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Abstract

Interconnecting a distributed generation (DG) to an existing distribution system

provides various benefits to several entities such as the DG owner, utility and end users.

DG provides an improved power quality, higher reliability of the distribution system

and covering of peak shaves. Penetration of a DG into an existing distribution system

has so many impacts on the system, despite the benefits a DG will provide; it has a

negative impact on one of the most important aspects of the system which is the power

system protection, and it is a main factor affecting both reliability and stability of the

system. DG causes the system to lose its radial power flow, besides the increased fault

level of the system caused by the DG. In this thesis, the effect of DG penetration on the

short circuit level of the network is investigated through simulating the IEEE 13 bus test

feeder using ETAP. The simulation is repeated for nine different cases at which the

location of one large DG is changed in six of the cases to study the effect of the distance

on the fault level, while the rest of the cases are performed using small decentralised

DGs. The result of those three cases at which the DG is decentralised are used to

investigate the effect of the generating capacity of the generation unit on the distribution

network parameters and on the currents flowing through the laterals of the distribution

network. Results are compared to that of the normal case to investigate the impact of the

DG on the short circuit currents flowing through different branches of the network to

deduce the effect on protective devices.
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Chapter 1: Introduction

1.1 Brief Introduction

Among the various energy forms, electrical power plays the major role due to the fact of

its ease to generate and utilise. As a result of the increasing awareness and economic

concern of the consumers in the past few decades, one of their main concerns is to

receive a more reliable electrical power supply with fewer expenses which caused a

higher challenge to the electric utilities, as they are expected to deliver higher quality

service through the reliability of the supply with less cost. In order to achieve less cost,

utilities are targeting a system with less operation and maintenance costs, reduction of

resources cost and reducing the system losses.

For electric utilities to deliver electric power to consumers there are several stages to

be passed through, the first stage is the generation, at which electricity is generated in

large sized generation stations that are located in non-populated areas away from all

loads to overcome the economics of size and environmental issues. Second stage is the

transmission; this is done with the aid of several equipments such as transformers,

overhead transmission lines and underground cables. Transmission is an important part

of the system that consumes a lot of money to transmit the generated electricity to reach

the last stage which is the distribution.

Distribution system is the link between the end user and the utility system, it is the

most crucial part of the power system and it is facing a lot of threats that cause a power

interruption to customers, it can be stated that a great percentage of end users’ power

outages are due to distribution networks, it can also occur due to mal functioning of the

networks protection equipment as a result of adding a Distributed Generation (DG) to

increase the network’s reliability. DG is an alternative small rated power generation unit

added to the distribution network to cover the supply of some loads. There are different

types and technologies of DG’s used nowadays such as photovoltaic (PV) systems,

wind turbine, micro-turbines, fuel cells and rotating machines. PV and wind turbines are

examples of renewable energy consumables as they need no fossil fuel to operate, PV

utilises the sun and wind turbines operate by the aid of wind.
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Utilising renewable resources is one of the new trends to generate useful energy in

the form of electrical power. It is the major form of energy production required in the

world nowadays. There are certain aspects that have to be highlighted when talking

about renewable energy such as efficiency, economics and environment. The name

renewable resources is a self-explanatory expression that expresses the fact that these

types of resources are never running out due to the fact that they are from sources such

as the sun and the wind, the sun will never stop shining and the wind will always

continue blowing. From the efficiency point of view, fossil fuel run energy generation

edges the renewable resources technologies due to the fact that both mentioned

resources are not available at all times, besides the low availability of cheap and

efficient energy storage technologies. Efficiency of renewable energy technologies used

in generating electricity is far too low with respect to the traditional fossil fuel run

technologies. Environment outweighs renewable resources more than the fossil fuel as a

supply to the energy generation units, this is due to the clean energy production process

without any emissions or wastes due to combustion. Elimination of those emissions

reduces the different pollution caused to the environment, besides the elimination of the

impact on the climate. Despite the high initial cost of renewable energy stations, there

will be a decreased running cost along with less maintenance when compared with the

traditional stations, this is from the economics point of view but it does not mean that

economics prefers renewable energy stations. There are other aspects that cause the

economics to choose traditional generation till today; scientists are heading nowadays to

increase the efficiency with a reduced size of the renewable energy technologies to

compete with the other technologies from the economics point of view. When

mentioning renewable energy, PV and wind turbines have to be considered as they are

the major renewable energy technologies.

A PV system is a system consisting of large arrays that are formed of a number of

solar cells which are used in converting the solar energy to electricity. Solar cells are

made of semiconducting materials such as silicon used to generate electricity by the aid

of photons supplied to it by the sun. Each cell consists of a positive and a negative layer

to create an electric field for drifting the charges produced from the reaction of the

photons with the semiconducting material, these charges are moved to the bottom of the

cell and through a wire connecting the cells, the electricity produced depends on the

intensity of light and the number of cells. To achieve better performance of the PV

system, the array has to be kept at a perpendicular position with respect to the sun, thus
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some arrays are enriched with motors that allow it to track the sun seeking higher

efficiency and better performance of the system. The output of photovoltaic is always in

the form of DC, thus it has to be converted to AC in order to be utilised, and one of the

most important components in this system is the inverter that is used in converting DC

to AC, as the type of inverter used plays a great role when photo voltaic is used as a

DG. The drawbacks of PV are the high initial cost required to build the system, large

areas required for installing the system to achieve satisfying amount of power and the

low efficiency.

Wind turbine is also one of the rapidly increasing technologies and its applications

are also increasing in a vigorous manner. Wind turbines depend on the wind thus it has

no emissions that are harmful to the environment; the only pollution form generated by

large wind turbines is noise. Due to the economics of size, a large number of wind

turbines are built in the same location and grouped together and interconnected together

to medium voltage power collection systems. This group of wind turbines is now called

a wind farm. Due to the presence of high speed winds in the oceans and seas, the idea of

offshore wind farms came up to utilise these great wind speeds in generating electricity.

Wind turbines that are used in offshore wind farms are usually larger in size than the

land ones as the generating capacity of the unit depends on its size and the average

speed of the wind at the location of the turbine. Wind turbines are constructed of three

major parts, which are the blades (representing the rotor of a machine), generator

(usually a doubly fed induction generator) and the power electronics equipment. Wind

turbines and PV’s can be used as a DG that is interconnected to the utility network.

From the economical point of view, the technology of wind turbines edges the PV

technology when used as a DG in distribution networks due to the higher initial costs of

PV systems, but on the other hand, when considering the performance point of view, PV

systems could overcome the technology of wind turbines if it is not an inverter type

wind turbine, as inverter based DGs have less impacts on distribution networks. Any

way the penetration of a DG into an existing distribution network has a lot of impacts

on the network but its advantages outweighs the drawbacks which forces the essential

use of DGs.
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DG can be owned by individual customers and interconnected to the utility network;

it has so many advantages such increasing the reliability of the system, covering the

peak shaves with consuming less power from the utility thus decreasing the electricity

bill and covering the step increase of power demand. The draw backs of the DG are

mainly to the network as it will cause several protection problems during the occurrence

of a fault, examples of protection problems caused due to the penetration of DG in

distribution network are reduction of reach, mis-coordination between protection

devices and sympathetic tripping of protective devices. The previously mentioned

impact on protective devices is due to the contribution of the DG to fault currents that

were not included in the initial design and fault calculations of the system. On the other

hand the presence of the DG causes the contribution of the utility substation to decrease

during faults which has a positive impact on substation equipment life. This shows that

penetration of a DG in the power network has an impact on both the short circuit

currents and consequently on the existing protection scheme of the power system.

1.2 Thesis Objectives

The objective of this thesis is to investigate the impact of different configurations and

penetration levels of DG on the short circuit level of the network through simulating a

small system nine times with different configurations of the DG. The impact of DG on

short circuit currents has a consequent effect on the protection and protection devices,

studying this impact is the second objective of this thesis.

1.3 Thesis Structure

This thesis consists of five chapters and is organised as follows:

Chapter 1: Introduction and Thesis Outline

Chapter 2: Literature Review

Chapter 3: Simulation of IEEE 13 bus with Different DG Configurations

Chapter 4: Coordination of Directional Overcurrent Relays to Prevent Islanding of

Distributed Generation

Chapter 5: Conclusions and Future Work
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1.3.1 Outlines

Chapter 1 gives a brief introduction to the concept of distributed generations reflecting

the importance of DG systems to both the utility network and premises, besides the

drawbacks of DG on protective devices connected to the transmission and distribution

systems.

Chapter 2 is divided into six sections; the first section is a brief introduction and a

definition of DG, followed by the second section which discusses the various types of

distributed generation technologies and their nature. The impacts of DG on power

system grids are discussed in the third section. Section four highlightsone of the most

important issues to maintain a safe operation of the DG, and this is the interconnection

protection. Section five is an overview of one of the major problems that mis-protection

can lead to and causes a difficulty in system restore, this phenomenon is called

islanding. Finally the last section discusses the impact of DG penetration on the

distribution feeder protection and the mis-protection problems arising from the

interconnection of DGs.

Chapter 3 is the core of this thesis, in which a simulation is made to the IEEE 13 bus

system with different DG configurations. Nine cases are illustrated in this chapter to

study the effect of DG on the short circuit levels of the network at different fault

locations, besides the effect of the DG configuration. The first case is the base case that

all the results were compared to; it is the IEEE 13 bus system without the presence of

any DG. Cases 2, 3, 4, 5 and 6 are elaborating the effect of DG location on the level of

short circuit currents and this is obtained by repeating the simulation with the same size

of DG but changing the location of the DG itself. These five cases are presenting the

case of centralised DGs which is placing one large DG in the system, while cases 7and8

are going into the details of decentralised DGs, which is using a few DGs distributed

over the network at different locations with a total sum of generating capacity equating

the large centralised DG used in cases 2, 3, 4, 5 and 6. Case 9 is the last case at which

the simulation is performed using small decentralised distributed generations but with a

total generating capacity higher than all cases. Parameters and configurations of the

simulated system are introduced at the beginning of the chapter and lastly a discussion

on the results and comparisons made between different cases to elaborate the

conclusions.
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Chapter four introduces a conference paper entitled “Coordination of Directional

Overcurrent Relays to Prevent Islanding of Distributed Generators” that was

presented and published in the proceeding of EUROMED-ICEGES 2009 in Amman-

Jordan, organized by the Hashemite University from 15-06-2009 to 17-06-2009. This

paper is proposing a new technique for the coordination of the directional overcurrent

relays that are used in distribution networks to prevent the unintentional islanding of a

DG placed in the system during the occurrence of a fault in the system. Islanding can

occur due to mis-protection. Types of islanding detection techniques are also mentioned

in this paper.

Lastly, chapter 5 sums up the conclusions of this thesis and future work is proposed.
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Chapter 2: Literature Review

2.1 Introduction

Distributed Generation (DG) is one of the new trends that attracted attention for the past

years and its penetration in distribution networks is increasing in an enormous rate. DG

is presented in the form of solar (PV), wind (wind farms) and many other forms with

small scale ratings up to 10MW. DG refers to electric generators that are built to

generate electricity and supplying it to customers close to their locations, it can also be

interconnected to the utility grids. There are so many privileges a DG delivers to the

customer, which encourages their choice to install a DG rather than constructing new

distribution lines, doing so might be cost effective to some customers. DG can be used

to provide electricity supply to customers during peak times, it can provide a consumer

full demand allowing them to operate apart from the grid, thus it can support intentional

islanding.

One of the most important issues that has to be considered to achieve a safe and

effective use of DG is the interconnection of the DG to the utility grid, which is

discussed later in this chapter. There are different DG technologies and impacts of

distributed generations that are introduced in this chapter, besides the impact of DG on

protection and the coordination of protective devices.

2.2 Types of Distributed Generation [1]-[5]

DG can be classified into two major groups, inverter based DG and rotating machine

DG. Usually inverters are used in DG systems after the generation process, as the

generated voltage may be in DC form or AC but it is required to be changed to the

nominal voltage and frequency so it has to be converted first to DC then back to AC

with the nominal parameters through the rectifier.

2.2.1 Photo voltaic

PV system is an environment friendly system as it has no emissions what so ever. PV

systems utilise the sun as its fuel to generate DC voltage with a range of few megawatts

then transferred to AC with the aid of inverters. A PV system consists of cells placed in

an array that is either fixed or moving through motors to keep tracking the sun for
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maximising the power generated. PV systems occupy large spaces to be able to generate

sufficient power and this is one of its disadvantages besides the high initial cost.

2.2.2 Wind Turbines

Wind turbines utilise the wind as its input to be converted to useful electricity as the

output of the system. It acts as a turbine with the wind as its prime mover to rotate the

turbine that is connected to the shaft of a generator. The generator gives an AC output

voltage that is dependent on the wind speed. As wind speed is variable so the voltage

generated has to be transferred to DC and back again to AC with the aid of inverters.

The range of power generated by wind turbines could be a few mega watts for each

turbine.

2.2.3 Fuel Cells

Operation of fuel cells is similar to that of a battery but it is continuously charged with

hydrogen which can be extracted from any hydro-carbon source, this is the charge of the

fuel cell along with air (oxygen). The fuel cell utilises the reaction of hydrogen and

oxygen with the aid of an ion-conducting electrolyte to produce an induced DC voltage

which is proportional to the number of fuel cells. The generated DC voltage is

converted to AC using an inverter. A fuel cell also produces heat and water along with

electricity but it has a high running cost which is its major disadvantage. The major

advantage of a fuel cell is that there are no moving parts which increases the reliability

of this technology and no noise is generated; besides no fuel is consumed except for

electricity generation.

2.2.4 Micro-Turbines

The technology of micro-turbines is based on very high speed rotating turbines along

with a generator to produce a high frequency output voltage. Micro-turbines are usually

operated by natural gas. The main advantage of micro-turbines is the clean operation

with low emissions produced, but on the other hand its disadvantage is the high level of

noise produced and the low efficiency.

The output voltage from micro-turbines cannot be utilised or connected to the utility,

it has to be transferred to the nominal voltage with the nominal frequency, thus it has to

be first converted to DC and then converted back again to AC with the nominal voltage
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and frequency by the aid of inverters. Micro-turbines can operate in both stand alone

and parallel modes, but in the case of parallel operation with the utility grid they have to

be designed to supply a fixed power output. Many benefits can be obtained from

operating micro-turbines in the stand-alone mode such as the use of micro-turbines to

regulate both the voltage and frequency besides the supply of active power.

2.2.5 Rotating Machines

Rotating machine types are the DGs that include induction or synchronous machines

such as induction and synchronous generators. Synchronous types operate with fuel as

its input to generate electricity, and can be of different ratings starting from kW range

up to few MW ratings. Rotating machines are mainly used as standalone systems or as

backup generation systems.

2.3 Impact of Distributed Generation on Power System Grids

Penetration of DG in Distribution networks has an impact on various fields. These

impacts could be positive or negative and are considered as the benefits and drawbacks

of the distributed generation. This part is addressing the impacts of DG on different

aspects of the network.

2.3.1 Impact of DG on Voltage Regulation

The main regulating method used in radial distribution systems is by the aid of load tap

changing transformers at substations [6], additional line regulators on distribution

feeders and switched capacitors on feeders. Through the performance of the mentioned

devices voltages are usually maintained within the required ranges. The criteria of

voltage regulation is based on radial power flow from the substation down to all loads,

DG penetration changes the radial characteristics and the system loses its radiality and

power flows in different directions and a new power flow scheme is introduced.

Losing radiality of the system impacts the effectiveness of standard voltage

regulation technique. An expressive example of the impact of DG on voltage regulation,

if a DG is located just downstream of a voltage regulator or LTC (Load Tap Changer)

transformer that is using a set line drop compensation as shown in Fig. 2.1, regulation

controls will not properly measure the feeder demand [6].
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Fig. 2.1: Illustrating the DG unit interference with voltage regulation in a distribution feeder.

Line drop compensation must be employed at the LTC control to result in the indicated voltage

profiles. [6]

Fig. 2.1 shows the voltage profiles under these conditions with and without the

presence of DG. It is clear that with distributed generation the voltage becomes lower

on the feeder. The reason why the voltage is reduced in this case is because the DG

causes a reduction in the observed load from the line drop compensator control side, and

this will cause confusion to the regulator in setting a voltage less than the voltage which

is required to maintain certain levels at the end of the feeder. This phenomenon has an

opposite effect to voltage support. This is one of the benefits of DG. There are two

possible solutions to the previously mentioned problem; the first solution is to move the

DG unit to the upstream side of the regulator, while the second solution is adding

regulator controls to compensate for the DG output. These are the solutions to this

problem, but there arises other issues that are not focused on in this thesis.

One of the major effects of DG is that it may result in an increase in the voltage

received at other load points connected to it. An example to this situation is, consider a

small rated DG system used for residential purposes sharing a common distribution

transformer with several loads, this may cause a rise in the voltage on the secondary

which is sufficient to cause an increase in the voltage at the loads connected to the same

distribution transformer. This case will probably occur if the distribution transformer
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serving these loads is placed at a point on the distribution feeder where the primary

voltage is near or above the ANSI upper limit, this limit is 5% more than the nominal

base voltage. In the normal condition which is without the presence of DG, there is a

voltage drop across the distribution transformer and secondary conductors which results

in a decrease in the voltage received at the load terminals at which this voltage is less

than the primary voltage of the transformer. The presence of the DG will cause a reverse

power to oppose this normal voltage drop and may cause a considerable increase in the

voltage resulting in a rise of the voltage in a way that it may actually be higher at the

loads terminals than that on the primary side of the distribution transformer. It can

exceed the ANSI upper limit [6].

The previous examples showed how both high and low terminal voltages can occur

as a result of the incompatibility of DG with the radial power flow based voltage

regulation approach used on most utility systems, consequently the DG impact on

voltage levels for any potential application must be assessed to ensure that all loads will

not be affected or impacted by the presence of the DG. It is recognised that the power

injected to the system by the DG may result in an acceptable within limits voltage at the

DG side but on the other hand it might result in a voltage that will be out of limits

moving towards the downstream of the DG.

2.3.2 Impact of DG on Losses

One of the major impacts of Distributed generation is on the losses in a feeder. Locating

the DG units is an important criterion that has to be considered to be able to reach a

better performance of the system with reduced losses, and this is used to reach an

optimal performance of the network. According to [6], Locating DG units to minimise

losses is similar to locating capacitor banks to reduce losses; the major difference

between both cases is that DG may contribute to both active and reactive power flow (P

and Q) of the system while capacitor banks will only contribute to the reactive power

flow (Q) of the system. Most generators in the system will operate at a power factor

range between 0.85 lagging and unity, but the presence of inverters is able to provide a

contribution to reactive power compensation (leading current).

The optimum location for placing the DG can be obtained with the aid of load flow

analysis software that is able to investigate the location of DG to reduce the losses in the

system. Considering feeders with high losses, adding a number of small capacity DGs
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with a total output of 10–20% of the feeder demand will show a significant positive

effect on losses and it will be reduced which is a great benefit to the system, but when

deciding optimum DG location this is a theoretical decision as most of the DGs are

owned by individuals, and the electric authorities or utilities do not have any influence

on the locations at which the DG is required to be embedded [6]. If the analysis shows

that larger DG units are required other factors have to be considered in the study, such

as feeder capacity due to the thermal capacity of overhead lines and underground cables

because these elements of the network may not withstand the injected currents from the

DG and will result in a poor or weak distribution system with a lot of weak points and

the possibility of consequent undesirable consequences might take place [6].

2.3.3 Impact of DG on Harmonics

DG can be a source of harmonics to the network; harmonics produced can be either

from the generation unit itself (generator) or from the power electronics equipment such

as inverters used to transfer the generated form of electricity (DC) to AC to be injected

to the network. The old inverter technologies that were based on SCR produced high

levels of harmonics, while the new inverter technology is based on IGBT’s ( Insulated

Gate Bipolar Transistor) operating with the pulse width modulation technique in

producing the generated “sine” wave [6]. This new technology produces a cleaner

output with less harmonics produced that should satisfy the IEEE 1547-2003 standards

[7] as expressed in Table 2.1 below. Rotating machines such as synchronous generators

are another source of harmonics; this depends on the design of the windings of the

generator (pitch of the coils), non-linearity of the coil, grounding and other factors that

may result in significant harmonics propagation [6]. The best or the most specified

synchronous generators are that with a winding pitch of 2/3 as they are the least third

harmonic producers when compared with other generators with different pitches, but on

the other hand the 2/3 winding pitch generators may cause more harmonic currents to

flow through it from other parallel connected sources due to its low impedance[6].
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Table 2.1: Maximum Harmonics Voltage Distortion for Distributed Generators as per IEEE

1547-2003. [7]

Harmonic Order
Allowed Level

Relative to Fundamental
(Odd harmonics)*

4%
2%

1.5%

0.6%

0.3%

Total Harmonic
Distortion

5%

* Even harmonics are limited to 25% of odd values.

