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Abstract
In the framework of a first-price private-value auction, we study the

seller as a player in a game with the buyers in which he has private in-
formation about their realized valuations. We find that depending upon
his information, set of signals, and commitment power he may strategi-
cally transmit messages to buyers in order to increase his revenue. In an
environment where the seller knows the rankings and lacks any commit-
ment power, we find that the seller is unable to exploit his information.
However, in an environment where the seller knows the realized valuations
and can credibly announce either the true rankings or the true values (or
announce nothing at all) but cannot commit as to which of these truthful
messages to announce, then it is indeed possible to increase his revenue. If
the seller, in addition, can commit to the full signaling strategy, then his
expected revenue will be even higher. We believe that this line of research
is fruitful for both better understanding behavior in auctions and finding
paths to higher seller revenue.

1 Introduction

The standard model of a private-value auction assumes that while there is com-
mon knowledge of the joint distribution of valuations, buyers have private infor-
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mation about their own valuations. In this paper, we investigate the case where
the seller is also informed about the buyers’ private valuations. This can occur
if either the seller possesses information about the buyers’ types or information
about the object’s attributes.

A seller may have private information about the buyers’ types if he simply
possesses more information than one buyer about another buyer’s type.1 For
example, this may occur when the bidders’ identities are known only to the seller
or if previous interactions revealed information (such as losing bids) only to the
seller. It may also occur if, from experience, the seller is better at judging types
of buyers than the buyers are at judging each others’ types.

Knowledge about particular attributes of the object for sale is a second source
of seller information. For example, a database programmer (the seller) knows
both Oracle and Sybase, while O.com (buyer 1) needs an Oracle programmer
and S.com (buyer 2) needs a Sybase programmer. Each company is only able to
judge the value of the programmer’s skills that are relevant to its needs, whereas
the programmer can evaluate his worth to each of the companies. Thus, the
seller knows the object’s worth to each buyer and each buyer only knows his
own valuation for that object. Studying our scenario of seller information may
have additional implications. If possessing private information proves valuable to
the seller, he may either seek to obtain information that he lacks or attempt to
prevent the discovery of his information by others.2

Once we endow the seller with private information, we must include him as
a player in a game and consider the strategic consequences of possible actions.
This can be examined in either the framework of mechanism design as we do in
a subsequent paper (Kaplan and Zamir, 2000) or within a specific auction design
as we do here. The latter would be more appropriate when either it is illegal to
change the auction design or there is a high cost to do so.3 This may occur if
the seller is uncertain about the type of his information at the time of auction
design.

Possible specific auction designs to consider studying are those most com-

1This type need not be the precise valuation. For example, a buyer’s type may be a preference
for artwork by Picasso. This may indicate that for a particular work by Picasso he is more
likely to have a higher valuation than a buyer without such preference.

2The Internet auction company Ubid hides not only losing bids but the sales price the
instant an auction closes. Other sites such as Auctionwatchers try to obtain and compile such
information.

3Changing the design may be illegal if, for instance, the government declares that a first-
price auction must be used or if the sale of the object is delegated to an auctioneer, the owner
requests the use of a particular design from fear of collusion between the auctioneer and a buyer.
It may also be impossible to change the design since such a design is a naturally occurring part
of the environment, such as the database programmer eliciting job offers. It may be costly to
change the design for both the buyers and the seller. For instance, an Internet auction company
must implement the new design (rewrite software) and the buyers would need to learn the new
rules.
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monly used: English, second-price sealed-bid, first-price sealed-bid, and Dutch.
In an English, private-value auction, bidding up to one’s value is a dominant strat-
egy independent of what additional information one possesses. In a second-price
sealed-bid auction, again a dominant strategy exists independent of additional
information. This leaves us with a first-price sealed-bid (or the strategically
equivalent Dutch auction), which is the simplest case of a commonly used mech-
anism where, as we shall see, the strategic use of seller information has non-trivial
implications. This is the subject of the present paper.

Some evidence of these implications is provided by Landsberger, et al. [1998]
(henceforth LRWZ), who consider a standard first-price auction with two buyers
in which the rankings of the buyers’ valuations are common knowledge. They
find that when the buyers’ valuations are drawn from a uniform distribution,
both buyers bid more aggressively in equilibrium than they would have without
this information, and consequently, the seller’s revenue is higher. Although for
this result the seller is not assumed to know the rankings, it raises the interesting
question of whether a seller with such private information can increase revenue
by transmitting some of his information to the buyers, inducing an equilibrium
similar to LRWZ. In answering this question, we must consider several proper-
ties of the environment: the seller’s information, available set of messages and
commitment power.

Using LRWZ as a baseline, we first examine an environment in which the
seller knows the rankings and can publicly announce a message as to which buyer
has the highest value. Although a seller who knows the rankings will typically
know more, we consider this example to gain insight into the role of commitment
power in this context. In fact, we find that when the seller lacks commitment
power (the ability to commit to sending messages based upon his information),
he cannot profit from his information and his lack of credibility causes him to
send a message with no meaning that is ignored. This holds for any number of
public messages. In contrast, if the seller could fully commit to transmitting the
true rankings, he can gain, as indicated by the results of LRWZ. Their results
also imply that if the seller could commit to either transmit the true rankings
or not (send a ‘white’ signal), he would also be able to increase his revenue (by
transmitting the true rankings).

We thus develop the notion of ‘partial truthful commitment’ according to
which the seller is constrained to send a ‘truthful’ message, but has several such
truthful messages to choose from. For example, when the seller knows that
buyer 1 has a valuation of .2 and buyer 2 has a valuation of .4, he can transmit
(publicly) the message “buyer 2 has the highest valuation.” He can also transmit
the message “buyer 1 has a valuation of .2 and buyer 2 has a valuation of .4.”
In addition, he can refrain from sending any signal (equivalently send a ‘white
signal’). However, he cannot commit to which of the three options he will choose.
Although it may sound cryptic, this form of commitment seems reasonable. In
general, if someone lies, it can be detected at some future date, perhaps an audit
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may reveal the truth. A lair would be subject to charges of fraud; however, not
revealing all the information one possesses would not be punishable or at least
much harder to prevent (although in a court of law, one swears to tell the whole
truth and nothing but the truth). Such a form of commitment was first used
in the Persuasion Game (Milgrom [1981]). In this game, a salesman reports the
quality of a good (represented by a real number) to a buyer. His report (a subset
of the real numbers) is restricted to contain the actual quality (known to the
salesman).

To examine such a model, we consider the case where the seller knows the
true valuations and can transmit the rankings (partial information), the val-
uations (the entire information), or a ‘white’ signal (no information). In this
environment with such partial commitment, we show that the seller can still gain
from his information. In particular, we find that the highest revenue generating
equilibrium is that in which the seller sends the rankings when the low-value
buyer has a value that is less than a fraction of the high-value buyer’s value (half
with a uniform distribution) and otherwise sends the values. Such an equilibrium
is efficient.

Clearly any revenue achieved with partial truthful commitment can also be
achieved with full commitment (i.e. by committing to use a certain signaling
strategy). Thus, the next question is whether the seller can do strictly better if
he has full commitment power. Previously, we saw that in the case where the
seller knows only the rankings, both full and partial truthful commitment are
equivalent. However, we show that this is not always the case by providing a
strategy in the previous model (in which the seller knows the values) that by
committing to use it, the seller induces a strictly higher expected revenue.

These results differ from two important results from earlier auction theory lit-
erature. First, the efficiency of the (highest revenue) partial commitment equilib-
rium violates the revenue equivalence of efficient auctions (Myerson [1981], Riley
and Samuelson [1981]). Second, the strategy studied under full commitment is
one of only partial revelation of seller information. This generates higher revenue
than full revelation, in contrast to the Milgrom and Weber model [1982a, 1982b]
in which full revelation of the seller’s information provides the highest revenue.

Furthermore, this framework provides another insight into Strategic Informa-
tion Transmission that is different from Crawford and Sobel [1982]. We note that
in the Crawford-Sobel model information is partially disclosed due to the lack of
commitment power on the part of the sender; under full commitment there is full
revelation. In our model, partial disclosure of information takes place even when
full commitment power is available, while nondisclosure occurs in the absence of
commitment power.

The paper proceeds as follows. In Section 2, we introduce the levels of com-
mitment and the subsequently used notation. In Section 3, we show that a seller
without commitment power cannot benefit from his knowledge of the rankings.
We then examine the environment with the seller possessing full knowledge of
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the values and present the results of partial commitment and full commitment in
Sections 4 and 5 respectively. In Section 6, we compare the different cases of our
model and discuss their relationship to the works of Milgrom and Weber [1982]
and Crawford and Sobel [1982]. We conclude in Section 7.

2 General Environment

Our investigation of the seller’s strategic use of private information is based upon
the following three-player game (with the seller and the two buyers as players),
which is a standard Harsanyi game of incomplete information. The data of the
game consists of the sets of valuations V1 and V2, a cumulative probability dis-
tribution F on V = V1 × V2, a partition π of V , and an alphabet A (a set of
signals). The game is played as follows.

• Nature chooses the buyers’ valuations (types) v = (v1, v2) ∈ V according
to the distribution F .

• Buyer 1 is informed of v1, buyer 2 is informed of v2, and the seller is informed
of π(v), the partition element of π containing v.

• The seller announces publicly4 a message from his alphabet A.

• The buyers submit sealed bids b1 and b2.

• The buyer with the highest bid gets the object and pays his bid to the
seller.

In this game, we represented the seller’s information about the buyers’ valu-
ations as a partition π of the buyers’ type set V . The following are examples of
such a partition.

1. π = {{v}|v ∈ V } corresponds to a seller who knows the precise valuations
(we refer to this π as the maximal information).

2. π = {V } corresponds to a seller with no private information about the
valuations.

3. π = {L,H}, where L = {v = (v1, v2)|v1 < v2} and H = {v = (v1, v2)|v1 ≥
v2}, corresponds to a seller who knows the rankings.5

4In further work, we also consider the possibility that the seller sends private messages a1

and a2 to buyers 1 and 2, respectively.
5It is arbitrary, which element of the partition contains v1 = v2 since in this paper, we

consider only continuous distributions on V .
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2.1 Levels of Commitment

We continue to describe the environment by formally defining the levels of com-
mitment that were mentioned in the introduction. Since some of the difference
between the levels of commitment hinges on whether or not what the seller says is
a ‘true’ statement. Before describing these levels of commitment we must define
what we mean by ‘truth’ and ‘truth-telling’ strategies.

The seller’s alphabet of signals is void of meaning without an interpretation
function I , which assigns to any message a meaningful statement about the state
of the world. Formally, let P(V ) be the set of all subsets (power set) of V , then
an interpretation function is: I : A→ P(V ). This interpretation function is part
of the environment and cannot be chosen or influenced by the seller.6

For example, if the information is maximal, π = {{v}|v ∈ V }, and the alpha-

bet is A = {a, b}, then an interpretation function of I(x) =

{
v1 < v2 if x = a
v1 ≥ v2 if x = b

implies that the statement of a means that buyer 2 has the highest value and the
statement of b means that buyer 1 has the highest value.

The set of pure strategies (of the seller) is S = {s : π → A}, or equivalently,
S = {s : V → A| s is π-measurable}. The set of mixed strategies is Σs = 4(S)
(the set of probability distributions on S). The set of truth-telling pure strategies
St = {s ∈ S|I(s(v)) ⊇ π(v), ∀ v ∈ V }, while the set of truth-telling mixed
strategies is Σt

s = 4(St). (For instance, the only truth-telling strategy in the
previous example would be to send a if v1 < v2 and b if v1 ≥ v2.)

We now introduce four variants of games to capture the various levels of
commitment power the seller may have. To avoid duplication we shall speak only
of sets of (seller’s) mixed strategies Σs and Σt

s and consider the pure strategy sets
S and St as their subsets, respectively.

• A situation of no commitment corresponds to a game in which the seller’s
strategy set is Σs.

• A situation of partial truthful commitment is described by a game in which
the seller’s strategy set is Σt

s.

• A situation of full truthful commitment is described by a Stackelberg lead-
ership game in which the seller can credibly commit to choosing from a
nonempty, truthful strategy set Σct

s ⊂ Σt
s, where this restriction is com-

monly known by the buyers.

