LATE ASSIGNMENT OF SYNTAX THEORY: EVIDENCE FROM CHINESE AND ENGLISH

Submitted by Xingjia Shen to the University of Exeter as a thesis for the degree of Doctor of Philosophy in the School of Psychology in October 2006.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material is included for which a degree has previously been conferred upon me.

é é é é é é é é é é (Signature)
Abstract

The attraction of the well-structured arguments of the mental syntactic processing device (parser) in Chomsky’s theory has led to an overemphasis on syntactic processing to the exclusion of semantic and other processing in the initial sentence processing stage (Frazier & Clifton, 1996; Gibson & Hickok, 1993; Pickering & van Gompel, 2006). The current thesis joins some others (Green & Mitchell, 2006; MacDonald et al., 1994; Townsend & Bever, 2001, etc.), investigating the timecourse of the information processing of sentences.

The first interest centres on ambiguous sentence resolution. Crosslinguistic studies have shown different resolutions in processing the relative clause (RC) attachment as in ‘the servant of the actress who was on the balcony’ (Cuetos & Mitchell, 1988). Three studies confirmed that there is an NP-low preference in Chinese; however, this effect was delayed in comparison to its English counterparts. The NP-low preference can be explained by syntax-first, syntax parallel, and syntax later theories. However, the delay effect questions the traditional syntax-first theories. This leads to the second investigation of direct comparison of the timecourse of syntactic and semantic processing using anomalous materials in English and Chinese. Two experiments have confirmed that the syntactic anomaly is recognised later than semantic anomaly in both languages.

The empirical investigation in the current thesis used various methodologies, including self-paced reading, a questionnaire, and eye-tracking studies, where the design of materials strictly followed linguistic principles. All the results support the late assignment of syntax theory (LAST) (Townsend & Bever, 2001). In fact, LAST can explain most of the evidence for syntax-first and syntax-parallel theories, and it is in line with the latest development of the linguistic UG theories (the Minimalist Programme).
Table of Contents

Abstract ... 2

Chapter 1 Introduction .. 10

Part I. On the Shoulder of A Giant .. 18

Chapter 2: The Development of Chomskyan Syntax Theories 19

 2.1 Transformational Grammar (1950s-1970s) .. 19
 2.2 Government and Binding (1980s-1990s) ... 21
 2.3 The Minimalist Program (1990s - now) .. 28
 2.4 The Innateness of Natural Language (A Summary) .. 31

Chapter 3: Some Psycholinguistic Models .. 34

 3.1 Parsing Prior to Other Processing Types ... 36
 3.1.1 The Garden-Path Theory Group and Serial Models ... 37
 3.1.2 The Structural-competing Theories ... 43
 3.2 Parsing Parallel with Other Processing Types .. 48
 3.2.1 The Exposure-based Tuning Hypothesis (ETH) .. 49
 3.2.2 The Competition-integration Model .. 51
 3.2.3 Summary .. 54
 3.3 Parsing Posterior to Other Processing Types ... 55
 3.3.1 The Implicit Prosody Hypothesis (IPH) ... 56
 3.3.2 The Late Assignment of Syntax Theory (LAST) ... 58
 3.3.3 Summary .. 61

Chapter 4 The Methodologies ... 63

 4.1 Off-line .. 63
 4.2 On-line .. 64
 4.2.1 Self-Paced Reading .. 64
 4.2.2 Eye-tracking ... 67
 4.2.3 Other Measurements ... 71
 4.3 Summary .. 73

Chapter 5 Some Evidence ... 75

 5.1 Parsing Prior to Other Types of Processing ... 75
 5.1.1 Delayed Assignment of Pragmatic Constraints? .. 76
 5.1.2 Parsing is Modular? ... 78
 5.1.3 The Crosslinguistic Disaster ... 82
Chapter 6 Tip One: Relative Clause Attachment Ambiguity