2.3.4 Impact of DG on Short Circuit Levels of the Network

Penetration of DG in a network has a direct impact on the short circuit levels of the

network; it causes an increase in the fault currents when compared to the normal

network conditions at which the substation is the only generating unit.

This increase will be obtained even if the DG is of a small generating capacity. The

contribution of DG to faults depends on some factors such as the generating capacity of

the DG (size of the DG), the distance of the DG from the fault location and the type of

DG.

Consider a case at which one small DG is embedded in the system, the fault current

will be increased at different fault locations and it can be generalised at any fault

location in the entire network but the percentage increase in the fault current caused by

the presence of one small DG might not be severe to the extent that causes an effect on

the fuse-breaker protection scheme and it might not cause mis-coordination of the

protection scheme and the fuse saving technique might still be maintained under this

condition this will be discussed later in this chapter. If more than one small DG is

embedded in the system, the sum of the current contribution of these DGs to fault could

have a significant effect on the protection devices and may cause mis-coordination in

protection scheme and the there will be no co-ordination between protective devices

resulting in a failure of the protection scheme. Thus the fuse saving technique of laterals

will be no more effective, consequently reliability and safety of the distribution network

is affected in a negative behavior which is not acceptable.
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Embedding one centralised DG in the system will have a quite significant effect on

the increase of the level of short circuit currents in the system. The presence of DG on

the system decreases the utility contribution to faults but on the other hand, the value of

the fault current increases, this increase is due to the contribution of the DG to the fault.

The percentage contribution of the DG to fault is varied according to the distance of the

DG from the fault but in all conditions the fault current is increased. When placing a

group of decentralised DGs distributed in different locations of the network with a total

equal to that of the centralised DG mentioned previously, the fault current is still

increased more than the normal condition but it is less than the centralised DG case. A

detailed discussion about centralised and decentralised DG is at chapter 3 of this thesis.

The highest contributing DG to faults is the separately excited synchronous generator

but during the first few cycles it is equated with the induction generator and self excited

synchronous generator, while after the first few cycles the separately excited

synchronous generator is the most severe case. The least severe DG type is the inverter

type, in some inverter types the fault contribution lasts for less than one cycle [8]-[12].

This shows that the type of DG and inverter used has a great effect on the severity of

contribution to faults.

2.4 Interconnection Protection

For a DG to be embedded in the system it has to be connected to the network through an

interconnection point called the point of common coupling (PCC) that usually faces a

lot of problems, thus it has to be properly protected to avoid any damage to both parties

during fault conditions; the first is the DG equipment and second is the utility

equipment, This allows the DG to operate in parallel with the utility grid. For

interconnecting the DG to the distribution utility grid, there are some protection

requirements that are established by the utility. Proper interconnection protection should

consider both parties ensuring the fulfilment of the utility requirements. Interconnection

protection is usually dependent on some factors such as size, type of generator,

interconnection point and interconnecting transformer connection. Transformers used to

interconnect the DG to the utility network are classified into two main categories which

is either grounded primary transformer or ungrounded primary transformer. Protection

is performed at the point of common coupling (PCC) between the utility and the DG; it

can be either at the primary or at the secondary of the transformer according to both the
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utility and the DG requirements [12]. To fulfill the desired scenario the protection is

based on the following factors [12]-[16]:

(1) Protection should respond to the failure of parallel operation of the DG and the

utility.

(2) Protecting the system from fault currents and transient over voltages generated by

the DG during fault conditions in the system.

(3) Protecting the DG from hazards facing it during any disturbance occurring in the

system such as automatic reclosing of automatic reclosers as this can cause severe

troubles depending on the type of the generator used by the DG.

(4) Network characteristics at the point of DG interconnection

(5) Considering the capability of power transfer at the interconnection point

(6) Interconnection type

One of the most important protection devices used is the generator protection, and is

typically located at the terminals of the generator. It is responsible of detecting internal

short circuits and abnormal operating conditions of the generator itself such as: loss of

field, reverse power flow, over excitation of the generator and unbalanced currents.

Utilities are concerned with certain aspects that are specified such as [13], [16]:

(1) Configuration of the interconnecting transformer winding

(2) Current and voltage transformer requirements

(3) Interconnection relays class.

(4) Speed of DG isolation to be higher than that of the utility system automatic

reclosing during fault conditions to avoid islanding cases.

2.5 Islanding of a Power Network

Islanding has two forms, either intentional islanding that is performed on purpose by the

utility to increase the reliability of the network; the other form of islanding is

unintentional islanding, it can be expressed in other words as “the loss of mains” and

this occurs when the distributed generator is no more operating in parallel with the

utility. Thus, it is not connected to the utility due to a protective disconnection operation

taking place by one of the protection devices in the network which could be breaker,

fuse or automatic recloser. The DG now is left to energise a certain part of the network

that is separated from the utility network forming an isolated power island with the DG

as the only power source. The difficulties in islanding cases are due to the ability of the

DG to generate power while disconnected from the utility, thus the DG is no more
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controlled by the utility protection devices and continues feeding its own power island.

Islanding can occur only if a generator or a group of generators located in the isolated

part are capable of sustaining all the loads in that portion of the network. Forming an

isolated power island imposes a difficulty in the reconnection of the isolated power

island back to the utility network.

Islanding has an impact on the safety of both the utility and the connected loads, all

customer loads connected to this power island will face fluctuations in both voltage and

frequency, and those fluctuations might cause severe damages as the voltage and

frequency at their terminals are deviated than the standard required levels [17]. It is not

desirable for a DG to island with any part of the utility system because if a feeder faces

an island reclosing operations, the islanded DG will rapidly drift out of phase with the

utility system [6]. After another reclose, the utility will be connected out of phase with

the isolated power island, in the case of the absence of blocking the reclose or

connection to an energised circuit in the control of the breaker control. Allowing the

connection might cause a severe damage to the utility equipment.

2.5.1 Islanding Detection

Nowadays the techniques used in detecting islanding situations is by measuring the

output parameters of the DG and a decision is taken to decide whether these parameters

express an islanding situation or not. Islanding detections methods could be classified in

two main groups which are basically active methods and passive methods. The major

difference between active and passive methods is that active methods is directly

interacting with the power system operation while passive methods are based on

identifying the problem based on measured system parameters.

Active detection methods realise the islanding situation by measuring the changes in

the output power and the system frequency through a designed control circuit providing

the necessary variations. During the connection of the DG to the utility, there will be a

negligible change occurring in the frequency or power flow that will not be sufficient

for the initiation of the protective relay that is responsible for the DG isolation.

On the other hand, if the DG is not connected to the utility network, the changes in the

frequency and output power will be sufficient enough to energise the relay resulting in

the disconnection of the DG preventing the occurrence of an islanding situation. The

previously mentioned method will not be efficient in the case of a balance between the

loads connected and generation in an islanded part of the network as there will be a non
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detective zone (NDZ), which is defined as “the island load values for which the

detection method fails to detect islanding” from,[18]-[20].

Passive detection methods monitor the variations occurring in the power system

parameters such as the short circuit levels, phase displacement and the rate of output

power as in most cases of utility disconnection the nominal network voltage, current

and frequency are affected. A passive method utilises these changes to decide and react

to an islanding situation. Passive methods have the same weakness as the active

methods against the insignificant mismatch between the generation and load in islanded

part [21] but on the other hand passive methods are less expensive than active methods.

During the past few decades, several islanding detection methods were introduced to

protect the distribution systems with DG from the case of unintentional islanding. One

of the direct and efficient methods is by monitoring the trip status of the main utility

circuit breaker and as soon as the main circuit breaker trips, an immediate signal is sent

to the circuit breaker at the interconnection between the DG and the utility system to

trip the interconnection circuit breaker preventing the occurrence of islanding. Although

this method seems to be easy and straight forward, its implementation is so difficult due

the distribution of DGs in a large geographic range that will require special

comprehensive monitoring techniques with dedicated systems.

2.6 Impact of DG on Distribution Feeder Protection

One of the main symptoms of distribution systems is the radiaility of power flow. Power

is flowing in the network from the main generating station down to various parts of the

system to supply all loads. To maintain continuous supply to all loads and preventing all

appliances and different components of the system from power outages, protection

devices are placed on feeders and laterals of the distribution network, these protection

devices are basically overcurrent protection devices.

During the design process of these protection devices, some characteristics have to

be taken into consideration and bearing in mind that it is impossible to protect the entire

network directly from the substation, it is essential in large networks to provide it with

several protective devices due to the fact that any protective device has a reach or

maximum distance to cover. When designing the protection scheme of a network

coordination between different types of protection devices has to be considered to be

able to reach a highly reliable network that will be able to isolate only the faulted parts

of the network and keeping the healthy parts energised which increases the reliability of
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the network. The presence of DG in a network will have a great impact on the

coordination of the protective device, thus it affects the distribution feeder protection. It

also has a great impact on the utility protection devices. Impacts of DG on protection

devices are [6], [22], [23]:

 The contribution of DG to fault currents may cause the fault level to be higher

than the capacity of switching devices of the existing network, one of the factors

affecting the fault current contribution is the type of DG used.

 Unintentional Islanding cases.

 There might be a resonance case that will cause over voltages

 Sympathetic tripping of protective devices

 Failure of fuse protection technique

 Mis-protection as a result of the network’s reconfiguration

 Reduced reach of protective device

 Loss of coordination between protective devices.

 Loosing sensitivity to faults and not tripping in fault conditions due to inability to

detect faults currents.

2.6.1 Sympathetic Tripping

The penetration of a DG in an existing distribution network results in a considerable

increase in the fault short circuit currents in some parts of the network, but it causes an

increase in the fault levels for any fault location in the entire network. This increase

causes a lot of problems to the existing protection devices in the network, the type of

protection defect depends on the situation of the DG and where it is placed in the

network as the penetration of DG changes the configuration of the network parameters.

“Sympathetic tripping” is an expression given to the case at which one of the

protection devices trips instead of the other. This tripping occurs due to one device

detecting the fault while it is out of its local protection area and tripping before the

required tripping device [22], [23]. This type of tripping causes the isolation of a

healthy part of the network while it is not required to be isolated, and this reduces the

reliability of the distribution network. Fig. 2.2 below presents a typical sympathetic

tripping situation.
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Fig. 2.2: A typical sympathetic tripping situation

In the configuration shown in the above figure, when the fault occurs, relay and

breaker 1 are the prime devices that should trip to isolate the faulted branch leaving all

the healthy parts operating normally. In this situation relay and breaker 2 which should

be the backup of relay and breaker 1, but they will trip first. This tripping is a result of

the additional current injection of the DG to the fault which was not taken into

consideration during the original feeder protection design, so relay 2 will sense the rise

in current flowing through it and interpret it to a fault condition and consequently a trip

takes place.

2.6.2 Reduction of Reach of Protective Devices

The presence of a DG in the distribution network may cause a protection deficiency

called “reduction of reach”. This is the failure of the protection devices to cover its

designed protective distance, as the DG causes a decrease in the sensitivity of these

protection devices [23], thus decreasing the distance protected. Fig. 2.4 below illustrates

an example at which reduction of reach of protective devices is introduced.
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Fig. 2.3: Reduction of reach of R1

R1 is designed to cover the whole line from node 1 to node 4, the presence of the DG

will cause a change in the apparent impedance of the line which causes a mis-estimation

of R1 [17]. When the fault is at the end of the line as shown in the above figure R1 will

not be able to sense the fault due to the flow of fault current from the DG.

2.6.3 Failure of Fuse Saving Technique Due to Loss of Recloser-Fuse
Coordination

Electricity is usually supplied to loads in distribution systems through radial distribution

feeders then through laterals and transformers to the loads. To be able to protect the

system components and loads besides providing the desired safety, protection

equipment must be placed along the network at various places according to the function

of each piece of equipment. The most common protection technique for protecting

laterals in distribution networks is by using a fuse. The fuse is coordinated with other

protection equipment of the network such as recloser and breaker, to be able to save the

fuse from blowing out in case of temporary faults [23], this is to reduce the power

outages as it is not required to interrupt the system during temporary faults due to the

fact that these faults are considered to be around 70 to 80 percent of the occurring faults,

an example of these faults is lightning which is instantaneous then it disappears. The

main concern is the permanent fault, at which the automatic recloser cannot clear.

Figure 2.4 below shows part of a distribution network involving recloser, fuse and

breaker without the presence of a DG.
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Fig. 2.4: Part of a distribution network including recloser, fuse and breaker.

The current flowing through the recloser is the same as the current flowing through

the fuse during the fault condition illustrated in the above figure. The recloser has an

inverse time over current characteristic.

Penetration of a DG in the network will result in the radial characteristics of the

power flow in the network; it becomes a mesh power flow. DG contributes to fault

currents which increase the fault current values; this increase might cause the failure of

fuse saving technique. Fig. 2.5 below shows the same network as Fig. 2.4 but with the

presence of a DG at node 11.

Fig. 2.5: Network after adding DG.



- 36 -

The fault current flowing through the recloser in this case is the fault current

contributed by the substation (utility) only, while the fault current flowing through the

fuse is a sum of both the current contributed from the DG to the fault and the fault

current contributed from the substation or the utility. The increase in the fault current

flowing through the fuse could be sufficient to initiate the blowing of the fuse before the

recloser operation. To overcome the problem of the fuse operating before the recloser,

coordination has to be made between the fuse and the recloser. Fig. 2.6 below illustrates

the coordination between the recloser and the fuse [24].

Fig. 2.6: Coordination between Recloser, Fuse and Circuit Breaker [25].

In Fig. 2.6, “RECLOSER A” represents the fast mode operation curve of the

recloser; “RECLOSER B” represents the slow mode operation curve of the recloser.

“FUSE MM” represents the fuse minimum melt characteristics of the fuse and “FUSE

TC” represents the fuse total clear characteristics of the fuse. “Ifmin” and “Ifmax” are the

minimum and maximum permissible fault current interval at which the fault current has

to fall in between for the coordination to be applicable.

A recloser has two operating modes to either clear a temporary fault or locking open

for permanent fault if the fuse does not blow for permanent faults. The operating mode

of a recloser is “F-F-S-S” [27], where “F” is the fast operating mode and “S” is the

slow operating mode. The recloser attempts two consecutive trials with a difference
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time interval of 1 second, if the fault is a temporary fault it is expected to be cleared

after the first strike of the recloser, if it strikes again the total time is now 2 seconds and

the fault still exists then the fault is discriminated to be a permanent fault and the fuse

has to operate to cause a permanent power outage to clear the fault. The fuse has a back

up which is the recloser slow operation, if the fuse fails to clear the fault, the recloser

attempts two trials before it is locked out [27]. The main purpose of coordination

between fuse and recloser is to result in the least isolated area during faults by the

isolation of only the faulted part of the network leaving the healthy parts energised. By

achieving the required coordination of protection devices the reliability of the network

is increased.
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Chapter 3: Simulation of IEEE 13 Bus with Different
DG Configurations

3.1 Introduction
DG is one of the most concerns nowadays, as it has a great role in fulfilling the end-user

increasing requirements in a manner that increases the reliability of their power supply.

Penetration of DG systems to existing distribution networks has a great impact on the

short circuit levels of the system and on protective devices, there are some factors

affecting this impact such as the size of the DG penetrating the system, the location at

which the DG is placed and the type of DG used.

The main concern of this chapter is to investigate the effects of adding a DG to the

existing network as well as the effect of a single centralised DG compared to several

small distributed DGs. The system (model) studied in this chapter is the IEEE 13 bus

system, and it is simulated using software named ETAP.

3.2 IEEE 13 Bus Test Feeder
The IEEE 13 bus is a small feeder, but it displays many features and is considered as a

model that can be used to investigate the behaviour of a power system for the desired

simulation. The features of the IEEE 13 node test feeder is basically the presence of

over head and underground lines, distributed and spot loads, capacitor banks and a 500

kVA inline transformer. Fig. 3.1 shows the schematic layout of the IEEE test feeder

used as the model to be simulated [26], without showing the different connected loads

or the nature and configuration of the transmission components of the network. There

are some assumptions taken into consideration while performing the simulation, these

assumptions are listed below.

1) The effect of voltage regulator at bus 650 is not taken into consideration in the

calculations

2) Distributed loads between buses 671 and 632 are not taken into consideration in

the calculation.

3) The type of DG used is wind turbine.

4) The type of wind turbine is a doubly fed induction generator.
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Fig.3.1: Illustrating the IEEE 13 test feeder [26]

3.2.1 Load Models

There are different load models used in this test feeder. The loads are classified into

either spot or distributed; all loads are either three phase or single phase. Each and

every load model is given a separate code that will be shown in Table 3.1 [27].

Table 3. 1: Listing the load models [27]

Code Connection Model
Y-PQ Wye Constant KW, constant kVAR
Y-l Wye Constant Current
Y-Z Wye Constant Impedance
D-PQ Delta Constant KW, constant kVAR
D-l Delta Constant Current
D-Z Delta Constant Impedance

Spot load configuration in the network is presented in Table 3.2. All load values are

in either kW or kVAr according to the load nature.
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Table 3.2: Expressing spot load configuration in IEEE test feeder [26]

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model kW kVAr kW kVAr kW kVAr

634 Y-PQ 160 110 120 90 120 90
645 Y-PQ 0 0 170 125 0 0
646 D-Z 0 0 230 132 0 0
652 Y-Z 128 86 0 0 0 0
671 D-PQ 385 220 385 220 385 220
675 Y-PQ 485 190 68 60 290 212
692 D-I 0 0 0 0 170 151
611 Y-I 0 0 0 0 170 80

TOTAL 1158 606 973 627 1135 753

3.2.2 Over Head Lines

Over head lines have different configurations based on the number of phases and

accordingly the spacing ID. Table 3.3 will show the over head lines configuration data

[26].

Table 3.3: Listing the overhead line configuration data. [26]

Config. Phasing Phase Neutral Spacing
ACSR ACSR ID

601 BACN 556, 500 26/7 4/0 6/1 500
602 CABN 4/0 6/1 4/0 6/1 500
603 CBN 1/0 1/0 505
604 ACN 1/0 1/0 505
605 CN 1/0 1/0 510

Fig.3.2: Overhead line spacing. [27]
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Table 3.4 Shows the spacing ID coding [26]

Spacing ID Type
500 Three phase, 4 wires
505 Two phase, 3 wires
510 One phase, 2 wires

Table 3.5: Listing the line segment data. [26]

Node A Node B Length(ft.) Config.
632 645 500 603
632 633 500 602
633 634 0 XFM-1
645 646 300 603
650 632 2000 601
684 652 800 607
632 671 2000 601
671 684 300 604
671 680 1000 601
671 692 0 Switch
684 611 300 605
692 675 500 606

Table 3.6: Underground cable configuration [26]

Config. Phasing Cable Neutral Space ID
606 A B C N 250,000 AA, CN None 515
607 A N 1/0 AA, TS 1/0 Cu 520

3.2.3 Transformers

Below is a table listing the specifications of both the utility and the inline transformers

Table 3.7: Transformer data [26]

kVA kV-high kV-low R - % X - %
Substation: 5,000 115 - D 4.16 Gr. Y 1 8

XFM -1 500 4.16 – Gr.W 0.48 – Gr.W 1.1 2
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3.2.4 Shunt Capacitor Banks

The details of capacitor banks used in the IEEE test feeder are listed in table 3.8 below.

Table 3.8: Capacitor data. [26]

Node Ph-A Ph-B Ph-c
kVAr kVAr kVAr

675 200 200 200
611 100

Total 200 200 300

3.3 Cases Studied and Simulation Results

In this section simulation was made on the IEEE 13 bus using ETAP with nine different

DG configurations to study the impacts of DG penetration into power networks, the

contribution of DGs to fault currents and its effect on short circuit levels at all buses and

branches in various cases. First part of this section will introduce the system under

study followed by the simulation results and the last part is a discussion on the

simulation results.

3.3.1 System Under Study

The system under study is the IEEE 13 bus, it is used with different configurations of

DG with and without DG to calculate the base or set values to compare all configuration

results with. Fig. 3.3 is showing the basic IEEE 13 bus without the presence of any DG.
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Fig.3.3: IEEE 13 bus system under study
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3.3.2 Case 1: IEEE 13 Bus without DG

The system was simulated without any DG penetration and tables of results for this case

are listed below.