6If the seller instead could choose the interpretation function, the difference between the
levels of commitment (other than no commitment) would be greatly diminished as the proposi-
tions in this section show. Also, future research may have the interpretation function emerging
endogenously as part of the equilibrium of an evolutionary model.
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• A situation of full commitment is described by a Stackelberg leadership
game, as before, where the seller can credibly restrict himself to a nonempty
strategy set Σc

s ⊂ Σs commonly known by the buyers.

Loosely speaking, the above classification captures the four possibilities of
available commitment power: whether or not the seller must use truthful mes-
sages, and whether or not he can credibly restrict his signaling strategy set.
Formally, the first two games differ, as do the last two games, by the seller’s
strategy set, while the first two differ from the last two by their game structure.

The following example should provide insight into the definitions. The seller
has information partition π = {w, x, y, z} (which values are in which partition
element is not germane to the example). The alphabet is A = {a, b, c, d}. The
interpretation of this alphabet, I , is I(a) = {w}, I(b) = {x}, I(c) = {w, x}
and I(d) = {y, z}. Under no commitment, there would be no restrictions on
the seller’s strategy. Under partial truthful commitment, the seller would be
restricted to sending a or c when informed of w, sending b or c when informed of
x, and sending d when informed of y or z. Under full truthful commitment, the
seller has the ability to credibly commit to choosing from a restricted strategy set
of truthful strategies. For example, he could restrict himself to sending a when
w, c when x, and d when y or z. Under full commitment, the restricted set may
include non-truthful strategies. He can, for example, restrict himself to sending
signal a when w, signal b when x, signal c when y (which is not truthful), and
signal d when z.

As mentioned in the introduction, the idea of ‘partial truthful commitment’
is employed in the Persuasion game (Milgrom [1981] and Milgrom & Roberts
[1986]) where “truth” is captured in the form of allowing the seller of the good
to send a message in the form of a set (in the quality space [0, 1]) containing
the true quality. A similar notion appears later in Seidmann and Winter [1997]
where the “truth” telling is captured by making the available set of signals state
dependent (so that lying, which does not exist explicitly in their model, would
correspond to a message which is not available in that state of information). In
our model, the notion of “truth” is captured by the interpretation function.

2.2 Equilibrium

We denote the seller’s strategy set as before and we let Σi : Vi×A −→ 4[R+] be
buyer i’s strategy set, where i is in the set of buyers B. The various games have
strategy sets defined as follows:

• The no commitment game Γn has strategy sets (Σs, (Σi)i∈B).

• The partial truthful commitment game Γpt has strategy sets (Σt
s, (Σi)i∈B).

• The full commitment game Γf has strategy sets (Σs, (Σ∗i )i∈B), where Σ∗i =
{σ∗i : Σs → Σi}.
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• The full truthful commitment game Γft has strategy sets (Σt
s, (Σ

t∗
i )i∈B),

where Σt∗
i = {σt∗i : Σt

s → Σi}.
Denote ΣB = ×i∈BΣi, Σ∗B = ×i∈BΣ∗i , and the payoff of player i (in B ∪ {s})

as Hi : Σs × ΣB → R. Also, by the slight abuse of notation, we write Hi(σs, σ∗B)
for σ∗B ∈ Σ∗B to mean Hi(σs, σ∗B(σs)).

Accordingly (denoting, as usual σ−i and σ∗−i elements of Σ−i = ×j∈B\{i}Σj

and Σ∗−i = ×j∈B\{i}Σ∗j respectively), a Nash equilibrium in Γn is a σ = (σs, σB)
such that Hi(σ) ≥ Hi(σ̃i, σ−i) for all σ̃i ∈ Σi and i ∈ B ∪ {s}. A sequen-
tial equilibrium in Γn is a Nash equilibrium σ = (σs, σB) such that for all
i ∈ B, a in A and vi in Vi, there exists a σ̃s in Σs such that Hi(σ̃s, σB|a, vi) ≥
Hi(σ̃s, σ̃i, σ−i|a, vi) for all σ̃i ∈ Σi and i ∈ B. Also, a subgame-perfect equi-
librium in Γf is a σ = (σs, σ∗B) such that Hi(σ̃s, σ∗B) ≥ Hi(σ̃s, σ̃∗i , σ

∗
−i) for all i ∈

B, σ̃∗i ∈ Σ∗i , and σ̃s ∈ Σs and Hs(σ) ≥ Hs(σ̃s, σ∗B(σ̃s)) for all σ̃s ∈ Σs. A sequen-
tial equilibrium for Γpt and a subgame-perfect equilibrium for Γft are defined in
a similar way.

As can be seen from these definitions, the (only) subgames considered in Γf
and Γft are those resulting from fixing the strategy of the seller to σs ∈ Σs. In
Γn and Γpt, there are no such subgames and we resort to a notion of sequential
equilibria.

Throughout this paper, an equilibrium in Γn (or in Γpt) stands for a sequen-
tial equilibrium and an equilibrium in Γf (or Γft) stands for subgame-perfect
equilibrium.

2.3 General Implications

Before analyzing specific environments, it is worthwhile to see what general results
can already be derived from the above definitions. In what follows, we provide
some weak inequalities among the different levels of commitment. In subsequent
sections, we give specific examples showing that these inequalities can be strict.

We use the following definition to compare games, using the appropriate equi-
librium concept for each.
Definition: Given two games Γ and Γ̃ and a player i in both of them, let Hi

and H̃i be the payoff functions of player i in Γ and Γ̃ respectively. We say that i
does better in Γ than in Γ̃ (and write Γ �i Γ̃) if:

1. For any equilibrium σ of Γ, there is an equilibrium σ̃ of Γ̃ such that
Hi(σ) ≥ H̃i(σ̃).

2. For any equilibrium σ̃ of Γ̃, there is an equilibrium σ of Γ such that
Hi(σ) ≥ H̃i(σ̃).

Proposition 2.1 The seller’s preference on the various games satisfy the follow-
ing relationships:

Γf �s Γft �s Γpt and Γf �s Γn
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Proof: Let σ = (σs, σB) be a sequential equilibrium of Γn. For i ∈ B, consider
the set Σ∗i (σ) of buyer strategies in Γf that have the same subgame behavior in
subgame σs, that is,

Σ∗i (σ) = {σ̃∗i ∈ Σ∗i |σ̃i∗(σs) = σi}
There exists a subgame-perfect equilibrium σ̃ in Γf such that σ̃B ∈ Σ∗B(σ).

(Substitute the payoffs of the σs branch into the tree. There is a subgame-perfect
equilibrium of this new tree; thus, there is one in the old tree as well.) Notice
that this implies that Hf

s (σ̃) ≥ Hs(σ) (to avoid confusion, we write Hf
s as the

payoff in Γf ). Thus, for any equilibrium σ in Γn, there is an equilibrium σ̃ in Γf
with weakly higher payoff to the seller (establishing condition 2 for Γf �s Γn).

Let En be the set of sequential equilibria of Γn, and let

σ = arg min
σ̃∈En

Hs(σ̃)

For any subgame-perfect equilibrium σ∗ of Γf , Hf
s (σ∗) ≥ Hs(σ). Thus, for

any subgame-perfect equilibrium in Γf , there is an equilibrium in Γn, namely σ,
with weakly lower payoff for the seller. This concludes the proof of Γf �s Γn. In
a similar manner, we can prove that Γf �s Γpt and Γft �s Γpt.

It is left to prove that Γf �s Γft. This follows from the observation that the
seller’s strategy set is larger in Γf than in Γft: if there is an equilibrium (σs, σt∗B )
in Γft, there must be an equilibrium (σ′s, σ

′∗
B) in Γf such that σ′∗B(σs) = σt∗B (σs).

For this equilibrium, either σs = σ′s (and the seller receives the same payoff in
both equilibria) or the seller receives (weakly) more in (σ′s, σ

′∗
B) than in (σs, σt∗B ),

establishing condition 2 for Γf �s Γft. In the other direction, the equilibrium
(σs, σt∗B ) in Γft with the lowest seller payoff will pay the seller weakly less than
any equilibrium (σ′s, σ

′∗
B) in Γf , since the seller could choose σs in Γf and induce

the path σ′∗B(σs). 2

2.4 Verifiability

What may allow some form of commitment to a specific signaling strategy? A
possible answer is the availability of some type of verification at a future point in
time. That is, a seller can commit to a strategy set if eventually one can discover
the seller’s information and verify if the signal sent is consistent with that set of
signaling strategies. In the following, we will formalize the definition of a veri-
fiable strategy set and investigate the implications for the levels of commitment
that we examine. In particular, we will show that our notion of partial-truthful
commitment is reasonable since the truthful-strategy set is verifiable.

For Sc ⊂ S and v ∈ V , define Sc(v) ⊂ A by Sc(v) = {s(v)|s ∈ Sc}.
Definition: A set of (seller’s) pure strategies Sc ⊂ S is verifiable if for all s̃ ∈ S,
{s̃(v) ∈ Sc(v), ∀v ∈ V } =⇒ s̃ ∈ Sc.
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An example of a set of pure strategies which is not verifiable is the following.
The seller has an information partition of two elements, π1 and π2, and has two
signals, a and b, at his disposal. Consider the following strategy set Sc = {s1, s2},
where s1(π1) = a, s1(π2) = b, s2(π1) = b and s2(π2) = a. This set is not verifiable,
since, for example, s3 defined by s3(π1) = s3(π2) = a satisfies s3(v) ∈ Sc(v) for
all v ∈ V , yet s3 is not in Sc.

Proposition 2.2 The set of pure truthful strategies, St, is verifiable.

Proof: For all v ∈ V ,

St(v) = {s(v)|s ∈ St} = {s(v)|s ∈ S, I(s(v′)) ⊃ s(v′), ∀v′ ∈ V }

⊂ {s(v)|s ∈ S, I(s(v)) ⊃ s(v)}
Hence, {s(v) ∈ St(v), ∀v ∈ V } ⇒ {I(s(v)) ⊃ π(v), ∀v ∈ V } ⇒ s ∈ St. 2
We now make a comparable definition of verifiability for mixed strategies.

Denoting by Supp(σ) the support of the (seller’s) mixed-strategy σ, for σ ∈ Σ
and v ∈ V , define σ(v) = {s(v)|s ∈ Supp(σ)}. For Σc ⊂ Σ let Σc(v) = ∪σ∈Σcσ(v)
and Supp(Σc) = ∪σ∈ΣcSupp(σ).
Definition: A set of mixed strategies Σc ⊂ Σ is Σ-verifiable if for all σ̃ ∈ Σ,
{σ̃(v) ⊂ Σc(v) , ∀v ∈ V } =⇒ σ̃ ⊂ Σc.

Denoting by Con(D) the convex-hull of the set D, we have:

Proposition 2.3 A set Σc of seller’s mixed strategies is Σ-verifiable if and only
if Σc = Con(Sc) where Sc is verifiable.

Proof: Let Σc be a Σ-verifiable set of mixed strategies. We show that Σc =
Con(Supp(Σc)) and that Supp(Σc) is verifiable.

First, notice that Σc is convex. This follows from the fact that if σ̃ is a (strict)
convex combination of σ1 and σ2 then σ̃(v) = σ1(v) ∪ σ2(v), for all v ∈ V .

Second, the extreme points of Σc are pure strategies. In fact, if Σc is Σ-
verifiable and σ ∈ Σc then s ∈ Σc, for all s ∈ Supp(σ) (since s(v) ∈ σ(v), for
all v ∈ V ). Since clearly any s ∈ Supp(Σc) is an extreme point of Σc, it follows
that Σc = Con(Sc), where Sc = Supp(Σc). It remains to prove that this Sc is
a verifiable set of pure strategies. This follows from noticing that Σc(v) = Sc(v)
for all v ∈ V and hence: for all s̃ ∈ S,
{s̃(v) ∈ Sc(v), ∀v ∈ V } ⇒ {s̃(v) ∈ Σc(v), ∀v ∈ V } ⇒ s̃ ∈ Σc ⇒ s̃ ∈ Supp(Σc) = Sc.