6.1 Chinese and the RC Attachment Ambiguity Issue
6.1.1 Word Order in Chinese
6.1.2 The Syntactic Structure of Chinese Relative Clause
6.2 Predictions on Chinese RC Attachment Preference
6.2.1 The Garden Path Theory Group (GPTG)
6.2.2 Recency Preference / Predicate Proximity (RP/PP)
6.2.3 Attachment and Binding (AB)
6.2.4 The Exposure-based Tuning Hypothesis (ETH)
6.2.5 The Implicit Prosody Hypothesis (IPH)
6.3 Study 1: Self-Paced Reading on Chinese RC Attachment Preference
6.3.1 Method
6.3.2 Results
6.3.2.1 General Results
6.3.2.2 Results of de
6.3.2.3 Results of the Interaction involving de
6.3.3 Discussion
6.4 Study 2: Website-based Questionnaire for English and Chinese Speakers
6.4.1 Method
6.4.2 Results
6.4.2.1 Results for Chinese
6.4.2.2 Results for English
6.4.2.3 Comparing Chinese and English
6.4.3 Discussion
6.5 Study 3: An Eye Tracking Experiment on Topicalisation
6.5.1 Method
6.5.2 Results
6.5.2.1 Data Extraction
6.5.2.2 Results for Chinese
6.5.2.3 Results for English
6.5.2.4 Comparing Chinese and English
6.5.3 Discussion
6.5.3.1 Chinese Results and the Methodology
6.5.3.2 English Results and the Methodology
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The dialogue between two bogan-crocodiles</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>The UG explained by TG</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>The UG explained by GB</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>The Tree-diagram of the X-bar Theory in head-initial language</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>The transformation of passive sentences under TG</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>The transformation of passive sentences under GB</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>Tree-structure illustrating EPP</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>The transformation of passive sentences under MP</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>The Language Faculty</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>Comparison between the predictions of GPT and RR</td>
<td>41</td>
</tr>
<tr>
<td>11</td>
<td>A Model of the Garden Path Theory Group</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>Illustration of Structural-competition Theories</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>Possible Grain-sizes</td>
<td>51</td>
</tr>
<tr>
<td>14</td>
<td>McRae's Model's illustration</td>
<td>53</td>
</tr>
<tr>
<td>15</td>
<td>An Illustration of LAST at Sentence Level</td>
<td>61</td>
</tr>
<tr>
<td>16</td>
<td>A Scene Used in Snedeker & Trueswell (2003) Experiment</td>
<td>97</td>
</tr>
<tr>
<td>17</td>
<td>Relative Clause Attachment Preference Structures in Chinese</td>
<td>107</td>
</tr>
<tr>
<td>18</td>
<td>An Alternative NP-high attachment Structure</td>
<td>108</td>
</tr>
<tr>
<td>19</td>
<td>RTs at the NP sites in different Attachment Types</td>
<td>119</td>
</tr>
<tr>
<td>20</td>
<td>RTs for Different NP Sites with/without "de"</td>
<td>121</td>
</tr>
<tr>
<td>21</td>
<td>RTs of Different Occupation Groups</td>
<td>122</td>
</tr>
<tr>
<td>22</td>
<td>Total Time in Chinese</td>
<td>154</td>
</tr>
<tr>
<td>23</td>
<td>Regression Path Time in English</td>
<td>155</td>
</tr>
<tr>
<td>24</td>
<td>Correct Passive Structures of English and Chinese</td>
<td>164</td>
</tr>
<tr>
<td>25</td>
<td>Incorrect Structures in English and Chinese</td>
<td>166</td>
</tr>
<tr>
<td>26</td>
<td>First Fixation Time</td>
<td>184</td>
</tr>
<tr>
<td>27</td>
<td>First Pass Time</td>
<td>185</td>
</tr>
<tr>
<td>28</td>
<td>Regression Path Time</td>
<td>188</td>
</tr>
<tr>
<td>29</td>
<td>Reconstruction Time</td>
<td>188</td>
</tr>
<tr>
<td>30</td>
<td>Total Time</td>
<td>189</td>
</tr>
<tr>
<td>31</td>
<td>Rating</td>
<td>190</td>
</tr>
<tr>
<td>32</td>
<td>First Fixation Time</td>
<td>214</td>
</tr>
<tr>
<td>33</td>
<td>Error Bar for First Fixation Time</td>
<td>215</td>
</tr>
<tr>
<td>34</td>
<td>First Fixation Time on the Preposition</td>
<td>217</td>
</tr>
<tr>
<td>35</td>
<td>First Pass Time</td>
<td>218</td>
</tr>
<tr>
<td>36</td>
<td>Regression Path Time</td>
<td>219</td>
</tr>
<tr>
<td>37</td>
<td>Reconstruction Time</td>
<td>220</td>
</tr>
<tr>
<td>38</td>
<td>Total Time</td>
<td>224</td>
</tr>
<tr>
<td>39</td>
<td>Mean Naturalness Rating Score</td>
<td>225</td>
</tr>
</tbody>
</table>
List of Tables