Note: Simulation is made with a pre voltage= 4.16 kV & 100% of normal

voltage is 4.6 kV and 100% of base kV= 4.16 kV

Table 3.9: lists the positive, negative & zero sequence impedances seem from each bus in the

system

Bus 3-Phase Fault Line-to-Ground Fault Zero Sequence Imp. (ohm)
ID kV Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance

Bus632 4.160 0.06928 0.20236 0.21389 0.06928 0.20236 0.21389 0.18462 0.38503 0.42700
Bus633 4.160 0.12353 0.27194 0.29869 0.12353 0.27194 0.29869 0.27073 0.55637 0.61874
Bus634 0.480 0.00631 0.01221 0.01375 0.00631 0.01221 0.01375 0.00734 0.01453 0.01628
Bus671 4.160 0.10712 0.36026 0.37585 0.10712 0.36026 0.37585 0.26789 0.80107 0.84468
Bus675 4.160 0.14403 0.39424 0.41973 0.14403 0.39424 0.41973 0.31698 0.83323 0.89148
Bus680 4.160 0.14246 0.47364 0.49460 0.14246 0.47364 0.49460 0.39160 1.16385 1.22796
Bus692 4.160 0.10712 0.36026 0.37585 0.10712 0.36026 0.37585 0.26789 0.80107 0.84468

Table 3.10: 3-phase & single line to ground fault currents when fault is at bus 632

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus632 Total 0.00 11.229 0.00 111.23 117.88 8.444 8.444
Bus671 Bus632 11.83 1.199 17.39 107.09 111 .40 0.961 1.081
Bus633 Bus632 0.46 0.121 1.50 110.55 117.05 0.200 0.419
U2 Bus632 100.00 9.864 100.00 100.00 100.00 7.225 6.841
Lump9 Bus632 100.00 0.063 100.00 100.00 100.00 0.079 0.143
Bus680 Bus671 11.83 0.000 17.39 107.09 111.40 0.000 0.000
Lump3 Bus671 100.00 0.644 100.00 100.00 100.00 0.323 0.000
Lump7 Bus671 100.00 0.056 100.00 100.00 100.00 0.065 0.110
Bus675 Bus692 12.93 0.499 19.16 107.89 109.80 0.574 0.971
Bus634 Bus633 4.42 0.121 8.07 108.72 114.34 0.200 0.419
Lump4 Bus675 100.00 0.499 100.00 100.00 100.00 0.574 0.971
Lump1 Bus634 100.00 1.047 100.00 100.00 100.00 1.733 3.632
Bus692 Bus671 11.83 0.499 17.39 107.09 111.40 0.574 0.971
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Table 3.11: 3-phase & single line to ground fault currents when fault is at bus 633

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus633 Total 0.00 8.041 0.00 114.69 116.18 5.925 5.925
Bus632 Bus633 29.87 7.920 31.19 107.70 111.08 5.720 5.489
Bus634 Bus633 3.99 0.121 6.75 112.53 113.40 0.205 0.437
Bus671 Bus632 38.17 0.855 43.16 104.93 107.04 0.666 0.740
U2 Bus632 100.00 7.032 100.00 100.00 100.00 5.014 4.679
Lump9 Bus632 100.00 0.045 100.00 100.00 100.00 0.055 0.098
Lump1 Bus634 100.00 1.052 100.00 100.00 100.00 1.780 3.789
Bus680 Bus67l 38.17 0.000 43.16 104.93 107.04 0.000 0.000
Lump3 Bus671 100.00 0.459 100.00 100.00 100.00 0.226 0.000
Lump? Bus671 100.00 0.040 100.00 100.00 100.00 0.045 0.076
Bus675 Bus692 39.01 0.356 44.37 105.47 105.93 0.396 0.664
Lump4 Bus675 100.00 0.356 100.00 100.00 100.00 0.396 0.664
Bus692 Bus671 38.17 0.356 43.16 104.93 107.04 0.396 0.664

Table 3.12: 3-phase & single line to ground fault currents when fault is At bus 634

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus634 Total 0.00 20.157 0.00 103.28 102.75 18.991 18.991
Bus633 Bus634 72.28 19.066 65.55 104.48 104.36 17.289 15.944
Lump1 Bus634 100.00 1.095 100.00 100.00 100.00 1.706 3.056
Bus632 Bus633 80.48 2.200 76.27 102.35 103.17 1.995 1.840
Bus671 Bus632 82.82 0.238 80.37 101.51 102.00 0.232 0.248
U2 Bus632 100.00 1.953 100.00 100.00 100.00 1.749 1.568
Lump9 Bus632 100.00 0.013 100.00 100.00 100.00 0.019 0.033
Bns680 Bus671 82.82 0.000 80.37 101.51 102.00 0.000 0.000
Lump3 Bus671 100.00 0.128 100.00 100.00 100.00 0.080 0.000
Lump7 Bus671 100.00 0.011 100.00 100.00 100.00 0.015 0.025
Bus675 Bus692 83.04 0.099 80.76 101.69 101.63 0.136 0.223
Lump4 Bus675 100.00 0.099 100.00 100.00 100.00 0.136 0.223
Bus692 Bus671 82.82 0.099 80.37 101.51 102.00 0.136 0.223
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Table 3.13: 3-phase & single line to ground fault currents when fault is at bus 671

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus67l Total 0.00 6.390 0.00 116.55 118.40 4.514 4.514
Bus632 Bus671 49.79 5.048 55.85 102.84 106.43 3.395 3.053
Bus680 Bus671 0.00 0.000 0.00 116.55 118.40 0.000 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.344 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.080 0.151
Bus675 Bus692 1.45 0.565 3.28 117.43 116.18 0.709 1.329
Bus633 Bus632 50.00 0.061 56.46 102.64 106.11 0.086 0.173
U2 Bus632 100.00 4.956 100.00 100.00 100.00 3.275 2.825
Lump9 Bus632 100.00 0.032 100.00 100.00 100.00 0.035 0.059
Lump4 Bus675 100.00 0.565 100.00 100.00 100.00 0.709 1.329
Bus634 Bus633 51.98 0.061 59.24 102.13 105.08 0.086 0.173
Lump1 Bus634 100.00 0.526 100.00 100.00 100.00 0.747 1.500
Bus692 Bus671 0.00 0.565 0.00 116.55 118.40 0.709 1.329

Table 3.14: 3-phase & single line to ground fault currents when fault is at bus 675

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus675 Total 0.00 5.722 0.00 115.68 116.42 4.163 4.163
Bus692 Bus675 13.23 5.163 11.99 116.86 113.72 3.463 2.882
Lump4 Bus675 100.00 0.572 100.00 100.00 100.00 0.719 1.325
Bus632 Bus671 55.59 4.470 59.85 103.44 104.84 3.083 2.750
Bus680 Bus671 13.23 0.000 11.99 116.86 113.72 0.000 0.000
Lump3 Bus67l 100.00 0.646 100.00 100.00 100.00 0.313 0.000
Lump7 Bus671 100.00 0.056 100.00 100.00 100.00 0.073 0.136
Bus633 Bus632 55.79 0.054 60.42 103.23 104.58 0.078 0.156
U2 Bus632 100.00 4.389 100.00 100.00 100.00 2.975 2.544
Lump9 Bus632 100.00 0.028 100.00 100.00 100.00 0.031 0.053
Bus634 Bus633 57.56 0.054 62.98 102.66 103.75 0.078 0.156
Lump1 Bus634 100.00 0.466 100.00 100.00 100.00 0.676 1.350
Bus671 Bus692 13.23 5.163 11.99 116.86 113.72 3.463 2.882
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Table 3.15: 3-phase & single line to ground fault currents when fault is at bus 680

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus680 Total 0.00 4.856 0.00 119.14 120.88 3.250 3.250
Bus671 Bus680 24.01 4.856 28.00 111.43 112.73 3.250 3.250
Bus632 Bus67l 61.83 3.836 68.19 101.99 104.58 2.444 2.198
Lump3 Bus67] 100.00 0.554 100.00 100.00 100.00 0.247 0.000
Lump7 Bus671 10000 0.048 100.00 100.00 100.00 0.058 0.109
Bus675 Bus692 24.87 0.430 29.37 112.15 111.11 0.511 0.957
Bus633 Bus632 62.00 0.046 68.63 101.85 104.35 0.062 0.125
U2 Bus632 100.00 3.766 100.00 100.00 100.00 2.358 2.034
Lump9 Bus632 100.00 0.024 100.00 100.00 100.00 0.025 0.042
Lump4 Bus67J 100.00 0.430 100.00 100.00 100.00 0.511 0.957
Bus634 Bus633 63.50 0.046 70.64 101.50 103.62 0.062 0.125
Lump1 Bus634 100.00 0.400 100.00 100.00 100.00 0.538 1.080
Bus692 Bus671 24.01 0.430 28.00 111.43 112.73 0.511 0.957

Table 3.16: 3-phase & single line to ground fault currents when fault is at bus 692

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus692 Total 0.00 6.390 0.00 116.55 118.40 4.514 4.514
Bus675 Bus692 1.45 0.565 3.28 117.43 116.18 0.709 1.329
Bus632 Bus67I 49.79 5.048 55.85 102.84 106.43 3.395 3.053
Bus680 Bus67l 0.00 0.000 0.00 116.55 118.40 0.000 0.000
Lump3 Bus67l 100.00 0.730 100.00 100.00 100.00 0.344 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.080 0.151
Lump4 Bus675 100.00 0.565 100.00 100.00 100.00 0.709 1.329
Bus633 Bus632 50.00 0.061 56.46 102.64 106.11 0.086 0.173
U2 Bus632 100.00 4.956 100.00 100.00 100.00 3.275 2.825
Lump9 Bus632 100.00 0.032 100.00 100.00 100.00 0.035 0.059
Bus634 Bus633 51.98 0.061 59.24 102.13 105.08 0.086 0.173
Lump1 Bus634 100.00 0.526 100.00 100.00 100.00 0.747 1.500
Bus671 Bus692 0.00 5.830 0.00 116.55 118.40 3.812 3.200
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Table 3.17: Summary of fault currents for all types of faults at each fault location

Bus 3-Phase Fault Line-to-Ground Fault Line-to-Line Fault *Line-to-Line-to-
Ground

ID kV Real Imag. Mag. Real Imag. Mag. Real Imag. Mag. Real Imag. Mag.
Bus632 4.16 3.637 -10.624 11.229 3.198 -7.815 8.444 9.200 3.150 9.725 -10.589 -0.071 10.589
Bus633 4.16 3.326 -7.321 8.041 2.523 -5.361 5.925 6.340 2.880 6.964 -7.356 -0.766 7.395
Bus634 0.48 9.253 -17.909 20.157 8.661 -16.901 18.991 15.509 8.013 17.457 11.440 16.013 19.679
Bus671 4.16 1.821 -6.125 6.390 1.364 -4.303 4.514 5.305 1.577 5.534 -5.848 0.081 5.848
Bus675 4.16 1.964 -5.375 5.722 1.455 -3.900 4.163 4.655 1.700 4.956 -5.232 -0.170 5.235
Bus680 4.16 1.399 -4.650 4.856 0.992 -3.095 3.250 4.027 1.211 4.205 -4.410 -0.052 4.411
Bus692 4.16 1.821 -6.125 6.390 1.364 -4.303 4.514 5.305 1.577 5.534 -5.848 0.081 5.848

In the case of line-to line-to-ground fault there is a contribution of zero sequence

fault current (3I0) from a grounded Delta- Y transformer.

All the above tables in this case represent the system’s base values at which all

protection devices are set based on the system’s response to faults without any external

effects on the system. The results recorded in the above tables of this sub-section are

going to be compared with all values of the following cases to observe the impact of

DG when embedded in the system.
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3.3.3 Case 2: IEEE 13 Bus with 1*8 MW DG Located at bus 632

In this section IEEE 13 bus is simulated with a DG penetration level of 8 mw

centralised placed at bus 632 and the results of this case are tabulated below.

Table 3.18: Positive, Negative and Zero Sequence Impedances as seen from each bus in the

system

Bus 3-Phase Fault Line-to-Ground Fault Zero Sequence Imp. (ohm)
ID kV Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance

Bus632 4.160 0.03265 0.13992 0.14368 0.02524 0.12047 0.12309 0.18462 0.38503 0.42700
Bus633 4.160 0.08737 0.20997 0.22742 0.08006 0.19067 0.20680 0.27073 0.55637 0.61874
Bus634 0.480 0.00587 0.01145 0.01287 0.00579 0.01121 0.01262 0.00734 0.01453 0.01628
Bus671 4.160 0.08030 0.31062 0.32083 0.07506 0.29527 0.30466 0.26789 0.80107 0.84468
Bus675 4.160 0.11872 0.34519 0.36504 0.11388 0.33008 0.34917 0.31698 0.83323 0.89148
Bus680 4.160 0.11563 0.42400 0.43948 0.11039 0.40865 0.42329 0.39160 1.16385 1.22796
Bus692 4.160 0.08030 0.31062 0.32083 0.07509 0.29527 0.30466 0.26789 0.80107 0.84468

Table 3.19: 3-phase & single line to ground fault currents when fault is at bus 632

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus632 Total 0.00 16.717 0.00 119.65 130.59 10.451 10.451
Bus671 Bus632 11.83 1.199 18.71 113.05 120.74 0.907 1.338
Bus633 Bus632 0.46 0.121 1.75 118.67 129.40 0.219 0.519
U2 Bus632 100.00 9.864 100.00 100.00 100.00 6.632 8.467
WTGI Bus632 100.00 5.658 100.00 100.00 100.00 2.693 0.000
Lump9 Bus632 100.00 0.063 100.00 100.00 100.00 0.083 0.177
Bus680 Bus671 11.83 0.000 18.71 113.05 120.74 0.000 0.000
Lump3 Bus67l 100.00 0.644 100,00 100.00 100.00 0.249 0.000
Lump7 Bus671 100.00 0.056 100.00 100.00 100.00 0.067 0.137
Bus675 Bus692 12.93 0.499 20,62 113.91 118.69 0.592 1.202
Bus634 Bus633 4.42 0.121 8.94 115.79 125.35 0.219 0.519
Lump4 Bus675 100.00 0.499 100.00 100.00 100.00 0.592 1.202
Lump1 Bus634 100.00 1.047 100.00 100.00 100.00 1.895 4.495
Bus692 Bus67I 11.83 0.499 18.71 113.05 120.74 0.592 1.202



- 50 -

Table 3.20: 3-phase & single line to ground fault currents when fault is at bus 633

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus633 Total 0.00 10.561 0.00 121.05 123.76 6.846 6.846
Bus632 Bus633 39.37 10.440 36.10 112.42 117.13 6.627 6.341
Bus634 Bus633 3.99 0.121 7.18 118.16 120.10 0.218 0.505
Bus671 Bus632 46.52 0.754 48.09 108.50 111.51 0.585 0.854
U2 Bus632 100.00 6.204 100.00 100.00 100.00 4.287 5.406
WTG1 Bus632 100.00 3.559 100.00 100.00 100.00 1.756 0.000
Lump9 Bus632 100.00 0.040 100.00 100.00 100.00 0.053 0.113
Lump1 Bus634 100.00 1.052 100.00 100.00 100.00 1.893 4.377
Bus680 Bus671 46.52 0.000 48.09 108.50 111.51 0.000 0.000
Lump3 Bus671 100.00 0.405 100.00 100.00 100.00 0.163 0.000
Lump7 Bus671 100.00 0.035 100.00 100.00 100.00 0.043 0.087
Bus675 Bus692 47.29 0.314 49.32 109.08 110.16 0.380 0.767
Lump4 Bus675 100.00 0.314 100.00 100.00 100.00 0.380 0.767
Bus692 Bus671 46.52 0.314 48.09 108.50 111.51 0.380 0.767

Table 3.21: 3-phase & single line to ground fault currents when fault is at bus 634

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus634 Total 0.00 21.536 0.00 104.31 103.82 19.905 19.905
Bus633 Bus634 77/1 20.444 68.90 105.65 105.60 18.174 16.712
Lump1 Bus634 100.00 1.095 100.00 100.00 100.00 1.736 3.203
Bus632 Bus633 86.30 2.359 80.17 103.36 104.29 2.097 1.928
Bus671 Bus632 87.96 0.170 83.87 102.37 102.88 0.183 0.260
U2 Bus632 100.00 1.402 100.00 100.00 100.00 1.349 1.644
WTGI Bus632 100.00 0.804 100.00 100.00 100.00 0.566 0.000
Lump9 Bus632 100.00 0.009 100.00 100.00 100.00 0.017 0.034
Bus680 Bus67l 87.96 0.000 83.87 102.37 102.88 0.000 0.000
Lump3 Bus671 100.00 0.092 100.00 100.00 100.00 0.052 0.000
Lump7 Bus671 100.00 0.008 100.00 100.00 100.00 0.013 0.027
Bus675 Bus692 88.13 0.071 84.23 102.57 102.46 0.118 0.233
Lump4 Bus675 100.00 0.071 100.00 100.00 100.00 0.118 0.233
Bus692 Bus671 87.96 0.071 83.87 102.37 102.88 0.118 0.233
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Table 3.22: 3-phase & single line to ground fault currents when fault is at bus 671

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus671 Total 0.00 7.486 0.00 119.65 123.41 4.904 4.904
Bus632 Bus671 60.52 6.136 61.77 104.20 109.83 3.799 3.317
Bus680 Bus671 0.00 0.000 0.00 119.65 123.41 0.000 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.311 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.082 0.164
Bus675 Bus692 1.45 0.565 3.44 120.53 120.97 0.722 1.444
Bus633 Bus632 60.70 0.048 62.40 103.96 109.45 0.082 0.188
U2 Bus632 100.00 3.900 100.00 100.00 100.00 2.602 3.069
WTG1 Bus632 100.00 2.237 100.00 100.00 100.00 1.116 0.000
Lump9 Bus632 100.00 0.025 100.00 100.00 100.00 0.031 0.064
Lump4 Bus675 100.00 0.565 100.00 100.00 100.00 0.722 1.444
Bus634 Bus633 62.26 0.048 65.04 103.32 108.14 0.082 0.188
Lump1 Bus634 100.00 0.414 100.00 100.00 100.00 0.708 1.629
Bus692 Bus671 0.00 0.565 0.00 119.65 123.41 0.722 1.444

Table 3.23: 3-phase & single line to ground fault currents when fault is at bus 675

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus675 Total 0.00 6.580 0.00 118.72 120.36 4.488 4.488
Bus692 Bus675 15.42 6.018 13.04 119.86 117.55 3.776 3.107
Lump4 Bus675 100.00 0.572 100.00 100.00 100.00 0.730 1.428
Bus632 Bus671 66.07 5.334 65.64 104.99 107.50 3.425 2.964
Bus680 Bus671 15.42 0.000 13.04 119.86 117.55 0.000 0.000
Lump3 Bus671 100.00 0.634 100.00 100.00 100.00 0.281 0.000
Lump7 Bus671 100.00 0.055 100.00 100.00 100.00 0.073 0.147
Bus633 Bus632 66.22 0.042 66.22 104.74 107.19 0.073 0.168
U2 Bus632 100.00 3.390 100.00 100.00 100.00 2.345 2.743
WTG1 Bus632 100.00 1.945 100.00 100.00 100.00 1.010 0.000
Lump9 Bus632 100.00 0.022 100.00 100.00 100.00 0.028 0.057
Bus634 Bus633 67.58 0.042 68.62 104.05 106.15 0.073 0.168
Lump1 Bus634 100.00 0.360 100.00 100.00 100.00 0.636 1.456
Bus671 Bus692 15.42 6.018 13.04 119.86 117.55 3.776 3.107
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Table 3.24: 3-phase & single line to ground fault currents when fault is at bus 680

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus680 Total 0.00 5.465 0.00 121.56 124.61 3.448 3.448
Bus671 Bus680 27.02 5.465 29.70 113.11 115.62 3.448 3.448
Bus632 Bus671 71.20 4.479 73.11 102.82 106.74 2.671 2.332
Lump3 Bus671 100.00 0.533 100.00 100.00 100.00 0.218 0.000
Lump7 Bus671 100.00 0.046 100.00 100.00 100.00 0.057 0.115
Bus675 Bus692 27.87 0.413 31.10 113.84 113.87 0.508 1.015
Bus633 Bus632 71.33 0.035 73.56 102.66 106.48 0.057 0.132
U2 Bus632 100.00 2.847 100.00 100.00 100.00 1.830 2.158
WTG1 Bus632 100.00 1.633 100.00 100.00 100.00 0.784 0.000
Lump9 Bus632 100.00 0.018 100.00 100.00 100.00 0.022 0.045
Lump4 Bus675 100.00 0.413 100.00 100.00 100.00 0.508 1.015
Bus634 Bus633 72.47 0.035 75.42 102.25 105.59 0.057 0.132
Lump1 Bus634 100.00 0.302 100.00 100.00 100.00 0.498 1.145
Bus692 Bus671 27.02 0.413 29.70 113.11 115.62 0.508 1.015