To prove the ‘if’ part of the statement, let Sc be a verifiable set of pure strategies.
We want to show that Con(Sc) is Σ-verifiable, i.e. we have to show that for all
σ̃ ∈ Σ, {σ̃(v) ⊂ Con(Sc)(v), ∀v ∈ V } implies σ̃ ∈ Con(Sc).

As noticed before: Con(Sc)(v) = Sc(v) and σ̃(v) = {s̃(v)|s̃ ∈ Supp(σ̃)}.
Therefore, we have {σ̃(v) ⊂ Con(Sc)(v), ∀v ∈ V } implies that for all s̃ ∈ Supp(σ̃),
{s̃(v) ∈ Sc(v), ∀v ∈ V }. Since Sc is verifiable, this implies s̃ ∈ Sc and hence
σ̃ ∈ Con(Sc). 2
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Corollary 2.1 The set of mixed truthful strategies Σt is Σ-verifiable.

Proof: This follows from Proposition 2.3 since Σt = 4(St) = Con(St) and St

is verifiable by Proposition 2.2. 2

Corollary 2.2 No single strategy is Σ-verifiable unless it is a pure strategy.

In the general game-theoretical framework, one may ask whether a sender of
a signal in a game would ever want to commit to a non-verifiable strategy. We
can provide the answer with an example of such a case.

Consider a game with two receivers playing the following game:

6,1 0,0

1,65,5

r

l

l r

This game has two pure equilibria, (l, r) and (r, l) with payoffs (1, 6) and
(6, 1), respectively, a mixed-strategy equilibrium with payoff (3, 3) (both play
(1/2, 1/2)) and a large set of correlated equilibria including one with payoff (4, 4)
(probability 1/3 for each of (l, l), (l, r), and (r, l)). If the sender’s payoff is the
sum of both receiver’s payoffs, he would have incentive to help them obtain a
correlated equilibria. He cannot credibly use this correlated mixture of (1/3 (l, l)+
1/3 (l, r) + 1/3 (r, l)), since he prefers the choice of (l, l) which gives him a payoff
of 10 (as opposed to a payoff of 8). There is no method to verify that he was
not mixing according to the correlated equilibrium even if most of the time he is
sending the corresponding signals to obtain (l, l) (unless of course in an infinitely
repeated play setup where the mixed strategy can be statistically tested with
arbitrarily large precision). We conclude that the sender would like to commit to
the mixed non-verifiable signaling strategy leading to the correlated equilibrium.

In the classic way of treating correlated equilibria, the previous example would
entail private signals. We now show that such correlated equilibria also exist
when the sender is limited to a public message. Thus, a desire for commitment
to non-verifiable exists for public signals as well. Take the previous game with
the following modification. For each receiver, there is a coin flip seen only by him
and the sender. The sender publicly mentions which action to take; however, a
receiver does the action mentioned if his coin is heads and the other action if his
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coin is tails. The correlated equilibrium are analogous to those in the previous
game, since, as before, each receiver believes the other receiver has a equal chance
of choosing each action.7

In the following, we can formally see the above results. Each coin can have two
possible outcomes: heads or tails. We define the set of outcomes as C = {h, t}.
Each player has two possible moves: l or r. His set of moves is M = {l, r}.
The sender has an alphabet of private signals (recommendations) to send to the
players A = {L,R}. The sender’s pure strategy set is Ss : C2 → A2, while each
player has the strategy set of Sp : C × A → M . Mixed strategies are defined as
Σs = 4(Ss) and Σp = 4(Sp). Payoffs are defined by hi(σs, σp1, σp2)

Let us define three sender pure strategies: a, b, and c. For strategy a, a(hh) =
LL, a(tt) = RR, a(th) = RL and a(ht) = LR. For strategy b, b(hh) = LR,
b(tt) = RL, b(ht) = LL, and b(th) = RL. For strategy c, c(hh) = RL, c(tt) =
LR, c(th) = LL, and c(ht) = RL.

Let us define a player’s strategy e as follows: e(h, L) = l, e(h,R) = r, e(t, L) =
r, and e(t, R) = l.

Notice that if the sender commits to using strategy 1/3a + 1/3b + 1/3c, the
players have an equilibrium using strategy e. Also note that without a com-
mitment, the sender would have incentive to deviate to always sending a, which
would result in the players playing one of the Nash equilibrium mentioned above.

2.5 Connections among different levels of commitment
power

As it is intuitively clear, the interpretation function is crucial in determining the
outcome of the game. The next two propositions show that a limited interpre-
tation function can serve as a substitute of a commitment device in the partial
and full truthful commitment cases.

Proposition 2.4 For each equilibrium with full commitment:
(i) There exists an interpretation function for which an outcome equivalent

equilibrium exists with full truthful commitment.
(ii) When the equilibrium strategy set chosen in the first stage of full commit-

ment is verifiable, there exists an interpretation function for which an outcome
equivalent equilibrium exists with partial truthful commitment as well.
For each equilibrium with full truthful commitment:

(iii) When the equilibrium strategy set chosen in the first stage of full truthful
commitment is verifiable, there exists an interpretation function for which an
outcome equivalent equilibrium exists with partial truthful commitment.

7Future work to find an example where a player would want to commit to a nonsingleton
set of non-verifiable strategies would be useful.
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Proof: Part (i) follows trivially by noting that any given full commitment
equilibrium becomes a full truthful equilibrium if we change the interpretation
function to Ĩ(a) = V , for all a ∈ A (i.e. all messages are truthful).

To prove (ii), consider a full commitment equilibrium in which the seller re-
stricts his strategy set to Sc (a subset of pure strategies). Define an interpretation
function I as follows: for a ∈ A, let

I(a) = {π(v)|v ∈ V and a ∈ Sc(v)}
Then, by definition of I , Sc ⊂ St. We claim that if Sc is verifiable, then

Sc = St. In fact, let s̃ ∈ St. This means that if {v ∈ V and s̃(v) = a}, then
I(a) ⊃ π(v). This implies (by definition of I) that there exists an s ∈ Sc with
s(v) = a and hence {s̃(v) ∈ Sc(v), ∀v ∈ V }. This then implies s̃ ∈ Sc since Sc is
verifiable. We conclude that St ⊂ Sc and hence St = Sc.

Finally, part (iii) is shown in a similar manner as part (ii). 2

Corollary 2.3 For any verifiable set Sc there exists an interpretation function
I such that St for that I is equal to Sc.

The content of the last proposition is that the interpretation function can act
as a form of substitute for commitment power. Consequently, within a specific
framework a seller can benefit from having one interpretation function over an-
other. For example, a seller may benefit from having an interpretation function
become finer or coarser. We can see this when the seller has full information with
full truthful commitment. Consider the case of two buyers with i.i.d. valuations
uniformly distributed on [0, 1]. When the only truthful statement is to state the
values, the seller’s revenue is 1/3 as in the English auction. When there is only
one truthful message that conveys no value, the seller’s revenue is also 1/3 as in a
first-price auction. When there is a truthful statement that states the rankings,
the seller’s revenue is at least .3696 as in LRWZ.

This shows room for a strategic influence on the interpretation function. In a
dynamic model, players (e.g. lawyers) may try to make the interpretation function
more specific or less specific. In an evolutionary model, a language (represented
by an interpretation function) may develop based on needs of players.

3 When the Seller knows the Rankings and has

no Commitment Power.

We begin our analysis of auctions by examining the case when the seller has no
commitment power, but has information as to which buyer has the highest value
(the rankings). Here the seller has the same information that the buyers possess
in LRWZ. Thus, we are able to ask whether or not a seller without commitment
power can gain from having such information by communicating with the buyers.
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First, we assume that the seller has to publicly report the rankings. He thus
has two possible actions: to lie or tell the truth. We show that in this situation
the seller cannot gain from his information. Second, we show that if the seller
can send any public message based upon his information, he can still not gain.

Consider a standard first-price sealed-bid private-value auction with valua-
tions drawn independently from a continuous differentiable distribution on [0, 1].
In the Harsanyi framework of games with incomplete information, this is a game
with state space V = [0, 1]2. If the seller knows only the rankings of the realized
valuations, his information is given by the partition π = {H,L} of V where

H = {v = (v1, v2) ∈ V |v1 ≥ v2}

L = {v = (v1, v2) ∈ V |v1 < v2}
As mentioned, each buyer knows his own valuation. The seller sends a public

message and the buyers send sealed bids. The buyer with the higher bid gets the
object and pays his bid.

3.1 Messages that Convey the Truth or Lie

To gain some intuition about the results we first assume that the seller can only
report the rankings. Formally, he can either say h or l where h implies v1 ≥ v2

and l implies v1 < v2, that is, I(h) = H and I(l) = L. A (pure) strategy is then
a mapping s : {H,L} → {h, l}. Assume further that he is restricted to one of
the two strategies:

truth telling, st : st(H) = h, st(L) = l

lying, sl : sl(H) = l, sl(L) = h

With this restriction a seller’s mixed strategy is a probability p (0 ≤ p ≤ 1) that
he will transmit the true information (i.e. p is the probability of using st and
(1− p) is the probability of using sl).8

We restrict our attention to equilibria where the buyers use a differentiable,
strictly-increasing bid function. With a minor abuse of notation, we shall write
bpl for the bid function of the low-signal buyer (buyer 1 when l is announced and
buyer 2 when h is announced) when the seller’s strategy is p. Similarly, we write
bph for the bid function of the high-signal buyer. Thus, an equilibrium consists
of (p, bpl , b

p
h) where both bpl and bph are best reply to each other given p, and p

maximizes the seller’s revenue given (bpl , b
p
h).

8One may allow any mixed strategy based on this alphabet, i.e. any probability distribution
on the pure strategies st, sl and the other two strategies of always announcing h or always
announcing l. We do not do this since it would complicate the proof and obscure the intu-
itive argument and anyway, this is a special case of stronger result presented in the following
subsection.
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Lemma 3.1 bpl (1) = bph(1). (That is, at the value of 1, a buyer bids independent
of the announced message.)

Proof: Assume by contradiction bpl (1) > bph(1). This cannot be part of an
equilibrium since a low-value buyer with valuation 1 can profit by deviating to
a strictly lower bid that is still above bph(1) (for example, (bpl (1) + bph(1))/2); he
still wins with certainty (because the bid functions are increasing), but pays less.
Similarly, bpl (1) < bph(1) cannot hold in equilibrium either. 2

Lemma 3.2 When p > 0.5, bpl (v) > bph(v) for all v in (0, 1). When p < 0.5,
bpl (v) < bph(v) for all v in (0, 1).

Proof: The proof is by contradiction. In both cases of p, we will show that if a
point exists where the opposite relationship of bph and bpl holds then, the differential
equations derived from the equilibrium first-order conditions imply that these
functions cannot meet at any value greater than this point, in contradiction to
Lemma 3.1.

Fix p > 0.5 and assume that for some v (0 < v < 1), bpl (v) < bph(v). For
simplicity of notation, we omit the superscript p and write bl and bh for the
bidding functions at equilibrium (at p) and their inverse functions by vl and vh,
respectively. The (conditional) expected payoff of a low-signal buyer with value
v when bidding b = bl(v) is (note that since bl(v) < bh(v) and bh is increasing, the
low-signal buyer with value v will certainty lose if he has in fact the low value):

(1− p)F (v)

(1− p)F (v) + p(1− F (v))
· F (vh(b))

F (v)
(v − b) (1)

The expected payoff of a high-signal buyer with value v when bidding b = bh(v)
is:[

pF (v)

(1− p)(1− F (v)) + pF (v)
+

(1− p)(1− F (v))

(1− p)(1− F (v)) + pF (v)
· F (vl(b))− F (v)

1− F (v)

]
·(v−b)

(2)
The first order conditions that (1) is maximized at b = bl(vl) and (2) is

maximized at b = bh(vh) are:

v′l =
pF (vh) + (1− p)(F (vl)− F (vh))

(vh − b)(1− p)F ′(vl)

v′h =
F (vh)

(vl − b)F ′(vh)
These equations would be valid as long as bl(v) < bh(v) or until the two bid

functions meet. From Lemma 3.1, we know that the bid functions must meet at
a point greater than v. Let v̂ > v be the meeting point closest to v. At such a
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point, the bl would meet bh from below, which implies b′h(v̂) ≤ b′l(v̂). But from
the differential equations,

lim
v→v̂

b′h
b′l

=
v′l
v′h

=
p

1− p

Since p > .5, this limit is strictly greater than 1. Thus, b′h(v̂) > b′l(v̂) which
contradicts b′h(v̂) ≤ b′l(v̂) and implies that they cannot meet at a point greater
than v violating Lemma 3.1. Similarly, when p < .5, there is also a contradiction
if bl(v) > bh(v). 2

Proposition 3.1 In all equilibria of this game, the seller uses strategy p = .5.