Table 1 X-bar’s Parameterisation ... 23
Table 2 Initial constraint inputs used in the simulation of McRae et al. (1998, p. 293) 53
Table 3 NP Types in Gilboy et al.’s (1995) Experiment .. 85
Table 4 NP Preference in Dutch Corpus Study ... 92
Table 5 Mean RT of "de" (ms) .. 120
Table 6 Percentage of NP-low Choices in Chinese .. 130
Table 7 Percentage of NP-low Choices in English .. 131
Table 8 Percentage of NP-low Choices in General ... 132
Table 9 First Pass Time for NP-low in Chinese ... 140
Table 10 Forward Reading Time for NP-low in Chinese 141
Table 11 Regression Path Time for NP-low in Chinese 141
Table 12 Total Time for NP-low in Chinese .. 142
Table 13 First Pass Time for NP-low in English .. 144
Table 14 Forward Reading Time for NP-low in English 145
Table 15 Regression Path Time for NP-low in English 146
Table 16 Total Time for NP-low in English .. 147
Table 17 First Pass Time for NP-low .. 148
Table 18 Forward Reading Time for NP-low .. 149
Table 19 Regression Path Time for NP-low .. 150
Table 20 Total Time for NP-low ... 151
Table 21 Measurements in English and Chinese (subjects analyses) 157
Table 22 Measurements of Overall Results .. 157
Table 23 Mean First Fixation Time for Chinese ... 170
Table 24 Mean First Pass Time for Chinese ... 170
Table 25 Mean Regression Path Time for Chinese 171
Table 26 Mean Reconstruction Time for Chinese 171
Table 27 Mean Total Time for Chinese ... 172
Table 28 Mean Rating for Chinese ... 173
Table 29 Mean First Fixation Time for English ... 173
Table 30 Mean First Pass Time for English ... 174
Table 31 Mean Regression Path Time for English 174
Table 32 Mean Reconstruction Time for English 175
Table 33 Mean Total Time for English ... 176
Table 34 Mean Rating for English .. 176
Table 35 Mean First Fixation Time .. 177
Table 36 Mean First Pass Time ... 178
Table 37 Mean Regression Path Time ... 178
Table 38 Mean Reconstruction Time ... 179
Table 39 Mean Total Time .. 180
Table 40 Mean Rating .. 181
Table 41 Result Outline ... 182
Table 42 Mean First Fixation Time for Chinese 200
Table 43 Mean First Pass Time for Chinese .. 200
Table 44 Mean Regression Path Time for Chinese 201
Table 45 Mean Reconstruction Time for Chinese ... 201
Table 46 Mean Total Time for Chinese ... 202
Table 47 Mean Rating for Chinese ... 202
Table 48 Mean First Fixation Time for English ... 203
Table 49 Mean First Pass Time for English ... 204
Table 50 Mean Regression Path Time for English ... 205
Table 51 Mean Reconstruction Time for English ... 205
Table 52 Mean Total Time for English ... 206
Table 53 Mean Rating for English .. 206
Table 54 Mean First Fixation Time .. 207
Table 55 Mean First Pass Time .. 208
Table 56 Mean Regression Path Time .. 209
Table 57 Mean Reconstruction Time .. 209
Table 58 Mean Total Time .. 210
Table 59 Mean Rating ... 210
Table 60 Results Outline .. 210
Table 61 Mean Reading Time Summary ... 222
Table 62 Mean Rating Scores ... 226
Acknowledgement

First of all, I shall thank all my friends and colleagues at the School of Psychology, University of Exeter, for providing all kinds of help and support during the whole period of my PhD. They are the academic fellows, technicians, secretaries and many postgraduate and undergraduate students who participated in my experiments, exchanged their opinions with me on my research topic, and even helped me with my English. Particularly, I need to thank Prof. Don Mitchell, my supervisor, for his continuous encouragement and guidance throughout my research. He has constantly informed me of the latest development in the field as well as providing insightful suggestions to my study. Moreover, I was very lucky to have worked as his research assistant, which not only funded almost two years of my PhD, but also strengthened my skills that will be extremely valuable for my future development. I would also like to thank Dr. Tim Hodgson, who has generously taught me eye-tracking technology, and wrote some of the software used in my experiments. Thanks also to Dr. Aureliu Lavric who taught me the basic knowledge of EEG/ERPs technology, and has provided valuable discussion and suggestions to my research. Aureliu’s handout for the undergraduate course “Language and Thought” has helped me to have an in-depth understanding of different language processing models.

Discussions at conferences such as AMLaP in Glasgow and Ghent, PCOEAL in Hong Kong and Camling in Cambridge helped to shape this thesis. I would specially thank Prof. Janet Fodor, Dr. Barbara Hemforth, Dr. Yuki Kamide and Dr. Edson Miyamoto. They had not only shown interest in my presentations, providing valuable questions and suggestions, but also provided me with adequate follow-up information about their own research work.

The eye-tracking data analyses could never start without the help from my dear husband, Lari, who deserves special thanks for writing Matlab scripts and various small programmes to “clean” the massive dataset. My most useful programming knowledge was taught by him. He also spent much of his spare time discussing my research topic, even though he might not be particularly interested in it. His suggestions helped to clear up my ideas. Without his support, I could not have finished this work.

I would like to express my thanks to two special friends who have always been lovely and supportive: Mr. Mikihiro Tanaka who always updated me with important information, especially from conferences that I could not go; and Miss Paula McDonald, who helped to proof-read this thesis.

In the end, I would like to dedicate this work to my dear parents, who always believed that I could finish this work even when I doubted it, and were supportive both spiritually and financially throughout the years. This thesis is written in memory of my dear grandmother, Ms. Zhenghua Zhang, who left me forever just before I started the PhD, and my grandfather, Bangxing Shen, who loved me the most.