Table 3.25: 3-phase & single line to ground fault currents when fault is at bus 692

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus692 Total 0.00 7.486 0.00 119.65 123.41 4.904 4.904
Bus675 Bus692 1.45 0.565 3.44 120.53 120.97 0.722 1.444
Bus632 Bus671 60.52 6.136 61.77 104.20 109.83 3.799 3.317
Bus680 Bus67l 0.00 0.000 0.00 119.65 123.41 0.000 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.311 O.OO0
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.082 0.164
Lump4 Bus675 100.00 0.565 100.00 100.00 100.00 0.722 1.444
Bus633 Bus632 60.70 0.048 62.40 103.96 109.45 0.082 0.188
U2 Bus632 100.00 3.900 100.00 100.00 100.00 2.602 3.069
WTG1 Bus632 100.00 2.237 100.00 100.00 100.00 1.116 O.OO0
Lump9 Bus632 100.00 0.025 100.00 100.00 100.00 0.031 0.064
Bus634 Bus633 62.26 0.048 65.04 103.32 108.14 0.082 0.188
Lump1 Bus634 100.00 0.414 100.00 100.00 100.00 0.708 1.629
Bus671 Bus692 0.00 6.923 0.00 119.65 123.41 4.188 3.477
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Table 3.26: Summary of fault currents for all types of faults at each fault location

Bus 3-Phase Fault Line-to-Ground Fault Line-to-Line Fault *Line-to-Line-to-
Ground

ID kV Real Imag. Mag. Real Imag. Mag. Real Imag. Mag. Real Imag. Mag.
Bus632 4.16 3.799 -16.279 16.717 3.676 -9.783 10.451 15.224 3.384 15.595 -16.483 -0.267 16.485
Bus633 4.16 4.057 -9.751 10.561 2.850 -6.224 6.846 8.840 3.694 9.580 -9.793 -1.531 9.912
Bus634 0.48 9.829 -19.163 21.536 9.056 -17.726 19.905 16.749 8.616 18.835 12.601 16.692 20.914
Bus671 4.16 1.874 -7.248 7.486 1.413 -4.696 4.904 6.442 1.652 6.651 -6.958 0.022 6.958
Bus675 4.16 2.140 -6.222 6.580 1.536 -4.217 4.488 5.507 1.897 5.825 -6.064 -0.347 6.074
Bus680 4.16 1.438 -5.272 5.465 1.019 -3.294 3.448 4.653 1.263 4.822 -5.022 -0.096 5.023
Bus692 4.16 1.874 -7.248 7.486 1.413 -4.696 4.904 6.442 1.652 6.651 -6.958 0.022 6.958

In the case of line-to-line-to-ground fault there is a contribution of zero sequence

fault current (3I0) from a grounded Delta- Y transformer.

3.3.4 Case 3: IEEE 13 Bus with 1*8 MW DG Located at bus 634

In this section IEEE 13 bus is simulated with a DG penetration level of 8 MW

centralised. DG is placed at bus 634 and the results of this section are tabulated below

Table 3.27: Positive, Negative and Zero Sequence Impedances as seen from each bus in the

system

Bus 3-Phase Fault Line-to-Ground Fault Zero Sequence Imp. (ohm)
ID kV Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance

Bus632 4.160 0.06043 0.17508 0.18522 0.06063 0.17174 0.18213 0.18462 0.38503 0.42700
Bus633 4.160 0.09603 0.22268 0.24250 0.09514 0.21617 0.23617 0.27073 0.55637 0.61874
Bus634 0.480 0.00067 0.00428 0.00433 0.00039 0.00318 0.00321 0.00734 0.01453 0.01628
Bus671 4.160 0.10097 0.33877 0.35350 0.10122 0.33618 0.35109 0.26789 0.80107 0.84468
Bus675 4.160 0.13841 0.37311 0.39796 0.13870 0.37058 0.39569 0.31698 0.83323 0.89148
Bus680 4.160 0.13631 0.45215 0.47225 0.13655 0.44956 0.46984 0.39160 1.16385 1.22796
Bus692 4.160 0.10097 0.33877 0.35350 0.10122 0.33618 0.35109 0.26789 0.80107 0.84468
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Table 3.28: 3-phase & single line to ground fault currents when fault is at bus 632

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus632 Total 0.00 12.967 0.00 115.21 121.06 9.085 9.085
Bus67l Bus632 11.83 1.199 17.81 110.15 113.65 0.943 1.163
Bus633 Bus632 7.01 1.859 4.80 115.18 121.32 1.062 0.451
U2 Bus632 100.00 9.864 100.00 100.00 100.00 7.021 7.361
Lump9 Bus632 100.00 0.063 100.00 100.00 100.00 0.081 0.154
Bus680 Bus671 11.83 0.000 17.81 110.15 113.65 0.000 0.000
Lump3 Bus671 100.00 0.644 100.00 100.00 100.00 0.298 0.000
Lump7 Bus671 100.00 0.056 100.00 100.00 100.00 0.065 0.119
Bus675 Bus692 12.93 0.499 19.64 110.94 111.90 0.579 1.045
Bus634 Bus633 68.02 1.859 39.67 121.69 127.30 1.062 0.451
Lump4 Bus675 100.00 0.499 100.00 100.00 100.00 0.579 1.045
WTG6 Bus634 100.00 15.760 100.00 100.00 100.00 7.762 0.000
Lump1 Bus634 100.00 0.381 100.00 100.00 100.00 1.444 3.907
Bus692 Bus671 11.83 0.499 17.81 110.15 113.65 0.579 1.045

Table 3.29: 3-phase & single line to ground fault currents when fault is at bus 633

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus633 Total 0.00 9.904 0.00 119.70 121.70 6.567 6.567
Bus632 Bus633 29.87 7.920 31.38 111.02 114.36 5.483 6.083
Bus634 Bus633 65.45 1.992 35.70 125.30 128.49 1.086 0.485
Bus671 Bus632 38.17 0.855 43.74 107.52 109.41 0.646 0.820
U2 Bus632 100.00 7.032 100.00 100.00 100.00 4.797 5.186
Lump9 Bus632 100.00 0.045 100.00 100.00 100.00 0.056 0.108
WTG6 Bus634 100.00 16.884 100.00 100.00 100.00 7.870 0.000
Lump1 Bus634 100.00 0.408 100.00 100.00 100.00 1.548 4.199
Bus680 Bus671 38.17 0.000 43.74 107.52 109.41 0.000 0.000
Lump3 Bus671 100.00 0.459 100.00 100.00 100.00 0.200 0.000
Lump7 Bus671 100.00 0.040 100.00 100.00 100.00 0.045 0.084
Bus675 Bus692 39.01 0.356 44.98 108.09 108.15 0.400 0.736
Lump4 Bus675 100.00 0.356 100.00 100.00 100.00 0.400 0.736
Bus692 Bus671 38.17 0.356 43.74 107.52 109.41 0.400 0.736
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Table 3.30: 3-phase & single line to ground fault currents when fault is at bus 634

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus634 Total 0.00 63.942 0.00 126.10 138.63 35.309 35.309
Bus633 Bus634 72.28 19.066 59.84 112.68 117.90 15.784 29.644
WTG6 Bus634 100.00 45.279 100.00 100.00 100.00 17.577 0.000
Lump1 Bus634 100.00 1.095 100.00 100.00 100.00 2.229 5.681
Bus632 Bus633 80.48 2.200 72.83 107.75 111.66 1.821 3.420
Bus671 Bus632 82.82 0.238 78.38 105.80 108.31 0.226 0.461
02 Bus632 100.00 1.953 100.00 100.00 100.00 1.580 2.916
Lump9 Bus632 100.00 0.013 100.00 100.00 100.00 0.024 0.061
Bus680 Bus671 82.82 0.000 78.38 105.80 108.31 0.000 0.000
Lump3 Bus671 100.00 0.128 100.00 100.00 100.00 0.041 0.000
Lump7 Bus671 100.00 0.011 100.00 100.00 100.00 0.019 0.047
Bus675 Bus692 83.04 0.099 78.85 106.18 107.54 0.168 0.414
Lump4 Bus675 100.00 0.099 100.00 100.00 100.00 0.168 0.414
Bus692 Bus671 82.82 0.099 78.38 105.80 108.31 0.168 0.414

Table 3.31: 3-phase & single line to ground fault currents when fault is at bus 671

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus671 Total 0.00 6.794 0.00 118.21 119.84 4.651 4.651
Bus632 Bus671 53.77 5.452 57.95 103.90 107.38 3.539 3.146
Bus680 Bus671 0.00 0.000 0.00 118.21 119.84 0.000 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.332 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.081 0.156
Bus675 Bus692 1.45 0.565 3.34 119.08 117.54 0.714 1.370
Bus633 Bus632 56.82 0.860 59.95 103.86 107.55 0.472 0.178
U2 Bus632 100.00 4.563 100.00 100.00 100.00 3.035 2.911
Lump9 Bus632 100.00 0.029 100.00 100.00 100.00 0.034 0.061
Lump4 Bus675 100.00 0.565 100.00 100.00 100.00 0.714 1.370
Bus634 Bus633 84.78 0.860 75.25 105.94 110.23 0.472 0.178
WTG6 Bus634 100.00 7.290 100.00 100.00 100.00 3.509 0.000
Lump1 Bus634 100.00 0.176 100.00 100.00 100.00 0.579 1.545
Bus692 Bus671 0.00 0.565 0.00 118.21 119.84 0.714 1.370
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Table 3.32: 3-phase & single line to ground fault currents when fault is at bus 675

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus675 Total 0.00 6.035 0.00 117.23 117.52 4.276 4.276
Bus692 Bus675 14.04 5.477 12.35 118.40 114.78 3.572 2.960
Lump4 Bus675 100.00 0.572 100.00 100.00 100.00 0.723 1.361
Bus632 Bus671 59.45 4.789 61.88 104.49 105.55 3.204 2.824
Bus680 Bus671 14.04 0.000 12.35 118.40 114.78 0.000 0.000
Lump3 Bus671 100.00 0.641 100.00 100.00 100.00 0.302 0.000
Lump7 Bus671 100.00 0.056 100.00 100.00 100.00 0.073 0.140
Bus633 Bus632 62.23 0.756 63.75 104.46 105.72 0.428 0.160
U2 Bus632 100.00 4.009 100.00 100.00 100.00 2.747 2.613
Lump9 Bus632 100.00 0.026 100.00 100.00 100.00 0.030 0.055
Bus634 Bus633 87.03 0.756 77.80 106.47 107.99 0.428 0.160
WTG6 Bus634 100.00 6.405 100.00 100.00 100.00 3.190 0.000
Lump1 Bus634 100.00 0.155 100.00 100.00 100.00 0.522 1.387
Bus671 Bus692 14.04 5.477 12.35 118.40 114.78 3.572 2.960

Table 3.33: 3-phase & single line to ground fault currents when fault is at bus 680

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus680 Total 0.00 5.086 0.00 120.42 121.98 3.321 3.321
Bus671 Bus680 25.15 5.086 28.61 112.43 113.56 3.321 3.321
Bus632 Bus671 65.39 4.081 69.95 102.70 105.19 2.526 2.246
Lump3 Bus671 100.00 0.546 100.00 100.00 100.00 0.237 0.000
Lump1 Bus671 100.00 0.048 100.00 100.00 100.00 0.058 0.111
Bus675 Bus692 25.99 0.423 29.98 113.14 111.89 0.510 0.978
Bus633 Bus632 67.68 0.644 71.39 102.67 105.31 0.337 0.127
U2 Bus632 100.00 3.415 100.00 100.00 100.00 2.167 2.078
Lomp9 Bus632 100.00 0.022 100.00 100.00 100.00 0.024 0.043
Lump4 Bus675 100.00 0.423 100.00 100.00 100.00 0.510 0.978
Bus634 Bus633 88.59 0.644 82.33 104.04 107.14 0.337 0.127
WTG6 Bus634 100.00 5.457 100.00 100.00 100.00 2.505 0.000
Lump1 Bus634 100.00 0.132 100.00 100.00 100.00 0.414 1.103
Bus692 Bus67l 25.15 0.423 28.61 112.43 113.56 0.510 0.978
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Table 3.34: 3-phase & single line to ground fault currents when fault is at bus 692

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus692 Total 0.00 6.794 0.00 118.21 119.84 4.651 4.651
Bus675 Bus692 1.45 0.565 3.34 119.08 117.54 0.714 1.370
Bus632 BUS671 53.77 5.452 57.95 103.90 107.38 3.539 3.146
Bus680 Bus671 0.00 0.000 0.00 118.21 119.84 0.000 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.332 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.081 0.156
Lump4 Bus675 100.00 0.565 100.00 100.00 100.00 0.714 1.370
Bus633 Bus632 56.82 0.860 59.95 103.86 107.55 0.472 0.178
U2 Bus632 100.00 4.563 100.00 100.00 100.00 3.035 2.911
Lump9 Bus632 100.00 0.029 100.00 100.00 100.00 0.034 0.061
Bus634 Bus633 84.78 0.860 75.25 105.94 110.23 0.472 0.178
WTG6 Bus634 100.00 7.290 100.00 100.00 100.00 3.509 0.000
Lump1 Bus634 100.00 0.176 100.00 100.00 100.00 0.579 1.545
Bus671 Bns692 0.00 6.234 0.00 118.21 119.84 3.945 3.298

Table 3.35: Summary of fault currents for all types of faults at each fault location

Bus 3-Phase Fault Line-to-Ground Fault Line-to-Line Fault *Line-to-Line-to-Ground
ID kV Real Imag. Mag. Real Imag. Mag. Real Imag. Mag. Real Imag. Mag.

Bus632 4.16 4.231 -12.258 12.967 3.501 -8.383 9.085 10.692 3.732 11.325 -12.097 -0.578 12.111
Bus633 4.16 3.922 -9.095 9.904 2.765 -5.957 6.567 7.968 3.471 8.691 -8.984 -1.282 9.075
Bus634 0.48 9.814 -63.184 63.942 12.595 -32.986 35.309 63.044 8.911 63.671 -66.534 0.192 66.534
Bus671 4.16 1.941 -6.511 6.794 1.412 -4.432 4.651 5.656 1.694 5.904 -6.199 -0.020 6.199
Bus675 4.16 2.099 -5.658 6.035 1.507 -4.001 4.276 4.912 1.830 5.242 -5.492 -0.286 5.499
Bus680 4.16 1.468 -4.869 5.086 1.017 -3.161 3.321 4.226 1.279 4.416 -4.610 -0.112 4.611
Bus692 4.16 1.941 -6.511 6.794 1.412 -4.432 4.651 5.656 1.694 5.904 -6.199 -0.020 6.199

In the case of line-to-line-to-ground fault there is a contribution of zero sequence

fault current (3I0) from a grounded Delta- Y transformer

In this case the fault is after the transformer in the low tertian side so all fault values

were observed to be much higher than the rest of the case. On the other hand all the

branch currents are reduced.
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3.3.5 Case 4: IEEE 13 Bus with 1*8 MW DG Located at bus 671

In this section IEEE 13 bus is simulated with a DG penetration level of 8 MW

centralised. DG is placed at bus 671 and the results were tabulated below.

Table 3.36: Positive, Negative and Zero Sequence Impedances as seen from each bus in the

system

Bus 3-Phase Fault Line-to-Ground Fault Zero Sequence Imp. (ohm)
ID kV Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance

Bus632 4.160 0.04879 0.16237 0.16954 0.04600 0.15306 0.15983 0.18462 0.38503 0.42700
Bus633 4.160 0.10331 0.23226 0.25420 0.10057 0.22303 0.24465 0.27073 0.55637 0.61874
Bus634 0.480 0.00607 0.01172 0.01320 0.00603 0.01161 0.01309 0.00734 0.01453 0.01628
Bus671 4.160 0.03337 0.19825 0.20104 0.02407 0.16090 0.16269 0.26789 0.80107 0.84468
Bus675 4.160 0.07491 0.23443 0.24611 0.06652 0.19772 0.20861 0.31698 0.83323 0.89148
Bus680 4.160 0.06870 0.31163 0.31912 0.05941 0.27428 0.28064 0.39160 1.16385 1.22796
Bus692 4.160 0.03337 0.19825 0.20104 0.02407 0.16090 0.16269 0.26789 0.80107 0.84468

Table 3.37: 3-phase & single line to ground fault currents when fault is at bus 632

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus632 Total 0.00 14.166 0.00 116.44 124.44 9.554 9.554
Bus67l Bus632 41.18 4.175 32.69 114.94 120.24 2.411 1.224
Bus633 Bus632 0.46 0.121 1.64 115.60 123.42 0.210 0.474
U2 Bus632 100.00 9.864 100.00 100.00 100.00 6.888 7.741
Lump9 Bus632 100.00 0.063 100.00 100.00 100.00 0.081 0.162
Bus680 Bus671 41.18 0.000 32.69 114.94 120.24 0.000 0.000
WTG3 Bus671 100.00 3.371 100.00 100.00 100.00 1.677 0.000
Lump3 Bus671 100.00 0.435 100.00 100.00 100.00 0.177 0.000
Lump7 Bus671 100.00 0.038 100.00 100.00 100.00 0.057 0.125
Bus675 Bus692 41.96 0.337 34.25 115.67 118.32 0.501 1.099
Bus634 Bus633 4.42 0.121 8.55 113.18 120.00 0.210 0.474
Lump4 Bus675 100.00 0.337 100.00 100.00 100.00 0.501 1.099
Lamp1 Bus634 100.00 1.047 100.00 100.00 100.00 1.823 4.109
Bus692 Bus671 41.18 0.337 32.69 114.94 120.24 0.501 1.099
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Table 3.38: 3-phase & single line to ground fault currents when fault is at bus 633

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus633 Total 0.00 9.448 0.00 118.69 120.23 6.448 6.448
Bus632 Bus633 35.17 9.327 33.98 110.76 114.31 6.235 5.973
Bus634 Bus633 3.99 0.121 6.99 116.10 116.97 0.213 0.476
Bus671 Bus632 62.13 2.772 55.71 109.91 111.66 1.614 0.805
U2 Bus632 100.00 6.550 100.00 100.00 100.00 4.592 5.092
Lump9 Bus632 100.00 0.042 100.00 100.00 100.00 0.054 0.106
Lump1 Bus634 100.00 1.052 100.00 100.00 100.00 1.844 4.123
Bus680 Bus671 62.13 0.000 55.71 109.91 111.66 0.000 0.000
WTG3 Bus671 100.00 2.238 100.00 100.00 100.00 1.127 0.000
Lump3 Bus671 100.00 0.289 100.00 100.00 100.00 0.119 0.000
Lump7 Bus671 100.00 0.025 100.00 100.00 100.00 0.038 0.082
Bus675 Bus692 62.68 0.224 56.79 110.43 110.36 0.332 0.723
Lump4 Bus675 100.00 0.224 100.00 100.00 100.00 0.332 0.723
Bus692 Bus671 62.13 0.224 55.71 109.91 111.66 0.332 0.723

Table 3.39: 3-phase & single line to ground fault currents when fault is at bus 634

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus634 Total 0.00 20.992 0.00 104.02 103.35 19.530 19.530
Bus633 Bus634 75.45 19.901 67.53 105.31 105.06 17.812 16.397
Lump1 Bus634 100.00 1.095 100.00 100.00 100.00 1.724 3.142
Bus632 Bus633 84.01 2.296 78.57 103.08 103.80 2.055 1.892
Bus671 Bus632 90.72 0.683 85.72 102.91 103.06 0.537 0.255
U2 Bus632 100.00 1.613 100.00 10000 100.00 1.509 1.613
Lump9 Bus632 100.00 0.010 100.00 100.00 100.00 0.017 0.034
Bus680 Bus671 90.72 0.000 85.72 102.91 103.06 0.000 0.000
WTG3 Bus671 100.00 0.551 100.00 100.00 100.00 0.378 0.000
Lump3 Bus671 100.00 0.071 100.00 100.00 100.00 0.040 o.ooo
Lump7 Bus671 100.00 0.006 100.00 100.00 100.00 0.012 0.026
Bus675 Bus692 90.85 0.055 86.05 103.10 102.64 0.107 0.229
Lump4 Bus675 100.00 0.055 100.00 100.00 100.00 0.107 0.229
Bus692 Bus671 90.72 0.055 85.72 102.91 103.06 0.107 0.229
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Table 3.40: 3-phase & single line to ground fault currents when fault is at bus 671