Proof: Let vH be the (true) high value and vL be the low value. The seller’s
expected revenue is

p ·max{bph(vH), bpl (vL)}+ (1− p) ·max{bph(vL), bpl (vH)}

First, assume that p > .5. Since bpl (v) > bph(v) for all v ∈ (0, 1) by Lemma
3.2, we have almost surely that bpl (vH) > bph(vH) and bpl (vH) > bpl (vL) and hence
deviating to p = 0 (always lying) will be profitable. Thus, any p > .5 cannot be
part of an equilibrium. Likewise, any p < .5 cannot be part of an equilibrium as
well. Therefore, the only possible equilibrium strategy for the seller is p = .5. 2

Note that a strategy of p = .5 is equivalent to sending no information at all.
This establishes our assertion that by publicly communicating the rankings with
no commitment power, the seller cannot increase his revenue.

3.2 Multiple Signals

We now strengthen the results of the previous section by showing that when the
seller knows the rankings and has no commitment power, he cannot gain from
his information even with a richer set of signals.

Assume that the seller has the ability to send any message from an alphabet
A = {a1, a2, . . .}. Given a randomized strategy (either mixed or behavioral),9 let
hi = P (ai|H) and li = P (ai|L) (that is, hi is the probability that the seller sends
ai when he has information H and similarly for li).

Let P (L|ai, vj) be the probability of the event L (v1 < v2) given signal ai
and given the value of buyer j is vj. (Note that P (ai|L, vi) = P (ai|L) = li

9By Kuhn’s Theorem, there is no loss of generality in considering only strategies in {s :
{H,L} → 4(A)} (behavioral strategies) since the seller in this game has perfect recall (since
he has only one move).
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and P (ai|H, vi) = P (ai|H) = hi, since the seller’s strategy is a function of his
information - H or L - only.) By Bayes’ rule, we have:

P (L|ai, v2) = P (v1 < v2|ai, v2) = F (v2)li
F (v2)li+(1−F (v2))hi

(3)

P (H|ai, v2) = 1− P (L|ai, v2) = (1−F (v2))hi
F (v2)li+(1−F (v2))hi

(4)

First notice that
∑
i hi =

∑
i li = 1. Hence, there exists a j such that hj > lj

if and only if there exists a k such that hk < lk.
Denote by bi1 and bi2 the equilibrium bidding functions of the two buyers given

message ai, and assume there are strictly increasing and differentiable. Denote
by vi1 and vi2 the corresponding inverse functions.

The following lemma confirms the intuition that in equilibrium, a buyer who
is more likely to have the lower valuation (given the signal) bids more aggressively
than the other buyer, who is more likely to have the higher valuation.

Lemma 3.3 If hk < lk, then bk1(v) > bk2(v) for all v in (0, 1).
If hj > lj, then bj1(v) < bj2(v) for all v in (0, 1).

Proof: We prove the first statement. The proof is similar to that of Lemma 3.2.
If the statement is not true, then for some k, we have hk < lk and some

neighborhood in (0, 1) where bk2(v) > bk1(v). When v1 is in such a region and
buyer 1 bids x in the neighborhood of bk1(v1), his expected payoff is equal to

P (H|ak, v1) ·
F (vk2(x))

F (v1)
(v1 − x)

Also, when v2 is in such a region and buyer 2 bids x in the neighborhood of
bk2(v2), his expected payoff is equal to

P (L|ak, v2)(v2 − x) + P (H|ak, v2) ·
(
F (vk1(x))− F (v2)

1− F (v2)

)
(v2 − x)

We look at the first-order conditions of the above expected payoffs since each
bid must maximize expected payoff and each global maximum must also be a
local maximum.

vk1
′
(x) =

P (L|ak,v2)
P (H|ak,v2)

(1− F (v2)) + F (v1)− F (v2)

F ′(v1)(v2 − x)

vk2
′
(x) =

F (v2)

(v1 − x)F ′(v2)

These equations hold when both v1 and v2 are in the region where bk2(v) >
bk1(v). Let v̂ be the smallest value such that v̂ > v and bk1(v̂) = bk2(v̂) = x̂. We
have (using (3) and (4)):
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lim
x→x̂

vk1
′

vk2
′ = lim

v1,v2→v̂

P (L|ak, v2)

P (H|ak, v2)
· 1− F (v2)

F (v2)
=
lk
hk

> 1

Thus, we obtain that when bk1(v) > bk2(v), at the next meeting point one has
bk1
′
(v̂) > bk2

′
(v̂). Since this is impossible when v < v̂ ≤ 1, we conclude that there

is no such v̂, in contradiction to the fact that bk1(1) = bk2(1) (a straightforward
generalization of Lemma 3.1 to the case of any number of signals).

In a similar way it is shown that if hj > lj then bj2(v) > bj1(v) for all v in (0, 1).
2

Let π(ai|H) be the expected seller’s revenue when signal ai is sent and buyer
1 has the highest valuation and π(ai|L) be the expected seller’s revenue when
signal ai is sent and buyer 1 has the lowest valuation. Note that

π(aj|L) =
∫
v1<v2

π(ai|v) · f(v|v1 < v2)dv

π(aj|H) =
∫
v1≥v2

π(ai|v) · f(v|v1 ≥ v2)dv

Lemma 3.4 If hj > lj, then π(aj|L) > π(aj|H) and if hk < lk, then π(ak|H) >
π(ak|L).

Proof: Let us show that π(aj|L) > π(aj|H). First notice that for any values
0 < v < v < 1, f((v, v)|v1 < v2) = f((v, v)|v1 ≥ v2) (we assume there is a sym-
metric continuous distribution of values). Now notice that π(aj|(v, v)) = bj2(v)
and π(aj|(v, v)) = max{bj1(v), bj2(v)}. However, bj2(v) > max{bj1(v), bj2(v)}, which
implies π(aj|(v, v)) > π(aj|(v, v)). Thus, by comparing the integrals point-
wise, we find that π(aj|L) > π(aj|H). In a similar manner, we can show that
π(ak|H) > π(ak|L). 2

Proposition 3.2 In any equilibrium, (i) hi = li for all i (i.e., no information
regarding the rankings is conveyed by the seller’s signaling). (ii) The seller’s
expected revenue is the same as in the standard model with no signaling.

Proof: If (i) does not hold, then there are j and k such that hj > lj and hk < lk.
This implies that hj = P (aj|H) > 0 and lk = P (ak|L) > 0. For this to be part
of an equilibrium, the seller must have no incentive to always send ak instead of
aj in state H and no incentive to always send ak instead of aj in state L, that is:
π(aj|H) ≥ π(ak|H) and π(ak|L) ≥ π(aj|L). By the first part of Lemma 3.4, this
implies π(ak|L) ≥ π(aj|L) > π(aj|H) ≥ π(ak|H), which contradicts the second
part of Lemma 3.4 (π(ak|L) < π(ak|H)). Thus, for all messages hi = li. 2

While we study only public messages, the results of no commitment also hold
for private messages (we omit the proof). This agrees with Farrell and Gib-
bons [1989] who study the difference between public and private messages in a

18



game with no commitment power and two receivers. Under symmetry, their re-
sults imply that any equilibrium with meaningful private messages also exists
with meaningful public messages. Thus, if there is no equilibrium with mean-
ingful public messages, there won’t be an equilibrium with meaningful private
messages.

4 Partial Commitment

Consider a situation in which the seller knows the valuations and can send as a
public message the valuations, the rankings, or a white signal φ (equivalent to
sending no signal).10 Formally, the seller’s information is

π = {{v}|v ∈ V }

his alphabet is
A = {φ, (l, h), (h, l), V }

and his set of signaling strategies, as mentioned before, is

S = {s : V → A}

Under partial (truthful) commitment, this strategy would be limited to sig-
nals which are truthful. We can write the appropriate interpretation function
as I((h, l)) = {v|v ∈ V and v1 ≥ v2}, I((l, h)) = {v|v ∈ V and v1 < v2},
I((v1, v2)) = {(v1, v2)}, and I(φ) = V .

With partial commitment, the seller must choose his pure strategy from the
truthful strategy set:

St = {s ∈ S|v ∈ I(s(v)), ∀v ∈ V }

Which in this case is equivalent to:

St =

s ∈ S
∣∣∣∣∣∣∣
s(v) ∈ V ⇒ s(v) = v
s(v) = (l, h)⇒ v1 < v2

s(v) = (h, l)⇒ v2 ≤ v1


That is, the seller could send (h, l) only when v1 ≥ v2, the rankings of (l, h)

only when v1 < v2, the values (v1, v2) only when these are the true values, or

10We should note that under such information conditions either a mechanism of making a
take-it-or-leave-it offer of vh to the high-value buyer or a first-price auction with a reserve price
set to vh will give the seller all the possible surplus. In spite of this, our interest in a first-price
auction without a reservation price is more than just academic. In addition to the several
reasons mentioned in the introduction for a seller being restricted in his ability to redesign the
auction, the lack of a possible reservation price could be due to a seller being forced to sell. A
buyer knowing this would not believe any set reservation price (or take-it-or-leave-it offer).

19



φ in any case. Thus, for any particular set of values (v1, v2), there are only
three truthful signals. Let us call these options φ, r, and v, where r (stands for
rankings) is the appropriate choice of (h, l) or (l, h). Therefore, an equivalent
choice for the seller is the choice of ‘pressing one of three buttons’ labeled φ, r
and v.

In examining the equilibria of this game, we make the assumption:

Assumption 4.1 A buyer never bids above his value.

As opposed to full (truthful) commitment, any equilibrium strategy of the
seller must be profit maximizing given his information. That is, given any pair
of valuations v1, v2 if in equilibrium r is sent, it must generate revenue at least
as high as if v or φ were sent. Likewise for v and φ.

Using this property, we can now characterize the set of equilibria by the fol-
lowing lemmatta (the first Lemma is well known but for completeness we provide
its proof in the Appendix). Throughout this section, we consider the possibility
of mixed strategies on the part of the buyers. That is, the equilibrium strategies
of the buyers, given v and the signal sent, consist of distributions on bl and bh.

Lemma 4.1 In any equilibrium, if v is sent, then if vl < vh, the winning bid
will be at the lowest valuation and won by the high-value buyer: bh = vl and
P (bl < vh) = 1. If vl = vh = v then both buyers bid v with probability one (and
hence the winning bid will, again be v).

The proof is given in the Appendix. 2.

Lemma 4.2 In any equilibrium of the game with the seller, the expected winning
bid will be weakly greater than the lower valuation: E[max{bl, bh}|vl, vh] ≥ vl.

Proof: If the expected winning bid were strictly lower than the lower valuation,
then the seller could profitably deviate by sending v and getting the lowest value
by Lemma 4.1. 2

For c ≥ 0 let Dc = {(x, x)|c < x ≤ 1} (i.e. the left-open c-upper part of the
diagonal of V ), and for ε > 0 let Dε

c be the ε-neighborhood in V (in the maximum
norm) of Dc. Denote by V (φ) the subset of V in which the seller sends the signal
φ in equilibrium.

Lemma 4.3 For any c > 0 there is an ε > 0 such that Dε
c is disjoint from V (φ).

Proof: Notice first that this Lemma implies that V (φ) is disjoint from D0

(i.e. that V (φ) cannot contain a point on the diagonal except possibly (0, 0)).
To gain some intuition on the main argument, let us first prove this fact sepa-
rately.
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Assume, by contradiction, that φ is sent by the seller at a point v1 = v2 = c >
0. By Lemma 4.2 and Assumption 4.1, the winning bid must be equal to c. This
can only happen if both buyers bid c with certainty. (If neither buyer is bidding
c with certainty, then, with positive probability, the winning bid would be lower
than c. If only one buyer bids c with certainty, he would have incentive to lower
his bid.) In particular, buyer 2 is bidding c with certainty. Since the seller can
send φ at any time when v1 < v2 = c, the expected winning bid must be weakly
greater than c for all v1 < v2 = c. This can only occur if b2 = c for all values
v1 < v2 = c. However, this is cannot be an equilibrium strategy, since buyer 2
has incentive to deviate to bidding, say, c/2 and expect a positive profit.

