemiology and

useful methods involve the capacity to model autocorrelation between measurements taken

at different spatial lags. However accurate prediction is less important than identifying

trends and patterns and their possible causes.

Good introductory texts on spatial analysis can be found in Bailey and Gatrell (1995)

and Cressie (1993). Diggle (2003) provides a comprehensive account of spatial point pat-
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terns analysis and Lawson (2001) applies areal modelling techniques to epidemiological

data. For prediction purposes however, effective epidemic modelling involves accounting

for the spread of the disease in both time and space, and as such the GLM framework

with spatio-temporal extensions is useful.

The use of a generalised mixed model (Breslow and Clayton 1993) to model the underlying

disease rates in different areal units for the incidence of insulin-dependent diabetes in

military conscripts in Sardinia between 1936 and 1971 was proposed by Bernardinelli

et al. (1995). They assume that the counts follow a Poisson distribution over time and

space but that for scarce data the typical maximum likelihood formulation of the model

does not account for the excess of random variation caused by the Poisson approximation

to the binomial. Instead they formulate a mixed model in which the temporal trend and

area specific intercept are modelled as random effects. They use a Bayesian specification

since this can easily handle the complex model structure resulting from the inclusion of

the random effects.

Knorr-Held and Besag (1998) note that the formulation of Bernardinelli et al. (1995)

assumes the temporal trend to be linear. In order to relax this assumption they in-

stead extend the dynamic model methodology (West and Harrison 1997), and allow for

non-linear temporal trends and spatial variation (Besag et al. 1991) to be modelled non-

parametrically. Knorr-Held (2000) extends this approach to include space-time interac-

tions. By using a Bayesian framework they allow spatial and temporal autoregression to

be included through the specification of the prior distributions.

Examples of these models applied to animal disease data include: Yoon et al. (2005), who

fit a temporal Poisson regression model for the within-farm spread of avian influenza in

the Republic of Korea in 2003-2004, and Berke (2005), who applies spatial relative risk

mapping techniques to point data for pseudorabies in pig herds, and to count (area) data

for small fox tapeworm infections in red foxes. Ducrot et al. (2005) aggregate a spatial

point pattern in incidence of BSE in France in areas and test spatial clustering over time

using the assumption that a random process should follow a Poisson distribution over
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space.

Durr et al. (2005) fit four different Bayesian hierarchical models to count data for bovine

fasciolosis in abattoirs in Victoria, Australia. They used logistic regression with spa-

tially varying frailty effects to attempt to identify areas of high risk and possible envi-

ronmental causes. Diggle et al. (2005) model bovine tuberculosis in Cornwall, UK using

non-parametric kernel estimation techniques over discrete time points. Some specific ap-

plications to FMD are discussed in section 3.4.

3.3.1 Survival analysis

An alternative to modelling epidemic data through the numbers of infections is to consider

modelling the time to infection directly through the use of survival modelling. Mathemat-

ical detail of these approaches will be given in chapter 4.

Survival modelling shares many of the advantages of the models described in section 3.3,

in that all the parameters of interest (for spatial and temporal effects) can be estimated

simultaneously and predictions of future survival times can be obtained for individuals.

The models are usually defined in terms of the hazard function. If the survival times are

deemed to have come from a continuous distribution then the hazard represents the in-

stantaneous rate of failure (in this case infection) at a point in time, given survival to that

point. This is analogous to the transmission rate described in the discussion on compart-

mental models. The hazard function uniquely determines the distribution of the survival

times (see Cox and Oakes 1984, Kalbfleisch and Prentice 2002) and allows many quanti-

ties of interest to be extracted - for example the probability that an individual becomes

infected in the next week or the corresponding ranks of individuals most likely to become

infected in the future. It is also straightforward to incorporate covariate information into

the hazard function.

A key issue that affects the interpretation of data in survival analysis is that of censoring.
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Censored observations are ones that contain incomplete survival information. These are

often right-censored; typically individuals who have yet to experience failure at the end

of the study period. However they still contribute important information about the un-

derlying survival process that must be incorporated into the formulation of the likelihood.

Survival analysis provides a tractable method for doing this, which weights censored values

accordingly. There is also methodology to include left- and interval-censoring into models

if required.

The specification of censored observations takes on additional importance in epidemic

models, where exposure to the disease changes over space as well as time. In spatially

varying epidemic situations, there is a reasonable argument to say that some individuals

in the data are not representative of the population ‘at-risk’; that is that due to their spatial

location they are unlikely to ever be exposed to the virus in sufficient quantities to cause

infection. Of course this is assuming a localised spreading process not linked to dangerous

contacts. However if modelling local spread there is the danger that the information they

contribute to the model fit will bias the parameter estimates, since the model will be fitted

to an unrepresentative study group. Potential solutions to this problem, and the issue of

non-local spread will be addressed chapter 5.

Similar arguments apply when incorporating the spatial aspect of a contagious epidemic

into survival models as affected their inclusion into the GLM framework discussed earlier.

There are two main facets: firstly there is the issue of modelling space-time dependence

in the mean of the process (first-order effects), and secondly through localised ‘stickiness’

between neighbouring individuals (second-order effects). Space-time covariates are one

way to handle the former problem, and the use of spatio-temporally correlated random

effects (known as frailties in the survival literature) are one way to deal with the latter.

Survival models can be specified in a Bayesian framework, providing full posterior distribu-

tions for the parameter estimates and predictions of survival times. When combined with

Markov chain Monte Carlo (MCMC) methodology it also provides a tractable method for

fitting complex frailty models. In addition these models can provide information not only
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on the localised spread of the disease but also, if the predictions are integrated over space

and/or time, information on its global evolution.

Extensions to multivariate data and data aggregated by areas are also available (see e.g.

Shimakura 2003, Henderson et al. 2002, Li and Ryan 2002), as are modifications that deal

with issues such as immunity, multiple survival processes or multiple causes of infection.

Some of these will be discussed in more detail in chapter 5.

3.4 Mathematical modelling of FMD

Before the 2001 UK outbreak the best data set available for FMD was from the UK

epidemic of 1967-68. This has been studied by a number of authors; early papers in-

cluding Henderson (1969), Hugh-Jones and Wright (1970), Hugh-Jones (1972), Sanson

et al. (1991) and Sanson and Morris (1994). Recent studies have re-visited this epidemic,

notably Sanson et al. (2000), Gerbier et al. (2002), Gloster et al. (2005) and Sellers (2006).

A wide variety of different model frameworks have been used to model FMD, though

most of these have used the compartmental approach. The 2001 UK epidemic provides re-

searchers with the most comprehensive infectious disease data set currently available (DE-

FRA 2004), and gives modellers much more information to use when designing mathemat-

ical models to capture various features of the spatio-temporal spread. Aspects of this data

set will be explored in the next chapter, focussing in particular on data from the Devon

sub-epidemic.

Beforehand, it seems sensible to discuss in some more detail the various modelling ap-

proaches that have been applied to FMD, in particular to those fitted to the 2001 data

set, since they provide a good example of the range of models that can be used and the

advantages and disadvantages when modelling different aspects of the epidemic process.

Various papers were published during the 2001 UK epidemic that used mathematical mod-

els to evaluate and advise on the potential effects of different control policies on controlling
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the spread of the disease. Ferguson et al. (2001a) was published initially online in April

2001, barely two months after the beginning of the outbreak, and examined the potential

impact of both movement restrictions and other different control measures on the future

path of the disease. The analysis consisted of two parts: firstly they used individual level

contact tracing data provided by MAFF (Ministry of Agriculture, Fisheries and Food -

the predecessor to DEFRA) to parameterise a density function for the distance between

infected premises and likely subsequent infected premises, and secondly to feed this in-

formation into a deterministic compartmental model to determine the spatio-temporal

dynamics of the disease.

The spatial density function comprised a mixture of two terms: the first representing

a localised spreading process acting uniformly over the local neighbourhood surround-

ing each IP, and the second a kernel function that weights contributions from connected

premises based on distance. The parameters were estimated by fitting the density to the

distribution of known infectious contacts.

The temporal aspect of their approach depended on modelling the distribution of times

between three main events: report, confirmation and culling. These were estimated from

the observed data and combined with the spatial kernel function within a differential

equation model consisting of five groups: susceptible, infected but not infectious, infectious

but not reported, infectious and reported and culled. Simulations were then used to assess

the effects of different control policies on the course of the global epidemic (note that this

included some 45,000 premises in areas that were currently infected - the actual potential

susceptible number of premises in the UK exceeds 130,000 premises in total). The main

conclusions were that ring cull or vaccination strategies would be vital in containing the

epidemic, and that rapid slaughter of infected premises would help to slow the progress of

the disease.

Ferguson et al. (2001b), published in October 2001 extended the approach of Ferguson et al.

(2001a) to incorporate a time-dependent transmission coefficient, variable susceptibility

and variable infectiousness. The contact tracing data allowed estimates of the spatial
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scale of disease transmission to be obtained - identifying both long-range and short-range

(localised) infections. Garner and Lack (1995) use a similar state-transition framework

to simulate potential outbreaks of the disease in Australia, however their model is non-

spatial. Durand and Mahul (2000) extend the models in Garner and Lack (1995) to include

more classes and within-herd spread and apply it to simulated outbreaks in France.

Another key paper, also published in October 2001, was that of Keeling et al. (2001a).

Here the authors used a stochastic rather than deterministic compartmental model. They

formed an individual farm level model for the probability of infection of an uninfected

premise based on proximity to nearby IPs. They included variable susceptibility and

transmission based on the numbers and species of animal present on susceptible and in-

fected premises respectively. So for a susceptible individual i at time t, the probability of

infection in a given day was modelled by:

pi = 1 − exp



−SN i

∑

j∈It

TN jk(dij)



 , (3.7)

where S is a susceptibility vector based on species of animal (sheep or cattle), T is a

transmission vector also based on species of animal, It is the set of all infectious premises

at time t, N i is a vector of the numbers of animals of different species on premise i,

and k(·) is a kernel weighting function based on distance dij between premises i and j.

The specification of the kernel function was estimated using contact tracing data, and

the other parameters by using a maximum likelihood approach; forming the likelihood

function from the product over the individuals of the probabilities of susceptible premises

remaining susceptible and infected premises becoming infected at each day, in a similar

way to the method described in section 3.1.

They then used simulations to measure the impact of culling and vaccination strategies.

They identified heterogeneities in transmission intensities resulting from different numbers

and different types of animal and their results indicate that the models were not able to

reproduce the national epidemic as well when these species differences were excluded than

they did when included. They also concluded that the rapid implementation of control
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policies such as ring culling was essential in controlling the spread of the disease, but noted

that the size of the neighbourhood would be situation and disease specific.

As a result of the Royal Society report on Infectious Diseases In Livestock (Follett et al.

2002) and the Lessons Learned Inquiry (DEFRA 2002a), there have been various concerns

raised about the necessity of aggressive cull policies in controlling the spread of the disease,

motivating researchers to explore the effects of alternative strategies. Tildesley et al. (2006)

investigate optimal vaccination strategies for the control of FMD, and their results suggest

that an optimal reactive ring cull strategy of 35,000 animals per day is more effective than

a policy of CP culling in reducing the number of farms lost. However in a letter to the

Veterinary Record, Wingfield et al. (2006) question these conclusions, arguing the case that

CP culling, or a ‘stamping-out strategy’, should remain the primary method for control

in the future. It is clear that there is still much debate about this issue. In a comment

on Wingfield et al. (2006), Keeling et al. (2006) reiterate the importance of combining

efforts between veterinary knowledge on the ground and mathematical prediction models

when designing and instigating effective control orders.

The models discussed so far have been fitted globally, to data from the whole of the UK in

2001. Gerbier et al. (2002) used a similar approach to Keeling et al. (2001a), but instead

applied their model to data from the 1967-68 UK epidemic. A slight difference was that

they assumed a point process model in which the spatial spread of the disease was given

a probability distribution and the parameters were estimated as part of the model. They

model the infectious potential of a premise as:

φi(t) = β1t + β2t

∑

j

f(dij) + · · · + βktzk, (3.8)

where β1t represents a baseline probability of infection which is uniformly distributed

over space and β2t to the effect of localised spreading, based on a local spatial decay

function specified by f(·) and governed by the distance, dij , between two premises (in

this case a simple inverse distance decay function was used). Other factors zk can also be

included, and the authors use a function of the number of animals between the susceptible
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and previously infected farms, weighted by distance. They then model the probability of

infection through a logistic link function to the infectious potential, φi(t), and fit the model

using maximum likelihood in a similar manner to Keeling et al. (2001a). Other papers

that use stochastic compartmental approaches include Menach et al. (2005) and Chowell

et al. (2006).

Diggle (2005) develops a partial likelihood approach to fit a point process model based on

that of Keeling et al. (2001a). In the paper he models the conditional rate of transmission

between farms i and j, λji, based on the complete history of the process up to time t. The

problem is that resulting log-likelihood is often intractable. Instead he proposes a partial

likelihood approach to fitting the model that is an extension of the method proposed

by Cox (1972) for fitting survival models. This latter method will be discussed in more

detail in section 4.3.2.

The spatial spread is modelled through a transmission kernel with an exponentially de-

caying part representing localised spread and an extra parameter allowing for long-range

transmission. The model is:

λji(t) = λ0(t)AjBif(dji)Iji(t), (3.9)

where λ0 is a baseline hazard function over time (see chapter 4), Ai measures the relative

infectiousness of premise i and Bi the relative susceptibility. These are based on the

numbers of cows and sheep on each premise, and the relative infectiousness or susceptibility

of each species respectively. The model was fitted to data for the Cumbria sub-epidemic in

the UK in 2001. The paper then discusses possible extensions to the model, for example the

inclusion of extra farm level covariates in the susceptibility and transmission parameters,

though as with any semi-parametric approach prediction is an issue.

This framework uses aspects of survival analysis in the modelling setup. Generally how-

ever, the use of survival modelling for infectious disease epidemic data is limited. Sanson

and Morris (1994) consider the use of survival analysis to model spatial spread of FMD

from one point source of infection in the 1967-68 UK FMD epidemic. Here they divided
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the study region into a series of grid squares and treated certain grid squares as farm

premises. This was based on overlaying Ordnance Survey maps of the area and assigning

premise status to any grid square that did not contain a confounding geographical feature

(such as rivers or woods for example). The size of the grid squares was taken as the median

farm size from the 1965 census data. The model used distance from the source farm to

calculate the probability of survival for each premise between each given time period.

This is a very simple implementation of survival modelling to epidemic data. A different

approach was adopted by Lawson and Zhou (2005) to model spatio-temporal spread in

Cumbria in 2001. They fitted a descriptive Binomial model to counts of infections over

time in aggregated spatial units (parishes). They also developed a series of farm level

marked survival process models in which the incidence of the disease, λi, on farm i is

conditional on the survival time di. The survival time was modelled through a Weibull

distribution (see chapter 4) and was included as a covariate in the intensity. They also

used a range of other covariates in both the intensity and in the scale parameter of the

survival distribution.

The spread of FMD at the within-herd level has also been examined. Streftaris and Gibson

(2004a,b) consider using stochastic compartmental models in a Bayesian framework to

model the dynamics of infectious diseases at this level; the latter paper with application

to experimental FMD data. This is a similar approach to the one adopted by Keeling et al.

(2001a) but with no spatial dependence structure (deemed unnecessary at this geographical

scale). An approach centred on modelling transmission probability was used by Arnold

(2005), and this particular method will be discussed in chapter 5.

CA models have also been used by a number of authors, including Doran and Laffan (2005),

who use a stochastic CA model on foot-and-mouth disease in feral pigs and livestock in

Australia, and Morley and Chang (2004) who use CA to investigate the consequences of the

control policies implemented in the 2001 UK FMD epidemic. An alternative approach was

used by Wilesmith et al. (2003), who investigated the use of space-time K-functions (Diggle

et al. 1995) to explain spatio-temporal interactions in the risk of infection of FMD across
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two counties of the UK (Cumbria and Devon) in the 2001 epidemic. These latter functions

are used to measure clustering in point pattern data based on inter-event distances. They

have the advantage that they can be applied across different spatial and temporal scales,

but are predominantly used for exploratory purposes and cannot be used to directly predict

future incidence.

3.5 Conclusions

This chapter has explored different frameworks for modelling contagious epidemics, each

having its own advantages and disadvantages when dealing with particular aspects of the

disease process.

Most of the work done on FMD so far (particularly for the 2001 epidemic) has focussed on

estimating the effects of control policies on the global scale, however much less has been

done on spatial and temporal prediction on a smaller scale. A problem when modelling

large-scale epidemics is that global assumptions are made about the epidemic process,

and it has been shown that often these assumptions will vary depending on factors such

as location, topography, climate, density of individuals and changes in biosecurity for

example. By modelling spatio-temporal spread over smaller areas these differences can

potentially be accounted for. Also this raises the question as to whether optimal control

strategies could be targeted to particular areas or individuals deemed ‘high-risk’ by the

model, having the potential to greatly reduce the economic and welfare costs involved in

disease management. Of course this may come with a greater computational burden, since

more analyses must be undertaken, however each individual model will be much smaller

and so this trade-off may be reasonable.

In the literature the use of survival modelling in these situations is rare compared to

the compartmental framework, yet the survival approach has the capacity to incorporate

many of the features of these approaches. It has the potential to deal with aspects such as

changes in the state of the disease over time, censoring, immunity and multiple sources of
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infection, as well as being able to investigate the effects of explanatory variables directly on

survival time. It provides a tractable method to obtain predictions for the future course

of the epidemic in both time and space, both on a local and global level. The ability

to directly predict, not only the risk but also the time at which a premise may become

infected is another attractive feature.

Statistical approaches also model random variation directly, and such a stochastic frame-

work is biologically more reasonable than assuming a fixed deterministic process driving

the epidemic. The GLM framework could be used but it tends to average the temporal

aspect over time across individuals, whereas the survival framework has the capacity to

incorporate explicit information on the shape of the epidemic curves over time. This thesis

intends to explore the use of spatial extensions to survival modelling to develop space-time

predictions for the path of a contagious epidemic.
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Chapter 4

Survival Modelling

Survival modelling is used to model the time from the start of follow-up of an individual

until some pre-defined event occurs. Typically this event is associated with failure of some

kind, for example the death of a cancer patient in a clinical trial or the failure of a machine

part during a safety test. As such the time to the event is usually referred to as survival

or failure time.

From a statistical modelling perspective the survival times tend to follow some form of

skewed distribution such as the exponential or Weibull for example. Additionally there is

the issue of censoring i.e. those observations that have not been observed to fail during

the study period. These observations still hold important survival information since they

record the time over which an individual was ‘at-risk’ but did not succumb to failure. To

prevent bias the modelling framework must be adapted to incorporate these observations

in some way.

There are various ways in which these issues can be addressed. The generalised linear

modelling (GLM) framework (Nelder and Wedderburn 1972) offers extensions to the clas-

sical linear model that allows non-normally distributed error terms to be used. Traditional

survival models can be viewed as an extension of GLMs that incorporate censoring (Aitken

and Clayton 1980, Whitehead 1980, McCullach and Nelder 1989) and may be fitted using
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standard techniques such as iterative re-weighted least squares. Since many of the survival

techniques currently used were developed independently of the GLM framework (see e.g.

Kalbfleisch and Prentice 2002, Collett 2003, Therneau and Grambsch 2000), there exist

a range of alternative fitting mechanisms, such as direct use of maximum likelihood, or

in the case of a Bayesian model by an iterative sampling algorithm such as Markov chain

Monte Carlo (MCMC).

The basic mathematical background to survival analysis will be discussed in section 4.1,

and issues associated with censoring in section 4.2. A range of different modelling strate-

gies exist that depend on the choice of distributional assumptions made about the data.

Some of these will be discussed in section 4.3, including non-parametric, semi-parametric

and fully parametric approaches and their potential uses when exploring the relationship

between explanatory variables and survival time. If a parametric form is chosen, then

predictive estimates of future failure times can also be obtained.

Section 4.4 explores Bayesian methodology and fitting mechanisms, principally Markov

chain Monte Carlo (MCMC), and includes some discussion on Metropolis-Hastings, Gibbs

sampling and Bayesian identifiability.

Finally, due to the complexity and range of different situations to which the application of

survival techniques may be appropriate, various extensions to the conventional model have

also been developed. Some common examples that may be applicable to disease modelling

include mixture models, competing risks models, long-term survivor models, state-space

models and change point models, and these will be covered in section 4.5.

Survival analysis is widely documented not only in the statistical literature but also in fields

as diverse as engineering, social science and epidemiology. Since it has such a broad scope

this section will focus on some of the basic concepts and techniques that are most relevant

to epidemiological modelling. It is by no means an exhaustive account of the subject,

and for a more comprehensive discussion on the ideas and methodology considered here

the reader is referred to excellent texts by Kalbfleisch and Prentice (2002), Collett (2003),

Therneau and Grambsch (2000), Klein and Moeschberger (1997), Cox and Oakes (1984)
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or Lee and Wang (2003). The application of these techniques to the problem at hand will

be discussed in later chapters.

4.1 Basic ideas

In general, survival techniques can be applied to a wide range of different situations,

subject to three necessary requirements as stated by Cox and Oakes (1984): firstly a well-

defined time origin must be determined, then the scale for measuring the progress of time

must be decided upon, and finally the exact definition of failure must be clear.

To begin this discussion, consider first the case for homogeneous data where T is a positive

random variable representing failure time. The survivor function, S(t), is defined for both

discrete and continuous distributions as the probability that an individual survives beyond

time t, i.e.

S(t) = P (T > t) 0 < t <∞. (4.1)

Here 0 < S(t) 6 1 since S(0) = 1 and limt→∞ S(t) = 0. The distribution of T can be

uniquely determined by the survivor function, or, as is commonly the case, by one of two

other related quantities: the hazard function or the probability density function.

For a continuous random variable T , the density function, f(t), is given by

f(t) =
dF (t)

dt
= −

dS(t)

dt
, (4.2)

where the (cumulative) distribution function F (t) = P (T < t) = 1 − S(t), so that S(t) =
∫∞
t
f(u)du. The hazard function, h(t), is defined as the instantaneous potential of failure

at time t, given survival to t, i.e.

h(t) = lim
∆t→0

P (t 6 T < t+ ∆t | T > t)

∆t
∆t≪ 1. (4.3)

This is a positive measure and is sometimes referred to as the conditional or time-specific
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failure rate.

Following the fundamental theorem of calculus, it can be seen that (4.2) can be written

as:

f(t) =
dF (t)

dt
= lim

∆t→0

F (t+ ∆t) − F (t)

∆t

= lim
∆t→0

P (T < t+ ∆t) − P (T < t)

∆t

= lim
∆t→0

P (t 6 T < t+ ∆t)

∆t
. (4.4)

Using (4.4) and the definition of conditional probability, the hazard (4.3) can be written

as:

h(t) = lim
∆t→0

P (t 6 T < t+ ∆t)

∆t[P (T > t)]

=
f(t)

S(t)
, (4.5)

and from (4.2) it follows that

h(t) = −

[

dS(t)
dt

S(t)

]

⇒ S(t) = exp(−

∫ t

0
h(u)du). (4.6)

The quantity H(t) =
∫ t

0 h(u)du is known as the cumulative hazard function.

If T is a discrete random variable then the probability function f(t) = P (T = t) determines

the exact probability of failure at time t. Likewise, the hazard function, h(t), is the

conditional probability of failure at time t given survival to t, i.e.

h(t) = P (T = t | T > t) =
P (T = t)

P (T > t)
=

P (T = t)
∑

j|tj>t P (T = tj)
. (4.7)

It is straightforward to define P (T = t) and P (T > t) in terms of the hazard function by

considering that 1− h(t) is the conditional probability of survival at t given survival to t.
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So for ordered survival times t1 < · · · < tn,

P (T = ti) = h(ti)
i−1
∏

j=1

(1 − h(tj)) (4.8)

and

P (T > t) =
∏

j|tj6t

(1 − h(tj)). (4.9)

It is also possible to mix continuous and discrete distributional forms in one framework if

required (see Kalbfleisch and Prentice 2002, chapter 1).

4.2 Censoring

The most common form of censoring, right-censoring, occurs when an individual joins a

study at the beginning of the study period but does not experience failure. This happens

generally either because the study period ends before failure, or because they were lost to

follow up or withdraw from the study for some reason. If the time origin is taken to be at

time 0, then an individual right-censored at time t is known to have survived the period

[0, t).

Left-censoring occurs when an individual fails at some point prior to time t but the exact

failure time is unknown. In this case it is known that the individual failed in the period

[0, t). If the exact failure time for an individual is unknown, but is known to lie between

two points a and b, where 0 < a < b < t, then the individual is said to be interval-censored.

Also important when modelling incomplete (censored) survival data is the type of censoring

mechanism being used. In the simplest case this is random and independent of the failure

process - known as type III censoring (Lee and Wang 2003). Type I censoring occurs when

observations are censored after a pre-defined length of time, and type II censoring when

individuals are censored after a pre-determined number of failures have been observed. The

type of censoring mechanism affects the form of the likelihood. Kalbfleisch and Prentice

(2002) discuss modifications to incorporate type I and II censoring and deal with situations
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where the censoring mechanism is not independent of the failure mechanism.

In many cases the assumption of random censoring is reasonable, however it is worth noting

that there are certain circumstances in real-life epidemic modelling where this becomes

invalid - principally when dealing with individuals who are removed from the study when

considered at high- or low-risk of infection (as in the case of culled premises during the

2001 UK FMD epidemic). This issue will be discussed further in chapter 5 - here it will

be assumed that all censored observations are randomly censored unless otherwise stated.

4.3 Modelling techniques

Traditionally full parametric forms were assumed for the distribution of survival times, and

although this approach has a number of advantages (that will be reviewed in section 4.3.3),

it seems sensible initially to discuss alternative approaches to survival model formulation in

a wider context. Oakes (2001) cites two key papers responsible for extending the boundaries

of survival methodology beyond those offered purely by parametric frameworks. The more

recent of the two, Cox’s seminal paper on proportional hazards (Cox 1972) will be discussed

in section 4.3.2, whilst section 4.3.1 will focus on some non-parametric techniques, most

notably that of Kaplan and Meier (1958) and the use of their product-limit estimator to

estimate the survivor function for censored data.

4.3.1 Non-parametric methods for estimating the survivor function

Non-parametric techniques are useful in particular for exploratory analysis of survival

data, since they are not restricted by the assumption that the data must follow a particular

distributional form. Estimates and comparisons of survivor (and hazard) functions can

be readily obtained, as well as corresponding summary values such as the mean, median,

quartiles and confidence intervals.

In the case where there are no censored observations, the empirical survivor function can
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be used to estimate the survivor function at a time t. This states that the probability of

survival beyond a point t is the proportion of the total number of individuals in the study

still alive after t, and is given by:

S̃(t) =
No. of individuals with survival times > t

No. of individuals in data set
. (4.10)

If the data contains censored observations then the empirical survivor function in (4.10)

is no longer valid. In this case there are various alternative techniques that can be used

that work by dividing the study period into a set of discrete time intervals. The survival

estimates are then based on the proportions of the total number of individuals deemed

‘at-risk’ in each interval.

Examples of some of these types of approaches, such as the Actuarial estimator, Nelson-

Aalen estimator and the Kaplan-Meier estimator can be found in more detail in Collett

(2003). The most well-known of these, the Kaplan-Meier (KM) or product-limit estimator,

was first developed in Kaplan and Meier (1958), and for illustrative purposes only this

framework will be discussed here.