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus671 Total 0.00 11.947 0.00 131.27 137.61 5.980 5.980
Bus632 Bus671 49.79 5.048 57.85 106.50 113.55 2.868 4.045
Bus680 Bus671 0.00 0.000 0.00 131.27 137.61 0.000 0.000
WTG3 Bus671 100.00 5.658 100.00 100.00 100.00 2.089 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.220 0.000
Lump7 Bus67l 100.00 0.063 100.00 100.00 100.00 0.086 0.200
Bus675 Bus692 1.45 0.565 3.88 132.05 134.63 0.757 1.761
Bus633 Bus632 50.00 0.061 58.60 106.19 113.06 0.094 0.229
U2 Bus632 100.00 4.956 100.00 100.00 100.00 2.740 3.742
Lump9 Bus632 100.00 0.032 100.00 100.00 100.00 0.035 0.078
Lmnp4 Bus675 100.00 0.565 100.00 100.00 100.00 0.757 1.761
Bus634 Bus633 51.98 0.061 61.62 105.31 111.34 0.094 0.229
Lump1 Bus634 100.00 0.526 100.00 100.00 100.00 0.818 1.986
Bus692 Bus671 0.00 0.565 0.00 131.27 137.61 0.757 1.761

Table 3.41: 3-phase & single line to ground fault currents when fault is at bus 675

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus675 Total 0.00 9.759 0.00 129.44 131.03 5.354 5.354
Bus692 Bus675 23.57 9.195 15.83 130.48 127.96 4.611 3.707
Lump4 Bus675 100.00 0.572 100.00 100.00 100.00 0.761 1.704
Bus632 Bus671 59.97 4.078 62.88 107.44 110.01 2.527 3.536
Bus680 Bus671 23.57 0.000 15.83 130.48 127.96 0.000 0.000
WTG3 Bus671 100.00 4.571 100.00 100.00 100.00 1.850 0.000
Lump3 Bus671 100.00 0.589 100.00 100.00 100.00 0.195 0.000
Lump7 Bus671 100.00 0.051 100.00 100.00 100.00 0.075 0.175
Bus633 Bus632 60.16 0.049 63.54 107.13 109.63 0.083 0.200
U2 Bus632 100.00 4.004 100.00 100.00 100.00 2.414 3.272
Lump9 Bus632 100.00 0.026 100.00 100.00 100.00 0.031 0.068
Bus634 Bus633 61.76 0.049 66.26 106.20 108.29 0.083 0.200
Lump1 Bus634 100.00 0.425 100.00 100.00 100.00 0.717 1.737
Bus671 Bus692 23.57 9.195 15.83 130.48 127.96 4.611 3.707
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Table 3.42: 3-phase & single line to ground fault currents when fault is at bus 680

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus680 Total 0.00 7.526 0.00 129.51 134.04 3.947 3.947
Bus671 Bus680 37.21 7.526 34.01 119.09 122.99 3.947 3.947
Bus632 Bus671 68.36 3.180 72.13 104.08 108.59 1.893 2.670
WTG3 Bus671 100.00 3.565 100.00 100.00 100.00 1.379 0.000
Lump3 Bus671 100.00 0.460 100.00 100.00 100.00 0.145 0.000
Lump7 Bus671 100.00 0.040 100.00 100.00 100.00 0.057 0.132
Bus675 Bus692 37.99 0.356 35.44 119.81 120.94 0.499 1.163
Bus633 Bus632 68.51 0.038 72.62 103.89 108.28 0.062 0.151
U2 Bus632 100.00 3.122 100.00 100.00 100.00 1.809 2.470
Lump9 Bus632 100.00 0.020 100.00 100.00 100.00 0.023 0.052
Lump4 Bus675 100.00 0.356 100.00 100.00 100.00 0.499 1.163
Bus634 Bus633 69.76 0.038 74.64 103.37 107.19 0.062 0.151
Lump1 Bus634 100.00 0.331 100.00 100.00 100.00 0.540 1.311
Bus692 Bus671 37.21 0.356 34.01 119.09 122.99 0.499 1.163

Table 3.43: 3-phase & single line to ground fault currents when fault is at bus 692

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus692 Total 0.00 11.947 0.00 131.27 137.61 5.980 5.980
Bus675 Bus692 1.45 0.565 3.88 132.05 134.63 0.757 1.761
Bus632 Bus671 49.79 5.048 57.85 106.50 113.55 2.868 4.045
Bus680 Bus671 0.00 0.000 0.00 131.27 137.61 0.000 0.000
WTG3 Bus67l 100.00 5.658 100.00 100.00 100.00 2.089 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.220 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.086 0.200
Lump4 Bus675 100.00 0.565 100.00 100.00 100.00 0.757 1.761
Bus633 Bus632 50.00 0.061 58.60 106.19 113.06 0.094 0.229
U2 Bus632 100.00 4.956 100.00 100.00 100.00 2.740 3.742
Lump9 Bus632 100.00 0.032 100.00 100.00 100.00 0.035 0.078
Bus634 Bus633 51.98 0.061 61.62 105.31 111.34 0.094 0.229
Lump1 Bus634 100.00 0.526 100.00 100.00 100.00 0.818 1.986
Bus671 Bus692 0.00 11.381 0.00 131.27 137.61 5.227 4.239
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Table 3.44: Summary of fault currents for all types of faults at each fault location

Bus 3-Phase Fault Line-to-Ground Fault Line-to-Line Fault *Line-to-Line-to-Ground
ID kV Real Imag. Mag. Real Imag. Mag. Real Imag. Mag. Real Imag. Mag.

Bus632 4.16 4.076 -13.567 14.166 3.540 -8.874 9.554 12.096 3.635 12.630 -13.451 -0.474 13.459
Bus633 4.16 3.840 -8.633 9.448 2.739 -5.838 6.448 7.611 3.408 8.339 -8.612 -1.248 8.702
Bus634 0.48 9.646 -18.645 20.992 8.921 -17.374 19.530 16.211 8.405 18.260 12.091 16.463 20.426
Bus671 4.16 1.983 -11.781 11.947 1.614 -5.758 5.980 11.294 1.806 11.437 -11.729 -0.142 11.730
Bus675 4.16 2.971 -9.296 9.759 1.824 -5.034 5.354 8.695 2.846 9.149 -9.188 -1.266 9.275
Bus680 4.16 1.620 -7.350 7.526 1.124 -3.784 3.947 6.776 1.482 6.936 -7.112 -0.304 7.118
Bus692 4.16 1.983 -11.781 11.947 1.614 -5.758 5.980 11.294 1.806 11.437 -11.729 -0.142 11.730

In the case of line-to-line-to-ground fault there is a contribution of zero sequence

fault current (3I0) from a grounded Delta- Y transformer

3.3.6 Case 5: IEEE 13 Bus with 1*8 MW DG Located at bus 675

In this section IEEE 13 bus is simulated with a DG penetration level of 8 MW

centralised. DG is placed at bus 675 and the results are tabulated below.

Table 3.45: Positive, Negative and Zero Sequence Impedances as seen from each bus in the

system

Bus 3-Phase Fault Line-to-Ground Fault Zero Sequence Imp. (ohm)
ID kV Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance

Bus632 4.160 0.05233 0.16409 0.17223 0.05072 0.15572 0.16377 0.18462 0.38503 0.42700
Bus633 4.160 0.10682 0.23397 0.25720 0.10524 0.22567 0.24901 0.27073 0.55637 0.61874
Bus634 0.480 0.00611 0.01175 0.01324 0.00609 0.01164 0.01314 0.00734 0.01453 0.01628
Bus671 4.160 0.04708 0.20570 0.21101 0.04224 0.17229 0.17740 0.26789 0.80107 0.84468
Bus675 4.160 0.04045 0.20995 0.21381 0.02833 0.16866 0.17102 0.31698 0.83323 0.89148
Bus680 4.160 0.08242 0.31907 0.32954 0.07758 0.28567 0.29602 0.39160 1.16385 1.22796
Bus692 4.160 0.04708 0.20570 0.21101 0.04224 0.17229 0.17740 0.26789 0.80107 0.84468
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Table 3.46: 3-phase & single line to ground fault currents when fault is at bus 632

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus632 Total 0.00 13.945 0.00 116.57 123.46 9.465 9.465
Bus67l Bus632 38.74 3.927 31.36 115.16 118.76 2.287 1.212
Bus633 Bus632 0.46 0.121 1.63 115.73 122.46 0.210 0.470
U2 Bus632 100.00 9.864 100.00 100.00 100.00 6.910 7.669
Lump9 Bus632 100.00 0.063 100.00 100.00 100.00 0.081 0.160
Bus680 Bus671 38.74 0.000 31.36 115.16 118.76 0.000 0.000
Lump3 Bus671 100.00 0.449 100.00 100.00 100.00 0.187 0.000
Lump7 Bus671 100.00 0.039 100.00 100.00 100.00 0.057 0.124
Bus675 Bus692 46.42 3.439 36.50 116.01 118.63 2.043 1.088
Bus634 Bus633 4.42 0.121 8.51 113.33 119.12 0.210 0.470
WTG5 Bus675 100.00 3.125 100.00 100.00 100.00 1.555 0.000
Lump4 Bus675 100.00 0.316 100.00 100.00 100.00 0.489 1.088
Lump1 Bus634 100.00 1.047 100.00 100.00 100.00 1.816 4.071
Bus692 Bus671 38.74 3.439 31.36 115.16 118.76 2.043 1.088

Table 3.47: 3-phase & single line to ground fault currents when fault is at bus 633

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus633 Total 0.00 9.338 0.00 118.72 119.60 6.405 6.405
Bus632 Bus633 34.76 9.217 33.75 110.86 1)3.77 6.193 5.933
Bus634 Bas633 3.99 0.121 6.97 116.15 116.39 0.212 0.473
Bus67l Bus632 60.09 2.618 54.63 110.08 110.81 1.535 0.799
U2 Bus632 100.00 6.576 100.00 100.00 100.00 4.619 5.058
Lump9 Bus632 100.00 0.042 100.00 100.00 100.00 0.054 0.106
Lump1 Bus634 100.00 1.052 100.00 100.00 100.00 1.839 4.096
Bus680 Bus671 60.09 0.000 54.63 110.08 110.81 0.000 0.000
Lump3 Bus671 100.00 0.299 100.00 100.00 100.00 0.126 0.000
Lump? Bus671 100.00 0.026 100.00 100.00 100.00 0.038 0.082
Bus675 Bus692 65.51 2.293 58.14 110.64 110.64 1.371 0.718
WTG5 Bus675 100.00 2.084 100.00 100.00 100.00 1.048 0.000
Lump4 Bus675 100.00 0.211 100.00 100.00 100.00 0.324 0.718
Bus692 Bus671 60.09 2.293 54.63 110.08 110.81 1.371 0.718
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Table 3.48: 3-phase & single line to ground fault currents when fault is at bus 643

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus634 Total 0.00 20.931 0.00 104.06 103.23 19.487 19.487
Bus633 Bus634 75.21 19.840 67.37 105.35 104.93 17.770 16.361
Lump1 Bus634 100.00 1.095 100.00 100.00 100.00 1.722 3.135
Bus632 Bus633 83.75 2.289 78.39 103.13 103.68 2.050 1.888
Bus671 Bus632 90.12 0.650 85.28 102.98 102.83 0.513 0.254
U2 Bus632 100.00 1.633 100.00 100.00 100.00 1.525 1.609
Lump9 Bus632 100.00 0.011 100.00 100.00 100.00 0.018 0.034
Bus680 Bus671 90.12 0.000 85.28 102.98 102.83 0.000 0.000
Lump3 Bus671 100.00 0.074 100.00 100.00 100.00 0.042 0.000
Lump7 Bus671 100.00 0.006 100.00 100.00 100.00 0.012 0.026
Bus675 Bus692 91.43 0.569 86.43 103.16 102.76 0.458 0.228
WTG5 Bus675 100.00 0.518 100.00 100.00 100.00 0.353 0.000
Lump4 Bus675 100.00 0.052 100.00 100.00 100.00 0.105 0.228
Bus692 Bus671 90.12 0.569 85.28 102.98 102.83 0.458 0.228

Table 3.49: 3-phase & single line to ground fault currents when fault is at bus 671

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus671 Total 0.00 11.382 0.00 131.36 134.53 5.849 5.849
Bus632 Bus671 49.79 5.048 57.66 106.96 112.28 2.910 3.956
Bus680 Bus67I 0.00 0.000 0.00 131.36 134.53 0.000 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.230 o.ooo
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.085 0.196
Bus675 Bus692 14.32 5.587 8.51 132.38 133.91 2.643 1.722
Bus633 Bus632 50.00 0.061 58.39 106.65 111.81 0.094 0.224
U2 Bus632 100.00 4.956 100.00 100.00 100.00 2.782 3.660
Lump9 Bus632 100.00 0.032 100.00 100.00 100.00 0.035 0.076
WTG5 Bus675 100.00 5.077 100.00 100.00 100.00 1.912 0.000
Lump4 Bus675 100.00 0.513 100.00 100.00 100.00 0.730 1.722
Bus634 Bus633 51.98 0.061 61.39 105.75 110.19 0.094 0.224
Lump1 Bus634 100.00 0.526 100.00 100.00 100.00 0.812 1.943
Bus692 Bus671 0.00 5.587 0.00 131.36 134.53 2.643 1.722
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Table 3.50: 3-phase & single line to ground fault currents when fault is at bus 675

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus

To Bus %V kA % Voltage at From But kA
symm.rms

ID ID From
Bus

Symm.rms Va Vb Vc Ia 3I0

Bus675 Total 0.00 11.233 0.00 130.76 137.90 5.666 5.666
Bus692 Bus675 13.23 5.163 11.48 131.65 132.18 2.867 3.923
WTG5 Bus675 100.00 5.658 100.00 100.00 100.00 2.092 0.000
Lump4 Bus675 100.00 0.572 100.00 100.00 100.00 0.772 1.803
Bus632 Bus67I 55.59 4.470 61.47 107.42 111.60 2.596 3.742
Bus680 Bus671 13.23 0.000 11.48 131.65 132.18 0.000 0.000
Lump3 Bus671 100.00 0.646 100.00 100.00 100.00 0.196 0.000
Lump7 Bus671 100.00 0.056 100.00 100.00 100.00 0.079 0.185
Bus633 Bus632 55.79 0.054 62.17 107.09 111.17 0.087 0.212
U2 Bus632 100.00 4.389 100.00 100.00 100.00 2.479 3.463
Lump9 Bus632 100.00 0.028 100.00 100.00 100.00 0.032 0.072
Bus634 Bus633 57.56 0.054 65.01 106.15 109.68 0.087 0.212
Lump1 Bus634 100.00 0.466 100.00 100.00 100.00 0.751 1.838
Bus671 Bus692 13.23 5.163 11.48 131.65 132.18 2.867 3.923

Table 3.51: 3-phase & single line to ground fault currents when fault is at bus 680

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus680 Total 0.00 7.288 0.00 129.58 132.08 3.889 3.889
Bus671 Bus680 36.04 7.288 33.51 119.34 121.34 3.889 3.889
Bus632 Bus671 67.83 3.232 71.80 104.37 107.89 1.935 2.631
Lump3 Bus671 100.00 0.467 100.00 100.00 100.00 0.153 0.000
Lump7 Bus671 100.00 0.041 100.00 100.00 100.00 0.057 0.130
Bus675 Bus692 43.72 3.577 37.72 120.05 120.81 1.757 1.145
Bus633 Bus632 67.97 0.039 72.29 104.18 107.59 0.062 0.149
U2 Bus632 100.00 3.173 100.00 100.00 100.00 1.850 2.434
Lump9 Bus632 100.00 0.020 100.00 100.00 100.00 0.024 0.051
WTG5 Bus675 100.00 3.251 100.00 100.00 100.00 1.272 0.000
Lump4 Bus675 100.00 0.328 100.00 100.00 100.00 0.486 1.145
Bus634 Bus633 69.24 0.039 74.30 103.65 106.56 0.062 0.149
Lump1 Bus634 100.00 0.337 100.00 100.00 100.00 0.540 1.292
Bus692 Bus67l 36.04 3.577 33.51 119.34 121.34 1.757 1.145
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Table 3.52: 3-phase & single line to ground fault currents when fault is at bus 692

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus692 To(al 0.00 11.382 0.00 131.36 134.53 5.849 5.849
Bus675 Bus692 14.32 5.587 8.51 132.38 133.91 2.643 1.722
Bus632 Bus671 49.79 5.048 57.66 106.96 112.28 2.910 3.956
Bus680 Bus671 0.00 0.000 0.00 131.36 134.53 0.000 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.230 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.085 0.196
WTG5 Bus675 100.00 5.077 100.00 100.00 100.00 1.912 0.000
Lump4 Bus675 100.00 0.513 100.00 100.00 100.00 0.730 1.722
Bus633 Bus632 50.00 0.061 58.39 106.65 111.81 0.094 0.224
U2 Bus632 100.00 4.956 100.00 100.00 100.00 2.782 3.660
Lump9 Bus632 100.00 0.032 100.00 100.00 100.00 0.035 0.076
Bus634 Bus633 51.98 0.061 61.39 105.75 110.19 0.094 0.224
Lump1 Bus634 100.00 0.526 100.00 100.00 100.00 0.812 1.943
Bus671 Bus692 0.00 5.830 0.00 131.36 134.53 3.220 4.147

Table 3.53: Summary of Fault currents for all types of faults at each fault location

Bus 3-Phase Fault Line-to-Ground Fault Line-to-Line Fault *Line-to-Line-to-Ground
ID kV Real Imag. Mag. Real Imag. Mag. Real Imag. Mag. Real Imag. Mag.

Bus632 4.16 4.237 -13.286 13.945 3.577 -8.763 9.465 11.784 3.797 12.381 -13.150 -0.632 13.165
Bus633 4.16 3.878 -8.495 9.338 2.749 -5.785 6.405 7.462 3.443 8.218 -8.469 -1.282 8.565
Bus634 0.48 9.658 -18.570 20.931 8.927 -17.322 19.487 16.132 8.414 18.195 12.015 16.468 20.385
Bus671 4.16 2.540 -11.095 11.382 1.696 -5.597 5.849 10.424 2.463 10.711 -10.868 -0.761 10.895
Bus675 4.16 2.125 -11.030 11.233 1.719 -5.399 5.666 10.637 1.932 10.811 -11.106 -0.384 11.113
Bus680 4.16 1.823 -7.057 7.288 1.158 -3.713 3.889 6.429 1.701 6.650 -6.771 -0.512 6.790
Bus692 4.16 2.540 -11.095 11.382 1.696 -5.597 5.849 10.424 2.463 10.711 -10.868 -0.761 10.895

In the case of line-to-line-to-ground fault there is a contribution of zero sequence

fault current (3I0) from a grounded Delta- Y transformer
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3.3.7 Case 5: IEEE 13 Bus with 1*8 MW DG Located at bus 680

In this section IEEE 13 bus is simulated with a DG penetration level of 8 MW

centralised. DG is placed at bus 680 and the results are tabulated below.