Returning now to the proof of the Lemma, assume that v = (v1, v2) ∈ V (φ)
and v is also in Dε

c for c > 0. Assume that v1 ≤ v2. This means that φ is sent
while:

c− ε ≤ v1 ≤ v2 ≤ v1 + ε (5)

We shall show that for ε small enough, this leads to a contradiction. For a constant
k > 0 (to be specified later) let q1 = P (b1 ≥ v1 − kε) and q2 = P (b2 ≥ v1 − kε).

The expected selling price is then at most (using Assumption 4.1 and (5)):

q2(v1 + ε) + (1− q2)(q1v1 + (1− q1)(v1 − kε)) = v1 + ε(1− k(1− q1)(1− q2))

Since, by Lemma 4.2, this is at least v1, we have

1− k(1− q1)(1− q2) ≥ 0

Letting z = max{q1, q2} and z(k) = 1−
√

1/k, this implies z ≥ z(k). We can

deduce that at least one buyer, say i, bids so that P (bi ≥ v1 − kε) ≥ z(k) and
hence the expected selling price is at least z(k)(v1 − kε), and consequently, the
expected payoff of buyer i is at most:

vi − z(k)(v1 − kε) ≤ v1 + ε− z(k)(v1 − kε)
= v1 · (1− z(k)) + ε · (1 + k · z(k)) (6)

Choose large enough k such that 1 − z(k) < 1
8
c
2
F ( c

2
), then choose ε1 such

that for ε < ε1, ε(1 + kz(k)) < 1
8
( c

2
)F ( c

2
). We conclude that if ε < ε1, and

(v1, v2) ∈ V (φ)∩Dε
c, then there is a buyer i with equilibrium expected payoff less

than (by (6)) 1
4
· c

2
F ( c

2
).

On the other hand, by ignoring the seller’s message and bidding bi = vi/2,
buyer i guarantees expected payoff of at least (vi

2
)F (vi

2
) ≥ c−ε

2
F ( c−ε

2
), which can be

made larger than 1
2
c
2
F ( c

2
) for ε < ε2. For ε < min{ε1, ε2} this yields a profitable

deviation from the equilibrium strategy; a contradiction which completes the
proof. 2
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Definition: Given a strategy σ ∈ Σt of the seller and buyer i with value vi,
we say that v−i is consistent (for i) with signal a if a ∈ σ(vi, v−i) (recall that
σ(v) = {s(v)|s ∈ Supp(σ)}).
Definition: We say that a buyer i makes an h-bid if when he has a value vi and
receives a signal a, he bids

bi(vi, a) = sup{v−i|v−i ≤ vi and v−i is consistent with the signal a}

whenever the set over which the sup is taken is not empty.
That is, given the signal sent and beliefs about the seller’s strategy, a buyer

can form beliefs about the other buyer’s possible valuations; he makes an h-bid
(based on his beliefs) if he bids the sup of all other buyer’s possible values that
are lower than his own valuation based one’s beliefs, if, indeed, there are such
values.

Lemma 4.4 In any equilibrium, if a high-value buyer knows (with certainty) he
has the high value, he makes an h-bid.

Proof: When the signal sent is v, this follows from Lemma 4.1. When the signal
sent is r or φ, from Lemma 4.2, we know that the expected winning bid must be
at least vl. Denoting by vl, the sup of the vl values compatible with the respective
signal in equilibrium, we must also have E[max{bh, bl}|vl, vh] ≥ vl. Since buyer
H knows he has the highest valuation, he also knows that buyer L will bid at
most vl. Therefore, in equilibrium, he will never bid more than vl. Since buyer L
also never bids more than vl, the winning bid when vl = vl must equal vl. This
can only occur if at least one of the two buyers is bidding vl with certainty. If
P (bh = vl) < 1, any buyer L, with value close enough to vl, would have incentive
to bid below vl. Therefore, bh = vl. 2

Lemma 4.5 In any equilibrium, if a buyer i with value vi knows that whenever
the other buyer j has a value vj > vi he makes an h-bid, then buyer i also makes
an h-bid.

Proof: This is only different from Lemma 4.4 when the signal sent is φ. A buyer
with value vi who bids b expects a payoff of gh(b) ·P (vi = vh) + gl(b) ·P (vi = vl),
where gh(b) is the conditional expected profit from bidding b given that vi = vh
and likewise for gl(b). Since the other buyer j makes an h-bid, buyer i cannot
win when his value vi is the low value. Thus, the equilibrium bid b∗ is such
that gl(b∗) = 0, and thus b∗ maximizes gh(b), which leads us to b∗ = vl by the
argument in Lemma 4.4. 2

Lemma 4.6 In equilibrium, each buyer makes an h-bid.
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Proof: By Lemma 4.4, this is true when the signals are v or r are sent (since
they are truthful). So consider v = (v1, v2) in V (φ). We know by Lemma 4.3
that V (φ) does not intersect the diagonal D0. If V (φ) lies on one side of D0,
then φ reveals the rankings and the result follows from Lemma 4.4. Otherwise,
if buyer 1 does not make an h-bid at v = (v1, v2) ∈ V (φ), then, by Lemma 4.5,
there must be v1

2 > v1 such that (v1, v1
2) ∈ V (φ) and buyer 2 does not make an

h-bid at (v1, v
1
2). Applying Lemma 4.5 again, there must be v1

1 > v1
2 such that

(v1
1, v

1
2) ∈ V (φ) and buyer 1 does not make an h-bid at (v1

1, v
1
2). Using repeatedly

this argument, we conclude that there is a chain of points:

(v1, v2), (v1, v
1
2), (v1

1, v
1
2), (v1

1, v
2
2), . . . , (vt1, v

t
2), . . .

in V (φ) such that

v1 < v1
2 < v1

1 < v2
2 < v2

1 < . . . < vt2 < vt1 < vt+1
2 < . . .

By Lemma 4.3 (applied for ε > 0 corresponding to c = v1 > 0) we have

vt+1
1 − vt1 > ε for all t. This implies vt

t→∞−→ ∞, a contradiction which concludes
the proof. 2

Lemma 4.7 The auction is efficient: with probability one, the high-value buyer
will win the auction.

Proof: Assume that in equilibrium L wins the auction with positive probability.
This must occur when L bids his value, bl = vl (since by Lemma 4.6, bh ≥ vl).

We already know (by Lemma 4.2) that when v is sent, the outcome is efficient,
therefore any inefficiency must occur when r or φ is sent. When L wins, he bids
his value and thus must know for sure that he has the low value even if φ is sent.
If this were not the case, by Assumption 4.1, he can generate positive expected
profits by bidding less than his value since he will have the high value and win
the auction with positive probability.

Since L wins with positive probability, there is a region W ⊂ V where this
happens and P (W ) > 0. Without loss of generality, we may assume that W is
a rectangle: W = [vl, vl]× [vh, vh] (just take a rectangular neighborhood in any
such W ). So for all v ∈ W and vh ∈ [vh, vh], H loses with positive probability
against L, who is bidding his value, hence P (bh ≤ vl) > 0. However, in this
region, L with value vl can profitably deviate to bid (vl + vl)/2, a contradiction.
2

Lemma 4.8 In any equilibrium, the seller receiving information (vl, vh) would
not send v if there is a (v′l, vh) such that vl < v′l < vh where r or φ is sent.

Proof: Suppose that there is a v = (vl, vh) where v is sent and there is a (v′l, vh),
with vl < v′l < vh, where r or φ is sent. The seller’s revenue at v = (vl, vh) will be
vl, while his revenue at (v′l, vh) will be at least v′l (by Lemma 4.2). Since v′l > vl,
the seller would have incentive to send r or φ at (vl, vh) instead of v and receive
at least v′l. Thus, this could not be an equilibrium. 2

23



Lemma 4.9 In any equilibrium, for s ∈ {r, φ}, if s ∈ σ(vl, vh), then there exists
vl ≥ vl such that vl ∈ a(vh) and s ∈ σ(vl, vh), where a(vh) = {x|(vh − x)F (x) ≥
(vh − b)F (b) for all b ∈ [0, x]}. Furthermore, if r ∈ σ(vl, vh) and φ ∈ σ(vl, vh),
then there exists vl ≥ vl such that vl ∈ a(vh), r ∈ σ(vl, vh) and φ ∈ σ(vl, vh).

Proof: Let V (vh, φ) = {vl|φ ∈ σ(vl, vh)} and V (vh, r) = {vl|r ∈ σ(vl, vh)}. Also
let vl,φ(vh) = sup{vl|vl ∈ V (vh, φ)} and vl,r(vh) = sup{vl|vl ∈ V (vh, r)}.

By Lemma 4.6 and Lemma 4.7, if in equilibrium φ ∈ σ(vl,φ(vh), vh), then H
bids vl,φ(vh) and wins, while if r ∈ σ(vl,r(vh), vh), then H bids vl,r(vh) and wins.
It follows that vl,φ(vh) = vl,r(vh) =: vl(vh) (since otherwise the seller would have
a profitable deviation to either send r at (vl,φ(vh), vh) or send φ at (vl,r(vh), vh)).

By Lemma 4.8, V (vh, φ)∪ V (vh, r) = [0, vl(vh)]. Since at (vl(vh), vh), when φ
or r is sent, buyer H’s equilibrium strategy is to bid vl and then win, we have

vh − vl ≥ P (b|r)(vh − b) for all b ∈ [0, vl] (7)

vh − vl ≥ P (b|φ)(vh− b) for all b ∈ [0, vl] (8)

where P (b|s) is the probability that H will win the auction with bid b given signal
s is sent.

Let Gr(x) = P (vl ≤ x|vh, r) and Gφ(x) = P (vl ≤ x|vh, φ). By Assumption
4.1 (buyers do not bid higher than their valuations), we know that for all b ≤ vl,

P (b|r) ≥ Gr(b)

Gr(vl)
and P (b|φ) ≥ Gφ(b)

Gφ(vl)
(9)

From (7), (8) and (9), we obtain

Gr(vl)(vh − vl) ≥ Gr(b)(vh − b)
Gφ(vl)(vh − vl) ≥ Gφ(b)(vh − b)

Multiplying the first inequality by P (r|vh), the second by P (φ|vh) and adding
yields:

(Gr(vl)P (r|vh)+Gφ(vl)P (φ|vh))(vh−vl) ≥ (Gr(b)P (r|vh)+Gφ(b)P (φ|vh))(vh−b)

Thus,
F (vl)(vh − vl) ≥ F (b)(vh− b) for all b ∈ [0, vl]

This concludes the proof. 2

Corollary 4.1 When the distribution function is uniform, the limit for vl(vh) is
vh/2.
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Proof: For the uniform distribution F (x) = x, the resulting function b · (vh− b)
attains its maximum at vh/2. The result then follows by Lemma 4.9. 2

We are now in the position to characterize the equilibria in the partial truthful
commitment game.

Proposition 4.1 For any functions f1 and f2 satisfying f1(v) ∈ a(v) and f2(v) ∈
a(v) for all v ∈ [0, 1], where a(v) is defined in Lemma 4.9, the following is an
equilibrium in the game Γpt:

• Given his information v = (v1, v2) the seller sends v if v1 ≥ v2 ≥ f1(v1) or
v2 ≥ v1 ≥ f2(v2), otherwise he sends r. (Note that the signal φ is never
used in this equilibrium.)

• When v is announced, the buyers play the usual full information equilibrium
(Lemma 4.1).

• When r is announced, buyer i with the high valuation bids fi(vi) and the
buyer with the lower valuation bids his value.

• The auction is won always by the high valuation buyer i who pays vj (j 6= i)
when v is announced and fi(vi) otherwise.