In a sample of n individuals, consider initially just those that experienced failure. Adopting

the convention that the failure time is taken to occur at the beginning of each interval,

then a series of time intervals are formed such that each contains just one failure time. If

there are r 6 n failures let t(j), j = 1, . . . , r, be the ordered failure times such that the

first interval [t(0), t(1)) contains no failure time (i.e. t(0) is the time origin). In the case of

tied observations censoring is taken to occur after failure.

Denote the number in the risk set just prior to t(j) as nj and the number of failures at t(j)

as dj. Assuming failures are independent then an estimate of the probability of survival

between t(j) and t(j+1) can be given by
nj−dj

nj
, with the corresponding survival estimate

for t(j) 6 t < t(j+1) given by

Ŝ(t) =

j
∏

k=1

(

nj − dj

nj

)

, (4.11)
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i.e. the probability of surviving through t(j) to t(j+1) and all the preceding intervals. This

is known as the Kaplan-Meier estimate of the survivor function.

It can be seen that (4.11) returns a decreasing step-function with Ŝ(0) = 1 and Ŝ(t)

constant over each discrete time interval t(j) 6 t < t(j+1), j = 0, . . . , r, where t(r+1) = ∞.

From this a range of useful quantities can be extracted such as the median, mean, quartiles

and associated standard errors (using e.g. Greenwood’s formula) and confidence intervals

for the survivor estimate, as well as equivalent estimates for the hazard and cumulative

hazard functions. Plots of the estimated survival and hazard curves against time can

provide useful inferences into the underlying form of the survival distribution. Tests also

exist to compare survival curves from different groups, such as the log-rank and Wilcoxon

tests. Collett (2003) provides a detailed and lucid account of the derivation and application

of these various quantities. See also Lee and Wang (2003).

4.3.2 Semi-parametric models

The types of non-parametric methods discussed in section 4.3.1 provide useful and tractable

ways of estimating and comparing survivor and hazard functions for survival data, includ-

ing extensions to incorporate censored information. However a key focus in survival mod-

elling is to investigate the effect of covariates on survival time, and a different approach is

required to do this.

As shown in section 4.1 survival models can be specified in terms of the survivor, hazard

or density function. Since each of these will uniquely determine the corresponding survival

distribution, Cox (1972) proposed specifying a model through the hazard function in such

a way that for an individual with a vector of covariates x, the hazard at time t is made up

from two parts: the first modelling the hazard in the absence of covariate information (the

baseline hazard function), and the second a (usually) parametric function representing the

effect of covariates on failure time, over and above the baseline hazard (see Cox and Oakes

1984, chapter 5).
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Cox (1972) first introduced his proportional hazards approach as a way to incorporate

covariate information into a survival model without having to assume an underlying dis-

tributional form for the data. The model is defined in terms of the hazard function as:

h(t,x) = h0(t)ψ(β;x), (4.12)

where x is a m-vector of explanatory variables, ψ(·) is a parametric function of x and

h0(t) is the unspecified baseline hazard function (i.e. when x = 0). Here β is a m-vector

of parameters. A common way of specifying ψ(·) is to use a log-link to the covariates i.e.

ψ(β;x) = exp(βT x). Model (4.12) is referred to as semi-parametric, since the baseline

hazard function is left arbitrary.

There are many reasons for its popularity - Cox and Oakes (1984) offer various arguments.

With regard to the model formulation, the idea that the effect of a covariate is to multiply

the hazard by a constant factor is not unreasonable, and they argue a weight of empirical

evidence in some fields supporting this. Also, censoring and the occurrence of several

types of failure can be easily included in the model and furthermore adaptations to the

fitting mechanism are straightforward in these cases even though the underlying survival

distribution is left unspecified.

In order to fit the proportional hazards (PH) model (4.12), Cox (1972) developed a par-

tial likelihood approach, so-called because it does not make use of actual censored and

uncensored survival times. Consider n individuals with r 6 n ordered failure times t(j),

j = 1, . . . , r. In a standard formulation, an (uncensored) individual i with failure time ti

and covariate vector xi contributes f(ti,xi) to the likelihood; however since the form of

f(·) is unknown, an alternative likelihood is derived using the conditional probability that

an individual i fails at t(j) given survival to t(j), and the additional notion of ‘risk-sets’.

The technique works on the assumption that intervals between successive failure times

cannot contribute any information to the likelihood, since conceptually h0(·) in those

intervals could be zero. The likelihood is then constructed on the basis of information

given by individuals across the whole set of observed failure times.

47



Using the rules of conditional probability and the fact that the failure times are assumed

to be independent of each other, the following statement holds:

P (individual i fails at t(j) | one failure at t(j))

=
P (individual i fails at t(j) and no one else fails)

P (one failure at t(j))

=
P (individual i fails at t(j) and no one else fails)

∑

k∈R(t(j))
P (individual k fails at t(j) and no one else fails)

. (4.13)

However (4.13) can be thought of as the limit as ∆t→ 0 of

P (individual i fails in [t(j), t(j) + ∆t))/∆t
∑

k∈R(t(j))
P (individual k fails in [t(j), t(j) + ∆t))/∆t

. (4.14)

Therefore if individual i has covariate vector x(j), then (4.14) can be written as

h(t(j) | xj)
∑

k∈R(t(j))
h(t(j) | xk)

=
exp(βT x(j))

∑

k∈R(t(j))
exp(βT x(k))

, (4.15)

using the definition in (4.3) with h(t(j) | xj) = h0(tj) exp(βT x(j)).

The partial likelihood for the r failure times is therefore:

L(β) =

r
∏

j=1

exp(βT x(j))
∑

k∈R(t(j))
exp(βT x(k))

. (4.16)

The effect of the covariates on the survival time is modelled through the β parameters,

which can now be estimated even though the baseline hazard in model (4.12) is left ar-

bitrary. Furthermore, methods also exist to estimate the shape of the baseline survivor,

hazard and cumulative hazard functions, although due to the way in which the PH model

is defined they can only be estimated up to the most recent observed failure time .

The presence of tied data points further complicates the derivation of the partial likeli-

hood. Kalbfleisch and Prentice (1973) derive an exact partial likelihood for survival data

with tied observations, but computationally simpler approximations have been proposed

by Cox (1972), Peto (1972), Breslow (1974) and Efron (1977).
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An alternative to the assumption of proportional hazards is to consider that the effect

of the covariates is to directly speed up or slow down failure time. An accelerated life

model does this by modelling the logarithm of the survival time as a linear combination

of covariates i.e.

log(T ) = βT x. (4.17)

Hence the covariates directly accelerate or decelerate failure time, in contrast to the PH

approach that assumes a multiplicative effect of the covariates on the baseline hazard

function that is independent of time. For more detailed analysis of both of these approaches

see Cox and Oakes (1984), Therneau and Grambsch (2000) or Kalbfleisch and Prentice

(2002).

Here all covariates are assumed to be fixed over time - the survival models described in

this section will not have the same interpretation if the covariates are time-dependent.

Extensions to incorporate these will be discussed in section 4.3.4.

4.3.3 Parametric methods for modelling survival data

The Cox proportional hazards model is a powerful tool in the analysis of survival data

since it does not require the assumption of a parametric form for the baseline hazard in

order to estimate the effect of covariates on the survival time. There may be situations

however, when either the survival distribution is known or that it is not unreasonable to

assume that it has a certain parametric specification, perhaps due to the results of some

exploratory analyses such as those described in section 4.3.1. In this case there are various

distributions that are commonly used and a selection will be discussed here.

In addition there are also various advantages to fitting parametric survival models, partic-

ularly when it comes to predicting future survival times. In this case the Cox proportional

hazards approach can only estimate the shape of the baseline hazard up to the most recent

failure time, and without additional knowledge predicted estimates cannot be obtained.

Parametric models have fully specified hazard functions dependent on a set of parameters
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Figure 4.1: Examples of exponential hazard and survivor functions

that determine the overall distributional form governing survival times. These can be

estimated, and for a model fitted at any point in time the current estimates can be used

to predict the hazard at future time points.

Another advantage is that many parametric models still retain the proportional hazards

or accelerated life structures described in section 4.3.2. Consider first some examples of

common survival models for continuous homogeneous populations.

a) Exponential survival model

If the hazard function h(t) = λ where scale parameter λ is a positive constant,

then the survival times follow an exponential distribution. The survivor function is

given by S(t) = exp(−λt) and the density function by f(t) = λ exp(−λt). Examples

of exponential survivor and hazard functions are shown in figure 4.1.

b) Weibull survival model

The Weibull survival model has a monotonic hazard function of the form h(t) =

αλtα−1 where scale parameter λ and shape parameter α are both positive. The sur-

vivor function is S(t) = exp(−λtα) and the density function is f(t) = αλtα−1 exp(−λtα).

Examples of Weibull survivor and hazard functions are shown in figure 4.2. It can

be seen that the exponential distribution is a special case of the Weibull when the
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Figure 4.2: Examples of Weibull hazard and survivor functions

scale parameter α = 1.

Since it has both a shape and scale parameter the Weibull distribution is very flexible

and the hazard and density functions can take a variety of different forms. The

inclusion of covariates through a log-link in the scale parameter λ also results in the

model having both a proportional hazards and an accelerated life structure. Indeed

the Weibull is the only parametric distribution to have this property.

Both the exponential and Weibull models have closed forms for the survivor and hazard

functions and are straightforward to work with. Other possible distributions that can

be used include: gamma, log-normal, log-logistic, generalised gamma, generalised F and

extreme value distributions.

As noted in Kalbfleisch and Prentice (2002) any continuous survival distribution can be

discretised by considering a discrete random variable T such that

P (T = t) = P (t 6 U < t+ 1), (4.18)

where U is continuous random variable with a fully specified distributional form. For

example if U has a Weibull distribution with shape parameter α and scale parameter λ,
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then

P (T = t) = P (t 6 U < t+ 1)

= P (U < t+ 1) − P (U < t)

= F (t+ 1) − F (t)

= S(t) − S(t+ 1)

= exp(−λtα) − exp(−λ(t+ 1)α). (4.19)

(Note that here we are discretising over periods of unit length 1 - this can be altered if

required.)

Assuming random censoring, for n observed individuals the likelihood takes the form

L(θ) =

n
∏

i=1

[f(ti | xi,θ)]δi [S(ti | xi,θ)]1−δi , (4.20)

where δi, i = 1, . . . , n, is a binary variable that takes the value 1 if individual i failed or

0 if right-censored (alternative formulations exist for left- and interval-censored data). In

this way censored observations contribute P (T > t) to the likelihood i.e. it is known that

they survived the period [0, t).

4.3.4 Time-dependent covariates

The models discussed so far can also be adapted to incorporate time-dependent covariates,

though care must be taken since this can change their interpretation. Consider a covariate

xi(t) for an individual i that varies over time. Let Xi(t) = {xi(u); 0 6 u 6 t} denote the

covariate history up to time t. The hazard function for individual i at time t is dependent

on the covariate history at t and is defined to be

hi(t) = lim
∆t→0

P{t 6 T < t+ ∆t | T > t,Xi(t)}

∆t
. (4.21)
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Kalbfleisch and Prentice (2002) discuss two types of time-dependent covariate. The first

type, so-called external covariates, are defined as those where the future path of the

covariate up to any time t > u is not affected by the occurrence of a failure at time u. A

possible example of this could be air temperature in an influenza study.

A covariate that is not external is said to be internal. Internal covariates are typically

measurements taken on an individual study subject, leading to a common property of

requiring the survival of the individual for its existence. For example, in a study of survival

time from a heart bypass operation to death, an internal covariate could be a patient’s

blood pressure. In this case the survivor function for an individual with observed covariate

xi(t) at time t is S(ti | xi(t)) = 1.

4.4 Bayesian model fitting

A range of model fitting techniques exist to fit the sort of survival models discussed in this

chapter, each having its own advantages and disadvantages. Here we will focus on Bayesian

model structures and fitting mechanisms. The Bayesian approach has a number of useful

properties, for example it yields not only full posterior distributions for the parameters

of interest but also full posterior (predictive) distributions for predicted values. It also

provides a tractable method to fit more complex models - particularly of interest are

those incorporating random effects (or frailties) that attempt to account for unobserved

heterogeneity in the data set.

The reader is referred to Gelman et al. (2004), Congdon (2001) and Congdon (2003) for

more detail on general Bayesian methodology; and Ibrahim et al. (2001) and Hougaard

(2000) for Bayesian methods in survival analysis. With regard to alternative approaches to

model formulation and fitting, by far the most common is the use of maximum likelihood,

and Collett (2003) gives a clear and simple account of these techniques in the context of

survival analysis.

From a frequentist perspective, the unknown parameters θ are treated as fixed values that
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must be estimated from the data. In contrast the Bayesian approach instead treats the

parameters as random variables that are generated from some probabilistic distribution.

A standard Bayesian model takes the form:

p(θ | D) =
p(D | θ)p(θ)
∫

θ p(D | θ)p(θ)
. (4.22)

That is the conditional posterior distribution for the parameters θ given the data D is

equal to the likelihood (the distribution of D given θ) multiplied by a prior distribution for

θ, up to some normalising constant. Hence the unknown posterior distribution p(θ | D) is

expressed in terms of a known likelihood p(D | θ) and a specified prior distribution p(θ).

For simple models this can be calculated explicitly, however since the denominator in-

volves integrating across the whole of the parameter space this becomes mathematically

intractable when the number of parameters is large. Therefore a different fitting mech-

anism is required, the most widely used of which is that of Markov chain Monte Carlo

(MCMC) iterative sampling.

Monte Carlo integration involves sampling a large number of observations from a target

distribution, and then using these samples to estimate various expected values. The law of

large numbers ensures that the estimate can be made more accurate simply by increasing

the sample size. Therefore if large numbers of samples can be obtained from the posterior

distribution p(θ | D) then Monte Carlo integration offers a method to extract the required

quantities of interest from these values. All that is required is a tractable method to sample

from the posterior, and this can be done using a Markov chain.

A Markov chain is a sequence of numbers where each number depends only on the previ-

ous value in the chain. It can be shown that under certain regularity conditions a Markov

chain will converge to a so-called stationary distribution. If a Markov chain can be con-

structed such that its stationary distribution is identical to the posterior distribution of

interest, then the required sample values can be obtained. MCMC combines these two

techniques and has the advantage that it can produce estimates from the posterior dis-

tribution without requiring knowledge of the normalising constant. For more detailed
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information see Gilks et al. (1996).

4.4.1 Metropolis-Hastings algorithm

This is an extension by Hastings (1970) of an algorithm proposed by Metropolis et al.

(1953) that can be used to construct a Markov chain with a stationary distribution identical

to the posterior distribution of interest p(·). Consider a m-vector of random variables θ

from (multivariate) distribution p(·). Then:

1. Set t = 0 and θ0 to some initial value.

2. Sample a candidate point θcand from a proposal distribution q(· | θt).

3. Accept θcand with probability α(θt,θcand) where

α(θt,θcand) = min

(

1,
p(θcand)q(θt | θcand)

p(θt)q(θcand | θt)

)

. (4.23)

4. If θcand accepted set θt+1 = θcand, else set θt+1 = θt.

5. Set t = t+ 1 and return to step 2.

Subject to regularity conditions the proposal distribution q(· | ·) can take any form and the

chain will still converge to the distribution of interest. The choice of proposal distribution

is important however as it affects the rate of convergence of the chain. Preferably the

proposal distribution should be chosen to be similar to the target distribution p(·). Note

that knowledge of the normalising constant is not required, since it cancels out in the ratio

of (4.23).

Since MCMC uses large samples to estimate the characteristics of the posterior distribution

there are obviously important modelling issues such as choice of initial values for the

parameters, the length of the burn-in period, the length of the chain and the value of

the acceptance ratio. The length of the burn-in period (i.e. the period before the chain

converges) should not be too short that samples are taken before the chain has converged to
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the stationary distribution, but neither should it be over long since this can unnecessarily

increase computation time.

Once the chain has converged, the number of samples returned must be enough to ensure

a reasonable degree of accuracy without over burdening the computation time. Careful

monitoring of the acceptance ratio helps to control both the rate of convergence and, along

with posterior thinning, ensures independence of the samples. Many techniques have been

proposed to assess convergence and some of them will be discussed in later chapters (see

Gilks et al. 1996).

4.4.2 Gibbs sampling

The parameters θ do not have to be updated as a block, but can be updated separately if

preferred, with corresponding changes to the proposal distributions. In this circumstance

a special case of the Metropolis-Hastings algorithm occurs when knowledge of the full

conditional distributions for individual parameters θi, i = 1, . . . ,m, given θi−, that is

p(θi | x, θ1, . . . , θi−1, θi+1, . . . , θm) are known. Hence the proposal distribution q(θcandi
|

θi, θi−) = p(θcandi
| θi−), and as a result the acceptance probability in (4.23) is always equal

to one. This technique is known as Gibbs sampling (Geman and Geman 1984, Gelfand

and Smith 1990).

Combinations of Metropolis-Hastings and Gibbs sampling can be used if required, and

the adaptive-rejection sampling method proposed by Gilks and Wild (1992) means that

as long as the conditional distributions of the parameters are log-concave, then Gibbs

sampling can be used even if the distribution is complicated and is not specified explicitly.

These techniques are implemented in WinBUGS (Bayesian inference Using Gibbs Sam-

pling), an open source package developed by the MRC Biostatistics Unit in Cambridge

and Imperial College School of Medicine at St Mary’s, London. It can be downloaded

from http://www.mrc-bsu.cam.ac.uk/bugs/ and will be used to fit all of the models in

this thesis.
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4.4.3 Identifiability

Consider a set of probability densities {f(y | Ψ) : Ψ ∈ Ω} where Ω is the parameter

space. In order for the set of densities to be identifiable each set of parameters Ψ must

uniquely determine a corresponding member density. If this is not the case then parameter

estimates derived from the data are not meaningful.

A more rigorous definition of identifiability is provided by Basu (1983):

Let U be an observable random variable with distribution function Fθ and let

Fθ belong to a family F{Fθ : θ ∈ Ω} of distribution functions indexed by a

parameter θ. Here θ could be scalar or vector valued. We shall say that θ is

non-identifiable by U if there is at least one pair (θ, θ′), θ 6= θ′ where θ and θ′

both belong to Ω such that Fθ(u) = Fθ′(u) for all u. In the contrary case we

will say θ is identifiable.

4.5 Extensions to conventional survival models

This section covers some extensions to the conventional model formulation that deal with

different situations. Again, detailed analysis will not be given here - rather this is to give

a flavour of the scope and potential of survival modelling.

4.5.1 Long-term survivor or cure rate models

Consider a disease in which individuals who recover from infection are conferred immunity

from future infection. For a set of survival data it is reasonable to assume in this case that

there is a proportion, p, of the total population that are considered ‘immune’ or ‘cured’ of

the disease. A conventional survival approach would treat these individuals as censored

at the end of the study period, such that although they were not observed to become

infected they still have the potential to become so. Clearly this is intuitively unreasonable
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and will result in biased parameter estimates since the likelihood contributions from these

individuals will be incorrect.

Boag (1949) was the first to publish a paper discussing a survival model incorporating a

so-called ‘cure’ proportion; though this was later extended in Berkson and Gage (1952)

who noted that the hazard function for ‘cured’ individuals should reduce to the baseline

hazard for the population. The standard model proposed by Berkson and Gage (1952) is

modelled through the survivor function as

S(t) = p+ (1 − p)S∗(t), (4.24)

where S∗(t) is the survivor function for the susceptible proportion, and p is the proportion

of ‘cured’ individuals in the population.

This model is usually referred to as a cure rate or long-term survivor model, and can

be used whenever it is believed that there is a proportion of the population ‘immune’ to

failure in some way. For a detailed introduction of the field see Maller and Zhou (1996).

4.5.2 Mixture models

The standard long-term survivor model, (4.24), supposes that the ‘cured’ proportion can

never experience failure. Consider instead a simple generalisation where the population

consists of two groups, each subject to a different survival process i.e.

S(t) = pS0(t) + (1 − p)S1(t), (4.25)

where the mixing parameter p is the proportion of individuals in the population from group

0, with corresponding survivor function S0(t), and (1− p) is the proportion of individuals

from group 1 with corresponding survivor function S1(t). This is a standard two-group

mixture model - though the methodology can be generalised to three or more groups if

required.
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Mixture models are widely documented in the statistical literature and are used in many

different contexts. For a detailed overview of mixture models see McLachlan and Peel

(2000).

4.5.3 Competing risks models

Often there is more than one way that an individual can experience failure. Traditional

survival analysis techniques do not attempt to differentiate between multiple causes of

failure. Competing risks analysis is an extension of survival analysis that incorporates

this extra information. Good overviews of competing risks can be found in Crowder

(2001), McLachlan and Peel (2000) and Congdon (2001).

A straightforward way of modelling competing risks is to use a framework analogous to

the mixture model in (4.25) i.e.

S(t) = pS0(t) + (1 − p)S1(t), (4.26)

where now p is probability of failure from cause 0 and (1 − p) is the probability of fail-

ure from cause 1. In contrast to the mixture model the causes of failure are assumed

to be observed and independent (though techniques exist to incorporate certain amounts

of missing data). Various extensions exist for the competing risks model, including gen-

eralisations to more than two causes of failure, and also as part of a long-term survivor

model (Ng and McLachlan 1998).

4.5.4 Multi-state models

All the models discussed so far assume that the underlying survival process for an indi-

vidual remains the same over time. That is that although the risk may change over time,

the underlying process will not. A multi-state framework models a stochastic process by

allowing individuals to belong to one of a (finite) number of discrete states at any time
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Figure 4.3: Possible graphical representation of competing risks model in multi-state
framework

point. They offer a flexible framework for modelling many different kinds of longitudinal

data, for example the conventional survival model could be viewed as a multi-state model

with two states: failed or not failed. Figure 4.3 shows a possible graphical representation

of the standard competing risks model (4.26) a multi-state framework.

Transitions between states are modelled through transition hazards (h0 and h1 in fig-

ure 4.3). Often the state structure is not unique and the formulation of different state

structures can make the interpretation and fitting of the models much easier. The like-

lihood formulation is usually based around an assumption that the movement between

states is governed by a Markov process, though this is not always the case. Hougaard

(2000, 1999) and Commenges (1999) provide useful overviews of this methodology.

4.5.5 Change point models

Change point models are similar in concept to the multi-state models described in sec-

tion 4.5.4 except that they assume that the distributional form of the entire survival

process changes at one or more points in time (i.e. the entire process moves between

states as opposed to individuals moving between states). Recently Ebrahimi et al. (1997)

and Chung et al. (2005) have developed Bayesian models for k change points. Chung et al.
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(2005) define the hazard in this case as

h(t) = h1(t)I(0 6 t 6 τ1) + · · · + hk(t)I(τk−1 < t < τk) + hk+1(t)I(t > τk), (4.27)

where τ = (τ1, . . . , τk) is the vector of change point parameters with

I(A) =























1 if x ∈ A

0 otherwise.

4.5.6 Random effects (frailties)

When modelling stochastic processes there is often unknown heterogeneity in the underly-

ing risk. The idea of a random effect in the model is to try to account for any heterogeneity

that cannot be explained by covariates either because they are unknown or cannot be ob-

tained (Vaupel et al. 1979). Random effects may easily be handled using the Bayesian

approach since this considers all parameters as random (Gilks et al. 1996). Traditionally

in survival analysis random effects are known as frailties, and may be either spatially

structured or unstructured, and for a hierarchical model can be defined at any level. In

this section a model incorporating individual specific frailties will be discussed. Models

including both fixed and random effects are referred to as mixed models.

Consider the following form (Shimakura 2003): let Zi be a random variable for an in-

dividual i, where Zi comes from a non-negative distribution with mean 1 and vari-

ance τ . Considering a model with a proportional hazards structure such as (4.12) with

ψ(·) = exp(βT xi); then for an individual i with observed failure or censoring time ti and

covariate vector xi, a frailty effect zi can be included as:

h(ti | xi) = zih0(ti) exp(βT xi). (4.28)

If there is no individual heterogeneity then (4.28) reduces to the standard proportional

hazards model (4.12), else for zi > 1 they experience an quicker failure rate and for zi < 1
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they experience a slower failure rate. Shimakura (2003) provides a list of references con-

cerning the distributional forms that the Zi can take, including: gamma (Clayton 1978),

log-normal (McGilchrist and Aisbett 1991), power variance model (Aalen 1988), posi-

tive stable distribution (Hougaard 1986a) and the inverse normal distribution (Hougaard

1986b).

Spatial structure can also be incorporated into the frailty specification by considering a

transformed frailty vector W = log(Z), where W has a multivariate Normal distribution

with a spatially structured correlation matrix. Here W is included additively in the

linear regression parameters. Alternatively, another common way to specify W is to use a

conditional autoregressive (CAR) normal distribution. In this case the mean response for

an individual is conditional on the mean of its neighbours (Besag and Kooperberg 1995

and Besag et al. 1991).

4.5.7 Extensions to multivariate response variables

Methodology exists to extend the univariate survival framework to a multivariate one.

The reader is referred to Hougaard (2000) for comprehensive details.

4.6 Conclusions

It can be seen that survival analysis offers a rich variety of options to deal with a host

of different situations that may arise when studying failure time data. In particular the

conventional survival approach is a straightforward way to deal not only with the censoring

issue, but also to cope with non-normally distributed failure times. In addition issues such

as time-dependent covariates, mixed survival groups and immunity to failure can all be

handled, and in combination with Bayesian methodology, complex frailty models can be

fitted to help account for unobserved heterogeneity in the data set.

In subsequent chapters the methodology discussed here will be used to develop some
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modelling frameworks, based around survival techniques, that can be used to study the

dynamics of infectious disease processes. As discussed in chapters 2 and 3 there are many

facets affecting the spread of an infectious animal disease, ranging from biological aspects,

such as species varying viral excretion and susceptibility, to the structural assumptions

made in the model formulation itself, such as the specification of spatial and temporal

dependence. In chapter 5 we will construct a simple preliminary model to explore some of

these issues, and fit it to data from the FMD epidemic in Devon in 2001. The analysis will

attempt to highlight ways in which inferences and predictions from the model are affected

by various aspects relating to the assumptions made.

Chapter 6 will then explore in more detail ways in which resistance to infection can be

dealt with in the survival framework, and we conduct a simple simulation study to draw

attention to the potential problems encountered when resistance to infection is present in

the data but unaccounted for. Chapter 7 will extend these ideas to a spatial setting with

a further, more detailed, simulation study. In addition the potential predictive uses of the

model are explored.
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Chapter 5

Preliminary survival modelling of

FMD

In the previous chapter we discussed various ways in which the survival framework can be

adapted to deal with different situations. In this chapter we will explore some of the issues

associated with modelling FMD using a simple traditional survival model. We investigate

the effects of different modelling assumptions on the predictions of future failure times

and risk of infection.

Potential ways in which this approach can be used to incorporate some of the key elements

of the FMD spreading process; such as variable susceptibility and infection, and the inclu-

sion of spatio-temporal correlation is also explored. Of particular interest is the derivation

of a space-time varying viral load covariate to measure the infectiousness of IPs, based

on models for the within-herd spread of the disease, allowing for different herd sizes and

species type. This covariate is used as a means of determining exposure and targeting the

survival modelling to ‘at-risk’ premises.

As discussed in chapter 2, our focus is concentrated on modelling the spread of FMD in

Devon and not across the entire UK, so the terms ‘global’ and ‘localised’ here will refer to

progression of the disease over the whole of the Devon region and at the between-premise
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level respectively. As a convention, any holding environment that contains animals capable

of contracting FMD will be referred to as a premise, since risk of infection from FMD is

not limited to farm holdings only.