Table 3.54: Positive, Negative and Zero Sequence Impedances and seen from each bus in the

system

Bus 3-Phase Fault Line-to-Ground Fault Zero Sequence Imp. (ohm)
ID kV Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance

Bus632 4.160 0.05212 0.16719 0.17512 0.05033 0.16025 0.16796 0.18462 0.38503 0.42700
Bus633 4.160 0.10660 0.23704 0.25991 0.10484 0.23016 0.25291 0.27073 0.55637 0.61874
Bus634 0.480 0.00611 0.01178 0.01327 0.00609 0.01170 0.01319 0.00734 0.01453 0.01628
Bus671 4.160 0.04567 0.21793 0.22266 0.03986 0.19013 0.19426 0.26789 0.80107 0.84468
Bus675 4.160 0.08658 0.25389 0.26825 0.08141 0.22660 0.24078 0.31698 0.83323 0.89148
Bus680 4.160 0.03449 0.22783 0.23042 0.02413 0.17975 0.18136 0.39160 1.16385 1.22796
Bus692 4.160 0.04567 0.21793 0.22266 0.03986 0.19013 0.19426 0.26789 0.80107 0.84468

Table 3.55: 3-phase & single line to ground fault currents when fault is at bus 632

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus632 Total 0.00 13.715 0.00 115.83 123.35 9.380 9.380
Bus671 Bus632 36.58 3.709 30.26 114.02 118.74 2.181 1.201
Bus633 Bus632 0.46 0.121 1.62 115.01 122.36 0.209 0.466
U2 Bus632 100.00 9.864 100.00 100.00 100.00 6.939 7.600
Lump9 Bus632 100.00 0.063 100.00 100.00 100.00 0.081 0.159
Bus680 Bus671 50.63 2.842 37.24 116.08 120.79 1.413 0.000
Lump3 Bus671 100.00 0.466 100.00 100.00 100.00 0.199 0.000
Lump7 Bus671 100.00 0.041 100.00 100.00 100.00 0.058 0.123
Bus675 Bus692 37.39 0.361 31.83 114.77 116.86 0.513 1.079
Bus634 Bus633 4.42 0.121 8.48 112.68 119.05 0.209 0.466
WTG2 Bus680 100.00 2.842 100.00 100.00 100.00 1.413 0.000
Lump4 Bus675 100.00 0.361 100.00 100.00 100.00 0.513 1.079
Lump1 Bus634 100.00 1.047 100.00 100.00 100.00 1.809 4.034
Bus692 Bus671 36.58 0.361 30.26 114.02 118.74 0.513 1.079
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Table 3.56: 3-phase & single line to ground fault currents when fault is at bus 633

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus633 Total 0.00 9.241 0.00 118.22 119.57 6.368 6.368
Bus632 Bus633 34.39 9.120 33.55 110.43 113.79 6.157 5.899
Bus634 Bus633 3.99 0.121 6.95 115.69 116.39 0.212 0.470
Bus67l Bus632 58.54 2.488 53.78 109.38 110.92 1.469 0.795
U2 Bus632 100.00 6.617 100.00 100.00 100.00 4.654 5.029
Lump9 Bus632 100.00 0.043 100.00 100.00 100.00 0.054 0.105
Lump1 Bus634 100.00 1.052 100.00 100.00 100.00 1.834 4.072
Bus680 Bus671 67.90 1.907 58.48 110.71 112.08 0.955 0.000
Lump3 Bus671 100.00 0.313 100.00 100.00 100.00 0.134 0.000
Lump7 Bus671 100.00 0.027 100.00 100.00 100.00 0.039 0.081
Bus675 Bus692 59.12 0.242 54.87 109.90 109.65 0.341 0.714
WTG2 Bus680 100.00 1.907 100.00 100.00 100.00 0.955 0.000
Lump4 Bus675 100.00 0.242 100.00 100.00 100.00 0.341 0.714
Bus692 Bus671 58.54 0.242 53.78 109.38 110.92 0.341 0.714

Table 3.57: 3-phase & single line to ground fault currents when fault is at bus 634

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus634 Total 0.00 20.880 0.00 103.96 103.27 19.451 19.451
Bus633 Bus634 75.02 19.789 67.24 105.23 104.96 17.735 16.331
Lump1 Bus634 100.00 1.095 100.00 100.00 100.00 1.721 3.130
Bus632 Bus633 83.53 2.283 78.23 103.02 103.71 2.046 1.884
Bus671 Bus632 89.65 0.623 84.93 102.79 102.91 0.492 0.254
U2 Bus632 100.00 1.657 100.00 100.00 100.00 1.543 1.606
Lump9 Bus632 100.00 0.011 100.00 100.00 100.00 0.018 0.034
Bus680 Bus671 92.01 0.477 86.52 103.18 103.20 0.323 0.000
Lump3 Bus671 100.00 0.078 100.00 100.00 100.00 0.046 0.000
Lump7 Bus671 100.00 0.007 100.00 100.00 100.00 0.013 0.026
Bus675 Bus692 89.80 0.061 85.27 102.98 102.50 0.111 0.228
WTG2 Bus680 100.00 0.477 100.00 100.00 100.00 0.323 0.000
Lump4 Bus675 100.00 0.061 100.00 100.00 100.00 0.111 0.228
Bus692 Bus671 89.65 0.061 84.93 102.79 102.91 0.111 0.228
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Table 3.58: 3-phase & single line to ground fault currents when fault is at bus 671

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus671 Total 0.00 10.787 0.00 129.08 133.81 5.720 5.720
Bus632 Bus671 49.79 5.048 57.49 106.16 112.15 2.959 3.869
Bus680 Bus671 22.00 4.449 8.48 131.74 136.89 1.714 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.241 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.085 0.192
Bus675 Bus692 1.45 0.565 3.77 129.87 130.95 0.748 1.684
Bus633 Bus632 50.00 0.061 58.21 105.86 111.69 0.093 0.219
U2 Bus632 100.00 4.956 100.00 100.00 100.00 2.833 3.580
Lump 9 Bus632 100.00 0.032 100.00 100.00 100.00 0.035 0.075
WTG2 Bus680 100.00 4.449 100.00 100.00 100.00 1.714 0.000
Lump4 Bus67S 100.00 0.565 100.00 100.00 100.00 0.748 1.684
Bus634 Bus633 51.98 0.061 61.19 105.03 110.11 0.093 0.219
Lump1 Bus634 100.00 0.526 100.00 100.00 100.00 0.805 1.900
Bus692 Bus671 0.00 0.565 0.00 129.08 133.81 0.748 1.684

Table 3.59: 3-phase & single line to ground fault currents when fault is at bus 675

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus675 Total 0.00 8.954 0.00 127.37 128.19 5.145 5.145
Bus692 Bus675 21.51 8.392 15.16 128.44 125.17 4.410 3.562
Lump4 Bus675 100.00 0.572 100.00 100.00 100.00 0.754 1.638
Bus632 Bus671 59.16 4.144 62.36 106.98 109.02 2.619 3.399
Bus680 Bus671 38.61 3.653 21.81 130.84 127.71 1.525 0.000
Lump3 Bus671 100.00 0.599 100.00 100.00 100.00 0.215 0.000
Lump7 Bus671 100.00 0.052 100.00 100.00 100.00 0.075 0.168
Bus633 Bus632 59.35 0.050 63.01 106.68 108.66 0.082 0.193
U2 Bus632 100.00 4.068 100.00 100.00 100.00 2.507 3.145
Lump9 Bus632 100.00 0.026 100.00 100.00 100.00 0.031 0.066
WTG2 Bus680 100.00 3.653 100.00 100.00 100.00 1.525 0.000
Bus634 Bus633 60.98 0.050 65.70 105.81 107.42 0.082 0.193
Lump1 Bus634 100.00 0.432 100.00 100.00 100.00 0.710 1.669
Bus671 Bus692 21.51 8.392 15.16 128.44 125.17 4.410 3.562
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Table 3.60: 3-phase & single line to ground fault currents when fault is at bus 680

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus680 Total 0.00 10.423 0.00 137.59 143.44 4.408 4.408
Bus671 Bus680 24.01 4.856 29.42 122.82 127.46 2.685 4.408
WTG2 Bus680 100.00 5.658 100.00 100.00 100.00 1.739 0.000
Bus632 Bus671 61.83 3.836 70.48 105.05 110.23 1.956 2.981
Lump3 Bus671 100.00 0.554 100.00 100.00 100.00 0.140 0.000
Lump7 Bus671 100.00 0.048 100.00 100.00 100.00 0.061 0.148
Bus675 Bus692 24.87 0.430 30.95 123.55 125.18 0.540 1.298
Bus633 Bus632 62.00 0.046 71.02 104.83 109.87 0.068 0.169
U2 Bus632 100.00 3.766 100.00 100.00 100.00 1.865 2.759
Lump9 Bus632 100.00 0.024 100.00 100.00 100.00 0.025 0.058
Lump4 Bus675 100.00 0.430 100.00 100.00 100.00 0.540 1.298
Bus634 Bus633 63.50 0.046 73.19 104.21 108.62 0.068 0.169
Lump1 Bus634 100.00 0.400 100.00 100.00 100.00 0.586 1.464

Table 3.61: 3-phase & single line to ground fault currents when fault is at bus 692

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus692 Total 0.00 10.787 0.00 129.08 133.81 5.720 5.720
Bus675 Bus692 1.45 0.565 3.77 129.87 130.95 0.748 1.684
Bus632 Bus671 49.79 5.048 57.49 106.16 112.15 2.959 3.869
Bus680 Bus671 22.00 4.449 8.48 131.74 136.89 1.714 0.000
Lump3 Bus67l 100.00 0.730 100.00 100.00 100.00 0.241 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.085 0.192
Lump4 Bus675 100.00 0.565 100.00 100.00 100.00 0.748 1.684
Bus633 Bus632 50.00 0.061 58.21 105.86 111.69 0.093 0.219
U2 Bus632 100.00 4.956 100.00 100.00 100.00 2.833 3.580
Lump9 Bus632 100.00 0.032 100.00 100.00 100.00 0.035 0.075
WTG2 Bus680 100.00 4.449 100.00 100.00 100.00 1.714 0.000
Bus634 Bus633 51.98 0.061 61.19 105.03 110.11 0.093 0.219
Lump1 Bus634 100.00 0.526 100.00 100.00 100.00 0.805 1.900
Bus671 Bus692 0.00 10.222 0.00 129.08 133.81 4.977 4.055
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Table 3.62: Summary of Fault currents for all types of faults at each fault location

Bus 3-Phase Fault Line-to-Ground Fault Line-to-Line Fault *Line-to-Line-to-Ground
ID kV Real Imag. Mag. Real Imag. Mag. Real Imag. Mag. Real Imag. Mag.

Bus632 4.16 4.082 -13.093 13.715 3.506 -8.701 9.380 11.572 3.621 12.125 -12.946 -0.459 12.954
Bus633 4.16 3.790 -8.428 9.241 2.714 -5.761 6.368 7.390 3.345 8.112 -8.400 -1.187 8.484
Bus634 0.48 9.607 -18.539 20.880 8.891 -17.301 19.451 16.101 8.359 18.141 11.987 16.413 20.325
Bus671 4.16 2.212 -10.557 10.787 1.605 -5.490 5.720 9.766 2.047 9.978 -10.240 -0.339 10.245
Bus675 4.16 2.890 -8.474 8.954 1.782 -4.827 5.145 7.715 2.697 8.173 -8.245 -1.101 8.318
Bus680 4.16 1.560 -10.306 10.423 1.214 -4.237 4.408 10.000 1.438 10.103 -10.296 -0.283 10.300
Bus692 4.16 2.212 -10.557 10.787 1.605 -5.490 5.720 9.766 2.047 9.978 -10.240 -0.339 10.245

In the case of line-to-line-to-ground fault there is a contribution of zero sequence

fault current (3I0) from a grounded Delta- Y transformer

3.3.8 Case 7: IEEE 13 Bus with 4*2 MW DG’s Distributed at Different
Locations in the Network

In this section IEEE 13 bus is simulated with a total DG penetration level of 8 MW

decentralised DG’s which are placed in the following configuration

 1*2MW DG placed at bus 632

 2*2MW DG placed at bus 671

 1*2MW DG placed at bus 675

Fig. 3.4 below illustrates the configuration of case 7.
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Fig.3.4: configuration used in case 7
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Table 3.63: Positive, Negative and Zero Sequence Impedances as seen from each bus in the

system

Bus 3-Phase Fault Line-to-Ground Fault Zero Sequence Imp. (ohm)
ID kV Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance

Bus632 4.160 0.04316 0.15458 0.16049 0.03816 0.14111 0.14618 0.18462 0.38503 0.42700
Bus633 4.160 0.09774 0.22452 0.24488 0.09283 0.21116 0.23066 0.27073 0.55637 0.61874
Bus634 0.480 0.00600 0.01163 0.01309 0.00594 0.01146 0.01291 0.00734 0.01453 0.01628
Bus671 4.160 0.04120 0.21808 0.22194 0.03155 0.18164 0.18436 0.26789 0.80107 0.84468
Bus675 4.160 0.06783 0.24547 0.25467 0.05585 0.20703 0.21443 0.31698 0.83323 0.89148
Bus680 4.160 0.07654 0.33146 0.34018 0.06688 0.29501 0.30250 0.39160 1.16385 1.22796
Bus692 4.160 0.04120 0.21808 0.22194 0.03155 0.18164 0.18436 0.26789 0.80107 0.84468

Table 3.64: 3-phase & single line to ground fault currents when fault is at bus 632

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus632 Total 0.00 14.965 0.00 117.41 126.47 9.859 9.859
Bus671 Bus632 35.51 3.600 29.73 114.89 120.84 2.082 1.263
Bus633 Bus632 0.46 0.121 1.68 116.52 125.39 0.213 0.489
U2 Bus632 100.00 9.864 100.00 100.00 100.00 6.801 7.988
WTG7 Bus632 100.00 1.414 100.00 100.00 100.00 0.735 0.000
Lump9 Bus632 100.00 0.063 100.00 100.00 100.00 0.082 0.167
Bus680 Bus671 35.51 0.000 29.73 114.89 120.84 0.000 0.000
WTG5 Bus67l 100.00 0.921 100.00 100.00 100.00 0.446 0.000
WTG6 Bus671 100.00 0.921 100.00 100.00 100.00 0.446 0.000
Lump3 Bus671 100.00 0.475 100.00 100.00 100.00 0.188 0.000
Lump7 Bus671 100.00 0.041 100.00 100.00 100.00 0.059 0.129
Bus675 Bus692 38.29 1.246 32.35 115.69 119.35 0.944 1.134
Bus634 Bus633 4.42 0.121 8.68 113.95 121.76 0.213 0.489
WTG4 Bus675 100.00 0.889 100.00 100.00 100.00 0.428 0.000
Lump4 Bus675 100.00 0.359 100.00 100.00 100.00 0.517 1.134
Lump1 Bus634 100.00 1.047 100.00 100.00 100.00 1.848 4.240
Bus692 Bus671 35.51 1.246 29.73 114.89 120.84 0.944 1.134
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Table 3.65: 3-phase & single line to ground fault currents when fault is at bus 633

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus633 Total 0.00 9.808 0.00 119.43 121.42 6.586 6.586
Bus632 Bus633 36.53 9.687 34.71 111.26 115.25 6.371 6.101
Bus634 Bus633 3.99 0.121 7.05 116.74 118.02 0.215 0.486
Bus671 Bus632 59.29 2.349 54.25 109.80 111.82 1.379 0.822
U2 Bus632 100.00 6.436 100.00 100.00 100.00 4.485 5.201
WTG7 Bus632 100.00 0.923 100.00 100.00 100.00 0.489 0.000
Lump9 Bus632 100.00 0.041 100.00 100.00 100.00 0.054 0109
Lump1 Bus634 100.00 1.052 100.00 100.00 100.00 1.861 4.211
Bus680 Bus67l 59.29 0.000 54.25 109.80 111.82 0.000 0.000
WTG5 Bus671 100.00 0.601 100.00 100.00 100.00 0.297 0.000
WTG6 Bus67l 100.00 0.601 100.00 100.00 100.00 0.297 0.000
Lump3 Bus671 100.00 0.310 100.00 100.00 100.00 0.125 0.000
Lump7 Bus671 100.00 0.027 100.00 100.00 100.00 0.039 0.084
Bus675 Bus692 61.22 0.813 56.02 110.35 110.80 0.623 0.738
WTG4 Bus675 100.00 0.580 100.00 100.00 100.00 0.284 0.000
Lump4 Bus675 100.00 0.234 100.00 100.00 100.00 0.338 0.738
Bus692 Bus671 59.29 0.813 54.25 109.80 111.82 0.623 0.738

Table 3.66: 3-phase & single line to ground fault currents when fault is at bus 634

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus634 Total 0.00 21.178 0.00 104.10 103.51 19.664 19.664
Bus633 Bus634 76.15 20.087 68.02 105.41 105.24 17.941 16.509
Lump1 Bus634 100.00 1.095 100.00 100.00 100.00 1.728 3.164
Bus632 Bus633 84.79 2.318 79.14 103.16 103.97 2.070 1.905
Bus671 Bus632 90.31 0.562 85.45 102.83 103.04 0.451 0.257
U2 Bus632 100.00 1.540 100.00 100.00 100.00 1.452 1.624
WTG7 Bus632 100.00 0.221 100.00 100.00 100.00 0.162 0.000
Lump9 Bus632 100.00 0.010 100.00 100.00 100.00 0.017 0.034
Bus680 Bus671 90.31 0.000 85.45 102.83 103.04 0.000 0.000
WTG5 Bus671 100.00 0.144 100.00 100.00 100.00 0.098 0.000
WTG6 Bus671 100.00 0.144 100.00 100.00 100.00 0.098 0.000
Lump3 Bus671 100.00 0.074 100.00 100.00 100.00 0.041 0.000
Lump7 Bus671 100.00 0.006 100.00 100.00 100.00 0.012 0.026
Bus675 Bus692 90.76 0.195 86.01 103.02 102.71 0.201 0.230
WTG4 Bus675 100.00 0.139 100.00 100.00 100.00 0.094 0.000
Lump4 Bus675 100.00 0.056 100.00 100.00 100.00 0.107 0.230
Bus692 Bus671 90.31 0.195 85.45 102.83 103.04 0.201 0.230
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Table 3.67: 3-phase & single line to ground fault currents when fault is at bus 671

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus671 Total 0.00 10.822 0.00 128.76 134.68 5.773 5.773
Bus632 Bus67l 52.92 5.366 58.83 106.03 112.84 3.069 3.905
Bus680 Bus671 0.00 0.000 0.00 128.76 134.68 0.000 0.000
WTG5 Bus671 100.00 1.414 100.00 100.00 100.00 0.565 0.000
WTG6 Bus671 100.00 1.414 100.00 100.00 100.00 0.565 0.000
Lump3 Bus67I 100.00 0.730 100.00 10000 100.00 0.237 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.085 0.193
Bus675 Bus692 4.91 1.914 5.10 129.59 132.45 1.285 1.700
Bus633 Bus632 53.13 0.057 59.55 105.73 112.37 0.092 0.221
U2 Bus632 100.00 4.644 100.00 100.00 100.00 2.692 3.613
WTG7 Bus632 100.00 0.666 100.00 100.00 100.00 0.261 0.000
Lump9 Bus632 100.00 0.030 100.00 100.00 100.00 0.035 0.075
WTG4 Bus675 100.00 1.365 100.00 100.00 100.00 0.541 0.000
Lump4 Bus675 100.00 0.552 100.00 100.00 100.00 0.744 1.700
Bus634 Bus633 54.99 0.057 62.49 104.90 110.73 0.092 0.221
Lump1 Bus634 100.00 0.493 100.00 100.00 100.00 0.794 1.918
Bus692 Bus671 0.00 1.914 0.00 128.76 134.68 1.285 1.700

Table 3.68: 3-phase & single line to ground fault currents when fault is at bus 675

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus675 Total 0.00 9.431 0.00 127.30 131.45 5.301 5.301
Bus692 Bus675 19.22 7.500 14.13 128.44 127.65 3.982 3.670
WTG4 Bus675 100.00 1.414 100.00 100.00 100.00 0.600 0.000
Lump4 Bus675 100.00 0.572 100.00 100.00 100.00 0.759 1.687
Bus632 Bus671 60.82 4.514 63.26 106.84 110.24 2.725 3.502
Bus680 Bus671 19.22 0.000 14.13 128.44 127.65 0.000 0.000
WTG5 Bas671 100.00 1.190 100.00 100.00 100.00 0.497 0.000
WTG6 Bus671 100.00 1.190 100.00 100.00 100.00 0.497 0.000
Lump3 Bus671 100.00 0.614 100.00 100.00 100.00 0.209 0.000
Lump7 Bus671 100.00 0.053 100.00 100.00 100.00 0.076 0.173
Bus633 Bus632 61.00 0.048 63.92 106.53 109.85 0.082 0.198
U2 Bus632 100.00 3.906 100.00 100.00 100.00 2.391 3.240
WTG7 Bus632 100.00 0.560 100.00 100.00 100.00 0.230 0.000
Lump9 Bus632 100.00 0.025 100.00 100.00 100.00 0.031 0.068
Bus634 Bus633 62.57 0.048 66.61 105.65 108.51 0.082 0.198
Lump1 Bus634 100.00 0.415 100.00 100.00 100.00 0.710 1.720
Bus671 Bus692 19.22 7.500 14.13 128.44 127.65 3.982 3.670
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Table 3.69: 3-phase & single line to ground fault currents when fault is at bus 680