Proof: The following strategies and beliefs for the buyers supports such an equi-
librium. When v is sent, buyers behave as dictated by Lemma 4.1. When r is sent,
buyer i bids his value when low and fi(vi) when high. This is optimal for buyer i
since when low fj(vj) ≥ vi and when high (vi−fi(vi)) ≥ (F (x)/F (fi(vi)))(vi−x)
for all x < fi(vi) (by definition of a(v)). Off equilibrium beliefs and behavior are
as follows. When φ is sent, buyer i believes that vj ≤ fi(vi) and bids fi(vi) (the
same beliefs and behavior if he receives a signal that he is high). If r is sent when
vj > vi > fj(vj), buyer j does not know that vi ≥ fj(vj) and will continue to
have equilibrium beliefs that vi < fj(vj). If, in addition, vi < maxv>vifj(v), then
buyer i would not know that vi ≥ fj(vj) and will continue to have equilibrium
beliefs; however, if vi ≥ maxv>vifj(v), then buyer i knows that vi ≥ fj(vj) and
would believe that vj = 1 (we arbitrarily choose this belief from vj ≥ vi) and bid
his value.

Thus, if φ or r is sent instead of v, the winning bid will be less than vl. If v
or φ is sent instead of r, the winning bid will be fi(vi) where i is the high-value
buyer. Therefore, such beliefs and strategies gives no individual player incentive
to deviate. 2

An example of such an equilibria with a uniform distribution is shown in
Figure 4. In this equilibrium, the correct values are sent if vl > .5 vh. Otherwise,
the high-low signal is sent. The winning bid is each to vl in the first region and
vh/2 in the other region.
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Figure 1: Equilibrium bid functions.

Proposition 4.2 Any equilibrium of the game Γpt must satisfy the following.
There must exist two functions f1 and f2 such that f1(v) ∈ a(v) and f2(v) ∈ a(v)
for all v ∈ [0, 1], where a(v) is defined in Lemma 4.9, and:

• Given his information v = (v1, v2) the seller sends v if v1 ≥ v2 ≥ f1(v1) or
v2 ≥ v1 ≥ f2(v2), otherwise he sends r or φ (which of these is sent may
depend upon v).

• The auction is won always by the high valuation buyer i who pays vj when
v is announced and fi(vi) otherwise.

Proof: An equilibrium that did not satisfy the above conditions would violate
the conditions set forth in Lemmatta 4.6, 4.7, 4.8, and 4.9. 2

Remark: The following is an equilibrium in which φ is sent as part of the
seller’s signaling strategy.

• Seller’s strategy: when vh ≥ .8 and vl ≤ .2, the seller sends φ. When
vh < .8 and vl ≤ (1/2)vh, the seller sends r. Otherwise, he sends v. (See
Figure 4.)

• Buyers’ strategy: when vh < .8, a buyer receiving H bids vi/2. When
vl < .4, a buyer receiving L bids vi. A buyer with vi ≤ .2 receiving φ bids
vi with probability 1/3 and 0 with probability 2/3. A buyer with vi > .8
receiving φ bids .2.
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Figure 2: Example of when φ is sent in equilibrium.

• Off equilibrium: a buyer receiving φ when .2 < vi < .8 still believes that
v−i ≤ .2 and bids (vi − .4)/2 for vi > .4 and ε for .2 < vi ≤ .4. A buyer
receiving H when vh > .8 bids .2 (believes vl < .2). A buyer receiving L when
vl > .4 believes that vh is uniform between vl and 1 and bids accordingly
(less than vl).

Proof: We see that this is an equilibrium with the following. There is no v for
which the seller would like to switch his signal. Let us check all the possibilities.

• Sending v instead of r: this could only lower the winning bid from vh/2 to
vl.

• Sending φ instead of r: if vh < .2, this would change the winning bid to
(1/3)vh + (2/9)vl which is lower than vh/2 since vl ≤ vh/2; if vh > .2, the
winning bid is either vl or (vh − .4)/2, however both of these are less than
vh/2, the winning bid if r is sent.

• Sending r instead of φ: this will keep the winning bid at .2.

• Sending v instead of φ: this will only lower the winning bid from .2 to vl.

• Sending r instead of v: this will lower the winning bid to either vh/2 if
vh < .8 or to .2 otherwise.

• Sending φ instead of v: if vl < vh < .2, sending φ will generate expected
revenue of (1/4)vh + (3/16)vl which is less than vl since vh < 2vl; if vh > .2,
the winning bid is either vl or (vh − .4)/2 and can only lead to an increase
if (vh − .4)/2 ≥ vl, however this cannot happen since vh/2 < vl.
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There is no signal sent for which the buyers would like to switch their strate-
gies.

• When v is sent: behavior is as shown in Lemma 4.1.

• When r is sent: behavior is as shown in Lemma 4.4.

• When φ is sent: in equilibrium, H knows he is high and knows that L is
bidding vi with probability 2/3 and 0 with probability 1/3. If H bids .2 in
equilibrium, he wins with certainty. If H bids x < .2, he has expected payoff
of ((1/3)(x/.2) + (2/3))(v − x). This is increasing in x when v ≥ 2x + .4.
Thus, when v ≥ .8, buyer H bids .2. Out of equilibrium, only a buyer
with value .2 < vi < .8 knows he is out of equilibrium and believes that the
other buyer has value between 0 and .2. His expected payoff is as previously
mentioned and is maximized by bidding max{(v − .4)/2, ε}. 2

Remark: The revenue for an equilibrium described in Proposition 4.1 with re-
gions determined by f1(v) and f2(v) is higher than the revenue for an equilibrium
with regions determined by f ′1(vh) and f ′2(v) if fi is pointwise greater than f ′i for
i = 1, 2.

Proposition 4.3 In the uniform case, the highest expected revenue of the seller
is 5/12.

Proof: Using the previous remark, the equilibrium with f1(v) = f2(v) = (1/2)v
is the equilibrium that yields the highest expected revenue for the seller.11 Given
vh = x, with probability 1/2, the signal r is sent and the selling price is x/2 and
with probability 1/2, the signal v is sent and the expected payoff (the conditional
density of vl is 2/x) is

∫ x
x
2

2
x
y dy = 3/4 ·x. Hence, given vl = x the expected payoff

is 1/2 ·x/2+1/2 ·3/4 ·x = 5/8 ·x and the total revenue is
∫ 1
0 (5/8)x ·2x ·dx = 5/12.

2

5 Full Commitment

We will now see that the seller can generate strictly higher profits under full
commitment power than under the cases of partial or no commitment power
studied thus far. Using the same strategy sets and interpretation function as in
the last section, we can see that a seller with full commitment power is able to

11Note that the expected revenue here is also the revenue of the highest revenue mechanism in
the absense of seller information for the uniform case. One such a mechanism is a second-price
auction with a reserve price of 1/2. This equivalence of revenue is by numerical coincidence
since for other distributions the revenue may be higher or lower than the optimal mechanism
without seller information.
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announce more than just the rankings or values. For instance, within the same
alphabet and interpretation function the seller can now send the maximum of the
two values by sending (0,max{v1, v2}) (this is interpreted as a point in V , i.e.
v1 = 0, v2 = max{v1, v2} which is (almost surely) not a truthful message).

We will now see that this strategy of publicly announcing the value of the
high-value buyer will result in higher profits for the seller.12 In such a case, the
low-value buyer knows both values, while the high-value buyer knows only that
he has the highest value.

We retain our Assumption 4.1 that a buyer does not bid above his value.

Proposition 5.1 There is a unique equilibrium in the game in which the seller
commits himself to send (publicly) the signal max{v1, v2}. In this equilibrium,
high-value buyer uses a mixed strategy with continuous bid distribution with sup-
port [b, b] where b < b < vh. The low-value buyer uses a pure, increasing bidding
strategy in the range [b, b].

The proof is given in the Appendix. 2

Proposition 5.2 When V1 and V2 are uniformly (and independently) distributed
on [0, 1], and the seller publicly announces the value of the high-value buyer, the
following is an equilibrium: the high-value buyer uses the mixed-strategy with

F (b) =
e2

2
· vh

2b− vh
· e−

vh
2b−vh

on the support [(1/2)vh, (3/4)vh] and the low-value buyer uses the (pure) bid func-
tion bl(vl; vh) = vh − v2

h/(4vl) when vl ≥ (1/2)vh and bids vl if vl < (1/2)vh.

The proof is given in the Appendix. 2

The analytical computation of the profits in the equilibrium of the uniform
distribution case, is done in the Appendix and summarized in the following propo-
sition (we denote ϕ(z) =

∫∞
z

e−t

t
dt):

Proposition 5.3 When V1 and V2 are uniformly (and independently) distributed
on [0, 1], and the seller publicly announces the value of the high-value buyer, the
resulting equilibrium will yields:

(i) Expected seller revenue of 1/2− e · ϕ(1)/12 ≈ .450304.
(ii) Expected low-value buyer profits of e · ϕ(1)/24 ≈ .02485.
(iii) Expected high-value buyer profits of 1/6.
(iv) Welfare loss of e · ϕ(1)/24 ≈ .02485 (total expected surplus minus total

possible surplus).

12We do not yet know what strategy yields the highest profits.
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Remark While the equilibrium established here is for full commitment power, it
can be easily made an equilibrium of a full truthful commitment model by slightly
modifying the interpretation function as follows (see Proposition 2.4):

As under the usual interpretation function I((h, l)) = {{v}|v ∈ V and v1 ≥
v2}, and I((l, h)) = {{v}|v ∈ V and v1 < v2}. However, I((v1, v2)) = {(v1, v2)}
only when v1 > 0. Otherwise, I((0, vm)) = {{v}|v ∈ V and either v1 ≤ vm and v2 =
vm or v2 ≤ vm and v1 = vm}.

We conjecture that our results can also show that under full truthful commit-
ment power the seller’s revenue can be higher than partial truthful commitment
power. We believe that the addition of two other signals will not lead to addi-
tional equilibrium allocations under partial commitment power. These two other
signals are max{v1, v2} and min{v1, v2}. That is the seller is able to announce the
highest value or the lowest value with the buyers aware whether the announced
value is the highest. This would imply that the above mentioned seller strategy
would also be a valid seller strategy with full truthful commitment power and
a signal set that has the same equilibrium allocations as in the partial truthful
commitment section. Thus, we provide a case where moving from partial truthful
commitment power to full truthful commitment power increases seller revenue.

We present the logic for the above conjecture in the following. In any par-
tial truthful commitment equilibrium, announcing max{v1, v2} is equivalent to
sending the rankings, while announcing min{v1, v2} is equivalent to sending the
values. The reason for this is that, in equilibrium, the winning bid will be greater
than min{v1, v2} otherwise the seller would have incentive to send the values.
When this is sent, the equilibrium would have the high-value buyer win the auc-
tion at the lowest value. For similar logic as presented in the partial truthful
commitment section, the high-value buyer must win at the highest of the possi-
ble low-values he may face. Announcing max{v1, v2} will inform the buyers of
the rankings and the L buyer of the H buyer’s value. This will not help the L,
buyer, since the H buyer will still win. The only question is whether there can be
two regions (as with r and φ): one where the rankings is sent and one where max
is sent. Since the seller can send (h, l) instead of max{v1, v2} = v1 and vis-versa,
the high-value buyer’s bid must be the same in either region. Thus, the set of
equilibrium outcomes is equivalent to before.

6 Discussion

6.1 Comparison among environments

The expected profits to the seller, low-value buyer and high-value buyer are dis-
played in Figure 3 for the case of uniform distribution. The results of LRWZ
[1998] showed when the buyers are informed of their rankings (b), the expected
profit for the seller is higher than in the standard first-price auction (a). The
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Model Seller Low High Welfare
Buyer Buyer Loss

a Standard First-Price 0.3333 0 0.3333 0
b Rankings Known 0.3696 0.0437 0.227 0.0264
c No Commitment 0.3333 0 0.3333 0
d Partial Commitment 0.4167 0 0.25 0
e Full Commitment 0.4503 0.02485 0.1667 0.02485

Figure 3: Summary of Expected Profits in the uniform distribution case

auction is no longer efficient, and this inefficiency is measured by the ‘Welfare
Loss’ in the last column of Figure 3 which is defined as the total expected surplus
(buyers’ plus the seller’s) minus total possible surplus.