The structure of the chapter is as follows: section 5.1 contains more detailed discussion

on the data set for the sub-epidemic of FMD in Devon in 2001. Examined in this section

are some of the difficulties involved with the collection and interpretation of the epidemic

data at this scale. In sections 5.2 and 5.3 we specify a preliminary survival model, includ-

ing incorporation of covariates and censored information, likelihood formulation and the

method of prediction. In sections 5.4 and 5.5 this preliminary model is fitted to the Devon

data set with two initial naive covariates.

The initial covariates are refined in section 5.6, where the concept of viral load is intro-

duced, and further developed in section 5.8, which discusses its use as a means of censoring

the data set via exposure. Results from the viral load model fitted to the full data set and

data set censored via exposure are given in sections 5.7 and 5.9 respectively.

Section 5.10 covers the potential uses of uninfected animal densities as surrogates for

susceptibility in the models. Some conclusions are given in section 5.11.

5.1 The 2001 Devon data set

The 2001 UK FMD epidemic is the most completely documented major outbreak of animal

disease to date (DEFRA 2004). Although the quality of the data can vary over time due

to complications involved in data collection on a large scale (this is particularly evident

in the earlier stages of the epidemic), it still provides a vital source of information for

epidemiological researchers.

There were issues regarding both the logistical constraints involved in the collection of

the data, and also various theoretical aspects concerning its interpretation and/or its

collation into a coherent form for use by researchers. For example, quick decisions had
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to be made about what factors were relevant, how they could be measured, who would

measure them and how to ensure that the necessary steps would be taken to implement

these procedures efficiently. In reality the British government was caught unawares by

the speed in which the epidemic became established, and understandably data collection

was relegated in favour of more urgent issues. Indeed much work had to be done post-hoc

in order to collate the necessary information from multiple data bases and mixed sources

into a usable form. One almost unanimous consensus arising from the epidemic is that

more rigorous methodology needs to be instigated for data collection in the future, not so

as to detract from important work in the field, but to help gauge a better understanding

of the disease dynamics in case of further outbreaks.

A common example of the kinds of issues affecting large-scale data collection concerns

accurate estimation of the total number of animals slaughtered ‘at foot’ i.e. slaughtered

but not counted (DEFRA 2004). DEFRA estimate that 6 million animals were slaughtered

nationwide as a result of the epidemic, but as many as 4 million additional young animals

(though this estimate is thought to be high) may also have been slaughtered. Clearly large

inconsistencies in estimations will impinge on the accuracy of any inferences derived from

them.

Further issues arise when the georeferencing of premises is considered. The June 2000

census data included grid references for the point locations of holding premises. These

were calculated from data collected by DEFRA using the Integrated Administration and

Control System (IACS). When a farmer wishes to claim subsidies from the European Union

(EU) they are required to provide a grid reference for the central point of each field that

they manage. From this an overall grid reference for the premise is allocated as the location

of the field closest to the centroid of all fields belonging to the holding premise (with

adjustment if this lies outside the corresponding parish and ward boundaries). However

this is only one of a range of ways in which farm premises can be geo-referenced into point

locations. Durr and Froggatt (2002) investigated different methods by using the proportion

of the farm area captured as the main factor in determining the optimal technique. Their

conclusions, based on a case study in Cornwall, UK, was that the main farm building
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was the best reference point and this contradicts the method used during the June 2000

census.

There is also confusion around the ownership and spatial dispersion of animals identified

through census data. For example many landowners own sets of non-contiguous land

parcels, each of which may be worked on either by the landowner themselves, or rented

to other tenants. It is often very hard to keep track of exactly which areas of land are

attributable to which particular tenants. In addition there is also the issue of quantifying

the spatial dispersion of animals about each location; including which animals are located

on which particular parcels of land. If the geographical and topographical complexity of

the land is also considered then this further compounds the task of accurately quantifying

the spatial spread and density of livestock across the study region. Kao (2001) in particular

states the important role that landscape fragmentation plays in the spread of FMD and

the particular problems associated with using point locations as a representation of the

true location of the herd. He notes that in Devon for example, the average size of grazing

areas for cattle and sheep is smaller than in Cumbria, yet the density of holding premises

is similar. This indicates a more fragmented landscape in Devon than in Cumbria, which

affects the pattern of disease spread across each region.

The original data set provided by VLA for Devon consisted of almost 10000 premises,

of which only 171 became infected. The numbers of animals on infected premises are

assumed to be accurate since they were recorded by visiting veterinarians. However for

UIPs the numbers of animals were taken from census data collected in June 2000 and

there is the possibility that these may vary significantly from their recorded values, since

it is incredibly hard to keep an accurate track on the movements of a large number of

animals. Some data does exist, in the form of the Cattle Traceability System (CTS) run

by the British Cattle Movement Service (BCMS), however the database was not designed

for use as an epidemiological tool and only holds information for movements directly into

and out of premises.

The CTS was set-up in 1998 by MAFF to aid the lifting of the export ban on British
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beef in the wake of the BSE crisis. Since 2001 it has been compulsory to report all cattle

movements to the CTS, though certain exceptions exist. In 2005 DEFRA established the

Rapid Analysis and Detection of Animal-related Risks project (RADAR) that has sought

to make this data more widely available to researchers. There is currently a lot of work

being done to extract more useful information from the data, such as contact tracing

networks of cattle movements around the UK (Vernon et al. 2005). Although potentially

very important in the longer term, this is an extremely large and complex process, from

which detailed knowledge is yet to emerge, so it will be assumed here that the census

counts are representative of the true size of each premise.

It was also necessary to make a series of additional assumptions about the spreading pro-

cess. Since the density of animals has been identified as an important factor in the spread

of FMD (Hugh-Jones and Wright 1970), uninfected premises that were located at the same

grid reference were amalgamated. In addition information about land fragmentation and

geographical complexity was unknown, and so we assume that animal density is isotropic

i.e. that the spatial dispersion of animals around a point location is dependent on distance

only.

Other information lacking from the data set concerned the environmental conditions over

the course of the epidemic. It has been noted (Hugh-Jones and Wright 1970, Gloster

et al. 1981, Donaldson 1983, Donaldson et al. 2001) that weather conditions, in particular

temperature, wind speed and wind direction can play an important part in the spread of

FMD, and yet no data was collected at the time of the outbreak. As a result we assume

that the virus can not persist outside of the host for periods of longer than one day, and

that the airborne distribution of virus spores follows an isotropic distribution over space.

Estimation of the lag between the actual date of infection and the date of report is also

important. In practice veterinarians can estimate the age of the oldest lesion found in an

infected herd, however the length of the incubation period associated with FMD (the time

before clinical signs appear) can be anywhere between 1 and 14 days (Alexandersen et al.

2003b) - so even assuming that the animal with the oldest lesion was to first to become
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infected it is still difficult to ascertain the exact date of entry of the virus into the herd.

As such the date of infection was based on the age of the oldest identified lesion and the

incubation period of the disease was assumed constant and identical for each animal.

Keeling et al. (2001b) cite a number of other potential sources of heterogeneity, including:

farm level variability in biosecurity, dynamics of within-premise epidemics, and the relative

infectivity and susceptibility of different species. Furthermore there are many difficulties

associated with identifying clinical signs on infected animals (particularly in sheep). Some

of these issues will be addressed in due course.

The final Devon data set consisted of 8729 premises, of which 171 became infected. For

each premise the data consisted of a point location in terms of an (x, y)-coordinate derived

from latitude and longitude, the number of pigs, cattle and sheep (any goats were treated

as sheep since they share similar traits with regard to FMD), the date of infection, the

start and end dates of culling (if applicable) and the type of cull (IP, DC, CP, Welfare,

unknown). The spatial distribution of premises at the end of the epidemic is shown in

figure 5.1.

The epidemic in Devon lasted 113 days from the date of the presumed initial infection

date for the first case on 15th February 2001 to the date of the final presumed infection

on 8th June 2001 . The temporal evolution of the epidemic is shown in figure 5.2. It can

be seen that the epidemic peaked at around 34 days and then steadily declined with a few

sparse infections around the tail end of the epidemic.

5.2 Specification of basic model

A desirable aim in this project is to attempt to develop a survival model that can be

fitted sequentially as an epidemic progresses, helping to identify and explain patterns and

trends in the data. A second, more important objective, is to use the results from this

sequential model fit to predict the future path of the epidemic. One difficulty in any type

of modelling situation is assessing how well the developed models fit the data. For the

69



IPs

UIPs
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Figure 5.2: Temporal distribution of infections in Devon during the 2001 epidemic
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preliminary investigation it was decided that a reasonable method of assessing fit would

be to censor the data set at some arbitrary time point prior to the actual end of the

epidemic, fit a model, and then use the resulting parameter estimates to predict future

failure times for the remaining uninfected premises. In this way the predicted failure times

can be compared to the actual failure times.

That said we consider a basic survival model formulation for the data described in sec-

tion 5.1. It is important to think of the data as a discretisation of a continuous process,

since although infection can occur at any time, observations are only recorded (at most)

at one day intervals. Also, the future path of the epidemic at each stage depends on the

history of the epidemic up to that point and it is vital that the model is developed with

this in mind. It is therefore likely that time-dependent covariates will be of interest.

We specify an initial model through the hazard function, based on a Weibull distribution.

We chose a parametric form so that the model is capable of predicting future infection

times, and having both a shape and scale parameter means that the Weibull is reasonably

flexible. The model is analogous to the discrete model (4.19) discussed in section 4.3.3,

with discretisation over periods of one day, though the formulation used here is slightly

different.

Consider initially a continuous random variable U representing survival time where U > 0

follows a Weibull distribution with hazard function

hc(u) = αλuα−1, (5.1)

and survivor function

Sc(u) = exp(−λuα). (5.2)

Here α and λ are positive shape and scale parameters respectively. Now consider a discrete

random variable T representing survival time where T = 1, 2, . . . . We can view the discrete

hazard at time t as being the probability that U lies in the interval [t−1, t), given survival

71



to t i.e.

h(t) = P (T = t | T > t− 1) = P (t− 1 6 U < t | U > t− 1)

=
P (t− 1 6 U < t)

P (U > t− 1)

=
P (U < t) − P (U < t− 1)

P (U > t− 1)

=
P (U > t− 1) − P (U > t)

P (U > t− 1)

=
Sc(t− 1) − Sc(t)

Sc(t− 1)

= 1 −
Sc(t)

Sc(t− 1)

= 1 − exp(−λ[tα − (t− 1)α]), (5.3)

which is bounded in the region (0, 1). It is sensible to view the hazard in this way since

in an epidemic situation a premise that is confirmed to be infected at day t has a true

infection time in the region [t− 1, t), (given that it wasn’t confirmed to be infected at day

t− 1).

From the identities given in (4.8) and (4.9), the corresponding discrete survivor function

is given by

S(t) = P (T > t) =

t
∏

j=0

(1 − h(j))

=

t
∏

j=1

exp(−λ[jα − (j − 1)α])

= exp



−
t
∑

j=1

λ[jα − (j − 1)α]



 t = 1, 2, . . . , (5.4)
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and the probability function by P (T = t) = h(t)S(t− 1) i.e.

P (T = t) =











































1 − exp(−λ) t = 1

[1 − exp(−λ[tα − (t− 1)α])]×

exp
(

−
∑t−1

j=1 λ[jα − (j − 1)α]
)

t = 2, 3, . . .

(5.5)

So S(t) is a decreasing function bounded above by 1 and below by zero where for fixed λ

and α, S(t) → 0 as t → ∞. Likewise P (T = t) is a proper probability function bounded

in the interval [0, 1].

If covariates are included through a log-link in the scale parameter λ and considered fixed

(time-independent), then (5.5) is identical to the discrete model derived in section 4.3.3.

In the case of time-varying covariates, specifying the model through the hazard function

allows the dependence on the covariate history at previous time points to be conditioned

out. So for a time-dependent covariate λt calculated at time t, model (5.3) becomes:

h(t) = 1 − exp(−λt−1[t
α − (t− 1)α]), (5.6)

and this leads to straightforward modifications to the survivor (5.4) and probability (5.5)

functions. Hence the conditional probability of failure given survival is dependent on

the covariate value at that point, however the overall survival and probability functions

contain information on the entire covariate history.

In the remainder of the thesis model (5.6) will be referred to as the conventional sur-

vival model. As noted in section 4.1, knowledge of either the hazard, survivor or density

(probability) functions will uniquely determine the survival distribution.

As previously highlighted, one advantage of the survival framework is that censored ob-

servations can be readily incorporated into the model. The Devon data set is technically

interval-censored; that is that for any IP the actual date of infection is known only to

within a set interval - calculated from the age of the oldest observed lesion and the maxi-
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mum corresponding incubation period. In theory interval- or left-censoring could be used

to compensate for these assumptions, and to provide estimates for the distributions of

these times, however at this stage we consider the data to be right-censored, i.e. the effect

of the incubation period is assumed to be constant and identical between animals. The

actual infection date for any IP is taken to be the date of report minus the age of the

oldest observed lesion.

An additional issue also arises with the handling of culled premises in the model. Culled

IPs can be included as normal observations since they have experienced infection, though

the culling will have the effect of reducing the levels of virus in the neighbouring region

by removing infected animals, and this needs to be accounted for (section 5.6 discusses a

way in which this can be done through the use of the viral load covariate). However most

uninfected premises are culled because they are considered to be at ‘high-risk’ of infection.

If these are treated as right-censored at the time of culling then the study population is

no longer truly representative of the population at-risk, i.e. censoring is not random and

may result in biased parameter estimates and predictions (Kalbfleisch and Prentice 2002).

For the time being culled UIPs are left out of the model, and the resulting censoring

mechanism is assumed random. These observations still contain useful information about

the spreading process, and in section 5.10 we introduce the concept of uninfected animal

densities that can be used as a surrogate for susceptibility to infection. In this case some

information from the culled UIPs is still included in the model through changes in the

uninfected animal density over time.

Furthermore there is the possibility of latent infections in culled UIPs; where the premise

is infected but culled before clinical signs appear. Here culled UIPs are assumed uninfected

at the time of slaughter, however it may be possible to develop a way of imputing this

information from data during the model fit if so required (see e.g. Deardon et al. 2006).

Given the above discussion, for a set of n observed failure (or censoring) times ti, (i =
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1, . . . , n), the likelihood is given by:

L(·) =
n
∏

i=1

[P (T = ti)]
δi [P (T > ti)]

1−δi , (5.7)

where δi is a binary variable with the value 1 if premise i is an IP or 0 if censored.

Covariates x can be included through the scale parameter, using the specification λ =

exp(βT x). As discussed in chapter 4 we will use Bayesian methodology and MCMC

to fit the models, allowing full posterior distributions for the parameter estimates and

predictions to be obtained.

5.3 Method of prediction

The Bayesian framework has the advantage that it can produce full predictive posterior

distributions for the failure times for censored individuals. Ordinarily these predictive

distributions can be routinely obtained from the MCMC run, however here it is possible

that we will want to include complex time-dependent covariates, where the value of the

covariate at each time point depends on the previous history of the epidemic. In this case

a post-hoc approach must be adopted in which the posterior samples for the parameters

are used to drive a series of simulated epidemics over a specified time period (e.g. E days)

from which Monte Carlo estimates of different quantities can be derived.

To do this consider a matrix of K posterior samples for the m parameters obtained from

a model fitted at time t. Firstly remove any premises from the data set that are neither

susceptible to infection nor infective (e.g. any that have been culled or vaccinated for

example). Then split the data into two groups - IPs and UIPs. The IP group (ninf

premises) then consists of all premises that are infected and contagious and the UIP

group (ncens premises) consists of all uninfected and susceptible premises.

For the UIPs set up an indicator matrix Φ with the number of rows equal to the number

of premises (i = 1, . . . , ncens) and the number of columns equal to the number of posterior

samples. Initially set each row equal to zero (φi· = 0). Let T be the corresponding matrix
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of predicted survival times with elements {tik}.

If xi(t) is a time-dependent covariate for an uninfected premise i at time t, the predictive

algorithm for a model fitted at time t is given by:

1. Set k = 1, ν = t, IP(ν)=IP and UIP(ν)=UIP.

2. Take kth set of posterior samples and calculate xi(ν) and hi(ν | xi(ν)) = P (ν 6 T <

ν + 1 | T > ν, xi(ν)) for all uninfected premises (using IP(ν) if necessary).

3. Let ui be a random sample from a U(0, 1) distribution corresponding to premise i.

4. If ui < hi(ν | xi(ν)) and φik = 0 then set tik = ν and φik = 1.

5. Set ν = ν + 1. Update IP(ν) to include all new infected premises (i.e. {UIP(ν−1) |

φik = 1}), and remove them from UIP(ν) such that UIP(ν) = {UIP(ν−1) | φik = 0}.

6. If ν > E or there are no more uninfected premises remaining then go to step 7. Else

go to step 2.

7. Set tik = E for all remaining censored premises, set k = k + 1, ν = t, IP(ν)=IP and

UIP(ν)=UIP.

8. If k 6 K then return to step 2; else END.

For a time-independent variable then xi(t) = xi ∀ t. This predictive algorithm was coded

in R.

One issue here is the determination of a reasonable value for the predictive time period,

E. In an ideal situation the predicted epidemic should be allowed to run its full course;

either until all premises become infected or the epidemic dies out. Determining when this

has happened is difficult however, since the tail end of epidemics tend to be drawn out and

often exhibit infrequent spark infections. In practice the models are intended to be fitted

sequentially, and so as long as E is large enough and the gaps between the sequential fits

are small enough this shouldn’t be a major issue. To put this another way, premises whose
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posterior predictive samples contain large numbers of censored values are effectively those

that the model is predicting will not be ‘at-risk’ during the period before the time of the

next model fit. A balance is required such that E is large enough to allow the predicted

epidemic to develop, but not too large that it becomes computationally unfeasible.

Another problem is that premises that survive beyond E will have an unknown predicted

failure time. This is similar to having a set of survival times where some observations

are censored at E. Unfortunately this will bias any Monte Carlo estimates derived from

the model. If a reasonable parametric form for the predictions can be assumed, then

the contribution of each posterior predictive sample to any Monte Carlo estimate can be

weighted by using a standard survival likelihood procedure, such as the one described in

(4.20). Here the posterior samples for the predicted infection indicators, Φ, are used to

define censored and observed failures. This requires an additional distributional assump-

tion for the posterior predicted failure times. Another approach would be to consider the

use of a non-parametric alternative such as Kaplan-Meier - see section 4.3.1 - to derive

estimates of the survivor function.

For a reasonable model the censoring should therefore not have too large an adverse

effect on the interpretation of the posterior predictions for ‘at-risk’ premises over the

short term. Another option is to run the epidemic forwards until the time gap between

successive infections exceeds a certain pre-determined value. The posterior distribution

for the probability of infection in the next E days is also given by Φ, and this is perhaps

a more robust measure for quantifying risk than the predicted survival time (in terms of

interpretation).

The accuracy of the Monte Carlo estimates is therefore directly linked to the amount of

‘censored’ samples in the posterior. In the case where the number of these observations is

large, then since short-term prediction is key this only affects the degree of confidence in

using the predictive posterior samples to directly infer the time-to-infection, and not the

risk of infection.
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5.4 Preliminary covariates

Since localised spread of FMD is being modelled, two obvious initial covariates will be

considered, both based on distance from IPs. The first, distance from the initial source

of infection (D(S)), is a fixed time covariate and as such the complete likelihood for the

conventional model simplifies to:

L(α, β0, β1) =

n
∏

i=1

(

[exp(−λi(ti − 1)α) − exp(−λit
α
i )]δi

× [exp(−λit
α
i )]1−δi

)

, (5.8)

due to the choice of discretisation. Here λi = exp(β0 + β1D
(S)

i ), where D(S)

i is the distance

between premise i and the source premise.

The second initial covariate, the nearest infected neighbour distance (D(I)), will be time-

dependent, with the likelihood given by:

L(α, β0, β1) =

n
∏

i=1

({

[

1 − exp(−λi(ti−1)[t
α
i − (ti − 1)α])

]

× exp



−

ti−1
∑

j=1

λi(j−1)[j
α − (j − 1)α]





}δi

×



exp



−

ti
∑

j=1

λi(j−1)[(j)
α − (j − 1)α]









1−δi






, (5.9)

where λit = exp(β0 + β1D
(I)

it ) and D(I)

it is the distance between premise i and the nearest

infected premise at time t (alternative ways of using nearest infected neighbour distance

can be seen in Lawson and Zhou 2005).

5.5 Initial model results

To complete the Bayesian specification of the models, prior distributions were assigned to

the parameters. The intercept parameter β0 was given an uninformative N(0, 100) prior,
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β1 a N(0, 10) distribution, and the shape parameter α a G(0.1, 10) (i.e. mean of one and

variance of 10) prior. The models were fitted in WinBUGS, but since neither (5.8) or (5.9)

are included in the list of standard probability distributions, they had to be specified in a

slightly different manner (see appendix A for details).

The models were quite sensitive to the choice of initial value, which is perhaps unsurprising

since the mean and variance of the Weibull distribution are directly linked through the

shape and scale parameters. To generate initial values, a value of α was sampled from

an arbitrary gamma distribution. This value was then taken, and along with the range

of the data was used to obtain reasonable upper and lower limits for a set of uniform

distributions from which starting values for the regression parameters β0 and β1 could be

randomly sampled. Details of this are given in appendix B.

The data set was censored at 50 days so that the predicted infection times could be

compared to the actual infection times for subsequent IPs. With culled UIPs removed,

the model was then fitted to 146 IPs and 8583 censored observations. Two chains were

used with a burn-in of 5000 iterations and a further 30000 updates. The final results were

thinned such that each posterior distribution consisted of 1000 samples, summary results

of which are shown in table 5.1 for both the distance from source and nearest infected

neighbour distance models. To aid convergence, in both cases the distances were divided

by 10 before being used in the models.

After fitting, the returned convergence diagnostics were reasonable and plots of the pos-

terior chains showed good mixing. This is further reinforced in each case by the R̂ values,

which quantify how well the chains have mixed, and the effective sample size given by neff.

In the former case a value close to one indicates good mixing, with a general rule of thumb

being to look for posteriors with R̂ < 1.2. The effective sample size gives the effective

number of independent samples in the posterior, after accounting for autocorrelation due

to the properties of the Markov chain. For a well-mixing set of chains this can usually be

improved by running the model for longer and thinning more often.

The posterior distributions are significantly different from zero for both models, and in
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Mean s.e. 2.5% 50% 97.5% R̂ neff

Distance

from source

α 1.5477 0.1229 1.3150 1.5490 1.7961 1.0015 1000

β0 -8.0071 0.4966 -8.9530 -7.9955 -7.0760 1.0055 1000

β1 -0.0091 0.0007 -0.0107 -0.0091 -0.0077 1.0003 1000

Nearest infected

neighbour

α 0.7744 0.0942 0.5954 0.7702 0.9607 1.0002 1000

β0 -5.0139 0.4680 -5.9060 -5.0135 -4.1109 1.0005 1000

β1 -0.0252 0.0026 -0.0303 -0.0252 -0.0205 1.0004 1000

Table 5.1: Posterior parameter estimates from models (5.8) and (5.9) fitted to the Devon
data set at 50 days

particular the estimates for β1, relating to the effect of the covariates on failure time,

are negative in both cases. This corresponds to an increased probability of survival for

premises further away from a source of infection. So the models are at least capturing

some of the behaviour that we expect to see.

In order to study the predictive power of the model we choose to focus on the top ten ‘most

likely’ future infections as predicted by the model (over a predictive period of 60 days).

The mean predicted survival time and mean probability of failure over the predictive

period for these premises are shown in table 5.2, and are relative to the current point, and

not the beginning of the epidemic. Also, none of these values relate to observed future

infected premises, for which the range of observed future infection times is between 1 and

63 days. So although all the parameter estimates are significant, neither covariate seems

to capture the dynamics of the epidemic process and both models vastly overpredict the

infection times.

As mentioned in section 5.3, the predictions are obtained by using the posterior samples to

simulate over a finite future time period. This essentially leads to a situation where some

posterior samples are ‘censored’ at the end of the predictive period (time E say). In order

to return an interpretable mean predicted survival time, these ‘censored’ samples must be

appropriately weighted since they represent predictions greater than E (rather than equal

to E as would be the case using a traditional arithmetic mean). Here we assumed that
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Distance from source Nearest infected neighbour

Mean survival

time

Mean probability

of infection

Mean survival

time

Mean probability

of infection

178 29.10% 397 14.00%

181 28.70% 407 13.70%

185 28.30% 428 13.00%

185 27.90% 462 12.20%

185 27.70% 466 12.00%

185 28.10% 470 12.10%

185 28.10% 477 11.80%

186 27.90% 479 11.80%

187 28.00% 479 11.80%

188 27.50% 480 11.80%

Table 5.2: Predictive output over a 60 day window for models (5.8) and (5.9) fitted to
Devon data set at 50 days

for each premise the predictive posterior samples represented a random sample from an

exponential distribution with a mean 1
λ
, and then estimated λ by maximising a likelihood

function given by (4.20).

So the mean predicted survival times are influenced by the proportion of posterior samples

‘observed to fail’ (i.e. with values less than or equal to E). Posterior distributions with

large numbers of ‘unobserved’ infections at the end of the predictive period will have

heavily inflated mean predictions due to the weighting in (4.20). If the predictive time

period is reasonably long, and a well-defined and well-fitting model is used then this should

not be a problem. Indicative of the number of ‘observed’ infections in the posterior is the

mean probability of becoming infected over the predictive period (also given in table 5.2).

In distance from source model, even the most ‘at-risk’ premise has only approximately

30% of the predictive posterior consisting of ‘observed’ infections. For the nearest infected

neighbour distance model this is down to approximately 14%, even though a long predictive

period was used (60 days).

81



Source IPs
IPs
Future IPs
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Figure 5.3: Comparison map of predictions from initial models

This posterior probability measure is a potentially useful alternative to using the predicted

infection times as a means to assess risk since it can be derived directly from the posterior

samples without some necessary weighting procedure. Another alternative way of sum-

marising the results is to remove dependence on the parametric assumption used above

(e.g. exponential) by instead using a non-parametric Kaplan-Meier technique to estimate

the survivor curve over the predictive future period for each uninfected premise. However

here this will simply result in a plateau of survival at a probability close to one for all

premises.

To visualise the spatial pattern in the predictions, figure 5.3 shows the locations of the

next ten actual future IPs (blue) compared to the top ten predicted from the models

using distance from source (green) and nearest infected neighbour distance (purple). Also

included are the source IPs (red) and the other IPs (black). It is clear from this that these

covariates are not sufficient to explain the dynamics of the disease.
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This is perhaps unsurprising using these very simple covariates. Neither includes contri-

butions to the risk of infection from more than one IP at a time nor accounts for the fact

that the infectiousness of IPs changes over time and in relation to the size of premise.

Also there may be other factors (both spatial and non-spatial) such as susceptibility, that

may vary between uninfected premises. This is apparent from figure 5.1 where there are

large numbers of UIPs in-between many of the IPs, suggesting that the localised spreading

process may not be solely based on proximity to nearby infected premises.

Another issue related to the latter point may simply be that there are too many premises

included in the data that are not representative of the population ‘at-risk’ i.e. they are

not exposed to the virus. It is not worth pursuing this at this stage but it will be looked

at in more detail in section 5.8.

5.6 Viral load (VL)

The results in section 5.5 suggest that not enough information is being captured through

the use of the distance from source or nearest infected neighbour distance covariates. This

section focuses on the development of a more informative covariate, the viral load (VL),

that uses information from infected premises to estimate the intensity of viral coverage at

any spatial location at any point in time.