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus680 Total 0.00 7.060 0.00 127.89 132.21 3.856 3.856
Bus671 Bus680 34.91 7.060 33.22 117.83 121.53 3.856 3.856
Bus632 Bus671 69.32 3.501 72.46 103.83 108.26 2.050 2.608
WTG5 Bus671 100.00 0.923 100.00 100.00 100.00 0.377 0.000
WTG6 Bus671 100.00 0.923 100.00 100.00 100.00 0.377 0.000
Lump3 Bus671 100.00 0.476 100.00 100.00 100.00 0.159 0.000
Lump7 Bus671 100.00 0.041 100.00 100.00 100.00 0.057 0.129
Bus675 Bus692 37.51 1.249 35.42 118.53 119.95 0.858 1.136
Bus633 Bus632 69.45 0.037 72.95 103.65 107.95 0.061 0.148
U2 Bus632 100.00 3.029 100.00 100.00 100.00 1.798 2.413
WTG7 Bus632 100.00 0.434 100.00 100.00 100.00 0.174 0.000
Lump9 Bus632 100.00 0.019 100.00 100.00 100.00 0.023 0.050
WTG4 Bus675 100.00 0.891 100.00 100.00 100.00 0.361 0.000
Lump4 Bus675 100.00 0.360 100.00 100.00 100.00 0.497 1.136
Bus634 Bus633 70.67 0.037 74.92 103.14 106.90 0.061 0.148
Lump1 Bus634 100.00 0.322 100.00 100.00 100.00 0.530 1.281
Bus692 Bus671 34.91 1.249 33.22 117.83 121.53 0.858 1.136

Table 3.70: 3-phase & single line to ground fault currents when fault is at bus 692

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus692 Total 0.00 10.822 0.00 128.76 134.68 5.773 5.773
Bus675 Bus692 4.91 1.914 5.10 129.59 132.45 1.285 1.700
Bus632 Bus671 52.92 5.366 58.83 106.03 112.84 3.069 3.905
Bus680 Bus671 0.00 0.000 0.00 128.76 134.68 0.000 0.000
WTG5 Bns671 100.00 1.414 100.00 100.00 100.00 0.565 0.000
WTG6 Bus671 100.00 1.414 100.00 100.00 100.00 0.565 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.237 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.085 0.193
WTG4 Bus675 100.00 1.365 100.00 100.00 100.00 0.541 0.000
Lump4 Bus675 100.00 0.552 100.00 100.00 100.00 0.744 1.700
Bus633 Bus632 53.13 0.057 59.55 105.73 112.37 0.092 0.221
U2 Bus632 100.00 4.644 100.00 100.00 100.00 2.692 3.613
WTG7 Bus632 100.00 0.666 100.00 100.00 100.00 0.261 0.000
Lump9 Bus632 100.00 0.030 100.00 100.00 100.00 0.035 0.075
Bus634 Bus633 54.99 0.057 62.49 104.90 110.73 0.092 0.221
Lump1 Bus634 100.00 0.493 100.00 100.00 100.00 0.794 1.918
Bus671 Bus692 0.00 8.916 0.00 128.76 134.68 4.495 4.093
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Table 3.71: Summary of Fault currents for all types of faults at each fault location

Bus 3-Phase Fault Line-to-Ground Fault Line-to-Line Fault *Line-to-Line-to-
Ground

ID kV Real Imag. Mag. Real Imag. Mag. Real Imag. Mag. Real Imag. Mag.
Bus632 4.16 4.024 -14.414 14.965 3.588 -9.183 9.859 13.080 3.597 13.565 -14.399 -0.452 14.406
Bus633 4.16 3.915 -8.993 9.808 2.777 -5.972 6.586 8.015 3.506 8.748 -8.998 -1.347 9.098
Bus634 0.48 9.709 -18.822 21.178 8.968 -17.500 19.664 16.401 8.479 18.463 12.271 16.540 20.595
Bus671 4.16 2.009 -10.634 10.822 1.575 -5.554 5.773 10.074 1.834 10.239 -10.521 -0.166 10.522
Bus675 4.16 2.512 -9.090 9.431 1.719 -5.015 5.301 8.554 2.338 8.868 -9.047 -0.780 9.080
Bus680 4.16 1.589 -6.879 7.060 1.104 -3.695 3.856 6.310 1.445 6.473 -6.649 -0.271 6.654
Bus692 4.16 2.009 -10.634 10.822 1.575 -5.554 5.773 10.074 1.834 10.239 -10.521 -0.166 10.522

In the case of line-to-line-to-ground fault there is a contribution of zero sequence

fault current (3I0) from a grounded Delta- Y transformer

3.3.9 Case 8: IEEE 13 Bus with 4*2 MW DG’s Distributed at Different
Locations in the Network

In this section IEEE 13 bus is simulated with a total DG penetration level of 8 MW

decentralised DG’s which are placed in the following configuration

 1*2MW DG placed at bus 632

 1*2MW DG placed at bus 671

 1*2MW DG placed at bus 675

 1*2MW DG placed at bus 680

Fig. 3.5 below illustrates the configuration of case 8.
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Fig.3.5: Configuration used in case 8
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Table 3.72: Positive, Negative and Zero Sequence Impedances as seen from each bus in the

system

Bus 3-Phase Fault Line-to-Ground Fault Zero Sequence Imp. (ohm)
ID kV Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance

Bus632 4.160 0.04340 0.15493 0.16089 0.03847 0.14163 0.14676 0.18462 0.38503 0.42700
Bus633 4.160 0.09798 0.22487 0.24529 0.09313 0.21168 0.23126 0.27073 0.55637 0.61874
Bus634 0.480 0.00600 0.01163 0.01309 0.00594 0.01147 0.01292 0.00734 0.01453 0.01628
Bus671 4.160 0.04229 0.21966 0.22369 0.03303 0.18413 0.18707 0.26789 0.80107 0.84468
Bus675 4.160 0.06874 0.24701 0.25639 0.05698 0.20941 0.21702 0.31698 0.83323 0.89148
Bus680 4.160 0.06153 0.30070 0.30693 0.04943 0.25648 0.26120 0.39160 1.16385 1.22796
Bus692 4.160 0.04229 0.21966 0.22369 0.03303 0.18413 0.18707 0.26789 0.80107 0.84468

Table 3.73: 3-phase & single line to ground fault currents when fault is at bus 632

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus632 Total 0.00 14.928 0.00 117.36 126.38 9.846 9.846
Bus67l Bus632 35.13 3.562 29.52 114.82 120.71 2.063 1.261
Bus633 Bus632 0.46 0.121 1.67 116.47 125.30 0.213 0.489
U2 Bus632 100.00 9.864 100.00 100.00 100.00 6.805 7.977
WTG7 Bus632 100.00 1.414 100.00 100.00 100.00 0.736 0.000
Lump9 Bus632 100.00 0.063 100.00 100.00 100.00 0.082 0.167
Bus680 Bus671 39.42 0.867 31.57 115.44 121.32 0.415 0.000
WTG6 Bus671 100.00 0.926 100.00 100.00 100.00 0.451 0.000
Lump3 Bus671 100.00 0.478 100.00 100.00 100.00 0.190 0.000
Lump7 Bus671 100.00 0.042 100.00 100.00 100.00 0.059 0.129
Bus675 Bus692 37.92 1.253 32.15 115.61 119.23 0.949 1.132
Bus634 Bus633 4.42 0.121 8.68 113.91 121.68 0.213 0.489
WTG8 Bus68fl 100.00 0.867 100.00 100.00 100.00 0.415 0.000
WTG4 Bus675 100.00 0.894 100.00 100.00 100.00 0.432 0.000
Lump4 Bus675 100.00 0.361 100.00 100.00 100.00 0.518 1.132
Lump1 Bus634 100.00 1.047 100.00 100.00 100.00 1.847 4.234
Bus692 Bus671 35.13 1.253 29.52 114.82 120.71 0.949 1.132
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Table 3.74: 3-phase & single line to ground fault currents when fault is at bus 633

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus633 Total 0.00 9.792 0.00 119.39 121.37 6.580 6.580
Bus632 Bus633 36.47 9.670 34.68 111.23 115.21 6.365 6.095
Bus634 Bus633 3.99 0.121 7.05 116.71 117.97 0.215 0.485
Bus671 Bus632 58.99 2.326 54.09 109.76 111.76 1.367 0.821
U2 Bus632 100.00 6.441 100.00 100.00 100.00 4.490 5.196
WTG7 Bus632 100.00 0.924 100.00 100.00 100.00 0.490 0.000
Lump9 Bus632 100.00 0.041 100.00 100.00 100.00 0.054 0.109
Lump1 Bus634 100.00 1.052 100.00 100.00 100.00 1.860 4.207
Bus680 Bus671 61.78 0.566 55.45 110.15 112.10 0.276 0.000
WTG6 Bus671 100.00 0.605 100.00 100.00 100.00 0.300 0.000
Lump3 Bus671 100.00 0.312 100.00 100.00 100.00 0.126 0.000
Lump7 Bus671 100.00 0.027 100.00 100.00 100.00 0.039 0.084
Bus675 Bus692 60.94 0.818 55.87 110.30 110.75 0.626 0.737
WTG8 Bus680 100.00 0.566 100.00 100.00 100.00 0.276 o.ooo
WTG4 Bus675 100.00 0.584 100.00 100.00 100.00 0.287 0.000
Lutnp4 Bus675 100.00 0.236 100.00 100.00 100.00 0.339 0.737
Bus692 Bus671 58.99 0.818 54.09 109.76 111.76 0.626 0.737

Table 3.75: 3-phase & single line to ground fault currents when fault is at bus 643

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus634 Total 0.00 21.170 0.00 104.10 103.50 19.658 19.658
Bus633 Bus634 76.12 20.078 67.99 105.40 105.23 17.935 16.504
Lump1 Bus634 100.00 1.09S 100.00 100.00 100.00 1.728 3.163
Bus632 Bus633 84.76 2.317 79.11 103.16 103.96 2.069 1.904
Bus671 Bus632 90.23 0.557 85.39 102.82 103.02 0.447 0.257
U2 Bus632 100.00 1.543 100.00 100.00 100.00 1.454 1.623
WTG7 Bus632 100.00 0.221 100.00 100.00 100.00 0.162 0.000
Lump9 Bus632 100.00 0.010 100.00 100.00 100.00 0.017 0.034
Bus680 Bus671 90.90 0.136 85.84 102.93 103.11 0.091 0.000
WTG6 Bus671 100.00 0.145 100.00 100.00 100.00 0.099 0.000
Lump3 Bus671 100.00 0.075 100.00 100.00 100.00 0.042 0.000
Lump7 Bus671 100.00 0.007 100.00 100.00 100.00 0.012 0.026
Bus675 Bus692 90.68 0.196 85.95 103.01 102.70 0.203 0.230
WTG8 Bus680 100.00 0.136 100.00 100.00 100.00 0.091 0.000
WTG4 Bus675 100.00 0.140 100.00 100.00 100.00 0.095 0.000
Lump4 Bus67S 100.00 0.057 100.00 100.00 100.00 0.108 0.230
Bus692 Bus671 90.23 0.196 85.39 102.82 103.02 0.203 0.230
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Table 3.76: 3-phase & single line to ground fault currents when fault is at bus 671

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus671 Total 0.00 10.737 0.00 128.60 134.36 5.751 5.751
Bus632 Bus671 52.92 5.366 58.81 106.01 112.73 3.077 3.890
Bus680 Bus671 6.55 1.325 2.59 129.36 135.30 0.524 0.000
WTG6 Bus671 100.00 1.414 100.00 100.00 100.00 0.569 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.239 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.085 0.193
Bus675 Bus692 4.91 1.914 5.10 129.42 132.15 1.289 1.694
Bus633 Bus632 53.13 0.057 59.53 105.71 112.26 0.092 0.220
U2 Bus632 100.00 4.644 100.00 100.00 100.00 2.698 3.599
WTG7 Bus632 100.00 0.666 100.00 100.00 100.00 0.263 0.000
Lump9 Bus632 100.00 0.030 100.00 100.00 100.00 0.035 0.075
WTG8 Bus680 100.00 1.325 100.00 100.00 100.00 0.524 0.000
WTG4 Bus67S 100.00 1.365 100.00 100.00 100.00 0.545 0.000
Lump4 Bus675 100.00 0.552 100.00 100.00 100.00 0.743 1.694
Bus634 Bus633 54.99 0.057 62.47 104.88 110.63 0.092 0.220
Lump1 Bus634 100.00 0.493 100.00 100.00 100.00 0.793 1.911
Bus692 Bus67l 0.00 1.914 0.00 128.60 134.36 1.289 1.694

Table 3.77: 3-phase & single line to ground fault currents when fault is at bus 675

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus675 Total 0.00 9.367 0.00 127.13 131.22 5.284 5.284
Bus692 Bus675 19.06 7.438 14.07 128.28 127.42 3.962 3.659
WTG4 Bus675 100.00 1.414 100.00 100.00 100.00 0.603 0.000
Lump4 Bus675 100.00 0.572 100.00 100.00 100.00 0.758 1.682
Bus632 Bus671 60.77 4.519 63.23 106.80 110.16 2.733 3.490
Bus680 Bus671 24.24 1.116 16.01 129.00 128.18 0.461 0.000
WTG6 Bus671 100.00 1.191 100.00 100.00 100.00 0.501 0.000
Lump3 Bus671 100.00 0.614 100.00 100.00 100.00 0.211 o.ooo
Lump7 Bus671 100.00 0.053 100.00 100.00 100.00 0.076 0.173
Bus633 Bus632 60.95 0.048 63.89 106.50 109.78 0.082 0.198
U2 Bus632 100.00 3.910 100.00 100.00 100.00 2.398 3.230
WTG7 Bus632 100.00 0.561 100.00 100.00 100.00 0.232 0.000
Lump9 Bus632 100.00 0.025 100.00 100.00 100.00 0.031 0.067
WTG8 Bus680 100.00 1.116 100.00 100.00 100.00 0.461 0.000
Bus634 Bus633 62.52 0.048 66.57 105.62 108.44 0.082 0.198
Lump1 Bus634 100.00 0.415 100.00 100.00 100.00 0.709 1.714
Bus671 Bus692 19.06 7.438 14.07 128.28 127.42 3.962 3.659
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Table 3.78: 3-phase & single line to ground fault currents when fault is at bus 680

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus680 Total 0.00 7.825 0.00 130.32 135.53 4.019 4.019
Bus671 Bus680 31.82 6.436 31.93 119.00 123.24 3.476 4.019
WTG8 Bus680 100.00 1.414 100.00 100.00 100.00 0.551 0.000
Bus632 Bus671 67.88 3.663 72.02 104.10 108.89 2.054 2.718
WTG6 Bus671 100.00 0.966 100.00 100.00 100.00 0,366 0.000
Lump3 Bus671 100.00 0.498 100.00 100.00 100.00 0.154 0.000
Lump7 Bus671 100.00 0.043 100.00 100.00 100.00 0.058 0.135
Bus675 Bus692 34.50 1.307 34.13 119.73 121.57 0.860 1.184
Bus633 Bus632 68.02 0.039 72.52 103.91 108.57 0.063 0.154
U2 Bus632 100.00 3.170 100.00 100.00 100.00 1.804 2.515
WTG7 Bus632 100.00 0.455 100.00 100.00 100.00 0.169 0.000
Lump9 Bus632 100.00 0.020 100.00 100.00 100.00 0.024 0.053
WTG4 Bus675 100.00 0.932 100.00 100.00 100.00 0.351 0.000
Lump4 Bus675 100.00 0.377 100.00 100.00 100.00 0.510 1.184
Bus634 Bus633 69.29 0.039 74.55 103.38 107.45 0.063 0.154
Lump1 Bus634 100.00 0.337 100.00 100.00 100.00 0.545 1.335
Bus692 Bus671 31.82 1.307 31.93 119.00 123.24 0.860 1.184

Table 3.79: 3-phase & single line to ground fault currents when fault is at bus 692

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus692 Total 0.00 10.737 0.00 128.60 134.36 5.751 5.751
Bus675 Bus692 4.91 1.914 5.10 129.42 132.15 1.289 1.694
Bus632 Bus671 52.92 5.366 58.81 106.01 112.73 3.077 3.890
Bus680 Bus67l 6.55 1.325 2.59 129.36 13530 0.524 0.000
WTG6 Bus671 100.00 1.414 100.00 100.00 100.00 0.569 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.239 0.000
Lump? Bus671 100.00 0.063 100.00 100.00 100.00 0.085 0.193
WTG4 Bus675 100.00 1.365 100.00 100.00 100.00 0.545 o.ooo
Lump4 Bus675 100.00 0.552 100.00 100.00 100.00 0.743 1.694
Bus633 Bus632 53.13 0.057 59.53 105.71 112.26 0.092 0.220
U2 Bus632 100.00 4.644 100.00 100.00 100.00 2.698 3.599
WTG7 Bus632 100.00 0.666 100.00 100.00 100.00 0.263 0.000
Lump9 Bus632 100.00 0.030 100.00 100.00 100.00 0.035 0.075
WTG8 Bus680 100.00 1.325 100.00 100.00 100.00 0.524 0.000
Bus634 Bus633 54.99 0.057 62.47 104.88 110.63 0.092 0.220
Lump1 Bus634 100.00 0.493 100.00 100.00 100.00 0.793 1.911
Bus67l Bus692 0.00 8.832 0.00 128.60 134.36 4.471 4.078
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Table 3.80: Summary of Fault currents for all types of faults at each fault location

Bus 3-Phase Fault Line-to-Ground Fault Line-to-Line Fault *Line-to-Line-to-Ground
ID kV Real Imag. Mag. Real Imag. Mag. Real Imag. Mag. Real Imag. Mag.

Bus632 4.16 4.027 -14.375 14.928 3.585 -9.170 9.846 13.034 3.598 13.522 -14.356 -0.452 14.363
Bus633 4.16 3.911 -8.976 9.792 2.775 -5.966 6.580 7.997 3.501 8.730 -8.981 -1.342 9.080
Bus634 0.48 9.706 -18.814 21.170 8.966 -17.494 19.658 16.393 8.475 18.454 12.263 16.536 20.587
Bus671 4.16 2.030 -10.543 10.737 1.576 -5.531 5.751 9.956 1.857 10.128 -10.406 -0.186 10.408
Bus675 4.16 2.511 -9.025 9.367 1.716 -4.998 5.284 8.472 2.333 8.787 -8.967 -0.773 9.000
Bus680 4.16 1.569 -7.666 7.825 1.126 -3.858 4.019 7.181 1.430 7.322 -7.505 -0.266 7.509
Bus692 4.16 2.030 -10.543 10.737 1.576 -5.531 5.751 9.956 1.857 10.128 -10.406 -0.186 10.408

In the case of line-to-line-to-ground fault there is a contribution of zero sequence

fault current (3I0) from a grounded Delta- Y transformer

3.3.10 Case 9: IEEE 13 Bus with 5*2 MW DG’s Distributed at Different
Locations in the Network.

In this section IEEE 13 bus is simulated with a total DG penetration level of 10 MW

decentralised DG’s which are placed in the following configuration

 2*2MW DG placed at bus 632

 2*2MW DG placed at bus 671

 1*2MW DG placed at bus 675

The results of this case are tabulated below

Table 3.81: Positive, Negative and Zero Sequence Impedances as seen from each bus in the

system

Bus 3-Phase Fault Line-to-Ground Fault Zero Sequence Imp. (ohm)
ID kV Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance

Bus632 4.160 0.03658 0.14235 0.14697 0.03076 0.12608 0.12978 0.18462 0.38503 0.42700
Bus633 4.160 0.09125 0.21238 0.23116 0.08552 0.19625 0.21408 0.27073 0.55637 0.61874
Bus634 0.480 0.00592 0.01148 0.01292 0.00585 0.01128 0.01271 0.00734 0.01453 0.01628
Bus671 4.160 0.03929 0.21251 0.21611 0.03008 0.17629 0.17884 0.26789 0.80107 0.84468
Bus675 4.160 0.06642 0.24017 0.24919 0.05498 0.20207 0.20942 0.31698 0.83323 0.89148
Bus680 4.160 0.07463 0.32589 0.33432 0.06542 0.28967 0.29696 0.39160 1.16385 1.22796
Bus692 4.160 0.03929 0.21251 0.21611 0.03008 0.17629 0.17884 0.26789 0.80107 0.84468
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Table 3.82: 3-phase & single line to ground fault currents when fault is at bus 632