Our first results indicated that without commitment power (c), the seller could
not take advantage of the knowledge of the rankings and the equilibria would be
equivalent to that of case (a). Only with full commitment power can the seller
obtain the expected revenue of model (b).

Our next set of results are for the environment in which the seller knows the
values. With partial commitment power (d), the seller can generate more revenue
than in the case in which he has no information (a). This is even higher than
the expected revenue when the buyers know the rankings (b). Surprisingly, the
equilibrium of this model is efficient (no welfare loss).

While partial commitment power (d) is useful to the seller, with full commit-
ment (e) the seller can generate even higher revenues using the strategy described
in the previous section. However, in generating higher revenue, the induced equi-
librium loses the efficiency property.

On the buyer side, we see that with full commitment (e) the low-value buyer
has additional information vh. In equilibrium this decreases payoffs of both buyers
compared to the situation (b) in which both players just know the rankings. The
low-value buyer would rather commit to not looking at vh but he cannot credibly
do so (it cannot be part of a sequential equilibrium).

This type of situation occurs elsewhere in economics. For instance, in a
Cournot duopoly, if the (Stackelberg) leader credibly transmits his output quan-
tity, the follower would do better by committing to not looking at the information;
however, without a commitment power, the follower would not be credible in say-
ing he ‘would not look at the leader’s information’; it is not a subgame perfect
equilibrium.
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6.2 Relationship to Classic Results

Our results stand in contrast to two landmark results of auction theory: revenue
equivalence in private-value auctions (Myerson [1981] and Riley and Samuelson
[1981]) and optimality of full revelation of the seller’s information (Milgrom and
Weber [1982a, 1982b]).

As we saw in our framework, two efficient private-value auctions need not have
the same revenue. In the partial commitment model, the equilibrium is efficient
yet expected revenue is higher than that in the standard first or second price auc-
tion (5/12 = 0.4167 compared to 1/3, for the uniform case). As to the revelation
of information by the seller, Milgrom and Weber have an implicit assumption
that the seller has full commitment power, so any signal by him is credible. 13

The appropriate comparison is therefore to our full commitment framework and
there we find that in equilibrium when the seller reveals his information (the re-
alized values) only to the low-value buyer, the expected revenue is higher than if
the seller would commit to reveal publicly all his information (0.4503 compared
to 1/3, in the uniform case).

More surprisingly is the fact that except one assumption, our model can be
viewed as a special case of the Milgrom-Weber general model. They assume:

• Each buyer i has a private signal Xi (which is vi in our case).

• The seller has a private signal S.

• There is symmetry of bidder utility functions, ui(s, x) = u(s, xi, {xj}j 6=i)
(which is just xi in our case). Utility ui is symmetric in the other bidders’
signals {xj}j 6=i (in our case it is independent of these other signals). The
buyers’ utility is continuous and non-decreasing in its variables.

• S1, . . . , Sm, X1, . . . , Xn are affiliated.

• The distribution density f(s, x) of (S,X) is symmetric inX (= (X1, . . . , Xn)).

It is only this last assumption which is not satisfied in our model. For in-
stance, when the seller’s information is H =“buyer 1 has the highest valuation,”
then clearly the density of (H; v1, v2) is not symmetric in (v1, v2) as it is concen-
trated on {(v1, v2)|v1 ≥ v2}.

These observations about the relationship of our model to the Milgrom-Weber
model indicate that their assumption of the symmetry of distribution is a very
crucial one. A more general framework with its relaxation could lead to important
results.

13In future work, we wish to investigate in which way will the relaxation of this assumption,
to partial commitment or no commitment power, affect their results.
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6.3 Relationship to the Crawford-Sobel Model

In “Strategic Information Transmission,” Crawford and Sobel [1982] present a
model of two players: a sender and a receiver. The sender knows the state of
nature s (in [0, 1]) and sends a message m = m(s) to the receiver who chooses
an action y = y(m). The sender and receiver have utilities that differ via a
parameter b; the sender’s utility is −(y − s − b)2, while the receiver’s utility is
−(y − s)2.

They find that without commitment power, each equilibrium is defined by a
partition π of [0, 1] where the sender sends π(s), the partition element containing
s. The partition sent never fully reveals the state since all partitions contain
multiple states {s} 6= π(s). In such an equilibrium, both parties gain in expected
payoffs (over the no information model) if there are at least two elements in π.

We can compare this to our model if the message space (alphabet) and inter-
pretation function are such that for any state s in [0, 1] there is a message m such
that I(m) = {s}. Using our definitions of the various commitment levels, we find
that with partial truthful or full commitment power, there is full revelation in
equilibrium, m(s) = s and y(m) = m. In this full-revelation equilibrium, both
parties have higher expected payoffs than in any of the Crawford-Sobel equilibria.

In other words, the sender in the Crawford-Sobel model reveals information
partially and not fully (by sending an interval containing the state and not the
state s itself) only because of lack of commitment power and not for strategic
reasons. In our model, even with full commitment power the sender (seller)
reveals his information only partially, for strategic reasons.

Seidmann and Winter [1997] apply the Milgrom [1981] version of partial truth-
ful commitment to the Crawford-Sobel model and arrive at similar results to what
we present in this section. They also provide an example of a sender-receiver game
that is similar to the Crawford-Sobel model that has, as with our model, partial
disclosure of information with partial truthful commitment.

We provide the following proposition that confirms the above application of
our notions of commitment power to the Crawford-Sobel model (the proof for
partial truthful case is substantially shorter than Seidmann and Winter due to
our use of a more specific environment).

Proposition 6.1 If for each state of nature there is at least one available mes-
sage which is truthful only at that state (hence such a message fully reveals the
state of nature), then under partial truthful, full truthful and full commitment
power, full revelation is the only equilibrium outcome.

Proof: Assume that in equilibrium, at s ∈ [0, 1] the sender sends a message
m(s). Let Ms = {s̃|m(s̃) = m(s)} (note that Ms̃ = Ms for all s̃ ∈ Ms). We
claim that Ms = {s}. Let y(Ms) = y(m(s)) be the action of the receiver when
he receives m(s). First observe that since the sender can guarantee −b2 at any
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s̃ ∈ Ms (by sending M(s̃) = {s̃}), it must be that −(y(Ms) − s̃ − b)2 ≥ −b2 for
all s̃ ∈Ms implying:

y(Ms) ≥ s̃ for all s̃ ∈Ms

On the other hand,

y(Ms) = arg max
y
E[−(y − s̃)2|s̃ ∈Ms] = E[s̃|s̃ ∈Ms]

Therefore,
E[s̃|s̃ ∈Ms] ≥ s̃ for all s̃ ∈Ms

and hence Ms = {s}.
We now show that with full (or full truthful) commitment power, full rev-

elation is also the only equilibrium outcome. If instead the sender chooses
to send the same message for all states in set M , the receiver would choose
y(M) = E[s|s ∈M ]. The expected utility of the sender (given that s is in M) is

E[−(y(M)− s− b)2|s ∈M ] = E[−(s−E[s|s ∈M ])2|s ∈M ]− b2

In equilibrium, this should be at least −b2, since the seller can obtain a utility
of −b2 by sending {s} for all s in M . This implies that the set M must be a
singleton. 2

7 Conclusion

In this paper, we have begun the investigation of the strategic use of seller infor-
mation in private-value auctions. This issue is not only intriguing theoretically,
but is relevant to real situations such as procurement or privatization. Method-
ologically, our approach is in the spirit of the works of Kamien, Tauman, and
Zamir (KTZ) [1990a and 1990b] on the value of information in a strategic con-
flict: ‘injecting’ information into a game, by public or private messages, changes
the original game and induces a different game. The effect of the information is
‘measured’ by the ‘outcome’ or Nash equilibria of the induced game. The funda-
mental departure from the KTZ model is that while they consider an information
holder who is an outside agent and not a player in the original game, we consider
the seller as an information holder whose payoff is determined directly from the
outcome of the game among the buyers.

Our principle conclusion is that this information is useful and that the use-
fulness is highly dependent upon the level of commitment power the seller pos-
sesses. We show this by examining the set of equilibria under different levels
of commitment power with two possible different information conditions for the
seller. Under both cases, the seller uses public signals only. In the first case, the
seller knows which of the two buyers has the highest value (the rankings). In the
second case, the seller knows the buyers’ values completely.
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When only the rankings are known, we know from LRWZ that the seller can
gain if the buyers become aware of their rankings. We find this gain only when
the seller can commit to tell the truth or commit to a specific strategy (partial
truthful, full truthful and full commitment). If the seller cannot commit, we find
that under any alphabet of signals or any interpretation function of these signals,
the seller cannot gain from his information and any equilibrium is equivalent to
the no information equilibrium.

If, in addition, the values are known to the seller and he is able to announce
either the rankings, values, the higher value, or the lower value, then the seller
can gain from having partial truthful commitment power even more than with
full commitment power when he knows only the rankings. Furthermore, when he
has full commitment power, he can gain even more.

In future work, we plan to look further at the no commitment case. Prelimi-
nary results seem to indicate that when the seller has full information he cannot
gain from his information without some commitment power, however, under a
different information partition he can gain from his information even with no
commitment power. We also plan to study the partial truthful commitment case
under a larger set of signals to see if the seller can do strictly better. As men-
tioned in the introduction, we also study the question of seller information in the
framework of mechanism design (Kaplan and Zamir, 2000).
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A Appendix

A.1 Proof of Lemma 4.1

Consider first the case vl < vh and let l = inf{b|P (bl < b) > 0}. Thus, l is the
lower bound of the support of L’s strategy. First observe that P (bh < l) = 0
since bh < l yields zero profit while H can guarantee positive profit by any bid b
satisfying vl < b < vh. For the same reason,

P (bl = l) = 0 implies P (bh ≤ l) = 0 (10)

We claim first that the expected payoff of L in equilibrium is zero. In fact,
this is true if l = vl, since then (by Assumption 4.1 and the definition of l)
P (bl = vl) = 1 and L never has a positive payoff. If l < vl, then P (bh = l) = 0
since otherwise (by (10)) P (bl = l) > 0 which is impossible (both buyers cannot
play an atom at the same point l).

Hence, P (bh > l) = 1 and consequently P (L wins|bl = l) = 0 implying that,
again, his expected payoff is zero (since l is in the support of his strategy).

Next we claim that l = vl is impossible in equilibrium since buyer H has no
best reply. (Clearly P (bh < vl) = 0 and to any strategy with P (bh > vl) > 0
there is a profitable deviation, but to bh = vl there is also a profitable deviation.)

We conclude that l < vl, and P (bh ≥ vl) = 1 (otherwise L would have a de-
viation with positive expected payoff). Since again P (bh > vl) > 0 is impossible,
we must have bh = vl and finally P (bl < vl) = 1 (otherwise H would have a
profitable deviation).
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For vl = vh = v, using standard arguments, it is readily verified that the only
pure-strategy equilibrium is b1 = b2 = v. Since bids are bounded below by zero,
there is not a possibility of a mixed-strategy equilibrium (see Kaplan & Wettstein
[2000]). 2

A.2 Proof of Proposition 5.1

Denote Γvh the game in which the seller commits himself to send (publicly) the
signal vh = max{v1, v2}.

Lemma A.1 In game Γvh , high-value buyer cannot use a pure strategy in equi-
librium.

Proof: Assume to the contrary that there is some vh > 0 at which the high-value
buyer bids a pure strategy, say bh. In equilibrium, bh < vh, since the high-value
buyer makes zero profits with bh = vh and can make strictly positive profits
with any bh strictly between 0 and vh (he would win vh − bh whenever vl < bh).
The low-value buyer, knowing vh, would therefore know bh. To maximize his
profit, whenever vl > bh, he would choose the lowest bid strictly greater than bh.
Such a bid does not exist. Therefore, the high-value buyer cannot use this pure
strategy.14

2

Lemma A.2 In the equilibrium of game Γvh , the mixed-strategy of the high-value
buyer cannot have any atoms nor gaps in its support.

Proof: First, let us show that there are no atoms. If there are, consider the
highest of such atoms. Using the arguments in the proof of Lemma A.1, this atom
must be below vh. Given this, there must be some positive measure of low-value
buyers that would wish to bid slightly above this atom. The rest of the argument
is again as before in the proof of Lemma A.1.