An animal that is infected with the FMD virus excretes different amounts of virus particles

according to its species type and the length of time that it has been infected (Alexandersen

et al. 2003a). In adult animals the disease is rarely fatal and animals can recover on their

own without treatment - therefore as the length of time increases the amount of virus

excreted by an infected animal will tend to zero. Modelling the distribution and magnitude

of viral excretion of infected herds over time is an important aspect in developing a viable

covariate to help model the spread of the disease.
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5.6.1 Infectivity functions

Some exploratory work done by VLA (Arnold 2005) produced empirical estimates of the

total viral excretion at the end of the epidemic for herds of varying type and size. These

figures were calculated by assuming an SEIR differential equation model for the within-

herd transmission of the disease - assuming one initially infected animal - and then solving

the resulting system of equations using a Runge-Kutta algorithm and summing up the

infectivity of each animal at each time step. Further investigations revealed that various

two-parameter gamma curves provide good fits to the empirical distributions of within-

herd spread of the disease over time, with different values of the parameters dependent

on the size and species of infected animal. Unfortunately these estimated curves were not

available for all herd sizes, but the parameter estimates were provided for the median,

lower and upper quartiles of herd sizes in Devon for each species (sheep, pigs and cattle).

Both the shape and scale of the herd infectivity changes with respect to different herd

sizes. It was therefore decided to develop a measure of infectivity for an IP based upon

these gamma curves by classifying each premise into small, medium or large with respect

to the herd size of each species present, and then to use the parameter estimates provided

for the lower, median and upper quartiles of each species (shown in table 5.3) to determine

the shape of the infectivity curve over time. These scaled infectivity functions could then

be multiplied by the actual number of animals present in the herd, and for each IP these

values could be summed over all species to give an overall measure of viral excretion at

any point in time.

Plots of the scaled infectivity functions are given in figure 5.4, with corresponding asso-

ciated parameter estimates in table 5.3. It can be seen that pigs excrete far more virus

than cattle or sheep. This echoes the experimental results of Alexandersen et al. (2003a).

However the herd sizes for pig herds are generally much smaller than those for cattle or

sheep (see table 5.4).

So the functional form for viral excretion at time t after infection, for a herd of species
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Figure 5.4: Estimated scaled infectivity curves for different relative herd sizes in Devon
by species type
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Herd size (H) γ ξ η

Sheep

H 6 231 15.38 1.38 3.83

231 < H 6 601 16.42 0.86 3.83

H > 601 15.43 0.77 3.83

Cattle

H 6 81 14.41 1.24 2.92

81 < H 6 135 15.66 0.99 2.92

H > 135 15.72 0.90 2.92

Pigs

H 6 2 2.36 3.29 125

2 < H 6 26 10.11 1.36 175

H > 26 10.83 0.94 175

Table 5.3: Parameter estimates for scaled infectivity functions

Lower Median Upper

Sheep 231 601 957

Cattle 80 135 206

Pigs 2 26 176

Table 5.4: Infected herd size information for Devon in 2001

k (k = 1, . . . , 3 representing sheep, cattle and pigs) with relative herd size l (l = 1, . . . , 3

representing small, medium and large) is given by the scaled infectivity function (Ikl)

where,

Ikl(t) =
ρkl

ξγkl

kl Γ(γkl)
tγkl−1e

−t
ξkl . (5.10)

The shape and scale are given by γkl and ξkl respectively and ρkl is

ρkl =























ηkl if relative herd size of species k is l,

0 otherwise.

Here the ηkl are constants of proportionality.
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5.6.2 Viral load at a premise

For each species type the scaled infectivity functions essentially quantify the amount of

virus excreted over time from an infected animal in a certain herd size. However caution is

needed in this interpretation, since they should not be read as measures of viral excretion

from a single infected animal, since buried in their definitions are additional factors relating

to the relative temporal rate of infection between different herd sizes. These quantities

are only really valid when scaled and applied to an entire herd.

To develop a measure for the total amount of virus acting at an arbitrary spatial location

it is important to decide how the infection is dispersed over the entire spatial region. A

key aspect of this particular form of smoothing is that when the smoothed values are

integrated over space, the value of the integral should equal the total amount of virus

excreted by all IPs.

This precludes the use of traditional spatial smoothing methods such as kernel regression,

localised regression and spline smoothing, since they attempt to measure the mean value

over space, and the smoothed mean would reflect the average infectivity produced, not

the average infectivity acting on that location.

Instead we will use a modified form of kernel regression directed towards estimating the

total amount of the virus per unit area. A bivariate kernel function will be used, centred

on the point location of an IP and constrained so that the total volume under the curve

equals one. The density of virus generated from each IP acting at any arbitrary point

location can be calculated by taking the value of the kernel function at that point and

multiplying the result by the total infectivity produced from the corresponding IP. The

measure of viral load acting at any point location is equal to the sum of these weighted

densities from all IPs.

The distributional form of the weighting function is then very important, as it not only

controls the degree of smoothing but also the shape. We decided to use a bivariate normal

distribution for this, since it has the properties required above. The variance, σ2, controls
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the amount of smoothing required and correct choice of σ2 is important. If the weighting

is too smooth it may not reflect accurately the importance of proximity to sources of

infection, and if not smooth enough may preclude the possibility of the virus spreading.

Hence the VL at any spatial location, s, is defined as the total amount of virus per unit

area acting at s at time t, and is the sum across all IPs of the kernel-weighted infectivity

functions (5.10), i.e.

VL(s, t) =
∑

j|tj<t

[

∑

k

{

njk

∑

l

Ikl(t− tj)

}]

ω(s, sj,Σ), (5.11)

where njk is the total number of animals of species k on the jth IP located at sj , (j =

1, . . . , J) with infection time tj . A suitable spatial smoothing function with bandwidth

parameters Σ is given by ω(·).

Here s = (s1, s2) where s1 corresponds to easting and s2 to the northing - though actually

these are (x, y)-coordinates derived from latitude and longitude, since at this geographical

scale the curvature of the earth is considered negligible. The smoothing function, ω(·), is

a bivariate normal distribution such that:

ω(s, sj ,Σ) =
1

2πσ1σ2

√

1 − ρ2
exp

(

−z

2(1 − ρ2)

)

, (5.12)

where

z =
(s1 − sj1)

2

σ2
1

−
2ρ(s1 − sj1)(s2 − sj2)

σ1σ2
+

(s2 − sj2)
2

σ2
2

, (5.13)

and

Σ =













σ2
1 ρσ1σ2

ρσ1σ2 σ2
2













.

The correlation between easting and northing is given by ρ. In the absence of topograph-

ical or meteorological data that could help to identify directional behaviour in the local

spreading process we decided that in the first instance the smoothing process should be

assumed isotropic over space (i.e. covariance of 0), however anisotropy could potentially
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be incorporated by changing the covariance matrix to reflect the degree of dependence

required. In the isotropic case σ1 = σ2 = σ, and ρ = 0. Therefore,

ω(s, sj ,Σ) = ω(dj , σ
2) =

1

2πσ2
exp

(

−
d2

j

2σ2

)

. (5.14)

where dj is the distance between premise s and premise sj . Some spatial maps of the viral

load over time are shown in figure 5.5, with IPs indicated by red points.

Some discussion with collaborators at VLA suggested that in the Devon epidemic it was

unlikely that localised spreading occurred over a range greater than 3km from an infected

premise and so the bandwidth was fixed such that the kernel smoothing function had an

effective radius of 3km. Also suggested was that the cumulative VL (denoted CV) over

time might be a better covariate to use since there may be some temporal lag in the

effect of the viral excretion (e.g. residual virus remaining from previous points in time).

However a problem is that this results in a monotonically increasing function of viral load

over time that has no capacity to reduce if sources of the virus in surrounding areas are

removed. To combat this it was decided to use the average cumulative VL (denoted AV)

as a covariate instead. This has the effect that it encompasses the temporal lag but also

reduces over time during periods of no viral excretion in nearby IPs (shown in figure 5.6).

5.7 Results of model fitted with AV as covariate

The model likelihood takes the same form as (5.9) except this time λit = exp(β0 +β1AVit),

where AVit is the average cumulative viral load acting at location i at time t. The

regression parameter β0 was given a N(0, 100) prior and β1 a N(0, 10) prior. The shape

parameter α was given a G(0.1, 10) prior (i.e. a mean of 1 and a variance of 10). Initial

values were generated in the same way as before and two chains were used, again with a

burn-in of 5000 iterations and a further 30000 updates, and with the final results thinned

so that each posterior distribution consisted of 1000 samples.
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(a) Day 5 (b) Day 10

(c) Day 15 (d) Day 20

(e) Day 25 (f) Day 30

(g) Day 35 (h) Day 40

Figure 5.5: Spatial maps of viral load over time with 3km effective bandwidth
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Figure 5.6: Theoretical VL, cumulative and average cumulative VL plots over time

Mean s.e. 2.5% 50% 97.5% R̂ neff

α 1.4919 0.1201 1.2619 1.4860 1.7381 1.0016 930

β0 -9.8749 0.4774 -10.8400 -9.8510 -8.9668 1.0019 810

β1 0.3198 3.1234 -5.8653 0.4691 6.5145 1.0017 870

Table 5.5: Posterior parameter estimates from model (5.9) with AV covariate fitted to
Devon data set at 50 days
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Mean survival time Mean probability of infection

953 6.10%

953 6.10%

969 6.00%

974 6.00%

987 5.90%

988 5.90%

989 5.90%

1002 5.80%

1003 5.80%

1004 5.80%

Table 5.6: Predictive output over a 60 day window for model (5.9) with AV covariate
fitted to Devon data set at 50 days

The parameter estimates from the model fitted to the full data set at 50 days are shown in

table 5.5 and the predictive summary for the ten most likely future infections in table 5.6.

The convergence diagnostics are good but the parameter estimate for the effect of the

AV covariate is not significantly different to zero, suggesting that the covariate is not

accurately capturing the variability in the disease spread. It is no surprise then that the

model vastly overpredicts the survival times, even more so than for the simpler covariates

used in section 5.4. A possible reason for this is that there is a large amount of confounding

information in the data set, and this issue will be explored in the next section.

5.8 Exposure and censoring

The results shown in section 5.7 indicate that the predicted infection times from the model

fit are much larger than the actual infection times. An intuitive reason for this overpredic-

tion could be that the population ‘at-risk’ is not representative - e.g. that there are many

premises included in the model fit that do not contribute any useful information to the

likelihood. There are over 8500 censored observations but only 146 infected observations
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after 50 days in the Devon epidemic. In essence the censored information is ‘swamping’

the model and confounding the parameter estimates.

An interesting problem associated with modelling contagious epidemics is that exposure

to the virus changes over space as well as time. Figure 5.1 shows the spatial distribution

of the Devon premises, suggesting that there are large areas of the county that are not

near to sources of infection. This ties in with the idea that those premises not exposed to

the virus in any way will not be susceptible to infection from localised spread. If there are

many censored observations included in the model that are not exposed to the disease then

this will heavily bias the parameter estimates and lead to overprediction of the survival

times.

Since the focus here is concerned with the localised spread of an infectious disease, these

‘unexposed’ premises may potentially be contributing little or no useful information to

the likelihood. One way in which this problem could be tackled is to consider censoring

the data via some measure of exposure to the virus; then for any point in time at which

the model is fitted, only those premises ‘exposed’ to the virus are included. All that is

needed is a method for determining exposure to the virus, and this can be achieved by

considering VL.

VL is a measure of viral activity at a spatial location and can be calculated at any point

in time up to current point in the epidemic. A logical step would be to classify premises

as ‘exposed’ to the virus at time t if the VL value at that point exceeds a pre-determined

threshold value. This effectively targets the model at those premises deemed most ‘at-risk’

from localised infection.

There are issues with this procedure however - for example in the case of premises that

move into and out of exposure over time this results in multiple recorded censoring times for

the same premise, though using average VL ensures that the covariate values for premises

that fall out of exposure decrease over time, since if at any point the VL for an exposed

premise falls below the threshold value then it is simply treated as zero in the cumulation.

We decided that once a premise becomes exposed it remains exposed and the use of AV
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results in the covariate value reducing over time when potential sources of infection are

removed. Another important point is that this changes the focus of the survival model

from modelling absolute time from the beginning of the epidemic to relative time from

exposure. This is a desirable feature of this approach since it has a more reasonable

biological interpretation as an infectious process, particularly since premises do not begin

the epidemic in the same state as each other with regards to viral exposure. For example

in the traditional setting, two premises with identical viral loads would be expected to

have the same predicted mean survival time; however the point in the epidemic at which

they attain that level of exposure will determine the absolute survival time. They are only

comparable relative to exposure.

Figure 5.7 gives some examples of how the concept works for different premises. The

shaded regions show the areas over which the VL is cumulated and this is averaged by

dividing by the date of infection/censoring minus the date of initial exposure.

This leads to a situation where not all IPs are involved directly in the model fit since non-

exposed IPs would have a relative survival time of zero. Information from these premises

is still (indirectly) included through the AV covariate, but care must be taken with the

determination of a reasonable threshold to reflect the degree of non-exposed infections

believed to exist in the data.

The predictive algorithm given in section 5.3 can be adapted to deal with exposure. To

do this consider that exposure at time ν is determined by applying a threshold w∗ to a

time-dependent covariate w(ν). The covariate x(ν) that drives the epidemic is then given

by a function g(w(ν)).

Let δe
ik (i = 1, . . . , n) be an indicator variable for an uninfected individual such that

δe
ik =























1 if ∃ wi(u), u = 0, . . . , t, such that wi(u) − w∗ > 0,

0 otherwise,
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Figure 5.7: Theoretical threshold and exposure based on VL
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and T e be a matrix of exposure times with elements {teik} such that initially

teik =























inf{u : wi(u) − w∗ > 0;u = 0, . . . , t} if δe
i· = 1,

0 otherwise.

i.e. teik is the date of exposure for all currently exposed premises at time t.

Step 2 in the predictive algorithm then changes such that,

2. Take kth set of posterior samples and calculate wi(ν) (using IP(ν) if necessary). If

wi(ν) − w∗ > 0 and δe
ik = 0 set δe

ik = 1 and teik = ν. Calculate xi(ν) = g(wi(ν)) and

hi(ν | xi(ν)) =























P (ν − teik 6 T < ν − teik + 1 | T > ν − teik, xi(ν)) if δe
ik = 1,

0 otherwise,

for all uninfected premises (using IP(ν) if necessary).

5.9 Results for AV model fitted to data censored via expo-

sure

The data set was censored using a threshold value of 5×10−08 at 50 days, leaving 110 IPs

and 4079 UIPs. The model setup (e.g. priors, burn-in etc.) were specified as for the full

model in section 5.7 and summaries of the posterior distributions are given in table 5.7.

Predictive summaries are given in table 5.8.

Again the convergence diagnostics and mixing are good, but the β1 parameter relating to

the effect of the average cumulative viral load is not significantly different from zero. The

point predictions are also large, though arguably better than for the full data set. Clearly

exposure is not the sole source of the variation in the data, and so we need to identify

other potential reasons for the overprediction.
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Mean s.e. 2.5% 50% 97.5% R̂ neff

α 1.0407 0.0787 0.8974 1.0345 1.2021 1.0000 1000

β0 -6.8079 0.2707 -7.3550 -6.7960 -6.3220 1.0005 1000

β1 0.3802 3.1116 -5.8504 0.4317 6.6829 1.0045 330

Table 5.7: Posterior parameter estimates from model (5.9) with AV covariate fitted to
Devon data set ‘censored via exposure’ at 50 days

Mean survival time Mean probability of infection

520 10.90%

526 10.80%

526 10.80%

537 10.60%

545 10.40%

547 10.40%

549 10.30%

552 10.30%

553 10.30%

554 10.30%

Table 5.8: Predictive output over a 60 day window for model (5.9) with AV covariate
fitted to Devon data set ‘censored via exposure’ at 50 days
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One of the problems associated with censoring via exposure is that unexposed infected

premises are not included in the model fit directly. The threshold is estimated by trying to

reduce the total number of premises in the model whilst keeping as many IPs as possible.

In the above case where the threshold was 5× 10−08, this resulted in 36 infected premises

being left out of the model. In an epidemic situation, where events are relatively rare, this

can constitute a large amount of information on the spreading process that is not being

used in the estimation of the parameters. Of course if, as believed, these premises did

not become infected through a localised process, then this is perhaps not unreasonable

given that the model is assessing localised spread of the disease. However these so-called

‘spark’ or non-localised infections will still contribute to the epidemic process through viral

excretion, and their effect in this case is felt through the VL covariate, since it measures

the amount of viral pressure per unit area acting at a point location obtained from all

infected premises over time.

Figure 5.8 shows the spatial distribution of premises in Devon at 50 days after being

censored via exposure with a threshold of 5× 10−08. An example of the way that the VL

captures some of the impact of ‘spark’ infections can be seen towards the east and south

of the region, where proximity to non-localised IPs has resulted in stand-alone areas of

UIPs being included in the model without a nearby source IP (since the corresponding

IPs were not exposed at the point of infection). What is also clear from this figure is that

although the modelling has been targeted at areas of higher-risk, the IPs are still fairly

sparse in places, suggesting that there may be some other factors relating to the relative

propensity of premises to become infected given the same level of exposure. Two main

possibilities emerge: either premises exhibit varying resistance to localised spread, or the

model is being confounded by a non-localised process. For the moment we concentrate on

the former.
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IPs

UIPs

Figure 5.8: Spatial distribution of premises in Devon ‘censored via exposure’ at 50 days

5.10 Susceptibility to infection

Various papers (Keeling et al. 2001a, Deardon et al. 2006, Alexandersen et al. 2003a) have

reported the importance of variable susceptibility with regard to herds of different sizes

and species type. To this end two other models were fitted that include covariates that

act as surrogates for susceptibility. The first used uninfected animal density, but did not

differentiate between species, and the second modelled uninfected sheep, cattle and pig

densities separately. The densities were calculated using the same bandwidth and kernel

function as was used in the calculation of the viral load and the covariates were included

through a log link in the scale parameter λ.

Hence λt in each case is given by:

λit = exp(β0 + β1AVit + β2ADit),
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when using uninfected animal density (AD) as the susceptibility covariate, and

λit = exp(β0 + β1AVit + β2SDit + β3CDit + β4PDit),

when using species-specific densities for sheep (SD), cattle (CD) and pigs (PD).

The priors were given as for the previous models e.g. the shape parameter α ∼ G(0.1, 10),

the intercept β0 N(0, 100) and the regression parameter, β1, relating to the effect of AV

was assumed N(0, 100). The parameters β2, β3 and β4 were each given N(0, 100) priors,

and the MCMC chains run as before with a burn-in of 5000 iterations and a further 30000

updates. The posteriors were thinned to return 1000 samples.

Both models were fitted to the data set ‘censored via exposure’ at 50 days, and good

convergence diagnostics were returned. The parameter estimates in each case are shown

in table 5.9. Looking at the 2.5% and 97.5% percentiles indicate that the only covariate

to have a non-zero effect on survival time is uninfected animal density (AD), suggesting

that the effect of increasing AD is to increase the risk of infection. These results do not

seem to tie in with those found in some other studies of foot-and-mouth disease, both with

regards to experimental data (Alexandersen et al. 2003a) or actual epidemic data from

the 2001 UK outbreak (e.g. Keeling et al. 2001a, Tildesley et al. 2006).

Focussing on the predicted survival times (table 5.10), we can again see that the predic-

tions are poor and the infection times are overpredicted, with very few posterior samples

returning an infection date less than 60 days into the future (14.3% in the highest case).

This seems to suggest that the model is not correctly accounting for susceptibility, possi-

bly because the model is assuming the effect of susceptibility on the hazard is related to

scale only. Instead it may be that the actual shape of the survival distribution changes for

different herds dependent on their susceptibility status, and this will be explored in the

next chapter.
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Mean s.e. 2.5% 50% 97.5% R̂ neff

Uninfected

animal density

α 1.1344 0.0938 0.9611 1.1310 1.3240 1.0008 1000

β0 -7.4321 0.3540 -8.1490 -7.4320 -6.7590 1.0001 1000

β1 0.4545 3.2206 -5.7773 0.5276 6.7024 1.0022 690

β2 6.9176 2.7698 1.4122 6.9125 12.1603 1.0003 1000

Uninfected

species densities

α 1.1270 0.0974 0.9434 1.1240 1.3221 1.0006 1000

β0 -7.2719 0.3592 -7.9884 -7.2660 -6.5958 1.0013 1000

β1 0.5047 3.1682 -5.9030 0.5907 6.7280 1.0023 670

β2 4.1790 2.8104 -1.3295 4.1165 9.5584 1.0001 1000

β3 1.7190 3.1322 -4.4362 1.7105 7.8110 1.0016 960

β4 2.3223 2.9623 -3.4215 2.2590 8.2260 1.0002 1000

Table 5.9: Posterior parameter estimates from models (5.9) with AV and additional sus-
ceptibility covariates fitted to the Devon data set censored via exposure at 50 days

Uninfected animal density Uninfected species densities

Mean survival

time

Mean probability

of infection

Mean survival

time

Mean probability

of infection

392 14.30% 454 12.40%

441 12.80% 464 12.20%

446 12.60% 470 12.00%

454 12.40% 481 11.80%

465 12.10% 483 11.70%

467 12.10% 487 11.60%

473 12.00% 488 11.60%

477 11.80% 488 11.60%

477 11.80% 491 11.50%

479 11.80% 501 11.30%

Table 5.10: Predictive output over a 60 day window for model (5.9) with AV and additional
susceptibility covariates fitted to Devon data set at 50 days
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5.11 Conclusions

In this chapter we have fitted a series of models to the Devon data set. Some initial

exploratory models using distance from source infections and nearest infected neighbour

distance over time failed to capture the dynamics of the localised spreading process. We

then developed a viral load covariate that measured the amount of virus per unit area

acting on a point location over time. These were based upon work done by collaborators

at VLA fitting deterministic SEIR models to the within-herd spread of the disease for

different herd sizes and species type. However this covariate also failed to capture the

dynamics of the disease.

The viral load can be used to target the survival modelling to those areas with high viral

coverage, in this way premises that may be confounding the parameter estimates due to

the fact that they are not exposed and therefore contribute no useful information to the

likelihood can be removed. This still left confounding factors that were not being accounted

for, in particular ‘spark’ (non-localised) infections and premise varying susceptibility. Some

of the extra variation due to these factors may be able to be captured through the inclusion

of random effects (see section 4.5.6), however this will not allow us to determine what drives

the competing processes or predict to premises not included in the model fit (e.g. due to

censoring via exposure). Instead we need to examine different ways in which we can model

these separate processes.

The possibility of ‘spark’ infections in the data set caused by means other than localised

spread is backed up extensively in the literature, see e.g. Ferguson et al. (2001a,b), Keeling

et al. (2001a) and Tildesley et al. (2006). In the case of FMD there are many potential

sources of infection, and although the implementation of control measures such as housing

of livestock and increased biosecurity help to alleviate some of the risk of disease spread,

they do not confer complete immunity to premise infection. It is in this situation that

knowledge from the Cattle Traceability System data (Vernon et al. 2005) would be useful if

it could be effectively incorporated into the model structure. In order to model this various

assumptions need to be made about the underlying process governing the spread of the
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disease. When observations include knowledge of the cause of failure then a competing

risks approach could be used, where the risk to each individual is treated as a combination

of independent survival processes corresponding to each potential cause of failure (localised

or ‘spark’).

The basic form of a competing risks model assumes all individuals are susceptible to infec-

tion from multiple causes of failure, and treats failures from each cause as censored with

respect to the others. Two problems associated with this approach lie in the assumption

of independence between the different failure processes and the requirement to observe

the explicit means of failure. Adaptations to incorporate missing data exist but are not

robust for large amounts of unobserved data. An alternative is to use a mixture model in

which the overall survival process for an individual is modelled as a weighted combination

of risks from each of the competing causes. This type of approach will be discussed in

more detail in the next chapter, albeit in a slightly different context.

Although it is useful to note the potential use of both mixture models and competing

risks models in the situations where different causes of failure occur, in the case of FMD

the number of occurrences of spark infections is thought to be small in comparison to the

number of localised infections. In addition, unexposed infections are removed from the

data set through censoring via exposure, and although not included directly, information

from these premises is incorporated into the model through the viral load covariate. Frailty

effects could be introduced into the model to account for unobserved heterogeneity, but

they do not contain information about factors affecting the spreading process and the effect

on the predicted infection times would be to tighten up the error around the predictive

mean. The inaccuracy of the predictive results from the models fitted in this chapter

simply do not justify their use in this case.

It is therefore surmised that the overprediction of the survival times noted in the mod-

els fitted so far is most likely to be caused by premise-varying susceptibility. Differences

in susceptibility between species and premises is well documented. Including uninfected

animal density as a surrogate for susceptibility as an extra covariate in the hazard did

103



give a significant parameter estimate but did not vastly improve the predictions, although

the species-specific densities did not. Subsequent chapters will look at possible alternative

ways to model this and will use a series of simulation studies to explore the effects of resis-

tance on an epidemic process, and to compare the relative advantages and disadvantages

of various approaches used to model this.
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Chapter 6

Modelling resistance to infection

In the previous chapter two sources of heterogeneity were identified as potential confound-

ing factors that were not being accounted for in the modelling process, those of premise-

varying susceptibility and the possible presence of non-localised infections. In this chapter

we focus on alternative modelling approaches to capture premise-varying susceptibility.

Extensions to the conventional model that can be used in these situations include long-

term survivor and mixture models (see chapter 4). In fact both these approaches are

linked and the choice between them is greatly dependent on how the confounding factors

are thought to affect the overall epidemic process. Section 6.1 will discuss some of the

biological and epidemiological considerations regarding infectious animal diseases that can

influence the choice of modelling strategy (with focus on FMD in particular).

Section 6.2 considers various candidate models, gives relevant mathematical detail, and

discusses particular issues, advantages and deficiencies in their application. Sections 6.3

and 6.4 provide results and predictions from a simple simulation experiment to show

comparisons between the different approaches in the context of modelling resistance to

infection. Finally some conclusions are given in section 6.5.
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6.1 Considerations in FMD and other animal diseases

There is strong evidence in the literature to support varying degrees of susceptibility be-

tween premises (e.g. Alexandersen et al. 2003a, Ferguson et al. 2001b, Keeling et al. 2001a,

Gloster et al. 2005). We consider two main attributes affecting premise susceptibility. The

first is concerned with differences between animal species. Alexandersen et al. (2003a) in

particular investigate the excretion and transmission of FMD in pigs and cattle experi-

mentally infected with the disease. They provide significant evidence to support the fact

that although pigs excrete far more virus particles than sheep or cattle once infected, they

are much less susceptible to contracting the disease through airborne infection. This is

further backed up in Ferguson et al. (2001b) and Arnold (2005). Species differences in

excretion of the disease is already accounted for in the VL covariate but differences in

susceptibility have only been considered in a relatively simple manner so far.

The second factor corresponds to all other aspects of intra-premise heterogeneity, such

as differences in farming practices, control policies and the physical attributes of each

premise e.g. varying farm biosecurity and surrounding geographical topography (Keeling

et al. 2001a). These effects could also be time-varying, particularly with reference to

movement restrictions and other control policies that are implemented at different points

in the epidemic.

In the context of a wider contagious animal disease epidemic we consider a situation

where each individual farm premise exhibits some form of generic resistance to infection

- for FMD this encompasses contributions from both differences in susceptibility caused

by species type as well as varying premise level attributes. A sensible interpretation of

resistance to infection would be that the hazard of localised infection for premises deemed

‘resistant’ would be smaller than that for ‘susceptible’ premises.