Second, assume that a and b are in the support of H’s strategy, while the
interval (a, b) is not. Then no L buyer bids in (a, b), since bidding a is strictly
better. Consequently for H also bidding a is strictly better than b in contradiction
to the fact that they are both in the support of the equilibrium strategy. 2

Lemma A.3 In the equilibrium of game Γvh , the low-value buyer must bid a
continuous strictly increasing function of his value on the support of the high-
value buyer.

14One can also see that this is not an artifact of a point existence problem. All the low-value
buyers with values strictly greater than bh would want to choose the same point ‘slightly’ above
bh. The high-value buyer would then have incentive to move to a bid higher than such a point.
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Proof: Given the value vh of H, let [b, b] be the support of the mixed strategy
in equilibrium. Note that 0 ≤ b < b < vh (since H has positive expected payoff
in equilibrium) and by Lemma A.2, buyer H’s strategy has no atoms nor gaps in
[b, b]. Consequently, the probability P (b) = P (b > bh) that L wins with a bid b
is strictly increasing in b in the interval b ≤ b ≤ b.

Let bl(vl) be the (possibly random) bid of the L buyer when his value is vl ≤ vh.
Note that an L buyer with value vl > b expects a positive payoff in equilibrium
(since a positive payoff is guaranteed by bidding, for example, (vl+ b)/2). Hence,
the support of bl(vl) is a subset of [b, b] (any lower bid yields zero payoff and any
higher bid is strictly dominated by b). Let β = bl(Vl) be the random bid of the
(random) L buyer in equilibrium.

We first claim that there are no gaps in the cumulative distribution of β in
[b, b]. Assume there is such a gap (x, y) where b ≤ x < y ≤ b. Then, the prob-
ability P (bl ≤ z) is the same for all z in (x, y). Clearly, H would strictly prefer
the lowest of such points implying (x, y] is not in the support of his strategy in
contradiction to Lemma A.2. Similarly there cannot be an atom in the distribu-
tion of β in (b, b] since if there is an atom, say at α ∈ (b, b], then for bidder H,
for sufficiently small ε > 0, any bid in the interval (α− ε, α) is strictly dominated
by the bid α+ ε/2, in contradiction to the fact that the mixed strategy of H has
no gaps. Next we claim that for all vl ∈ [b, vh] the bidding strategy bl(vl) is pure.
Assume to the contrary that for a certain v′l ∈ [b, vh], two different bids b1 and
b2, where b < b1 < b2 <, b, are both in the support of bl(v′l). Then this L buyer
must be indifferent between these two bids and weakly prefer them to any bid in
between them. Thus,

P (b1)(v′l − b1) = P (b2)(v
′
l − b2) ≥ P (x)(v′l − x) for all x in (b1, b2)

where P (bi) is the probability of winning the auction with bid bi.
For all vl′′ > vl′, the bid b2 is strictly preferred to any bid x in [b1, b2), since

P (b2)(v′′l − b2) = P (b2)(v′l − b2) + P (b2)(v′′l − v′l) ≥
P (x)(v′′l − x) + (P (b2)− P (x))(v′′l − v′l) > P (x)(v′′l − x) ∀x < b2

(from P (x) being strictly increasing).
Likewise, for all vl′′ < vl′, the bid b1 is strictly preferred to all bids x in (b1, b2].

Thus, any L buyer with value vl 6= v′l in the interval [b, vh], bids with probability
zero in (b1, b2) and thus P{β ∈ (b1, b2)} = 0 in contradiction to the fact that the
distribution of β has no gap in [b, b].

We proceed now to show that the (pure) bidding strategy of L, bi(v) is strictly
increasing. Let F be the cumulative distribution of the H buyer’s bidding strat-
egy, and let v1 > v2 be two values of vl. First we claim that bl(v1) 6= bl(v2) since
if they were both equal, say to b, then we would have bl(v) = b for all v ∈ (v1, v2)
(since for all b, F (b)(v2− b) ≤ F (b)(v− b) ≤ F (b)(v1− b), and hence F (b)(v− b)
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has the same maximum point as the other two functions), in contradiction to the
fact that the distribution of β has no atoms. By the equilibrium conditions:

F (bl(v1)) · (v1 − bl(v1)) ≥ F (bl(v2)) · (v1 − bl(v2))

and
F (bl(v2)) · (v2 − bl(v2)) ≥ F (bl(v1)) · (v2 − bl(v1))

This implies that F (bl(v1))(v1 − v2) ≥ F (bl(v2))(v1 − v2) and consequently
F (bl(v1)) ≥ F (bl(v2)) (since v1 > v2) and therefore bl(v1) ≥ bl(v2). Thus, bl is
weakly increasing. However, bl must be strictly increasing on (b, b] as well since if
bl were not, there would be an atom in β. Finally, since bl is strictly increasing, it
must also be continuous since otherwise the distribution of β would have a gap.
2

A.3 Proof of Proposition 5.2

From Lemmatta A.1, A.2, and A.3, we know that H uses a mixed strategy with no
atoms nor gaps and L uses a pure strategy according to an increasing, continuous
function bl. Again let [b, b] be the support of the mixed strategy of buyer H with
value vh.

Given vh, we first show that b ≤ vh/2. Denote by G(b) the (normalized)
cumulative distribution of L’s bid in equilibrium that is, (note that Pr{vl < vh}
is the probability that a buyer’s value, independent of whether he is high or low,
is less than vh),

G(b) = Pr{bl(vl) < b|vl < vh} · Pr{vl < vh}

A buyer never bids higher than his value, which implies that

G(b) ≥ Pr{vl < b|vl < vh} · Pr{vl < vh} = b

In particular, G(b) ≥ b. In addition, we claim that G(b) ≤ b (and henceG(b) = b).
In fact, since L knows vh he also knows [b, b]. If vl > b, he will never bid less
than b (by which he would lose with certainty); bidding (b+ vl)/2 is a profitable
deviation, thus G(b) ≤ P (vl ≤ b) = b. Now, since b is in the support of buyer
H’s strategy, he prefers it to any bid b outside of his support. Thus, for all b ≤ b
we have:

G(b)(vh − b) ≤ G(b)(vh − b)
Since G(b) ≤ b, we also have:

G(b)(vh − b) ≤ b(vh − b)

and hence
b(vh − b) ≤ G(b)(vh − b) ≤ b(vh − b) for all b ≤ b
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This leads to a contradiction if b > vh/2 since b(vh − b) attains a maximum
at b = vh/2.

Buyer H must be indifferent among all the bids in the support of his strategy;
all yield the same expected profit, say c. Therefore, (b−1

l (b)/vh) · (vh − b) = c,
which we rewrite as

b−1
l (b) =

vh · c
vh − b

We will now determine buyer L’s bid function on [b, b]. Since G(b) = b, we
have b−1

l (b) = b. We now show that b−1
l (b) = vh. If bl(vh) > b, then buyer L with

value vl = vh would have a profitable deviation to bl(vh) − ε (with which he still
wins the auction with certainty). If bl(vh) < b, then (since bl is monotone) b− ε
would also be a certain win for H and hence b cannot be in the support of H’s
strategy in equilibrium. Thus, bl(vh) = b.

Assuming that bl is differentiable at b, we have b−1
l

′
(b) = vh · c/(vh − b)2 =

b/(vh − b). Since L never bids above his value, b−1
l

′
(b) ≥ 1 and therefore, b ≥ vh/2.

Since we also have b ≤ vh/2, we conclude that b = vh/2. From this and b−1
l (b) = b,

we have that c = vh/4, and substituting this into the condition b−1
l (b) = vh,

yields vh = vh · (vh/4)/(vh − b). This determines the upper end of the support as
b = (3/4)vh.

We conclude that we know that the support of buyerH strategy is [(1/2)vh, (3/4)vh],
and the bidding strategy of buyerL for vl ≥ vh/2 is b−1

l (b) = (v2
h/4)(vh − b), which

is

bl = bl(vl, vh) = vh −
v2
h

4vl

We can now solve for the cumulative density F of buyer H, by looking at the
equilibrium condition for buyer L which is: F (b)(vl−b) is maximized at b = bl(vl).
This yields the following differential equation.

F (b)

F ′(b)
= b−1

l (b)− b

Substituting for b−1
l , we get

F (b)

F ′(b)
=

v2
h

4(vh − b)
− b

The solution to this equation, satisfying the boundary conditions F (vh/2) = 0
and F (3vh/4) = 1, is

F (b) =
e2

2
· vh

2b− vh
· e−

vh
2b−vh

2
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A.4 Proof of Proposition 5.3

In this section we calculate the expected revenues of the seller and the buyers
in equilibrium when the seller has full commitment power and values are drawn
uniformly.

Recall that in the equilibrium, the seller publicly announces the high valuation
vh. The high value buyer makes a random bid b with support on [1/2vh, 3/4vh]
and cumulative distribution F given by:

F (b) =
e2

2
· vh

2b− vh
· e−

vh
2b−vh

Hence, the density function is:

f(b) = 2e2 · vh(vh − b)
(2b− vh)3

· e−
vh

2b−vh

The low-value buyer uses a pure bidding strategy:

bl =

{
vl if vl ≤ vh/2
vh − v2

h/4vl if vh/2 ≤ vl ≤ vh

We start by computing the conditional expected selling price given that the
high value is vh.
(i) If 0 ≤ vl ≤ vh/2, the buyer H wins with certainty and the expected selling
price is therefore the mean of his bid, which is

∫ 3vh
4

vh
2

b · f(b)db =
∫ 3vh

4

vh
2

2b · e2 · vh(vh − b)
(2b− vh)3

· e−
vh

2b−vh db (11)

Substituting t = vh/(2b− vh), this becomes

v2
he

2

2

∫ ∞
2

(1− 1

t
)e−tdt =

vh
4

(3− e2ϕ(2))

where for any z > 0, ϕ(z) =
∫∞
z

e−t

t
dt.

(ii) When vh/2 ≤ vl ≤ vh, the L buyer wins the auction with probability f(bl)
and the H buyer wins when b > bl. Therefore, the conditional expected selling
price (given that vh/2 ≤ vh ≤ vh) is:

2

vh

∫ vh

vh
2

(
blF (bl) +

∫ 3vh
4

bl

bf(b)db

)
dvl

The first integral is:

2

vh

∫ vh

vh
2

blF (bl)dvl = 2
∫ vh

vh
2

[
(1− vh

4vl
) · e

2

2
· 2vl

2vl − vh
· e−

2vl
2vl−vh

]
dvl
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By substituting t = vh/(2vl − vh) and integrating by parts this becomes:

e · vh
4

∫ ∞
1

(
2

t2
+

1

t
)e−tdt =

vh
4

(2− eϕ(1))

The second integral, which requires a more lengthy and careful treatment is
computed in the same manner:

2

vh

∫ vh

vh
2

(
∫ 3vh

4

bl

bf(b)db)dvl =
vh
4

(1 + e2ϕ(2))

Combining both integrals yields the expected selling price (given vl ≥ vh) is

vh
4

(3− e · ϕ(1) + e2 · ϕ(2)) (12)

Since P{0 ≤ vl ≤ vh/2} = P{vh/2 ≤ vl ≤ vh} = 1/2, using (11) and (12), the
expected selling price is:

1

4

∫ 1

0
(3− e

2
ϕ(1))vh(2vh)dvh =

1

2
− e · ϕ(1)

12
≈ 0.450304

The welfare loss is equal to∫ 1

0

1

vh

∫ vh

vh
2

F (bl)(vh − vl)dvl(2vh)dvh = e · ϕ(1)/24

We next calculate the low-value buyer’s profits. The low-value buyer has
expected profits equal to∫ 1

0

1

vh

∫ vh

vh
2

F (bl)(vl − bl)dvl(2vh)dvh = e · ϕ(1)/24

Now we calculate the high-value buyer’s profits. The total surplus in the
environment is 2/3. This should equal the sum of the seller’s surplus, low-value
buyer’s surplus, the high-value buyer’s surplus and the welfare loss.

From this we find that the high-value buyer’s expected profits is simply 1/6.
2
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