In the previous chapter resistance was directly incorporated into the hazard through the

use of a specified covariate, affecting the relative probability of infection between premises

at each time point but not the shape of the underlying baseline hazard function. An
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alternative would be to consider that there are multiple survival processes governing the

spread of the disease, and that the resistance measure controls the magnitude of suscep-

tibility to infection from each competing process. A natural way to model this is to allow

the overall hazard for an individual premise to be represented by a weighted combina-

tion of hazards, with the weights dependent on the probability of resistance. This allows

susceptibility to affect not just the scale but also the shape of the corresponding survival

distributions. In this chapter we will investigate two main extensions to the conventional

survival model specification that provide tractable ways to do this - those of long-term

survivor and mixture models.

6.2 Candidate models

We focus on two candidate models, the standard mixture model and a special case known as

the long-term survivor model (see chapter 4). In general the long-term survivor framework

is used when it is believed that there is a proportion of the population that is ‘immune’ to

failure from the cause of interest. This type of model is commonly known as a ‘cure rate’

model, relating to situations in medical statistics where the proportion of the population is

deemed ‘cured’ of failure from the cause of interest. In the case of modelling resistance to

infection in individual farm premises, the long-term survivor approach treats all ‘resistant’

premises as immune with regard to transmission through localised means.

The mixture model approach extends this to allow the resistant group to experience failure.

That is it considers that individuals from a population are subject to potential failure

from multiple survival processes. It is worth noting in both these cases that although non-

localised infections are not being modelled directly, information from unexposed infected

premises is still included in the model through the VL covariate, since it has the ability

to update on a day-by-day basis and is based on viral excretion from all IPs.
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6.2.1 Mixture models

The use of mixture models in statistical analyses is well documented in the literature.

One of the earliest recorded uses of this approach is found in Pearson (1894), in which

he fitted a mixture of two normal distributions to measurements on the ratio of forehead

to body length of 1000 crabs. The text by McLachlan and Peel (2000) provides a good

introduction to modelling finite mixture models and includes a brief history of the field,

as well as citing more comprehensive bibliographies and review articles (see McLachlan

and Peel 2000, section 1.18).

The benchmark technique for fitting mixture models via maximum likelihood is to use

the EM (expectation-maximisation) algorithm (Dempster et al. 1977). This was the first

really practical alternative to the computationally intensive method of moments approach

used by Pearson (1894), and opened the way for more complex mixtures to be considered.

However recently Bayesian methodology and MCMC in particular are becoming more

popular (see Titterington et al. 1985, McLachlan and Basford 1988 and McLachlan and

Peel 2000). An intensive review of mixture models is not the intention here, instead an

overview of Bayesian methodology for the application of the mixture approach to survival

modelling will be given and some newer developments discussed.

Other recent papers on using mixture models in a Bayesian framework can be found in

e.g. Diebolt and Robert (1994), Escobar and West (1995), Richardson and Green (1997),

Roeder and Wasserman (1997), Stephens (2000a) and Stephens (2000b).

From now on only mixture models developed in a survival context will be considered. For

N individuals whose survival times can be grouped into J (J > 1) categories, the standard

survival (mixture) density for an individual i can be written

f(ti | xi,Ψ) =
J
∑

j=1

pjfj(ti | xi,θj), (6.1)

where fj(ti | xi,θj) is the (proper) component survival density for the jth group at time
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ti, with m-vectors of covariates xi and parameters θj. The pj are the mixing probabilities

such that 0 < pj < 1 and
∑J

j=1 pj = 1, and Ψ denotes the full vector of unknown

parameters such that Ψ = (p1, . . . , pJ ,θ1, . . . ,θJ). The component densities, fj(·), do not

have to be identical since as long as they are proper then the constraints placed on the

pj’s ensures that the overall survival density f(·) is also proper.

A common way in which (6.1) can be specified is by considering the use of a categorical (or

multinomial) latent variable Zi (for individual i) as a grouping indicator. The premises

could be assigned a priori to a group by some measure pre-determined by the analyst - such

as in the case of competing risks where the cause of failure can be observed. Furthermore,

if the causes are assumed to be independent then (6.1) can instead be modelled by using

a competing risks framework.

In practice explicit information on the cause of failure is often unknown and in the case of

modelling FMD it is assumed that the process driving the mixing is that of resistance to

infection rather than differences in the specific cause of failure. So instead the Zi’s can be

treated as unobserved multinomial distributed random variables, with the probability of

membership of group j being pj . The conditional density function for Ti | Zi = z is given

by f(ti;xi,θz) where

Zi ∼ MultJ(1; p1, . . . , pJ).

After marginalising out the Z’s, the survival distribution for individual i is given by

(6.1). Although this approach requires some assumptions about the nature of the mixing

parameters pj, it does allow for random variation in their definition. The simplest scenario

is to leave the pj constant, however perhaps a more useful (and intuitively more reasonable)

approach would be to let them vary either over space or time, and/or with relation to a

covariate of some kind.

Covariates can be included in the model in various ways, depending on how they are

believed to influence the survival times. If believed to affect the probability of group

membership then the covariates can be incorporated through the mixing parameters pj.

The simplest way to do this would be to use a logistic link function i.e. for individual i
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with m-vector of covariates xi,

pij =
exp(γT

j xi)

1 + exp(γT
j xi)

,

where γ is an m-vector of parameters.

If believed to directly influence the underlying hazard then a natural way to include

covariates would be as a function of one or more parameters in some (or all) of the

component hazard functions. There is nothing stopping their inclusion in both the hazard

and mixing parameters if required, though care must be taken if the same covariates are

used in each, due to the correlation structure that would arise as a result.

These arguments also apply to random effects, which can be included in either the hazard

functions for each group, or in the mixing parameter, and can be either spatial or non-

spatial (see section 4.5.6 for detail on possible frailty specifications). For example an

intuitive method would be to use individual level spatial and non-spatial effects as additive

terms in the component hazard functions, with N(0, τ) distributions for the non-spatial

frailties and conditional autoregressive normal distributions for the spatial frailties (Besag

et al. 1991). Alternatively the frailties could be sampled from a spatially-correlated gamma

distribution and applied multiplicatively to the baseline hazard (Henderson et al. 2002,

Shimakura 2003).

With regard to censored individuals, if the grouping mechanism is assumed to be inde-

pendent of the failure and censoring mechanisms then each individual can be grouped

regardless of their failure status. Right-censored observations can then be included by

truncating the lower bound of the corresponding component survival distribution to the

correct censoring time.

Given a mixture distribution of the form (6.1) with random censoring, then in the Bayesian

framework the posterior distribution is:

P (Ψ | t) ∝





N
∏

i=1





J
∑

j=1

pj{fj(ti | θj)}
δi{Sj(ti | θj)}

δi−1







P (Ψ), (6.2)
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where δi is a binary variable taking the value 1 if individual i is infected and 0 if censored.

It is usually desirable to have noninformative priors on the unknown parameters, Ψ, so

that the model isn’t influenced by badly defined prior information. In the case of mixture

models the use of improper priors leads to improper posteriors; which leads to further

complications when deriving inferences from the resulting distributions.

A poor choice of prior distribution can also lead to the problem of label-switching (dis-

cussed subsequently). A more detailed discussion about the choice of prior distribution

can be found in McLachlan and Peel (2000), chapter 4.

An additional issue is that of identifiability. The identifiability problem for a statistical

model was discussed in section 4.4.3. Furthermore, if the distribution of interest f(·) is

comprised of a mixture of distributions that contain components from the same parametric

family, then the problem of label-switching can occur (also known as the identifiability of

mixtures).

This happens if the prior distribution contains no information to help the model distin-

guish between the groups, since the posterior distribution will be invariant under different

permutations of the component labels. For prediction purposes this is not usually an issue,

but it is crucial for a Bayesian model if the posterior is to be used to make inferences about

the mixture.

To illustrate this consider two parametric mixture distributions f(t | x,Ψ) and f(t | x,Ψ∗)

where

f(t | x,Ψ) =
J
∑

j=1

pjfj(t | x,θj),

and

f(t | x,Ψ∗) =

J∗

∑

j=1

p∗jfj(t | x,θ∗
j),

and all the component densities belong to the same parametric family. The mixtures are

said to be identifiable when

f(t | x,Ψ) ≡ f(t | x,Ψ∗)
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if and only if the number of components J = J∗ and the component labels can be permuted

such that

pj = p∗j and fj(t | x,θ) = fj(t | x,θ∗).

This problem is usually handled by imposing an appropriate constraint on some or all of

the parameters Ψ or their prior distributions. Caution must be used however, since recent

work (e.g. Richardson and Green 1997, 1998 and Celeux et al. 2000) has shown that in

certain circumstances (e.g. for two parameter mixture model with mixing probabilities

≈ 0.5) forced ordering can bias the parameter estimates and does not always prevent

label-switching.

Celeux et al. (1996) suggest some methods for detecting label-switching in simulation

studies, but they rely on knowing the ‘true’ values of the parameters. Richardson and

Green (1997) suggest post-processing of the posterior simulations according to different

label choices. Stephens (1997a) and Stephens (1997b) suggest relabelling of the MCMC

output, and this approach is extended in Stephens (2000a). Another general relabelling

algorithm is suggested in Celeux (1997) and Celeux (1998).

One possible way of circumventing this problem is to include covariate information in the

mixing parameters pj so that the mixture is driven by information in the data; however

this still requires that the inclusion of the chosen covariates will lead to the mixing being

well defined. An alternative way to view a mixture model is to force an ordering on the

mixing probabilities, possibly through the use of an ordinal model.

An ordinal approach is useful when including covariates as part of the grouping probability

as it forces a relative ordering to the data rather than an absolute probability. Consider

as above that you have a regression term µij = γT
j xi for individual i in group j that is

dependent on a set of covariates xi. Instead of using a logistic link to the mixing parameters

pj as before, a (J−1)-vector of random variables is introduced (ν), that represents the cut

points between groups. For an individual i, νij = pi1 +pi2 + · · ·+pij , (j = 1, . . . , J), where

pij is the probability of belonging to group j. Hence νij is the cumulative probability of

being in any ordered group up to j, and can be estimated by the model.
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If the number of groups in the model is unknown, then one way of estimating how many

components are in the model is to fit a series of models each with a different number of

mixture components, and then use some goodness-of-fit measure that penalises for ex-

tra components. Richardson and Green (1997) suggest employing reversible jump MCMC

techniques to estimate the number of components while Stephens (2000b) offers an alter-

native technique that views the parameters of the model as a (marked) point process and

constructs a birth-death Markov process with an appropriate stationary distribution.

6.2.2 Long-term survivor models

It seems that Boag (1949) was the first to publish a paper discussing the use of a survival

approach with a so-called ‘cure’ proportion. He wished to estimate the proportion of

women cured of breast cancer in a population, and to do this he used a parametric model

that was a mixture of two distributions, the first a log-normal distribution representing

the survival times of those who develop breast cancer (susceptibles), and the other a

degenerate distribution allowing for the essentially infinite survival times of those that

had been cured (immunes). He also allowed the model to include a proportion of patients

that were still alive at the end of follow-up but who suffered a recurrence of the disease

rather than death. He used maximum likelihood to fit the model and treated deaths from

causes other than breast cancer as a censoring mechanism.

A key extension to Boag (1949) is that of Berkson and Gage (1952), who used a long-term

survivor framework to model the proportion of patients cured in a population suffering

with stomach cancer. They noted that if cured individuals existed then the death rates of

long-term survivors should drop to the baseline death rate of the population. To allow for

a cured proportion they used a mixture of an exponential distribution and a degenerate

distribution.

The standard form for a long-term survivor model as proposed by Berkson and Gage

(1952) is given by

S(t) = p+ (1 − p)S∗(t), (6.3)
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where S∗(t) is the survivor function for the susceptible proportion, and p is the proportion

of immune individuals in the population. In the context of FMD p is the proportion of

premises considered resistant to infection. This framework has formed the basis for much

of the subsequent literature in this field. It will be the convention in this thesis to refer

to models containing an ‘immune’ or ‘cured’ proportion as long-term survivor rather than

cure rate models, since in the context of FMD the principal concern is with modelling

resistance to infection rather than immunity from infection.

Another important paper regarding the development of long-term survivor models was that

of Farewell (1977), who extended the approach of Berkson and Gage (1952) to predict the

proportion of women immune to breast cancer from a population using a series of recorded

covariates. He wanted to investigate how these risk factors might influence not only the

time to the development of the cancer but also the proportion who eventually developed

the disease. He used a mixture of a Weibull and a degenerate distribution to model the

susceptible and immune proportions respectively. The covariates were included in the

model through a log-link function in the scale parameter of the Weibull distribution, and

through a logistic-link in the probability of immunity. This is probably the most common

model for long-term survivor data.

An extensive history of the development of long-term survivor models can be found

in Maller and Zhou (1996). This provides a good introductory text on the subject and

includes many examples of the use of these models in a wide range of different fields of

study. This thesis will give a brief review of some of the more recent developments, notably

the extension of these models to a Bayesian framework and the incorporation of spatial

information. In particular the approaches of Chen et al. (1999) and Banerjee and Carlin

(2004) will be discussed.

Banerjee and Carlin (2004) develop a Bayesian long-term survivor model that incorporates

interval-censoring and a spatial dependence structure. They use this to model smoking

cessation data (aggregated into areas), in which the time-to-relapse is recorded for patients

who resume smoking after an initial attempt at quitting. They consider using a single
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latent binary variable Z to represent the ‘propensity to relapse’, but allow the probability

of relapse to vary across both individuals and regions (i.e. Zji is the latent variable for

the ith individual in the jth region).

The authors assume an implicit proportional hazards structure in the susceptible group

through the use of both gamma and Weibull distributions for the time-to-relapse Tji.

Conditional upon the Zji’s the Tji’s are independent with survivor and density functions

S∗(tji;Ψji) and f∗(tji;Ψji) respectively. If the Zji’s are assumed Bernoulli distributed

with parameter 1 − pji, then after marginalising over the Zji’s the survival distribution

for the ith individual in the jth region is given by

S(tji;Ψji) = pji + (1 − pji)S
∗(tji;θji), (6.4)

where Ψji is the complete vector of parameters, 1 − pji is the probability of relapse and

θji is the vector of parameters relating to the survival distribution for the individuals at

risk. This allows the cure proportion and time-to-relapse for the susceptible group to vary

over different spatial regions.

Spatial frailties are also included through a link function in the scale parameter of the

survival distribution for the susceptible group. These are jointly modelled with spatial

effects in both the baseline hazard and cure proportions through the use of a multivariate

conditional autoregressive (MCAR) prior (see Gelfand and Vounatsou 2003, Carlin and

Banerjee 2003).

Chen et al. (1999) devise a different modelling strategy using a series of latent variables to

represent the underlying biological process rather than the single latent variable assumed

by Banerjee and Carlin (2004). They suggest a number of advantages of their approach

over that of the standard long-term survivor model given by (6.3). They note that in the

presence of covariates the standard long-term survivor model does not have a proportional

hazards structure, and if covariates are included in the cure parameter through a standard

binomial regression model then for many types of improper prior distributions improper

posteriors are obtained. Also that the assumption of a single latent variable representing
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the underlying survival process does not have a sound biological interpretation for certain

types of processes such as modelling time to relapse for a cancer patient.

They develop a Bayesian model for modelling long-term survivors that has a proportional

hazards structure, and in contrast to Banerjee and Carlin (2004) allows the covariates to

influence the probability of an individual being immune (or in their case cured) rather than

the underlying process governing the time to development of the disease. They include

discussions on prior elicitation and how their model relates to the standard cure rate model

(6.3). They fit it to a data from a melanoma clinical trial using maximum likelihood.

Although this approach is not directly relevant to the problem at hand, the underlying

biological arguments surrounding its conception are interesting, and could perhaps be used

in other epidemic situations. It can also be written as a standard cure rate model and a

short discussion of the mathematical detail follows.

The biological principal governing their model formulation is that after treatment an

unknown number of carcinogenic cells remain, of which it takes only one of those cells to

develop cancer in order for the patient to experience relapse. So if N represents the number

of carcinogenic cells for an individual left active after initial treatment, N is assumed to

follow a Poisson distribution with mean θ. Define Zk as a series of independent and

identically distributed latent random variables (k = 1, . . . ,N) denoting the time taken for

the kth carcinogenic cell to produce a detectable cancer mass. The time to relapse of the

cancer T can be defined as,

T = min(Zk, 0 6 k 6 N).

Here P (Z0 = ∞) = 1 and N is independent of the sequence Z1, Z2, . . . . The overall

survivor function for an individual is given by

S(t) = P (no cancer by time t)

= P (N = 0) + P (Z1 > t, . . . , ZN > t,N > 1)

= exp(−θ) +

∞
∑

k=1

SZ(t)k
θk

k!
exp(−θ)

= exp(−θ + θSZ(t)) = exp(−θFZ(t)), (6.5)
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where SZ(t) and FZ(T ) are the survivor and distribution functions for the i.i.d. latent

variables Zk. The authors note that the (6.5) would still be valid for any data set with

long-term survivors that can be thought of as being generated by an unknown number of

latent competing risks.

The survivor function for the susceptible cells is given by

S∗(t) = P (T > t | N > 1) =
exp(−θF (t)) − exp(−θ)

1 − exp(−θ)
, (6.6)

and from this the authors show that the model (6.5) can be written as a standard long-term

survivor model (6.3) in the form

S(t) = exp(−θ) + (1 − exp(−θ))S∗(t). (6.7)

In this case the cure proportion p = exp(−θ) (see Chen et al. 1999, for details).

It can be seen that neither (6.5) or its corresponding density function, given by f(t) =

θfZ(t) exp(−θFZ(T )), are proper since p = S(∞) = exp(−θ), however the overall hazard

function

h(t) = θfZ(t), (6.8)

has a proportional hazards structure with covariates modelled through the cure parameter

θ. Proper posteriors also arise for regression coefficients γ even under improper priors

(though this does not hold if N is considered Bernoulli). So the two different approaches

have various advantages and disadvantages dependent on the underlying beliefs about the

process driving survival.

6.3 Simple simulation study

In this section a simple simulation study is used to investigate the effect of resistance to

infection on the parameter estimates obtained from the conventional, long-term survivor
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and mixture models. In the actual FMD epidemic under study there was evidence in the

literature (e.g. Keeling et al. 2001a) that different premises exhibited different levels of

susceptibility, and this was also alluded to by the results in the previous chapter and the

spatial distribution of premises in Devon i.e. various areas experiencing high concentra-

tions of the virus but containing large numbers of uninfected premises (figure 5.1). For a

highly contagious disease such as FMD it would seem counterintuitive for this to be the

case if all premises were actually equally susceptible.

In order to replicate this behaviour in the simulated epidemic, individuals were assigned to

either a resistant or a susceptible group dependent on a simulated covariate y (representing

e.g. biosecurity - sampled from a mixture of N(20, 22) and N(40, 22) distributions). Group

membership was considered fixed - that is that resistance to infection is time-independent

and does not change during the epidemic. A positive x covariate (representing e.g. size

of herd) was sampled for each individual from a G(2/5, 25/2) distribution. The survival

process for the susceptible group was formulated in such a way that increasing values of x

result in shorter survival times. The survival process for the resistant group was deemed

independent of x and was simply governed by an underlying baseline hazard function

common to both groups.

A small data set containing 500 individuals was generated, with a 4:1 ratio of susceptible

to resistant individuals. A plot of the infectious covariate x against failure times is given

in figure 6.1, with susceptible individuals shown in black and resistant individuals in red.

The simulation was censored at 72 days, giving a total of 200 IPs and 300 UIPs.

A series of models were then fitted to the data with varying degrees of censoring and

resistance. In the first instance the resistant premises were removed from the data set

and the conventional, long-term survivor and mixture models fitted to IPs plus increasing

numbers of censored observations. Subsequently resistant premises were included, firstly in

the IPs only and finally in both the IPs and censored individuals. The model frameworks

were based on the discrete-time Weibull models discussed in sections 4.3.3 and 5.2, i.e. for

an individual with failure/censoring time ti and covariates xi and yi, the survivor function
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Figure 6.1: Plot of failure times against infectious covariate for non-spatial simulation

for the conventional model is:

S(ti) = exp(−λit
α
i ), (6.9)

where λi = exp(β0 + β1xi). Similarly, the survivor functions for the long-term survivor

and mixture models are given by:

S(ti) = pi + (1 − pi)S1(ti) (6.10)

and

S(ti) = piS0(ti) + (1 − pi)S1(ti) (6.11)

respectively. Here S1(t) has the form (6.9) with λi = exp(β0 + β1xi) as before, and S0(t)

is given by (6.9) with λi = λ = exp(−η0). (Note that in the simulation β0 = η0.) The

probability of being susceptible, pi, was given a logistic link to the covariate y, i.e.

log

(

pi

1 − pi

)

= γ0 + γ1yi.
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The models were fitted in WinBUGS using uninformative priors on the parameters. The

intercept parameters β0, η0 and γ0 were given N(0, 100) distributions, a N(0, 10) distri-

bution was given to β1 and the shape parameter α was given a G(0.1, 10) distribution.

In order to prevent label-switching, γ1 was constrained to be positive by assigning it a

G(0.1, 10) prior distribution. As discussed in the previous chapter the models were sensi-

tive to the choice of initial value used, and so initial values were generated in a similar way

by using the range of the data to fix sensible limits over which to randomly sample the

starting points of the chain. Details of how to derive the WinBUGS code for the models

is given in appendix A and details about generating initial values in appendix B.

Two chains were used with a burn-in of 10000 iterations and a further 40000 updates.

Again the posterior samples were thinned so that 1000 values were returned. The con-

vergence diagnostics were reasonable and posterior summaries of the parameter estimates

are shown in table 6.1. For reasons of space we report the results for the cases of low cen-

soring (IPs and 50 UIPs) and high censoring (IPs and all UIPs), though the results from

intermediate levels of censoring and repeated simulations reinforce the general patterns

discussed here.

Essentially the effect of resistance in the data set is to produce influential outliers that

cause heavy bias in the posteriors for the parameters of the conventional model. Looking

initially at the regression parameters for the survival processes rather than the mixing,

it can be seen that when resistance is absent from the data set the parameter estimates

are reasonably well estimated even under increased levels of censoring. In addition the

long-term survivor and mixture models seem to satisfactorily reproduce the results from

the conventional fit. There is some discrepancy between the posterior interval and true

value for the β1 parameter at low levels of censoring for each of the three fitted models,

highlighting the potential biases caused by excluding censored information from the model.

At higher levels of censoring the posterior estimates are much better.

As soon as resistance is introduced the conventional model estimates begin to break down.

Even for low levels of censoring (where the only resistant premises are those that are also
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infected) the posterior for the β1 parameter gets markedly worse. The long-term survivor

model also exhibits this behaviour, though to a lesser degree, whereas the mixture model

stands up better in the case of both high- and low-censoring.

In order to fully understand this we need to examine how well the latter models are

capturing the resistance. Table 6.2 gives a summary of the numbers of individuals mis-

specified with regard to estimated resistance status in the model. The overall resistance

status for an individual was calculated from the mean posterior probability of susceptibility

such that if it was greater than 50% the individual was classified as susceptible and less

than 50% as resistant. It can be seen that when resistance is absent both the long-term

survivor and mixture models correctly identify all premises as susceptible, whereas when

resistance is introduced the long-term survivor model begins to overpredict the numbers of

susceptibles. This is unsurprising since the model formulation in the latter case treats all

infected individuals as susceptible, leading to some confounding in the posterior estimates

for the mixing parameters γ0 and γ1. The mixture model on the other hand allows for

variability in resistance between IPs, and as such performs better when estimating the

susceptibility status.

6.4 Predicted survival times

The simulation study in the previous section allows us to compare actual and predicted

survival times. Predictive posterior distributions of failure times for censored individuals

were obtained from the models fitted in 6.3, and figure 6.2 shows plots of the actual failure

times post censoring against the mean predicted failure time for the case where resistance

is present in the data set. The solid line corresponds to the correct specification with the

upper and lower dashed lines representing twice the actual value and half the actual value

respectively. Parkes (1972) defined predictions lying outside this range as being in ‘serious

error’. It can be seen that all the models have a tendency to overpredict the actual survival

times (e.g. be too optimistic). Also there is a lot of variation in the accuracy of these

individual level point predictions, and this particular issue has been noted in the literature

121



No resistance Resistance

Par. Mean s.e. 2.5% 50% 97.5% R̂ neff Par. Mean s.e. 2.5% 50% 97.5% R̂ neff

L
o
w

c
e
n
so

r
in

g
-
e
st

im
a
te

s
(a

c
tu

a
l
v
a
lu

e
s)

Conv
α

(2)

1.9721 0.1219 1.7340 1.9715 2.2173 1.0367 46
α

(2)

1.8878 0.1147 1.6639 1.8845 2.1220 1.0017 1000

LTS 1.9753 0.1230 1.7330 1.9780 2.2181 1.0037 400 1.9871 0.1126 1.7830 1.9850 2.2061 1.0042 450

Mix 1.9924 0.1396 1.7280 1.9865 2.2901 1.0180 86 2.1688 0.1331 1.9199 2.1630 2.4292 1.0021 720

Conv
β0

(−9.8982)

-8.8188 0.5410 -9.9233 -8.8115 -7.7869 1.0406 42
β0

(−9.8982)

-8.2039 0.4925 -9.1981 -8.2005 -7.2525 1.0015 1000

LTS -8.8294 0.5431 -9.8751 -8.8450 -7.7746 1.0036 420 -8.6847 0.4823 -9.6481 -8.6695 -7.8238 1.0034 480

Mix -8.9351 0.6513 -10.3703 -8.8955 -7.7689 1.0176 87 -9.6315 0.5980 -10.7600 -9.6325 -8.4909 1.0015 1000

Conv
β1

(0.1833)

0.1327 0.0116 0.1108 0.1326 0.1556 1.0254 75
β1

(0.1833)

0.0946 0.0100 0.0752 0.0945 0.1132 1.0022 940

LTS 0.1330 0.0116 0.1104 0.1328 0.1551 1.0019 800 0.1114 0.0097 0.0929 0.1116 0.1299 1.0014 1000

Mix 0.1369 0.0156 0.1110 0.1352 0.1730 1.0082 190 0.1490 0.0153 0.1213 0.1487 0.1801 1.0004 1000

LTS γ0

(NA)

-15.4995 5.5621 -28.3085 -14.6200 -7.0389 1.0047 320 γ0

(−6.91)

-12.9570 4.9591 -25.3068 -11.9100 -6.1467 1.0000 1000

Mix -14.1417 5.9871 -27.0823 -13.3350 -4.2838 1.0003 1000 -13.3667 5.5506 -25.8320 -12.8300 -4.4387 1.0022 680

LTS γ1

(NA)

0.2043 0.1762 0.0067 0.1533 0.6637 1.0051 470 γ1

(0.23)

0.2176 0.1190 0.0352 0.1987 0.5040 1.0002 1000

Mix 0.2585 0.2378 0.0069 0.1844 0.9018 1.0031 820 0.5248 0.2346 0.1631 0.4998 1.0701 1.0021 730

Mix η0(NA) -2.1609 9.6979 -19.0523 -4.1445 19.1730 1.0023 650 η0(-9.8982) -8.9917 0.5728 -10.1305 -8.9475 -7.9190 1.0034 440
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Conv
α

(2)

1.9653 0.1324 1.7160 1.9635 2.2390 1.0127 120
α

(2)

1.3981 0.0968 1.2190 1.3955 1.5960 1.0040 380

LTS 1.9999 0.1325 1.7520 2.0010 2.2620 1.0696 27 1.8905 0.1196 1.6680 1.8910 2.1320 1.0066 230

Mix 2.0497 0.1476 1.7778 2.0400 2.3650 1.0088 250 2.0090 0.1245 1.7699 2.0035 2.2480 1.0004 1000

Conv
β0

(−9.8982)

-9.7457 0.5928 -10.9303 -9.7400 -8.6207 1.0147 100
β0

(−9.8982)

-6.8331 0.4083 -7.6693 -6.8105 -6.1020 1.0033 460

LTS -9.8996 0.5930 -11.0900 -9.8915 -8.8059 1.0690 28 -9.3552 0.5247 -10.3910 -9.3555 -8.3808 1.0049 310

Mix -10.1819 0.7004 -11.7805 -10.1500 -8.8851 1.0078 200 -9.9394 0.5596 -10.9903 -9.9280 -8.9109 1.0002 1000

Conv
β1

(0.1833)

0.1843 0.0111 0.1626 0.1840 0.2050 1.0149 110
β1

(0.1833)

0.0322 0.0041 0.0240 0.0322 0.0398 1.0038 950

LTS 0.1864 0.0110 0.1645 0.1867 0.2076 1.0343 55 0.1644 0.0095 0.1462 0.1646 0.1822 1.0001 1000

Mix 0.1931 0.0143 0.1668 0.1919 0.2252 1.0156 99 0.1875 0.0111 0.1664 0.1870 0.2100 1.0001 1000

LTS γ0

(NA)

-15.3780 5.5191 -28.3335 -14.5300 -7.2272 1.0022 1000 γ0

(−6.91)

-9.5555 1.4992 -13.0303 -9.3925 -7.0219 1.0017 880

Mix -16.2349 5.8441 -30.1138 -15.4900 -6.8224 1.0023 1000 -19.3944 5.4810 -31.1513 -18.9650 -10.3688 1.0013 1000

LTS γ1

(NA)

0.2016 0.1754 0.0052 0.1557 0.6808 1.0098 1000 γ1

(0.23)

0.2144 0.0382 0.1463 0.2111 0.2980 1.0025 600

Mix 0.3873 0.3163 0.0080 0.3176 1.0985 1.0492 63 0.6582 0.1993 0.3364 0.6410 1.1151 1.0038 1000

Mix η0(NA) -3.3734 8.8417 -17.2440 -7.2695 16.6873 1.0021 710 η0(-9.8982) -9.9708 0.5573 -11.0908 -9.9515 -8.9342 1.0029 510

Table 6.1: Parameter estimates from models fitted to non-spatial simulation
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No resistance Resistance

Misspec. Misspec.
Total

Misspec. Misspec.
Total

as Res as Sus. as Res as Sus.

C
e
n
so
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n
g

Low
LTS 0 0 0 LTS 0 31 31

Mix 0 0 0 Mix 2 0 2

High
LTS 0 0 0 LTS 0 100 100

Mix 0 0 0 Mix 0 0 0

Table 6.2: Estimated numbers of individuals misspecified with regards resistance in non-
spatial simulation

in the past, most recently in Henderson and Keiding (2005). The authors conclude that

even in the case where the statistical model is known to be true and with no uncertainty

in the parameter estimates, individual level predictions of survival times are of limited

practical use as a prognostic tool.

As an illustrative example consider a plot of the posterior distribution for an individual

with an arbitrary covariate value (x = 0.836) obtained from the conventional model fitted

to the data with no resistance and high censoring (figure 6.3). Comparing this empirical

predictive distribution against the theoretical distribution obtained in the case where the

true parameter values are known shows a good association. However the actual failure

time is one realisation from this distribution, and so even if the parameters are accurately

estimated the range of the predictive distribution can still be large. In the case of many

real-life survival processes large amounts of uncertainty remain even when using predictive

intervals rather than a mean or median point prediction (see Henderson and Keiding

2005). In practical terms there are often further unknown heterogeneities that exacerbate

problems of prediction. This is especially true in the case of epidemic data where each

realisation of the underlying survival process directly affects the path of the epidemic. In

the non-spatial simulation the covariate affecting failure time is not linked to the history

of the epidemic process, however in real infectious disease situations just one extraneous

infection could have a large effect on the dynamics of the disease. This further invalidates

the use of long-term predictive windows and reinforces the potential importance of trying

123



to use sequential model fitting techniques to minimise the effect of these rogue infections.

The important point to note from these comparisons is that the long-term survivor and

mixture models perform better than the conventional approach, both in terms of getting

more point predicted survival times within the error bands and also in correctly identifying

resistant and susceptible premises.

6.5 Conclusions

The primary focus of this chapter was to investigate modelling of resistance to infection

in the survival framework. Two extensions to the conventional survival model - those

of the long-term survivor and mixture models - were explored as a means to alleviate

the bias caused by the resistant process in the simulation study. It was seen that both

methods had advantages over the conventional approach, though the extent to which the

parameter estimates improved was greatly dependent on how well the models captured

the mixing process. The mixture model seemed to do better since it allows for variation

in susceptibility in the infected premises, which the long-term survivor model does not.

Another potential advantage of the mixture approach over other methods (e.g. Keeling

et al. 2001a) of including resistance to infection is that it allows the shape of the underlying

probability distribution to change between the susceptible and resistant groups instead of

just the magnitude.

A secondary issue that emerged from this chapter concerns the accuracy of individual level

survival predictions. In practice there are many unknown or unobserved facets relating to

survival that are not accounted for but may have a large influence on the predicted failure

times. However there is evidence in the literature that survival predictions are much

more useful when viewed at the population level, and some potentially useful population

measures and their uses in predicting the path of a spatial epidemic will be shown in

section 7.2. The earlier part of chapter 7 will investigate the effects of resistance to infection
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(a) Conventional model
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(b) Long-term survivor model
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(c) Mixture model

Figure 6.2: Plots of actual vs. predicted failure times for non-spatial simulation
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Chapter 7

Applications of mixture modelling

to infectious animal disease

epidemics

The previous chapter discussed potential ways in which issues regarding non-localised

infections and resistance to infection could be dealt with in a survival framework. The

results from a simple non-spatial simulation study suggested that including large numbers

of censored observations in the models results in far less bias to the predicted survival

times than occurs when including even small numbers of resistant premises.

In this chapter a more complex spatial simulation study will be carried out in order to

compare the long-term survivor and mixture approaches to the conventional model in a

situation where the simulated epidemic encompasses spatial as well as temporal structure.

Here the simulations more accurately reflect the dynamics of a real animal disease outbreak

and will be based on a spatially random subset of locations of farm holding premises in

Devon, with artificial covariates used to control various aspects of the simulated spread.

There are three main sections to the chapter. The first, section 7.1, gives details about the

simulation study, including the algorithm used to generate the data, some discussion about
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the simulated data sets, the mathematical form of the models used and some adjustments

to the predictive algorithm (discussed in section 5.3) to incorporate resistance to infection.

Comparative results are also given.

Section 7.2 focusses on ways in which these techniques can be usefully applied to spatial

epidemic data - in order to produce spatial and temporal predictive hazard maps and the

use of this information as a means of targeting control policies to high-risk areas.

Finally, in section 7.3 these ideas are applied to the data set from the 2001 FMD epidemic

in Devon (see chapter 5). Some overall conclusions are given in section 7.4.

7.1 Spatial simulation study

7.1.1 Details of the simulation

Two simulated covariates were used to represent different characteristics of each premise.

The first, x, relates to the potential infectiousness of the premise were it to become in-

fected, and the second, y, to susceptibility. The x covariate was sampled from a normal

distribution and the y covariate from a mixture of two normal distributions with different

means but the same variance. The mixing parameters were set by the corresponding level

of resistance required in the data set. In the case of FMD these two covariates most likely

represent size and biosecurity respectively, though for the simulation they are assumed to

be generic measures that may relate to corresponding factors important in the pathogen-

esis of the disease under study. The dynamics of the epidemics were controlled by the

varying the values of the parameters in the simulations.

One source premise was assumed and at any time point a simplified version of the VL

(pseudo-viral load, PVL, based on x) was calculated, with exposure determined by a

threshold value decided beforehand. Two survival processes were used - one (localised)

based on relative time from exposure and driven by PVL, and the other (‘spark’) a baseline

hazard, independent of covariates and based on absolute time from the beginning of the
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epidemic. Only premises that were classified as susceptible were assumed at risk from the

localised infective process whereas all premises were assumed at risk from the non-localised

process. This adds some measure of additional heterogeneity into the susceptible group

- reflecting our prior belief in the way that the exposure mechanism in a real-life animal

disease epidemic may affect the recorded data set.

The PVL measure is given by:

PVL(s, t) =
∑

j|tj<t

IP(t− tj, xj)ω(s, sj,Σ), (7.1)

where IP is the pseudo-infectivity function given by a gamma curve

IP(t, x) =
ηx

ξγΓ(γ)
tγ−1e

−t
ξ , (7.2)

with shape and scale parameters γ and ξ respectively. The constant η helps to scale IP

to ensure reasonable values. The form of (7.2) was chosen because it mirrors the type of

behaviour that would be expected for the within-herd spread of FMD for a generic animal

species over time. A bivariate normal kernel function was used for the distance decay term

ω(·) with covariance matrix Σ controlling the bandwidth and hence the degree of spatial

smoothing in the simulation.

The PVL allows the analyst to control the shape and magnitude of viral coverage over

time to create simulated epidemics with varying dynamics. (Note that in the simulated

epidemics as for the real epidemic, the average cumulative PVL - PAV - will be used to

drive the hazard functions with the PVL used to determine exposure.)

The probability of resistance to infection was controlled by a logistic-link function to the

covariate y as,

pi =
exp(γ0 + γ1yi)

1 + exp(γ0 + γ1yi)
, (7.3)

again allowing the analyst to control the degree of resistance present in the data set. Here

resistance to infection was considered time-independent i.e. premises were classified as
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either resistant or susceptible at the outset and their status did not change over time.

In order to conduct the simulation, let D be the complete data set for N premises, where

each premise has covariates x and y, a variable t representing infection/censoring time

and a binary indicator δ, where δ = 1 for an infected premise and δ = 0 for an uninfected

(censored) premise. In addition let te be a variable representing exposure time and δe be

another binary indicator, with δe = 1 if a premise is exposed and δe = 0 if not exposed.

At the beginning of the simulation set δ, δe and PVL to 0, and t and te to NA for all

premises. Then determine a threshold value for exposure to the virus. In addition set a

maximum time E for the epidemic to run. The set of epidemic parameters is given by

Ψ and these need to be set before the simulation. The number of ‘source’ premises (S0)

can then be randomly sampled from the data. Label these premises 1, . . . , S0 and set

t1, . . . , tS0 = 0 and δ1, . . . , δS0 = 1.

The simulation algorithm is given by:

1. Set t = 1.

2. Let IP(t) be the set of infected premises such that δi = 1 and UIP(t) be the set of

uninfected premises such that δi = 0 at time t.

3. Calculate PVLj(t) for each of the C members of UIP(t) (j = 1, . . . , C).

4. If PVL for premise j exceeds the threshold value for exposure and δe
j = 0, then set

δe
j = 1 and tej = t.

5. Calculate

dj =























t− tej − 1 if t > tej and δe
j = 1,

0 otherwise.
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6. Then calculate

hj(t | Ψ) =











































min{PL(dj 6 T < dj + 1 | T > dj,PAVj(t− 1)),

PS(t− 1 6 T < t | T > t− 1)} if δe
j = 1,

PS(t− 1 6 T < t | T > t− 1) otherwise.

where PL(·) represents the localised survival process and PS(·) the spark process.

7. Let uj be a random sample from a U(0, 1) distribution corresponding to premise j

and set tj = t and δj = 1 if uj < hj(t | Ψ).

8. Set t = t+1. If t > E or there are no remaining uninfected premises then go to step

9. Else go to step 2.

9. END.

This returns a data set that records the absolute survival time from the beginning of

the epidemic regardless of whether premises became infected through spark or localised

infections. In this way the analyst can set a threshold value for the simulation, but also

investigate the effects of fitting models to data that has been sorted via exposure using

alternative threshold values.

7.1.2 The simulated epidemics

The parameters Ψ relating to IP were defined by taking approximations of the parameter

estimates for the best-fitting gamma curve for a median size cattle herd in Devon (given

in table 5.3). The parameters relating to the localised infection process were set by taking

a infected premise with a mean x covariate and fixing a probability of infection after a

pre-determined number of days for an uninfected premise located a set distance away. The

distances and times could be changed to reflect the degree of infectiousness required. A

similar technique was used to fix the baseline hazard for the spark process - though in this
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N IPs UIPs
No. spark
infections

No. localised
infections

No.
resistant

No resistance 1000 379 621 47 332 0

Low resistance 1000 189 811 38 151 329

Medium resistance 1000 191 809 42 149 481

High resistance 1000 179 821 51 128 661

Table 7.1: Summary values for simulated spatial epidemics at 50 days

case no covariate dependence was assumed. Resistance to infection was controlled by (7.3)

though the γ parameters remained the same and the y covariates were changed to reflect

the degree of resistance required. In addition no culling was used in these simulations in

the first instance.

In order to compare the three survival approaches four initial epidemics were simulated

with varying degrees of resistance to infection in the data set - none, low (≈ 25%), medium

(≈ 50%) and high (≈ 75%). A discrete Weibull distribution was used to drive survival for

both the resistant and susceptible groups.

Figure 7.1 and table 7.1 give comparative summaries for a set of four simulated epidemics

over 50 days, all based around the same subset of 1000 premises from Devon with the

same initial source premise (circled). Figure 7.1 helps to show the differences in spatial

patterns that can arise from increased resistance levels, and it can be seen that as the level

of resistance in the data set increases then number of localised infections decreases.

It can be seen from figure 7.2 that each of the four simulated epidemics still seem to be

growing in size after 50 days - possibly as a result of the lack of control policies used in

the simulation. This will be investigated in more detail in section 7.2.

7.1.3 Model formulations and prediction

In this section the predictive power of the conventional approach will be tested against

that of the long-term survivor and mixture model approaches. The form of the hazard
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Figure 7.1: Spatial maps of simulated epidemics at 50 days
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Figure 7.2: Epidemic plots for spatial simulations over time

function for the conventional model at time t for premise i is given by

hi(t) = 1 − exp(−λi(t−1)[t
α − (t− 1)α]), (7.4)

where covariates are included in the scale parameter as λi(t−1) = exp(β0 + β1PAVi(t−1)).

This has corresponding survivor and probability functions,

Si(t) = exp



−

t
∑

j=1

λi(j−1)[j
α − (j − 1)α]



 , (7.5)

and

fi(t) = [1 − exp(−λi(t−1)[t
α − (t− 1)α])] exp



−
t−1
∑

j=1

λi(j−1)[j
α − (j − 1)α]



 , (7.6)

respectively.

Discrete analogies of the continuous model framework for the long-term survivor and mix-

ture models are also required. For the former only the survival process for the susceptible

group is explicitly modelled - the resistant premises are assumed to be immune to infec-

tion. This is represented by a latent Bernoulli variable Zi with parameter (1 − pi) for

premise i, where Zi = 1 if susceptible and 0 if resistant. In this case the survival process

for the susceptible group is equivalent to the conventional survivor function (7.5). This
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leads to the overall survivor function for a premise i at time t to be

Si(t) = pi + (1 − pi)







exp



−

t
∑

j=1

λi(j−1)[j
α − (j − 1)α]











, (7.7)

where pi is the probability of resistance with logit(pi) = γ0 + γ1yi. This version of the

long-term survivor model includes covariates in both the probability of resistance and

the component hazard for the susceptible group. As discussed in Banerjee and Carlin

(2004) care must be taken since improper priors lead to improper posteriors. In this case

non-informative proper priors will be used instead.

The marginal survivor function for resistant premises is equal to one always (i.e. it will

never become infected). Conversely the marginal probability function is fi(t) = 0 for

resistant premises and given by (7.6) for susceptible premises. The overall probability

function for a premise i at time t is therefore:

fi(t) = (1−pi){1−exp(−λi(t−1)[t
α−(t−1)α])} exp



−

t−1
∑

j=1

λi(j−1)[j
α − (j − 1)α]



 . (7.8)

The mixture model is similar to the long-term survivor model except that both the suscep-

tible and resistant groups have non-degenerate survival processes. As before the survivor

function for susceptible premises (SSi) is given by (7.5) and for the resistant premises

(SRi) by

SRi(t) = SR(t) = exp



−λ
t
∑

j=1

[jα − (j − 1)α]



 . (7.9)

The hazard for the resistant group is assumed independent of any covariate influence

(λ = exp(η0)), and the shape parameter α to be the same as that for the susceptible

process.

The survivor function for a premise i at time t for the mixture approach is then given by:

Si(t) = piSR(t) + (1 − pi)SSi(t). (7.10)

The overall hazard functions for both the mixture and long-term survivor models can be
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determined from the formula

hi(t) =
fi(t)

Si(t)
, (7.11)

derived in section 4.1.

A further issue is the possible inclusion of frailty effects into the models. In the case of

the mixture and long-term survivor models, the possible presence of spatial structure in

both the component hazards and the mixing may result in confounding of the parameter

estimates, leading to difficulties in inference. As a result of this we do not use frailties in

the following model fits.

7.1.4 Prediction

To test and compare the predictive power of the different approaches the simulated epi-

demics were censored via exposure at 43 days and the parameter estimates used to predict

over the remaining week. The correct threshold for exposure was assumed known, no

frailty effects were used and the predictive algorithm described in section 5.3 was adjusted

to allow for susceptibility and censoring via exposure. An extension for the latter issue was

covered in section 5.8, but to avoid confusion we will amalgamate all previous versions of

the predictive algorithm, including an adjustment for susceptibility, to one form described

below.

Using the definitions in section 5.3, consider a matrix of K posterior samples for the m

parameters obtained from a model fitted at time t. Remove any premises from the data

set that are neither susceptible to infection nor infective (e.g. any that have been culled

or vaccinated for example), and then split the data into two groups - IPs and UIPs. The

IP group (ninf premises) consists of all premises that are infected and contagious and the

UIP group (ncens premises) consists of all uninfected premises.

For the UIPs set up an indicator matrix Φ with the number of rows equal to the number

of premises (i = 1, . . . , ncens) and the number of columns equal to the number of posterior

samples. Initially set each row equal to zero (φi· = 0). Let T be the corresponding matrix
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of predicted survival times with elements {tik}.

Define wi(ν) to be a time-dependent covariate for an individual i, where xi(ν) = g(wi(ν))

drives the epidemic process. A pre-determined threshold value, w∗, applied to wi(ν)

determines exposure at time ν such that an indicator variable δe
ik (i = 1, . . . , n), is defined

as:

δe
ik =























1 if ∃ wi(u), u = 0, . . . , t, such that wi(u) − w∗ > 0,

0 otherwise.

Furthermore, let T e be a matrix of exposure times with elements {teik} where initially

teik =























inf{u : wi(u) − w∗ > 0;u = 0, . . . , t} if δe
i· = 1,

0 otherwise.

i.e. teik is the date of exposure for all currently exposed premises at time t.

Finally, if yi is an observed covariate relating to resistance then define δs
ik (i = 1, . . . , n)

to be an indicator variable for an uninfected individual such that

δs
ik =























1 if individual i susceptible,

0 otherwise.

The full algorithm for predicting the course of the epidemic over a time period E is:

1. Set k = 1, ν = t, IP(ν)=IP and UIP(ν)=UIP.

2. Take kth set of posterior samples and calculate wi(ν) (using IP(ν) if necessary) and

pi = exp(γ0+γ1yi)
1+exp(γ0+γ1yi)

, where γ0 and γ1 are parameters estimated by the model.

3. Let ui be a random sample from a U(0, 1) distribution corresponding to premise i

and set δs
ik = 1 if ui < pi and δs

ik = 0 otherwise.

4. If wi(ν) − w∗ > 0 and δe
ik = 0, then set δe

ik = 1 and teik = ν. Calculate xi(ν) =
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g(wi(ν)) and

hi(ν | xi(ν)) =























Pj(ν − teik 6 T < ν − teik + 1 | T > ν − teik, xi(ν)) if δe
ik = 1 and δs

ik = j,

0 otherwise,

for all uninfected premises (using IP(ν) if necessary). Here j = 1, 2, and P0(·) relates

to the hazard for resistant premises and P1(·) to the hazard for susceptible premises.

5. Sample a new ui from a U(0, 1) distribution for premise i.

6. If ui < hi(ν | xi(ν)) and φik = 0 then set tik = ν and φik = 1.

7. Set ν = ν + 1. Update IP(ν) to include all new infected premises (i.e. {UIP(ν−1) |

φik = 1}). Update UIP(ν) such that UIP(ν) = {UIP(ν−1) | φik = 0}.

8. If ν > E or there are no more uninfected premises remaining then go to step 9. Else

go to step 4.

9. Set tik = E for all remaining censored premises, set k = k + 1, ν = t, IP(ν)=IP and

UIP(ν)=UIP.

10. If k 6 K then return to step 4; else END.

7.1.5 Comparative results

The formulation of the WinBUGS code for models with non-standard likelihoods is dis-

cussed in appendix A. The shape parameter α and mixing parameter γ1 were both given

G(0.1, 10) priors to ensure positivity. In the latter case this was to prevent label switching

(though technically we constrain this parameter to be negative in the model so that an

increase in y leads to an increase of susceptibility). The linear intercept, β0, in the scale

parameter of the hazard for the susceptible group was assumed N(0, 10) distributed, as

was the mixing intercept γ0. The linear intercept in the scale parameter of the hazard for

the resistant group, η0, was also given a N(0, 10) prior.
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The mixture model was run for longer, with a burn-in of 10000 and a further 70000

updates. The long-term survivor model had a 20000 burn-in followed by 40000 updates

and the conventional model 5000 and 40000 respectively. Two chains were used in each

case and initial values generated as before.

Table 7.2 gives a comparative account of some summary statistics for the estimated pa-

rameters returned from the different model fits. In each case the convergence and mixing

was reasonable, and the mean, median, standard error and 2.5th and 97.5th percentiles

were returned along with the potential scale reduction factor R̂ and the effective number

of parameters neff.

Table 7.3 gives some summary results for the corresponding predicted infection times

relating to different aspects of the prediction process. The first part of the table gives the

total number of premises currently uninfected (at 43 days) and the number of those that

are susceptible. The second part of the table compares the actual number of premises that

become infected in the subsequent week with the number predicted by the models, followed

by the proportion of these actual subsequent infections that were correctly predicted. The

third part of the table is analogous to the second, but corresponding to the susceptible

population only. The final part gives the proportion of premises correctly predicted to be

resistant or susceptible by the models.

We can see from table 7.2(a) that when there is no resistance to infection in the data set

the parameter estimates governing the localised spreading process (α, β0 and β1) obtained

from the conventional model fit are reasonably accurate. Furthermore we can see that the

long-term survivor and mixture model results reinforce the results from the conventional

model; indeed it can be seen from table 7.3 that all premises included in the model fit

were predicted to be susceptible by both the mixture and the long-term survivor models.

It is worth noting at this point that the estimates for the η0 parameter governing the

spark infection process are not comparable to the true value used in the simulation. This

is because the model fit relates to a baseline hazard relative to time from exposure rather

than absolute time from the beginning of the epidemic as was used in the simulation.
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(a) No resistance

Mean s.e. 2.5% 50% 97.5% R̂ neff

P
a
ra

m
e
te

rs
(a

c
tu

a
l
v
a
lu

e
s)

α (2)

Conv 1.9159 0.1598 1.6218 1.9105 2.2311 1.0043 1000

LTS 1.8915 0.1510 1.5980 1.8910 2.1900 1.0022 960

Mix 1.9140 0.1580 1.6090 1.9135 2.2260 1.0044 340

β0 (-5.91)

Conv -5.7564 0.3732 -6.5371 -5.7520 -5.0559 1.0071 1000

LTS -5.6936 0.3440 -6.3615 -5.7000 -5.0039 1.0040 410

Mix -5.7468 0.3728 -6.5001 -5.7285 -5.0269 1.0051 300

β1 (0.043)

Conv 0.0439 0.0027 0.0384 0.0439 0.0496 1.0041 370

LTS 0.0438 0.0027 0.0383 0.0438 0.0493 1.0017 880

Mix 0.0438 0.0028 0.0389 0.0436 0.0494 1.0000 1000

γ0 (NA)
LTS -1.3516 3.5610 -8.4250 -1.1745 5.2545 1.0139 110

Mix -0.8740 2.6827 -5.6912 -0.9245 4.2907 1.0010 1000

γ1 (NA)
LTS 3.5537 5.2158 0.0000 1.6955 17.9607 1.1479 64

Mix 1.0337 0.9822 0.0504 0.7273 3.5161 1.0042 360

η0 Mix 0.4035 3.0894 -5.4662 0.4953 6.4595 1.0003 1000

(b) Low resistance

Mean s.e. 2.5% 50% 97.5% R̂ neff

P
a
ra

m
e
te

rs
(a

c
tu

a
l
v
a
lu

e
s)

α (2)

Conv 1.4498 0.1137 1.2350 1.4445 1.6721 1.0156 99

LTS 1.7294 0.2048 1.3421 1.7270 2.1596 1.0134 120

Mix 1.6529 0.1910 1.2900 1.6540 2.0173 1.0004 1000

β0 (-5.91)

Conv -3.9057 0.2800 -4.4642 -3.8900 -3.3650 1.0203 77

LTS -5.2869 0.4754 -6.2446 -5.2740 -4.3853 1.0122 130

Mix -5.0914 0.4431 -5.9485 -5.0795 -4.2549 1.0004 1000

β1 (0.043)

Conv -0.0024 0.0011 -0.0049 -0.0023 -0.0006 1.0083 320

LTS 0.0427 0.0042 0.0346 0.0426 0.0516 1.0010 980

Mix 0.0430 0.0041 0.0350 0.0429 0.0512 1.0050 1000

γ0 (6.91)
LTS 6.4815 1.0820 4.4749 6.5000 8.5161 1.0131 120

Mix 6.8882 1.2190 4.7070 6.8035 9.4391 1.0011 1000

γ1 (0.23)
LTS 0.2428 0.0338 0.1777 0.2434 0.3101 1.0174 100

Mix 0.2322 0.0369 0.1660 0.2302 0.3081 1.0006 1000

η0 Mix -9.0891 1.3120 -12.1408 -8.9865 -6.8989 1.0009 1000

Table 7.2: Posterior parameter estimates from models fitted to simulated epidemics with
varying resistance to infection at 43 days
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(c) Medium resistance

Mean s.e. 2.5% 50% 97.5% R̂ neff

P
a
ra

m
e
te

rs
(a

c
tu

a
l
v
a
lu

e
s)

α (2)

Conv 1.2385 0.1067 1.0339 1.2370 1.4511 1.0019 1000

LTS 1.8097 0.1911 1.4379 1.8015 2.2081 1.0023 640

Mix 1.6865 0.2079 1.2998 1.6800 2.1091 1.0020 730

β0 (-5.91)

Conv -3.8245 0.2761 -4.3861 -3.8205 -3.2967 1.0007 1000

LTS -4.5728 0.4098 -5.3782 -4.5695 -3.7809 1.0009 1000

Mix -5.1958 0.5025 -6.1822 -5.2025 -4.2460 1.0019 800

β1 (0.043)

Conv -0.0027 0.0011 -0.0050 -0.0027 -0.0008 1.0006 1000

LTS 0.0157 0.0019 0.0120 0.0158 0.0193 1.0023 660

Mix 0.0423 0.0041 0.0342 0.0423 0.0506 1.0000 1000

γ0 (6.91)
LTS 5.5601 0.6677 4.2789 5.5615 6.9101 1.0116 160

Mix 6.9506 0.9581 5.1807 6.9300 8.8927 1.0001 1000

γ1 (0.23)
LTS 0.2116 0.0239 0.1679 0.2105 0.2608 1.0070 250

Mix 0.2322 0.0308 0.1748 0.2308 0.2930 1.0002 1000

η0 Mix -8.9272 0.9640 -10.8703 -8.9355 -7.2066 1.0003 1000

(d) High resistance

Mean s.e. 2.5% 50% 97.5% R̂ neff
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α (2)

Conv 1.3671 0.1163 1.1449 1.3680 1.5951 1.0029 510

LTS 1.8789 0.1775 1.5480 1.8730 2.2290 1.0021 710

Mix 1.7792 0.2053 1.3908 1.7820 2.1770 1.0000 1000

β0 (-5.91)

Conv -4.4338 0.2965 -5.0311 -4.4260 -3.8590 1.0035 430

LTS -4.6896 0.4136 -5.4682 -4.6880 -3.9567 1.0041 370

Mix -5.4700 0.5061 -6.4783 -5.4645 -4.4870 1.0016 930

β1 (0.043)

Conv -0.0035 0.0012 -0.0060 -0.0035 -0.0013 1.0033 450

LTS 0.0074 0.0013 0.0044 0.0075 0.0096 1.0045 500

Mix 0.0410 0.0040 0.0331 0.0410 0.0490 1.0045 330

γ0 (6.91)
LTS 4.6158 0.5892 3.5359 4.6055 5.8160 1.0168 110

Mix 5.3000 0.6482 4.0637 5.2540 6.5872 1.0017 1000

γ1 (0.23)
LTS 0.1910 0.0241 0.1487 0.1900 0.2406 1.0145 130

Mix 0.1777 0.0241 0.1336 0.1757 0.2294 1.0025 1000

η0 Mix -8.4632 0.8467 -10.0803 -8.4890 -6.8179 1.0002 1000

Table 7.2: Posterior parameter estimates from models fitted to simulated epidemics with
varying resistance to infection at 43 days (cont.)
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Numbers of premises Infections in next week
Infections to susceptible
premises in next week

Susceptibility

UIPs Susceptible UIPs Actual Predicted
Correct

predictions
Actual Predicted

Correct
predictions

Correct
predictions

No
resistance

Conv 741 741 120 110 76.67% 120 110 76.67% NA

LTS 741 741 120 111 76.67% 120 111 76.67% 100.00%

Mix 741 741 120 111 77.50% 120 111 77.50% 100.00%

Low
resistance

Conv 883 563 72 0 0.00% 68 0 0.00% NA

LTS 883 563 72 45 43.06% 68 45 45.59% 85.28%

Mix 883 563 72 36 37.50% 68 36 39.71% 85.28%

Medium
resistance

Conv 875 415 66 0 0.00% 61 0 0.00% NA

LTS 875 415 66 40 40.91% 61 40 44.26% 84.80%

Mix 875 415 66 34 31.82% 61 34 34.43% 86.63%

High
resistance

Conv 867 240 46 0 0.00% 39 0 0.00% NA

LTS 867 240 46 25 32.61% 39 25 38.46% 82.24%

Mix 867 240 46 18 30.43% 39 18 35.90% 88.70%

Table 7.3: Posterior predicted summary values for models fitted to simulated epidemics at 43 days
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We can also see that as the level of resistance in the data set increases the conventional

model begins to break down. This is most evident in table 7.3 and results in vastly over-

predicted survival times. This further backs up the results from the non-spatial simulation

conducted in the previous chapter, where even small levels of resistance can cause large in-

accuracies in the predicted survival times. In contrast the long-term survivor and mixture

models perform markedly better, and give good results in predicting resistance in the data

(even though the mean predicted survival times are still too large). This is illustrated also

by the plots in figure 7.3 that show the actual vs. mean predicted survival times (post

censoring) for future IPs from each of the conventional, long-term survivor and mixture

models, in the case where there is a high level of resistance in the data set. Predicted

survival times of greater than 100 days post censoring were left out for clarity (3, 4 and

9 premises for each of the models respectively). The dashed lines correspond to Parkes’

estimates of ‘serious error’ as described in section 6.3.

This is also seen in tables 7.2(b), 7.2(c) and 7.2(d), where the parameter estimates for γ0

and γ1 are relatively good even in the case where there is low resistance being exhibited.

The estimates for α, β0 and β1 are likewise markedly better than those for the conventional

model in each case, although the individual level survival predictions are unreliable (see

section 6.3). We will explore some techniques for eliciting useful information on a global

scale in the next section.

7.2 Spatial hazard maps and simulated work

In the previous chapter some potential advantages of using the long-term survivor and

mixture models over the conventional survival model were explored in a situation where

resistance to infection was evident in the data set. The results show that under certain

circumstances (i.e. that the mixing is well defined) the mixture and long-term survivor

models help to alleviate some of this bias that arises from the misclassification of resistant

premises. There remains a lot of variation in the premise-specific predictions of survival

times for censored premises when compared to their actual values however.
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(b) Long-term survivor model
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(c) Mixture model

Figure 7.3: Plots of actual vs. predicted failure times from spatial simulation with high
levels of resistance
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So the question arises: how can the results from these models be realistically used in the

understanding, prediction and implementation of control policies during an actual animal

disease epidemic?

The majority of modelling work done on infectious animal disease epidemics focuses on

estimation of the basic reproductive number R0, giving the mean number of secondary

infections from each primary infection. Spatial maps of R0 help to identify areas of high-

and low-risk of infection, where R0 > 1 relates to areas where an epidemic situation is

highly likely and R0 < 1 to areas where the infection will eventually die out. Though not

identical, the discrete hazard function is at least comparable to this in some sense, since it

gives the conditional probability of infection in the next day given survival to that point.

(This allows spatial maps to be produced in which ‘high-risk’ areas can be identified -

though there is not a threshold attached as in the case of R0.)

A problem occurs when making inferences about the estimated values of the hazard. The

results in section 7.1.5 show that even in the case where all factors affecting disease spread

are known, there is still large statistical variation in the infective process that makes

accurate prediction of survival times and hazards very difficult. Care must therefore be

taken when using these estimates to determine the scale of the epidemic in relation to

absolute probabilities and numbers of infections at each time point. It is still possible

to use the hazard maps to identify areas of high- and low-risk based on the relationships

between the estimations; e.g. the models should capture some kind of ‘relative’ spatial and

temporal variability in risk even though the actual probabilities of infection for individuals

are often underestimated.

In addition to this, if a series of spatial maps are produced over time then the spatial

aspect can be integrated out to give the hazard over time for the entire region. (Note that

since a Bayesian framework is being used, full posterior distributions for the predictions

can be obtained - though in this case the spatial maps are based on a loess smoothed

map of the means.)

To investigate this an epidemic was simulated over a period of 50 days using a spatially
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random sample of 2000 Devon premises as its base. This was conducted using the same

method as in section 7.1.2, though this time the grouping covariate y was given some

spatial structure (in order to keep the spatial structure the same the mixing parameters

were allowed to change to reflect differing degrees of resistance). In addition we also added

an incubation period of 3-7 days between the date of infection and the date of report. The

VL covariate for each model was calculated using only those IPs that had been reported

at that point in time (though it was assumed that the date of the oldest lesion found on

a premise could be accurately quantified and reflected the actual date of infection).

Three source premises were used and to prevent the epidemic from growing too quickly

a contiguous ‘cull’ policy was also introduced two weeks after the initial infection. Here

contiguity was determined by a probabilistic process, in which two premises were classified

as ‘contiguous’ with a high probability if they were within 1km of each other, and with a

low probability if they were within 2km of each other. This seemed a reasonable method

to estimate contiguity and/or dangerous contacts in the population of susceptible UIPs;

acting essentially as a cross between the actual CP/DC used across the entire UK in 2001

and the 3km ring cull that was applied in certain regions.

The 3km ring cull policy was not used in the simulation for two reasons: the first because

it was never implemented in Devon in 2001 and the second because it was far too aggres-

sive, especially considering that the simulation was based on a spatially randomly-thinned

subset of the population. The 2km contiguous policy described above, whilst not exactly

replicating the response used in Devon, did at least capture the notion of contiguity whilst

balancing the number of premises culled to something more reasonable. It also reflected

the increased aggression of the simulated infective process compared to the actual one.

Note also that we make no distinction between culling and vaccination in this sense. The

assumption is that the infected and uninfected animals are removed from the data on the

date of removal, and that no residual viral excretion remains. We refer to this procedure

as ‘culling’ for consistency.

Here IPs were culled within 24hrs of infection, and CP/DC UIPs within 48hrs of infection.
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A prompt cull strategy was therefore assumed from the outset. In the real epidemic the

24/48hr prompt cull policy was introduced at the end of March 2001, and before this

it sometimes took up to a week before IPs were culled. In addition the simulation also

assumes that this 24/48hr period includes time to disposal of the slaughtered carcasses

and that the disposal mechanism does not affect the infective process.

7.2.1 Hazard maps for simulated epidemic

Figure 7.4 gives comparative contour maps of hazards of infection from the conventional

and mixture models fitted between day 14 and 36 of the simulated epidemic at two day

intervals. These help to show how the epidemic progressed over time and space. It

can be seen that the mixture model shows much more variation in the predicted hazard

surface than the conventional model, due to the fact that it is capturing some of the

variation relating to susceptibility. (Note that all these maps are on the same scale to aid

interpretation.)

These maps are useful in identifying the effects of localised spread and ‘spark’ infections on

the path of the epidemic. If fitted on a day-by-day basis and the average taken over space

then the hazard over time can be obtained, which if scaled by the number of uninfected

premises at each time point provides an estimate of the number of premises expected to

become infected. Figure 7.5 shows this estimate plotted against the actual number of IPs

at each day.

It is clear that the mixture model is capturing far more of the variability than the con-

ventional model, and from figure 7.5 it can be seen that the mixture seems to capture

the shape of the epidemic curve well. It does seem to overpredict the risk of infection

when compared to the actual numbers of infections, but it is a marked improvement on

the smooth estimate obtained from the conventional curve.
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Figure 7.4: Comparative contour maps of hazards of infection in the next day, from
conventional (left) and mixture (right) models fitted from day 14 of simulated epidemic
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Figure 7.4: Comparative contour maps of hazards of infection in the next day, from
conventional (left) and mixture (right) models fitted from day 14 of simulated epidemic
(cont.)
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Figure 7.4: Comparative contour maps of hazards of infection in the next day, from
conventional (left) and mixture (right) models fitted from day 14 of simulated epidemic
(cont.)
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Figure 7.5: Estimated hazard over time for simulated epidemic (weeks 3-5)

7.2.2 Predictive uses

The hazard maps produced in the previous section give the probability of infection in the

next day given survival to that point. These are useful in identifying areas of high- and

low-risk and can perhaps be used to help guide reactive control policies; however the one

day time frame required between successive model fits perhaps limits the effectiveness of

these policies due to the difficulties associated with their implementation over such a short

space of time. It may be better to consider the conditional probability of infection over a

longer period of time as a means of predicting risk.

The nature of the epidemic is that the future course at each day is dependent on the

history up to that point. Care must be taken to ensure that the period of time over which

predictive inference is required is not too long, since even small numbers of influential and

unforecasted ‘spark’ infections can significantly change the entire dynamics of the epidemic

process. It was decided to limit the period of time over which to predict to be one week.

This allows a longer forecast than the ordinary hazard maps, providing a more informative
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time-scale over which to implement control policies, whilst limiting the deleterious effects

of rogue spark infections on the long-range predicted course of the epidemic.

Spatial maps of the hazard of infection in the next week were produced, along with a

second set of maps based on ranking premises according to their predicted future infection

time. Examples of these are shown in figure 7.6 for models fitted at two, three and four

weeks respectively. In the case of the rank map each posterior predictive sample was

ordered by time to infection, and predictive posterior distributions for the probability of

being in the next r infections were recorded.

On each of the hazard and rank maps the green points correspond to those premises that

are currently infected (and infective) but have yet to be reported, and the red points

correspond to reported and infective premises (i.e. the ones contributing to the VL). So

the simulated infective process is driven by both the green and red premises, but the

predictive model is driven by the red premises only.

On the hazard map the blue points give the locations of premises that subsequently become

infected (but not necessarily reported) in the next week, and on the rank map (generated

based on the top 20 ranks) the blue crosses relate to the actual top 20 premises in order

of mean predicted rank. It is worth noting that the blue crosses can relate to premises

that have yet to be reported, and a similar argument regarding the locations of the most

‘at-risk’ premises could also apply to the map of the hazard, though they have not been

shown here.

The important point is that the predicted maps seem to capture the dynamics of the

epidemic reasonably well with regard to identifying areas of high- and low-risk in relation

to the information gleaned from the reported IPs. However as shown, particularly in the

hazard map in figure 7.6(b), if the disease is aggressive then latent infections can cause

difficulties with accurate prediction. In practice of course the predictive maps can be

updated as the epidemic progresses to encompass new information such as spark infec-

tions, new reports or changes in control policy that may have a significant impact on the

predictions, and this is a desirable feature of our VL approach.

152



Rep. IPs
Unrep. IPs
Future IPs

Rep. IPs
Unrep.IPs
Top ranks

(a) Day 14

Rep. IPs
Unrep. IPs
Future IPs

Rep. IPs
Unrep.IPs
Top ranks

(b) Day 21

Rep. IPs
Unrep. IPs
Future IPs

Rep. IPs
Unrep.IPs
Top ranks

(c) Day 28

Figure 7.6: Predictive risk maps of probability of infection in next week (left) and proba-
bility of belonging to top twenty future IPs (right)
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Also, in contrast to the previous section, each of these maps is on a different scale across

the time periods. In addition it is also worth noting that the maps based on ranking

premises seem to be a bit more localised, though of course this will depend greatly on the

extent of ranking used to generate the probabilities (since the same span has been used in

the loess smooth in both all cases). These maps act as potentially useful guides to the

evolution of the outbreak, and the next section will discuss possible ways in which they

may be used to help influence control policies.

7.2.3 Targeting control policies

A lot has been written in both the veterinary literature and the media regarding the

choice and effectiveness of control policies for animal disease epidemics (the recent furore

surrounding the role of badgers in the spread of bovine tuberculosis is a prime example).

In the case of the 2001 UK FMD epidemic there has been a lot of research, conducted both

at the time of the outbreak and in hindsight, investigating the effects of various control

procedures. Recently work has focussed on whether alternative strategies may have been

more effective (DEFRA 2002a), not only in reducing the size of the epidemic but also the

numbers of animals culled.

Ferguson et al. (2001a) investigated the relative effects of contiguous culls, ring culls and

ring vaccination strategies on the basic reproductive number R0. Published just under 3

months after the outbreak began in May 2001, it concluded that a ring cull or vaccination

strategy would be essential in bringing the epidemic under control, although the ring cull

was predicted to be more efficient in reducing the extent of the epidemic than vaccination.

This was reinforced further by Ferguson et al. (2001b), published in October 2001, which

concluded that the ring cull strategy was essential in bringing the epidemic under control

in the parts of the UK in which it was used. They note however that it would have been far

more effective if the policy had been instigated earlier. Keeling et al. (2001a), also published

in October 2001, supports the point that an intensive neighbourhood culling policy is

key to controlling disease spread; though the authors question whether an extended 3km
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ring cull was necessary, arguing that a prompt (24/48hr) CP/DC cull implemented far

sooner would have been more effective. They question to what extent the decline in the

epidemic was due to culling alone, or whether other factors such as reduced numbers of

susceptible premises had a large effect. In addition they note that the definition of a

neighbourhood surrounding an IP will be situation- and disease-dependent, as can be seen

by the contrasting dynamics of FMD spread in Devon and Cumbria.

A consensus common to all of these papers regards ‘... the importance of rapid implemen-

tation of properly focussed disease control policies’ (Keeling et al. 2001a), whether that

be culling, movement restrictions, increased biosecurity, vaccination or (as more likely) a

combination of these. In addition to this are the logistical and financial constraints in-

volved in instigating these policies, and many recent papers have sought viable solutions to

these problems. Tildesley et al. (2006) investigate a reactive vaccination strategy for cattle

that combines prompt IP and DC culling with a ring vaccination program. They focus

on finding the optimal radius for a ring vaccination policy that minimises the effect of the

epidemic but is constrained by the total number of cattle that can feasibly be vaccinated

each day. They conclude that an optimum 35,000 livestock vaccinations a day would be

more effective than using a prompt IP and DC cull combined with CP culling.

Morley and Chang (2004) investigate the effect of the standard policies used in the UK in

2001 on a potential outbreak in the USA. They conclude that the use of such policies would

constitute a large risk to the USA if the disease were to enter the country. Instead they

suggest a pre-emptive method of control that can reduce the time-lag between infection

and report by using mobile PCR (polymerase chain reaction) units. These can detect the

presence of the virus in RNA and DNA before clinical signs appear. The authors suggest

stationing these units at points of entry into the country as well as coupling this with

a mathematical model (in their case a cellular automata approach) to predict potential

areas of high-risk to which mobile PCR units could be deployed should a source of the

virus be identified.

These examples highlight the need for effective control policies and a means of determin-
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No. inf. No. culled

No culling 749

IP cull 587 494

Contig. cull 363 1433

Target cull 352 725

Table 7.4: Comparative numbers of infected and culled premises from simulated epidemics
with varying control policies

ing the optimal focal points for the implementation of these procedures. In addition they

should incorporate methodology that can deal with new sources of infection. A combina-

tion of different techniques, dependent on the situation, coupled with prompt instigation

is probably the key to developing a balanced policy.

Here we do not attempt to investigate which is the better option, vaccination or culling,

but simply offer a means of potentially targeting a control policies through the use of

predictive spatial hazard maps of infection generated over one week periods. To do this

four epidemics were simulated using identical data sets. The first had no cull policy, the

second an IP-only cull, the third a 2km CP/DC (ring) cull policy and the fourth a targeted

policy based on culling IPs and the top twenty most ‘at-risk’ premises according to the

ranking predictions described in section 7.2.2.

The simulations were allowed two weeks to get established before culling was introduced.

All IPs were culled within 24hrs of report and all CP/DCs within 48hrs of report. The

ring cull worked on a day-by-day basis whereas the targeted cull worked by obtaining

the top twenty ‘at-risk’ premises from a mixture model fitted at intervals of one week.

A comparative plot of the epidemics is given in figure 7.7 with a corresponding table of

results in table 7.4.

From these plots and results it seems that the target policy is certainly as effective, if

not more effective than the contiguous cull policy in bringing the epidemic under control,

resulting in less infected premises and substantially less culling. The IP-only cull results
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(b) Plots of numbers of culled premises

Figure 7.7: Plot of simulated epidemics with varying control policies
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in less culled premises but more infections, and the no cull policy results in much larger

numbers of IPs, though the results suggest that it is on its way to burning itself out on

the basis of running out of susceptible premises to infect by the end of the 50 day period.

7.3 Application to real data set

The results from the previous section highlight the potential advantages of using a mixture

or long-term survival approach over the conventional survival model when resistance to

infection is present in the data set. However the accuracy of the posterior parameter

estimates depends largely on how well the mixing is defined. For the long-term survivor

model all infected premises are treated as susceptible, and this can confound the parameter

estimates by not accounting for bias from non-localised resistant infections. The mixture

model on the other hand can allow for this, but can’t distinguish between susceptible

infections caused by localised or non-localised sources. Also, these methods assume a

resistance status for each premise that remains fixed for the entire duration of the epidemic.

In our model this is based on some covariate measure relating to susceptibility. Two issues

arise here, the first that a reasonable covariate measure be identified, and the second that

the susceptibility status does not change over time.

In the latter case this could be encompassed by using a time-dependent covariate in the

mixing probability, however for the time being we will treat the susceptibility status as

fixed. With regard to defining a reasonable covariate to assess resistance, it seems sensible

in the first instance to use total and species-specific uninfected animal densities in the

same way as in chapter 5, however since it is considered fixed it will be taken to be the

density just prior to infection or censoring.

We will fit just the mixture model here, since it seems to be more robust to the infection

of resistant premises than the long-term survivor model. As a result of some preliminary

model fits, we decided to parameterise our model slightly different to the standard form

(7.10) used in the simulations. In order to try to gauge some indication about the sig-
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nificance of the susceptibility parameters in explaining the resistance in the data, it was

important that there weren’t constraints placed on the mixing parameters (such as was

used to control label-switching). Instead we decided to formulate the component hazards

such that in the presence of no viral load they had the same baseline hazard function, and

then force an ordering upon them through the regression parameters β1 and β2. So the

model for the Devon data is given by:

Si(t) = piSRi(t) + (1 − pi)SSi(t), (7.12)

where the two groups have survivor functions of the form (7.5), but λi(t−1) = exp(β0 +

β1PAVi(t−1)) for one group and λi(t−1) = exp(β0 + β2PAVi(t−1)) for the other group con-

strained such that β1 < β2. The mixing parameter pi was given by:

log

(

pi

1 − pi

)

= γ0 + γ1ADi, (7.13)

or

log

(

pi

1 − pi

)

= γ0 + γ1SDi + γ2CDi + γ3PDi, (7.14)

for total uninfected animal density, and species-specific densities respectively.

The model was fitted to the data set censored via exposure at 50 days with threshold

5 × 10−08. Each of β0, β1 and the γ parameters were given N(0, 10) priors, with α given

a G(0.1, 10) prior as before. The parameter β2 was constrained to be greater than β1 by

letting β2 = η + β1 with η given a G(1, 1) prior. Two chains were used with a burn-in of

10000 and a further 50000 updates. The posteriors were thinned to return 1000 samples.

A summary table of the posterior parameter estimates is given in table 7.5 with associated

prediction summaries for the top ten highest risk premises given in table 7.6. The extent

of overprediction exhibited in the results from the previous models fitted in chapter 5

appears to be less here, and the mean posterior estimates are derived from more complete

posterior distributions (33% of samples returned a predicted infection time within the next

60 days for the most high-risk premise), though none of these top ten predicted premises
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Mean s.e. 2.5% 50% 97.5% R̂ neff

Uninfected

animal density

α 1.1090 0.0960 0.9294 1.1035 1.3100 1.0001 1000

β0 -7.0694 0.3283 -7.7662 -7.0560 -6.4700 1.0001 1000

β1 0.5244 3.1707 -5.6352 0.5470 6.6205 1.0008 1000

β2 1.4983 3.3196 -4.8698 1.6145 8.2122 1.0012 1000

γ0 -0.1114 3.0635 -6.4397 -0.0456 5.7362 1.0010 1000

γ1 -0.0913 3.1962 -6.2895 -0.1064 5.7877 1.0020 1000

Species-specific

animal density

α 1.1004 0.0955 0.9283 1.0970 1.3060 1.0040 500

β0 -7.0431 0.3310 -7.7343 -7.0245 -6.4467 1.0037 410

β1 0.5309 3.2081 -5.8432 0.6158 6.5861 1.0060 250

β2 1.5066 3.3209 -5.0475 1.5585 7.8257 1.0089 170

γ0 -0.0778 3.1153 -6.1621 -0.1832 5.8501 1.0000 1000

γ1 -0.0409 3.2872 -6.5429 0.0187 6.2918 1.0017 870

γ2 0.0585 3.2378 -6.3455 0.0288 6.7122 1.0035 430

γ3 -0.0138 3.1020 -6.0193 -0.1042 5.9381 1.0009 1000

Table 7.5: Posterior parameter estimates from the mixture model (7.12) with regression
covariate AV, and uninfected animal and species-specific densities in the mixing parameter
- fitted to Devon data set ‘censored via exposure’ at 50 days
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Uninfected animal density Species-specific densities

Mean survival

time

Proportion

observed

Mean survival

time

Proportion

observed

130 33.00% 132 32.60%

136 31.70% 137 31.60%

138 31.30% 138 31.60%

142 30.80% 143 30.40%

186 25.30% 214 23.10%

187 25.20% 216 22.70%

192 24.80% 228 21.80%

194 24.60% 231 21.60%

197 24.40% 234 21.20%

198 24.30% 241 20.70%

Table 7.6: Predictive output over a 60 day window for mixture model (7.12) with regression
covariate AV, and uninfected animal and species-specific densities in the mixing parameter
- fitted to Devon data set ‘censored via exposure’ at 50 days

were actual infections.

The regression parameters β1 and β2 were still not significantly different to zero and

there was no label-switching. The covariates associated with susceptibility are clearly

failing to capture this process adequately. A series of other models with slightly different

specifications regarding the component hazards and mixing (analogous to the mixtures

fitted to the simulated data) also backed up the results shown here.

7.4 Conclusions

In this chapter we have explored the uses of mixture and long-term survivor models in a

spatial epidemic setting. The results from the spatial simulation study have shown that

if resistance is present in the data set then these approaches offer various advantages over

the conventional survival model - in that they can deal with confounding aspects due to

161



heterogeneous susceptibility and help to remove bias from the predicted infection times.

In general the mixture model is potentially the more useful of the two alternatives, since

it allows for both the resistant and susceptible groups to have non-degenerate survival

distributions. These frameworks can also be adapted to include covariates in both the

mixing parameters and component hazards depending on how they are thought to affect

the dynamics of the disease.

We have also shown how measures derived from the basic properties of survival analysis

can be applied to the problem of quantifying the risk of infection. The hazard function

in particular is a useful tool that can be used as a means of assessing the current risk in

a continuously developing epidemic situation. In addition the ability to be able to extend

predictions over periods of greater than one day is a particularly useful feature.

The simulations also show that it is important that the mixing is well-defined if the

mixture model is to outperform the conventional approach. It can be seen that in situations

where the mixing between susceptible and resistant premises can be reasonably quantified,

the mixture model gives a greater degree of accuracy when targeting ‘at-risk’ premises.

This is due to the fact that it incorporates individual-level variability, not only in the

external epidemic mechanism but also in the inherent propensity of a premise to succumb

to infection.

Spatial and temporal hazard maps also provide good ways of visualising areas at risk.

In this case, where localised regression was used to smooth the predicted hazards over

space, a smaller span will result in different absolute values of the hazard at the predicted

points, and so the maps must be interpreted with care. This is particularly necessary when

susceptibility is dependent upon premise-specific measures. (Note that VL and AD can be

calculated at any point in space and time, so an alternative mechanism here would be to

superimpose a fine grid over the study region and predict directly to each grid point using

the method described in section 7.1.4. This may not hold for all epidemic situations.)

An important result is that the ability to be able to correctly distinguish between those

premises more likely to be susceptible to infection could help to greatly reduce the amount
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of culling needed in order to bring an epidemic under control. The potential advantages

of a targeted control strategy over a standard CP/DC/ring policy are shown in a series of

simulated epidemics, in which the target cull results in far fewer premises needing to be

culled in order to bring the epidemic under control. This highlights possible advantages

of using localised, rather than global control orders when different dynamics are exhibited

across different localised regions.

Although we have shown that the technology has the potential to deal with some key

epidemiological problems, there is still an issue regarding the quality of real-world epidemic

data that is currently available. When the mixture model was applied to the 2001 Devon

FMD data set the results suggested that the AD and species-specific densities did not drive

the resistant process, with the mixture model producing results similar to the conventional

models fitted in chapter 5. The 2001 Devon FMD data set is one of the most detailed

epidemiological data sets currently available, and yet additional knowledge about factors

thought to affect the spread of the disease across premises is clearly needed if we wish to

study the spatial spread of infectious animal diseases at this scale. The next chapter will

comment on all the issues presented in this thesis and discuss possible future work.
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Chapter 8

Conclusions and further

considerations

In this thesis we have explored the feasibility of applying spatial survival modelling tech-

niques to model inter-premise spread of infectious animal diseases. The Royal Society

inquiry into Infectious diseases in livestock (Follett et al. 2002) conducted in response

to the 2001 UK FMD epidemic resulted in a call for increased funding into this field of

research. Clearly the socioeconomic and welfare costs associated with infectious animal

diseases can be vast, and ongoing outbreaks such as the H5N1 avian influenza epidemic

currently moving across Asia and Europe further highlight the importance of developing

new and improved modelling techniques that can be used to help inform effective and

efficient strategies to control the spread of contagious animal and epizootic diseases.

In the aftermath of the 2001 UK FMD outbreak there was a lot of skepticism expressed

in the veterinary literature about the role that mathematical modelling played in in-

forming British government control policies (BGP). Kitching et al. (2006), Taylor (2003)

and Wingfield et al. (2006) all questioned the British government’s use of ‘unvalidated’

mathematical models to justify pre-emptive culling policies. In these articles they express

concern about the fact that many of the assumptions used in the development of these
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modelling strategies were either misguided or inaccurate - such as having to use out-of-

date census counts to measure the size of each premise, the fact that constant transmission

rates were assumed across the entire UK area and the absence of accurate contact tracing

data. An overriding conclusion from these reports are that models that have not been

biologically and epidemiologically validated should not be used to inform control policies.

This has acted as a catalyst for a vital debate on the role of mathematical and statistical

modelling in epidemic research, and highlights once again the importance of getting the

biology correct from the outset if we are to give any practical weight to inferences derived

from these kinds of modelling approaches. The predictive potential of mathematical mod-

els can help to provide powerful insights into the dynamics of infectious diseases. Modelling

strategies can aid investigations into the effect and extent of various internal and external

factors on the spread of epidemics, help to disentangle conflicting information and also

focus study on to particular issues. For example, simulation models are particularly useful

when investigating the potential advantages and disadvantages of varying control policies,

or the effects of different biological assumptions on the eventual course of an epidemic;

but they are simply one tool at policy makers’ disposal and discretion needs to exercised

in the interpretation of results derived from them.

In order to tackle these problems effectively a collaborative effort is required across many

different scientific disciplines, from microbiology and pathology to mathematics and eco-

nomics, since the development of efficacious control strategies is dependent on a sound

understanding of disease dynamics at many scales, from the microscopic through to the

global (worldwide) level. In addition, it is important to remember the role that human in-

teraction plays in this process, with response and relief strategies greatly aided or hindered

by existing economic, cultural and political climates.

A useful mathematical or statistical epidemic model should incorporate information about

important biological factors thought to affect the dynamics of the disease in question. We

have tried to develop our modelling approach with a view to being able to take the basic

principals and apply them to different infectious animal diseases, other than just FMD,
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even though this particular scenario serves to drive our study. Our approach incorporates

many of the features of previous epidemic models.

The most common form of mathematical model for modelling epidemic data is based

around a compartmental framework, i.e. at any time point each individual can be classified

into one of a series of distinct categories based on their current disease status. The models

can be either deterministic (e.g. Ferguson et al. 2001a,b) or stochastic (e.g. Keeling et al.

2001a) and can incorporate a range of common epidemiological features such as variable

and recurrent susceptibility to infection, temporal immunity, latent and exposure periods,

carriers and host vectors, heterogeneous mixing of populations and modelling transmission

within subsets of a population (e.g. in venereal diseases).

Deterministic models in particular should be treated with caution since although they

are often easier to fit than their stochastic counterparts, they do not encompass any

random variation in their definition, which is a fundamental concern in epidemic modelling.

Stochastic models instead offer a way of being able to incorporate random variation into

the model formulation, though the price is usually felt through more complex fitting

mechanisms. In the compartmental framework, cellular automata approaches can help to

speed this up, but interactions are limited to modelling over discrete lattice structures in

space and time and so leads to the potential problem of neighbourhood saturation (see

e.g. Mikler et al. 2005).

One advantage of using statistical methodology is that random variation is modelled di-

rectly. In addition the effect of covariates on the epidemic process can be directly quan-

tified. In essence we can elicit information about the causes of stochastic variation and

the interactions between dependent and independent random variables directly from the

data.

In chapter 3 we discussed some relative advantages and disadvantages between these differ-

ent types of modelling strategies. For infectious disease epidemic modelling at this scale,

where we are interested in predicting space-time spread, it is important that a model

contains both spatial and temporal structure. This precludes the use of traditional time-
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series models (Box and Jenkins 1976, Chatfield 2001) or temporal GLMs (McCullach and

Nelder 1989), and similarly purely spatial approaches are also of limited use in these situa-

tions (Bailey and Gatrell 1995, Diggle 2003). Spatio-temporal GLMMs (Bernardinelli et al.

1995, Knorr-Held 2000) are potentially much more useful since they are not restricted by

standard normality conditions and can incorporate spatial and temporal structure through

mixtures of fixed and random effects, or through space-time varying covariates.

These desirable features apply also to survival modelling, except here it is the time to

infection that is being modelled, rather than counts of individual infections. This allows

us to elicit useful information not only about the magnitude of the hazard of infection for

each individual over time, but also its shape. From the hazard we can produce spatial and

temporal risk maps that can provide information analogous to both the basic reproductive

number, R0, and the epidemic curve (see chapter 3).

These latter measures are commonly used in epidemic modelling to assess the effects of

different biological assumptions or control strategies on the course of the epidemic. Since

R0 measures the average number of secondary infections from each primary infection, it

is important to reduce this value to less than one in order to prevent epidemic spread.

Many approaches, both early (Ferguson et al. 2001a,b, Keeling et al. 2001a) and more

recent (Tildesley et al. 2006) have used this approach. In all of these models however the

focus is on the effect of response policies on the global epidemic, and an important point

noted in Keeling et al. (2001a) was that the size of the neighbourhood for any kind of cull

strategy would be situation and disease specific. In particular there was evidence that

the disease dynamics changed across different spatial regions in the UK (for example the

disease was more aggressive in Cumbria than in Devon for example).

An interesting scenario presents itself when we consider whether a more focussed control

strategy could be enforced, based upon using a series of models at smaller spatial scales

such as at the county level. Incorporating the differences in disease dynamics exhibited

across these smaller regions into localised spatio-temporal hazard maps could be used to

influence the choice and extent of control adopted in each area. With this in mind we
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developed a series of statistical spatial survival models and applied them to data from the

2001 FMD epidemic in Devon. A key feature of these models was the ability to predict

future risk.

From a modelling perspective a further important consideration concerns how to integrate

information about factors affecting disease dynamics at different biological scales into the

model. Here we are looking at modelling at a large scale (e.g. premise level spread), and

in order to do this we have to amalgamate together information from smaller biological

scales. An introduction into the sorts of problems facing epidemiologists in this context is

given in chapters 1 and 2.

There are many factors, both internal and external to an individual host organism that will

determine the extent and magnitude of disease spread. At one end of the scale the within-

host spread of a disease is largely dependent its pathogenicity, and this can vary greatly

even between competing strains of the same basic pathogen. At the other end of the scale

factors such as climate conditions, geographical complexity and varying biosecurity can

affect the transmission potential of a disease between hosts and the ability for a pathogen

to survive in transit. Many previous methods have attempted to average out factors

involved in disease spread, and by modelling at the global scale allows individual-level

effects to be soaked up. Individual-level predictive epidemic models are much harder to

implement since the effect of individual level heterogeneities can be high, however their use

as a means of targeting control policies is potentially much greater. How effective these

predictive models are is largely dependent on how well we can identify and incorporate

factors associated with the epidemic process. The use of frailty effects can help to account

for extra variation from unknown confounding factors, but for predictive purposes this is

of limited use if the factors that we do know about do not constitute a good fit to the

data. This is further compounded by unreliable data (see chapter 5).

Previous FMD models have assumed species-varying transmission rates, with later papers

also including species-varying susceptibility. However these all assumed constant trans-

mission rates over time (though the very recent paper by Savill et al. 2007 attempts to
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address this particular problem). In our model we deal with this in a different manner.

Firstly we incorporate temporal information on the within-herd spread of the disease into

the model through the use of scaled infectivity functions. These were developed from some

species-specific deterministic SEIR models (for the viral excretion of an infected herd over

time) developed by colleagues working in the VLA, Weybridge (Arnold 2005). Once scaled

by the actual number of animals of the corresponding species on an IP, they gave a mea-

sure of total viral excretion for a premise over time. By smoothing the viral excretion over

space, a measure of the amount of viral load per unit area can be obtained. If the viral

load is included in the hazard function, then this results in space-time varying risk (i.e.

transmission potential) based on species-specific differences in viral excretion. This is a

particularly desirable aspect to our approach, since not only is it adaptive (i.e. it changes

when new information arises), but it also allows information on the epidemic process to

drive the transmission potential.

Currently, as discussed in chapter 5, there are many factors relating to external conditions

(e.g. climate, wind speed and direction, geographical complexities) that we do not have

information about. There is the potential that these effects could be built into the model,

either directly as covariates in the hazard, or through the form of smoothing function used,

though presently an isotropic process for viral spread is assumed and a bivariate normal

kernel function used as a spatial smoothing function. A possible way to incorporate

anisotropy could be through the correlation matrix between locations, and the use of

different bandwidths to result in different levels of spatial smoothing.

The choice of bandwidth is of key importance in spatial smoothing techniques (Bailey

and Gatrell 1995). A series of conventional models fitted to a simulated spatial epidemic

with no resistance was used to investigate the effects of using different bandwidth and

threshold values on the predictions from the model. The results suggested that the choice

of threshold was less important than the choice of bandwidth, with smaller bandwidths

seeming to provide better predictions. This even held in a situation where a smaller

bandwidth was used to generate VL than was used in the simulation. There is a trade-off

with this approach in that the bandwidth had to be such that the number of infected
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premises in the model fit did not become too small. In this case the predictions began to

break down. With regard to the parameters used in the simulation, the best predictive

model was one with a smaller bandwidth but with the threshold adjusted such that the

number of IPs used in the model fit was similar to the number from censoring with the

exact values. This is reasonable in the simulated case since a smaller bandwidth will

reduce the amount of censored observations in the model whilst preserving the amount of

IPs. In the Devon data set infections are more sparse, and a larger bandwidth is required

in order to obtain a reasonable number of IPs. This suggests that the Devon data set may

not follow a true localised epidemic process (this will be discussed in more detail below).

The viral load incorporates various desirable epidemiological features. It is biologically

motivated, including information on the epidemic process in its definition, it varies over

space and time, can be sequentially updated and also builds in species-specific within-

herd spread of the virus based on the relative size and proximity of nearby IPs. It also

incorporates the need (Keeling et al. 2001a) to include information about the infectiousness

of individual premises and how this changes over time, though there is still the additional

issue of how this relates to survival time. For example, it is reasonable to expect that two

premises with identical characteristics and an equal VL covariate will have the same hazard

of infection, although if they are subjected to this viral pressure at different times then

their relative hazards will not equal one. This can be partly dealt with by conditioning out

the dependence on the past covariate history from the hazard (see chapter 5). However

the temporal component (i.e. baseline hazard) is still linked to the absolute time from the

beginning of the epidemic. In order to make hazard measurements comparable it is more

useful to consider using survival time from exposure to the virus rather than absolute time,

and since the viral load is a measure of virus per unit area a threshold can be applied,

whereby an individual is classified as exposed or unexposed corresponding to the VL acting

on that location at that point in time. This way of using the viral load to censor the data

set via exposure is a useful way of thinking about epidemic modelling, since it helps to

reflect the idea that the risk set of susceptible individuals changes over space as well as

time. Moreover, this still retains past temporal structure through the survivor and density

functions.
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Furthermore, if average cumulative viral load (AV) is used as a covariate in the model,

then this also incorporates a ‘lag’ effect for the decrease in risk due to culling of IPs

and removal of infected animals. A downside of the current model is that it does not

account for relative changes in transmission over time. That is it does not allow for the

distributional form of the hazard for two premises with the same VL to be different if

they were exposed at different absolute time points. This could potentially arise due to

external factors such as movement and trading restrictions being enforced. The effect of

the latter is that non-localised infection should be reduced, and this will be felt through

the calculation of the VL. Movement restrictions on or around premises are more likely

to affect localised transmission potential and a change-point style approach could possibly

be used to account for this. (The melding of relative and absolute time is also a potential

issue with the mixture model approach - see chapters 6 and 7 - if the survival distribution

for one of the groups is believed to be based on a different time scale.)

Some early model results (chapter 5) showed that AV did not capture the dynamics of the

disease in Devon, resulting in hugely overpredicted survival times. Fitting to the data set

censored via exposure did little to improve matters. Two potential reasons for this were

identified: the presence of possible ‘spark’ or non-localised infections and/or the possibility

of premise-varying susceptibility to infection. Incorporating species-specific (SD, CD and

PD) and non-specific uninfected animal (AD) densities as surrogates for susceptibility in

the hazard also failed to solve the problem of overprediction (though in the latter case the

model suggested that the parameter for AD was significantly different to zero).

Considering these two problems in turn, it seemed that resistance to infection was more

likely to be the cause of the overprediction. The presence of non-localised infection in

the data set was thought to be low, particularly since non-exposed premises are removed

from the data set due to censoring via exposure. An advantage of the VL and animal

density measures are that information from non-exposed premises can still be included

in the model. In addition, removal of unexposed premises and the movement restrictions

that were imposed early on in the epidemic means that the risk of any remaining non-

localised infections heavily inflating the survival times is thought to be small. Some
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simulation studies (chapter 6) indicated that the effect of small numbers of susceptible

spark infections on the accuracy of the parameter estimates obtained from a reasonable

model is small.

The same set of simulated experiments suggested that the effect on the parameter estimates

from including resistant premises was much greater, and some more complex spatial simu-

lation studies conducted in chapter 7 further reinforced these findings. Resistant premises

effectively act as outlying and influential observations, since they become noticeable as

premises with large viral loads but long survival times. In order to deal with this problem

two alternative model formulations were considered, the long-term survivor (Maller and

Zhou 1996) and mixture models (McLachlan and Peel 2000). The former splits the data

into susceptible and immune proportions, and allows only the susceptible proportion to

experience failure. The mixture model is potentially more useful in the FMD case, since

it allows the resistant group to experience infection. The important difference between

incorporating susceptibility through the hazard function and through a long-term survivor

or mixture model is that the latter models allow the shape of the survival distribution to

be different, rather than just the magnitude.

The spatial simulations conducted in chapter 7 showed that the mixture model and long-

term survivor models performed much better than the conventional approach when resis-

tance to infection was present in the data set. Furthermore they both seemed to replicate

the results of the conventional model when resistance wasn’t present.

The predictive power of the mixture and conventional models was compared in chap-

ter 7.2. The survival approach allows us to obtain individual level predictions of future

failure times, and from these various measurements of risk can be obtained. Due to the

unconventional nature of our viral load covariate, the predictions had to be obtained by

using the posterior samples from our model fit to simulate the future path of the epidemic,

since VL is dependent upon the ongoing epidemic process. In simulation studies the mix-

ture approach performed much better than the conventional approach, and did not exhibit

the same extent of overprediction. The accuracy of the individual level predictions were
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still not great however, and we must take great care in attributing too much significance

to individual predicted failure times (Henderson and Keiding 2005, Parkes 1972). Instead

we investigated whether some type of spatial or temporal risk map, based on the hazard of

infection in some subsequent time period, or the probability of being a top-ranked future

infection would be more useful. One issue with the former approach is that the actual

hazard is based on the predicted survival time, and so if we are concerned about the ac-

curacy of the individual level predictions then this carries over to the value of the hazard

as well. It will give some kind of ‘relative’ risk in comparison to other premises (though

this is not technically a relative risk since it is not controlled by some background control

measure, though in some sense the AD and species-specific densities incorporate aspects

of the background population since they measure the intensity of susceptible animals per

unit area).

If the hazards are ranked then the probability of being in the top, r say, future infections

may be a more robust measure of risk than the hazard, and the level of ranking of interest

can be adapted as seen fit by the analyst. Spatial maps can help to identify areas of

potential future risk, whilst individual level predictions can help to distinguish between

susceptible and resistant premises within the same area. Obviously a key issue in any

of these approaches is ensuring that the mixing is well-defined, and the accuracy of the

predictions depends greatly on how well the covariates capture this process. We have

shown that in the worst case scenario the mixture model will at least still replicate the

conventional results.

We then applied our mixture model approach to a simulated epidemic situation to test

whether a targeted control policy could perform better than a more standard contiguous

cull strategy. The ‘contiguous’ cull strategy employed in the simulation was a mixture of

contiguity and a ring cull since we did not have information about the actual contiguity

matrix used by DEFRA. Instead we applied a high probability of two premises being

classed as contiguous if they were within 1km of each other, and a small probability if

they were within 2km of each other. Though this perhaps related to more premises being

classed as contiguous than in reality, it was certainly less encompassing than a true 3km
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ring cull. (Note that although a 3km ring cull was not introduced in Devon in 2001, the

dynamics of the simulation were more aggressive than those actually observed, and the

extent of control required was reflected by this fact.)

The simulation assumed that all IPs were ‘culled’ (i.e. removed from the study) after

24hrs and all contiguous UIPs within 48hrs of an infection. In addition there was no

residue effect left over from infected premises after culling. The results from the simula-

tion showed that an IP-only cull policy failed to keep the epidemic under control. The

contiguous cull worked much better but resulted in large numbers of removals. The target

cull policy resulted in similar numbers of IPs as the contiguous cull, but with substantially

less premises needing to be culled. This highlights the potential advantages of focussing

response strategies at a smaller spatial scale and adapting the aggression of each strategy

to the individual-level dynamics. However as mentioned earlier it is vital that the model

and covariates provide a good fit to the data.

The problem of defining the mixing was evident when we applied the mixture model to

the real data set. It is clear that the VL and uninfected animal densities do not capture

the dynamics of the disease in Devon. There are various potential reasons for this. As

discussed in chapters 2 and 5, there are many possible confounding factors that we are

either unaware of, or do not have information about. For example, we know there are vari-

able incubation periods, difficulties with detecting clinical signs and diagnosing infections,

animal movements between and around premises, variable biosecurity and animal hus-

bandry conditions, differences in farming practices, and variable landscape fragmentation

and livestock densities.

The approaches that we have discussed in this thesis have the capacity to incorporate

information about many of these factors, if available. The survival framework could be

adapted to introduce left- and interval-censoring to help account for variable incubation

periods for example. Latent infections relating to culled UIPs could potentially be im-

puted (Deardon et al. 2006) and anisotropy could be introduced in the spatial smoothing

function to reflect landscape fragmentation and environmental conditions such as wind
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speed and direction. As with any real-life situation, obtaining information about these

factors is difficult and so instead we must try to produce as robust a model as possible

in the absence of this information. Frailty effects are useful in this respect since they

can absorb excess variation from some of these confounding factors, however they are of

little practical use if the model does not accurately capture the dynamics of the disease,

particularly when using the model to predict. It is in these situations where stochastic

simulation based models such as those described in chapter 3 are useful.

Also, we have based our infectivity functions on a deterministic model for within-herd

spread. Since we could not produce individual premise level curves for viral excretion we

had to make a series of assumptions about how this behaves relative to the size of each

premise. Also we have to make assumptions regarding the spatial spread and density of

animals around each point (premise) location. This affects the timing and smoothing of

excretion rates, as does the additional assumption that the infection spreads to all animals

in a herd.

Another possible reason why we are not capturing the dynamics of the disease is that

our model may be wrongly defined. We have assumed a parametric form for our survival

distributions, and this assumption may be too strong. In addition the proportional haz-

ards model may be inappropriate. An interesting extension of the Keeling et al. (2001a)

model, published by Diggle (2005), developed a partial likelihood approach for modelling

the probability of infection. The advantage of this type of method was that parameter

estimates can be obtained for the effect of covariates on the epidemic process, without

the additional (and sometimes restrictive) assumption that the data follow a particular

parametric form. A problem with this type of semi-parametric approach (see Cox 1972,

Cox and Oakes 1984) is that the lack of parametric dependence means that prediction

becomes extremely difficult. There have been recent examples (e.g. Demeris and Sharples

2006) of papers in which survival estimates have been extrapolated from semi-parametric

models, and it may be interesting to look at these sorts of approaches in the context of

epidemic modelling as a potential way of tackling this issue.
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Of course the form of the mixture model is also important. We have assumed two groups

and have forced a parametric form to each component in the mixture. This could introduce

additional biases not only due to the choice of parametric distribution (as highlighted

above), but also due to the number of groups in the model. This latter issue could

potentially be dealt with using reversible jump methodology (Richardson and Green 1997).

The final alternative is that the Devon epidemic simply did not follow a localised infective

process. This is a possibility, since it can be seen from figure 5.1 that there are areas

where there are large numbers of uninfected premises in-between nearby infected premises.

Movement restrictions were in place fairly early on in the Devon epidemic and landscape

fragmentation was less extensive in Devon than in some other infected regions, and this

perhaps indicates that the sources of infection may be due to infected animals being

brought into farm premises rather than through a localised mechanism. It would be

interesting to try our techniques on a data set from an area such as Cumbria, which

exhibited a more traditional wave-like epidemic spread pattern synonymous with localised

epidemic processes.

With regards to non-localised infections, the contact-tracing data available for the move-

ment of animals between different farm premises provided by the Cattle Traceability Sys-

tem (CTS) has information on cattle movements into and out of premises. Although this

does not help gauge movement of other livestock such as pigs and sheep, it may per-

haps still give a better indication of the movement of animals around the UK in general,

and provide useful links between different areas of the country, helping to better identify

dangerous contacts.

The models that we have explored in this thesis provide some potentially useful frameworks

in order to view and model important biological and epidemiological aspects of infectious

animal disease epidemics. In situations where the movement and location of susceptible

animal herds is known and can be controlled, the viral load approach to censoring the data

set via exposure is useful, since not only does it exclude premises that are ‘not-exposed’

to the virus, but it also allows survival times to be compared relative to exposure.
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Extensions to the basic survival models can be used to adapt to different situations, and

in particular the mixture and long-term survivor models have shown great potential in

simulation studies to deal with the issue of resistance or immunity to infection. Further-

more the mixture or competing risks approaches can be used to model multiple causes of

failure.

Accounting for additional aspects of the epidemic process is difficult however, especially

since reliable data is not always available due to the logistical constraints of large scale

data collection. A further issue is that of sequential updating of the model as an epidemic

progresses. A key feature of the VL is the ability to be able to incorporate new information

about the epidemic process, and the hazard maps shown in chapter 7 were produced by

fitting a new model at each time point. An interesting future project could be to see

whether models could be updated using prior information from models fitted at previous

time points. One problem with this is that the accuracy of each new model is dependent on

the accuracy of the models at previous time points, which could result in serious forecasting

error. Methodology such as particle filters (Doucet et al. 2001) may potentially be of

interest here.
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Appendix A

Fitting non-standard likelihoods in

WinBUGS

None of the models used throughout this thesis fall into the list of standard probability

distributions in WinBUGS. Therefore an alternative fitting mechanism is needed. Fortu-

nately we can use the so-called ‘zeros’ trick (Spiegelhalter et al. 2003).

Consider that our data, T1, . . . , Tn, is a random sample from a non-standard distribution,

where each observation contributes Li to the likelihood. If we introduce a set of n zero-

valued Poisson latent observations, Qi, with mean θi, then Qi contributes e−θi to the

likelihood. The correct likelihood contribution for Ti can then be obtained by setting

θi = − log(Li). (Note that a similar approach can be used if we introduce a set of n

Bernoulli random variables instead, each with value one and parameter pi, such that

pi = Li

C
, where C is a constant that ensures pi < 1.)

This approach is used for all of the models in this thesis, but as an illustrative example con-

sider the discrete time Weibull model with time-dependent covariate given in section 5.4,
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with likelihood:

L(α, β0, β1) =
n
∏

i=1

({

[

1 − exp(−λi(ti−1)[t
α
i − (ti − 1)α])

]

× exp



−

ti−1
∑

j=1

λi(j−1)[j
α − (j − 1)α]





}δi

×



exp



−

ti
∑

j=1

λi(j−1)[(j)
α − (j − 1)α]









1−δi






, (A.1)

where λit = exp(β0 + β1Xit) and Xit is a time-dependent covariate. The WinBUGS code

for (A.1) is then:

model

{
C<-100

for(i in 1:N)

{
for(j in 1:t[i])

{
lambda[i,j]<-exp(beta0+beta1*x[i,j])

h[i,j]<-lambda[i,j]*(pow(j,alpha)-pow(j-1,alpha))

}
for(j in (t[i]+1):maxt)

{
lambda[i,j]<-0

h[i,j]<-0

}
S[i]<-exp(-sum(h[i,]))

f[i]<-(1-exp(-h[i,t[i]]))*exp(h[i,t[i]]-sum(h[i,]))

zeros[i]<-0

theta[i]<-(-1)*(delta[i]*log(f[i])+(1-delta[i])*log(S[i]))+C

zeros[i]∼dpois(theta[i])
}

beta0∼dnorm(0,0.01)
beta1∼dnorm(0,0.1)
alpha∼dgamma(0.1,0.1)

}

Here C is simply a constant to ensure that θi > 0 (since it is a Poisson mean). The matrix
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of covariate values, X , that was passed to WinBUGS from R was formulated such that

column 1 of X corresponded to covariate values at time 0 and so on. Hence although

the WinBUGS code states lambda[i,j]<-exp(beta0+beta1*x[i,j]) this actually cor-

responds to λi(j−1) in real terms.

An alternative and perhaps more attractive way to do this for large-scale models is to

use the WinBUGS Development Interface, known as WBDev (Lunn 2005). This allows

non-standard distributions and/or complex logical expressions to be hard-wired directly

into the WinBUGS package by coding them in component Pascal. Moreover the hard

work has already been done and direct knowledge of component Pascal is not necessary,

since example code is provided that can be adapted to allow the user to insert their own

functions at pre-defined places within the code. This allows complex model formulations

to run much more efficiently.
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Appendix B

Initial value generation

The models were reasonably sensitive to the choice of initial value passed to WinBUGS. To

illustrate the method of generation, let T be the response variable with hazard function,

h(t) of a similar form to the models described in chapter 5. Suppose also that we have

an additional m-vector of covariates, x = (x1, . . . , xm). To generate initial values, Ψini =

(αini,βini), for each chain consider the following steps:

1. Sample a value of αini from a positive distribution.

2. Produce a scatter plot of the data and obtain a rough estimate of the range of

infection times for individuals with x ≈ 0. Denote this range (tL0, tU0).

3. Calculate E(tL0) and E(tU0) in terms of parameter β0, providing upper and lower

limits (denoted bL0 and bU0 respectively).

4. Sample β0ini from a U(bL0, bU0) distribution.

5. Set i = 1.

6. Let xi− = 0, where xi− is the vector x with xi variable removed.

7. Produce a scatter plot of the data and obtain a rough estimate of the range of

infection times for individuals with xi ≈ x̄i ± c, c > 0. Denote this range (tLi, tUi).
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8. Calculate E(tLi) and E(tUi) (using β0ini and x̄i ± c) in terms of parameter βi, pro-

viding upper and lower limits (denoted bLi and bUi respectively).

9. Sample βiini from a U(bLi, bUi) distribution.

10. Set i = i+ 1 and repeat steps 6 to 9 until i > m.

This was the basic method used to generate the initial values for the regression parameters

in each of the models fitted throughout this thesis. A similar method was used to generate

the mixing parameters, γ.
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