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus632 Total 0.00 16.342 0.00 119.53 129.27 10.288 10.288
Bus671 Bus632 35.51 3.600 29.30 116.53 122.80 2.000 1.318
Bus633 Bus632 0.46 0.121 1.73 118.57 128.11 0.217 0.511
U2 Bus632 100.00 9.864 100.00 100.00 100.00 6.673 8.336
WTG7 Bus632 100.00 1.414 100.00 100.00 100.00 0.690 0.000
WTG9 Bus632 100.00 1.414 100.00 100.00 100.00 0.690 0.000
Lump9 Bus632 100.00 0.063 100.00 100.00 100.00 0.083 0.174
Bus680 Bus671 35.51 0.000 29.30 116.53 122.80 0.000 0.000
WTG5 Bus671 100.00 0.921 100.00 100.00 100.00 0.419 o.ooo
WTG6 Bus671 100.00 0.921 100.00 100.00 100.00 0.419 0.000
Lump3 Bus671 100.00 0.475 100.00 100.00 100.00 0.177 0.000
Lump7 Bus671 100.00 0.041 100.00 100.00 100.00 0.060 0.135
Bus675 Bus692 38.29 1.246 31.89 117.36 121.19 0.926 1.183
Bus634 Bus633 4.42 0.121 8.87 115.76 124.19 0.217 0.511
WTG4 Bus675 100.00 0.889 100.00 100.00 100.00 0.402 0.000
Lump4 Bus675 100.00 0.359 100.00 100.00 100.00 0.525 1.183
Lump1 Bus634 100.00 1.047 100.00 100.00 100.00 1.883 4.425
Bus692 Bus671 35.51 1.246 29.30 116.53 122.80 0.926 1.183

Table 3.83: 3-phase & single line to ground fault currents when fault is at bus 633

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus633 Total 0.00 10.390 0.00 120.91 123.00 6.774 6.774
Bus632 Bus633 38.72 10.269 35.72 112.40 116.52 6.557 6.275
Bus634 Bus633 3.99 0.121 7.14 118.06 119.42 0.217 0.500
Bus671 Bus632 60.72 2.279 54.68 110.70 112.68 1.305 0.845
U2 Bus632 100.00 6.244 100.00 100.00 100.00 4.336 5.349
WTG7 Bus632 100.00 0.895 100.00 100.00 100.00 0.452 0.000
WTG9 Bus632 100.00 0.895 100.00 100.00 100.00 0.452 0.000
Lump9 Bus632 100.00 0.040 100.00 100.00 100.00 0.053 0.112
Lump1 Bus634 100.00 1.052 100.00 100.00 100.00 1.884 4.331
Bus680 Bus671 60.72 0.000 54.68 110.70 112.68 0.000 0.000
WTG5 Bus671 100.00 0.583 100.00 100.00 100.00 0.275 0.000
WTG6 Bus671 100.00 0.583 100.00 100.00 100.00 0.275 0.000
Lump3 Bus671 100.00 0.301 100.00 100.00 100.00 0.116 0.000
Lump7 Bus671 100.00 0.026 100.00 100.00 100.00 0.039 0.086
Bus675 Bus692 62.61 0.789 56.41 111.27 111.59 0.601 0.759
WTG4 Bus675 100.00 0.563 100.00 100.00 100.00 0.263 0.000
Lump4 Bus675 100.00 0.227 100.00 100.00 100.00 0.338 0.759
Bus692 Bus671 60.72 0.789 54.68 110.70 112.68 0.601 0.759
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Table 3.84: 3-phase & single line to ground fault currents when fault is at bus 634

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus634 Total 0.00 21.456 0.00 104.34 103.72 19.839 19.839
Bus633 Bus634 77.20 20.364 68.66 105.68 105.49 18.110 16.656
Lump1 Bus634 100.00 1.095 100.00 100.00 100.00 1.734 3.192
Bus632 Bus633 85.96 2.350 79.88 103.40 104.19 2.090 1.922
Bus671 Bus632 91.07 0.521 85.89 103.03 103.18 0.419 0.259
U2 Bus632 100.00 1.429 100.00 100.00 100.00 1.375 1.638
WTO7 Bus632 100.00 0.205 100.00 100.00 100.00 0.147 0.000
WTG9 Bus632 100.00 0.205 100.00 100.00 100.00 0.147 0.000
Lump9 Bus632 100.00 0.009 100.00 100.00 100.00 0.017 0.034
Bus680 Bus671 91.07 0.000 85.89 103.03 103.18 0.000 0.000
WTG5 Bus671 100.00 0.133 100.00 100.00 100.00 0.089 0.000
WTG6 Bus671 100.00 0.133 100.00 100.00 100.00 0.089 0.000
Lump3 Bus671 100.00 0.069 100.00 100.00 100.00 0.038 0.000
Lump7 Bus671 100.00 0.006 100.00 100.00 100.00 0.012 0.026
Bus675 Bus692 91.49 0.180 86.42 103.23 102.83 0.191 0.233
WTG4 Bus675 100.00 0.129 100.00 100.00 100.00 0.085 0.000
Lump4 Bus675 100.00 0.052 100.00 100.00 100.00 0.105 0.233
Bus692 Bus671 91.07 0.180 85.89 103.03 103.18 0.191 0.233

Table 3.85: 3-phase & single line to ground fault currents when fault is at bus 671

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus671 Total 0.00 11.114 0.00 129.47 135.41 5.826 5.826
Bus632 Bus671 55.73 5.651 59.95 106.50 113.45 3.154 3.941
Bus680 Bus67l 0.00 0.000 0.00 129.47 135.41 0.000 0.000
WTG5 Bus671 100.00 1.414 100.00 100.00 100.00 0.554 0.000
WTG6 Bus671 100.00 1.414 100.00 100.00 100.00 0.554 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.233 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.085 0.195
Bus675 Bus692 4.91 1.914 5.09 130.30 133.14 1.276 1.716
Bus633 Bus632 55.93 0.053 60.67 106.20 112.96 0.091 0.223
U2 Bus632 100.00 4.367 100.00 100.00 100.00 2.570 3.646
WTG7 Bus632 100.00 0.626 100.00 100.00 100.00 0.237 0.000
WTG9 Bus632 100.00 0.626 100.00 100.00 100.00 0.237 0.000
Lump9 Bus632 100.00 0.028 100.00 100.00 100.00 0.034 0.076
WTG4 Bus675 100.00 1.365 100.00 100.00 100.00 0.531 0.000
Lump4 Bus675 100.00 0.552 100.00 100.00 100.00 0.746 1.716
Bus634 Bus633 57.68 0.053 63.58 105.33 111.28 0.091 0.223
Lump1 Bus634 100.00 0.464 100.00 100.00 100.00 0.786 1.935
Bus692 Bus671 0.00 1.914 0.00 129.47 135.41 1.276 1.716
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Table 3.86: 3-phase & single line to ground fault currents when fault is at bus 675

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus675 Total 0.00 9.638 0.00 127.96 131.97 5.342 5.342
Bus692 Bus675 19.75 7.708 14.29 129.09 128.17 4.030 3.699
WTG4 Bus675 100.00 1.414 100.00 100.00 100.00 0.591 0.000
Lump4 Bus675 100.00 0.572 100.00 100.00 100.00 0.761 1.700
Bus632 Bus671 63.47 4.730 64.31 107.33 110.69 2.796 3.529
Bus680 Bus67I 19.75 0.000 14.29 129.09 128.17 0.000 0.000
WTG5 Bus671 100.00 1.184 100.00 100.00 100.00 0.487 0.000
WTG6 Bus671 100.00 1.184 100.00 100.00 100.00 0.487 o.ooo
Lump3 Bus671 100.00 0.611 100.00 100.00 100.00 0.205 0.000
Lump7 Bus671 100.00 0.053 100.00 100.00 100.00 0.076 0.175
Bus633 Bus632 63.64 0.045 64.97 107.01 110.29 0.081 0.200
U2 Bus632 100.00 3.656 100.00 100.00 100.00 2.280 3.265
WTG7 Bus632 100.00 0.524 100.00 100.00 100.00 0.209 0.000
WTG9 Bus632 100.00 0.524 100.00 100.00 100.00 0.209 0.000
Lump9 Bus632 100.00 0.024 100.00 100.00 100.00 0.030 0.068
Bus634 Bus633 65.10 0.045 67.62 106.10 108.91 0.081 0.200
Lump1 Bus634 100.00 0.388 100.00 100.00 100.00 0.702 1.733
Bus671 Bus692 19.75 7.708 14.29 129.09 128.17 4.030 3.699

Table 3.87: 3-phase & single line to ground fault currents when fault is at bus 680

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus680 Total 0.00 7.184 0.00 128.36 132.67 3.880 3.880
Bus671 Bus680 35.52 7.184 33.43 118.21 121.89 3.880 3.880
Bus632 Bus671 71.44 3.653 73.29 104.11 108.61 2.101 2.624
WTG5 Bus671 100.00 0.914 100.00 100.00 100.00 0.369 0.000
WTG6 Bus671 100.00 0.914 100.00 100.00 100.00 0.369 0.000
Lump3 Bus671 100.00 0.472 100.00 100.00 100.00 0.155 0.000
Lump7 Bus67I 100.00 0.041 100.00 100.00 100.00 0.057 0.130
Bus675 Bus692 38.10 1.237 35.61 118.91 120.30 0.850 1.143
Bus633 Bus632 71.57 0.035 73.78 103.92 108.30 0.060 0.149
U2 Bus632 100.00 2.823 100.00 100.00 100.00 1.711 2.428
WTG7 Bus632 100.00 0.405 100.00 100.00 100.00 0.158 o.ooo
WTG9 Bus632 100.00 0.405 100.00 100.00 100.00 0.158 0.000
Lump9 Bus632 100.00 0.018 100.00 100.00 100.00 0.023 0.051
WTG4 Bus675 100.00 0.883 100.00 100.00 100.00 0.353 0.000
Lump4 Bus675 100.00 0.357 100.00 100.00 100.00 0.497 1.143
Bus634 Bus633 72.71 0.035 75.73 103.40 107.22 0.060 0.149
Lump1 Bus634 100.00 0.300 100.00 100.00 100.00 0.523 1.289
Bus692 Bus671 35.52 1.237 33.43 118.21 121.89 0.850 1.143
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Table 3.88: 3-phase & single line to ground fault currents when fault is at bus 692

Contribution 3-Phase Fault Line-To-Ground Fault
From
Bus To Bus %V kA % Voltage at From But kA symm.rms

ID ID From
Bus Symm.rms Va Vb Vc Ia 3I0

Bus692 Total 0.00 11.114 0.00 129.47 135.41 5.826 5.826
Bus675 Bus692 4.91 1.914 5.09 130.30 133.14 1.276 1.716
Bus632 Bus671 55.73 5.651 59.95 106.50 113.45 3.154 3.941
Bus680 Bus671 0.00 0.000 0.00 129.47 135.41 0.000 0.000
WTGS Bus671 100.00 1.414 100.00 100.00 100.00 0.554 0.000
WTG6 Bus67I 100.00 1.414 100.00 100.00 100.00 0.554 0.000
Lump3 Bus671 100.00 0.730 100.00 100.00 100.00 0.233 0.000
Lump7 Bus671 100.00 0.063 100.00 100.00 100.00 0.085 0.195
WTG4 Bus675 100.00 1.365 100.00 100.00 100.00 0.531 0.000
Lump4 Bus675 100.00 0.552 100.00 100.00 100.00 0.746 1.716
Bus633 Bus632 55.93 0.053 60.67 106.20 112.96 0.091 0.223
U2 Bus632 100.00 4.367 100.00 100.00 100.00 2.570 3.646
WTG7 Bus632 100.00 0.626 100.00 100.00 100.00 0.237 0.000
WTG9 Bus632 100.00 0.626 100.00 100.00 100.00 0.237 0.000
Lump9 Bus632 100.00 0.028 100.00 100.00 100.00 0.034 0.076
Bus634 Bus633 57.68 0.053 63.58 105.33 111.28 0.091 0.223
Lump1 Bus634 100.00 0.464 100.00 100.00 100.00 0.786 1.935
Bus671 Bus692 0.00 9.207 0.00 129.47 135.41 4.557 4.131

Table 3.89: Summary of Fault currents for all types of faults at each fault location

Bus 3-Phase Fault Line-to-Ground Fault Line-to-Line Fault *Line-to-Line-to-Ground
ID kV Real Imag. Mag. Real Imag. Mag. Real Imag. Mag. Real Imag. Mag.

Bus632 4.16 4.067 -15.828 16.342 3.701 -9.599 10.288 14.580 3.657 15.032 -15.874 -0.507 15.882
Bus633 4.16 4.102 -9.546 10.390 2.850 -6.145 6.774 8.575 3.710 9.343 -9.548 -1.540 9.671
Bus634 0.48 9.834 -19.069 21.456 9.049 -17.654 19.839 16.638 8.605 18.732 12.493 16.684 20.843
Bus671 4.16 2.021 -10.928 11.114 1.589 -5.605 5.826 10.369 1.850 10.533 -10.814 -0.180 10.816
Bus675 4.16 2.569 -9.290 9.638 1.737 -5.052 5.342 8.747 2.401 9.071 -9.239 -0.839 9.277
Bus680 4.16 1.604 -7.003 7.184 1.111 -3.717 3.880 6.426 1.462 6.590 -6.764 -0.286 6.770
Bus692 4.16 2.021 -10.928 11.114 1.589 -5.605 5.826 10.369 1.850 10.533 -10.814 -0.180 10.816

In the case of line-to-line-to-ground fault there is a contribution of zero sequence fault

current (3I0) from a grounded Delta- Y transformer.

This part listed all the simulation results for all nine cases for each fault location.

Those results will be used and referred to in the following part to study the impacts of

DG penetration on the networks and on protection equipment.
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3.4 Discussion

In this section, the results of the simulation will be discussed to verify the impact of DG

on fault currents, short circuit levels and effect on protection equipment, Results show

the values of four types of faults but the discussion will concern only single line to

ground fault as it is the most common and occurring fault. Table 3.90 below lists the

fault currents in each case when the fault is at different buses, those values were used to

make comparison charts to compare the fault current at each case with the standard case

which is case 1.

Table 3.90: Fault currents for all cases with different fault locations

Location

of Fault
Case1 Case 2 Case3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

632 8.444 10.451 9.085 9.554 9.465 9.380 9.859 9.846 10.288
633 5.925 6.846 6.567 6.448 6.405 6.368 6.586 6.580 6.774
634 18.991 19.905 35.309 19.530 19.487 19.451 19.664 19.658 19.839
671 4.514 4.904 4.651 5.980 5.849 5.720 5.773 5.751 5.826
675 4.163 4.488 4.276 5.354 5.666 5.145 5.301 5.284 5.342
680 3.250 3.448 3.321 3.947 3.889 4.408 3.856 4.019 3.880
692 4.514 4.904 4.651 5.980 5.849 5.720 5.773 5.751 5.826

For case 1, the simulation is made without the presence of any DG in the system to

obtain the standard behaviour of the system. Fig. 3.6, below presents case 1,

Fig.3.6: Fault current at different fault locations for case 1.
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The above chart shows the values of short circuit currents at the studied buses of the

network and is considered the base and set values of all protection equipment, those

values will be compared with the values recorded from all the other cases. It is clear

from Fig. 3.6 that the highest short circuit level reported is with the fault location at bus

634, and this is due to the presence of that bus at the low voltage side of a transformer,

and the fault voltage is 480 V, the rest of fault locations have a fault voltage of 4.16 kV.

For case 2, one large centralised 8 MW DG is placed at bus 632 and a comparison

chart is made between case 1 & case 2 in Fig. 3.7 to investigate the impact of the added

DG.

Fig.3.7: Comparison between case 1 and case 2

It is clear from the chart that placing the DG at bus 632 will increase the short circuit

level of the network. The maximum increase is at bus 632 and this seems to be quite

reasonable as the DG is located at this bus, thus the distance between the DG and the

fault is too small and the current is not damped at all, this close distance lead to an

increase in the percentage of DG contribution to the fault, consequently increasing the

value of short circuit level. Increase in short circuit levels at other buses is less than that

at bus 632 due to the close distance of the fault location from both utility and the DG.
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In case 3, one large centralised DG is placed at bus 634. Fig. 3.8, shows a

comparison between case 3 and case 1.

Fig.3.8: Comparison between case 1 and case 3

Referring to the chart, it is clear that placing the DG at bus 634 caused a slight

increase of the short circuit level of the network, but when the fault location is at bus

634, the percentage contribution of the DG to the fault is 49.7%, and this caused a total

increase in the fault current by 90%. DG contribution in this case is high due to the

presence of both the DG and the fault location in a close distance as both are at the same

side of the transformer, besides the operation of the DG is at a low voltage thus the

short circuit current contributed by the DG is so high. On the other hand the value of the

short current flowing to bus 634 from the entire network is quite low when compared to

the fault current, it is 1.821 kA and the fault current is 35.309 kA, but when

transformed by the transformer it became a considerable value of 15.784 kA. The

substation has a fault percentage contribution of 39%.
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In case 4, one large centralised DG is placed at bus 671, Fig. 3.9 below shows a

comparison between cases 1 and 4.

Fig.3.9: Comparison between case 4 and case 1

Fig. 3.9 shows that the presence of a DG at bus 671 increased the short circuit

currents of the network. The largest increase reported is when the fault location is at bus

671, this percentage increase is 33%. This escalation in the fault current is a result of

the small distance between the DG and the fault location. As the distance between the

fault location and the DG increases, the contribution of the DG to the fault decreases,

consequently the rise in fault current will decrease as there will always be an increase in

the fault current when a DG is added to the system. It can be generalized that as the

distance of the fault location from any generating source increases the contribution of

the generating source to the fault will decrease.

In case 5, one large centralised DG is placed at bus 675. Fig. 3.10 below illustrates a

comparison between cases 5 and 1.
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Fig.3.10: Comparison between case 5 and case 1

Fig. 3.10 clearly states that, placing a DG at bus 675 causes an increase of the short

circuit level at all buses with a maximum increase at bus 675 where the DG is located

and this is common in all the previous cases, the maximum increase in fault current is at

the bus at which the DG is located. The percentage increase in fault current at bus 675 is

reported to be 33%.

Case 6 illustrates the condition of placing one large centralised 8 MW DG at bus

680. Placing a DG at this bus has a great effect on the system. Fig. 3.11 below presents

a comparison between case 6 and case 1

Fig.3.11: Comparison between case 6 and case 1
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When studying Fig. 3.11, it is realised that placing a DG at bus 680 increased the

short circuit level of the network and it caused a short circuit current to flow in the

branch between buses 671and 680 that is eliminated in all cases except when the fault

location is at bus 680. Placing the DG at bus 680 might cause a lot of problems to the

existing protection scheme as the percentage fault current increase reported is 35.6%,

this value also represents the percentage increase in the short circuit current flowing

through the branch between buses 671 and 680. The reported increase could be

sufficient to cause a “reduction of reach” to the protection equipment responsible

about protecting this part of the network.

Case 7 is the first case at which the large centralised DG is replaced by smaller DGs

with the same total generating capacity. In this case, four distributed 2 MW DGs are

placed at buses 632, 671 and 675. Fig. 3.12 below shows a comparison between cases 7

and 1.

Fig.3.12: Comparison between case 7 and case 1

Fig. 3.12 can be used to study the difference between the impact of one large

centralised DG and this case. It is clear from the results of this case that the penetration

of those four small DGs into the network caused an increase in the fault level of the

network, the amount of increase is a function of the configuration but the difference

between the effect of centralised and decentralised cases can be sensed from the

percentage contribution to faults of both the substation and the DG. Decentralised DGs
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showed that the percentage of overall DG contribution to fault is increased and the fault

currents are also increased for all fault locations, while the percentage contribution of

the substation is decreased. Centralised DG with the same total generating capacity

located in all locations showed an increase of the fault currents along with the increase

in the percentage of DG contribution to faults that is configuration dependent. It is

observed that decentralising the DG increases the percentage of DG contribution to

faults and decreases the percentage of utility contribution to faults. The maximum

increase in the fault current is reported when the fault location is at bus 632; this is due

to the presence of one of the DGs at this bus besides the close distance of this bus from

the substation.

For case 8, four distributed 2 MW DG are located at buses 632, 671, 675 and 680.

Fig. 3.11 illustrates a comparison between case 8 and case 1.

Fig.3.13: Comparison between case 1 and case 8

This case is similar to the previous case with close results. The above figure showed

an increase in the fault level of the network with a maximum increase at bus 632. When

comparing this case with the previous case, it is observed that the configuration of case

8 has a higher substation contribution to faults for fault locations other than at bus 680.

When the fault is at this bus, the value of the fault current is higher than that of case 7.

The difference between both cases is too small at all fault locations except for the fault

location at buses 633 and 680.
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For case 9, five distributed 2 MW DG located at buses 632, 671 and 675. Fig. 3.14

illustrates a comparison between case 1 and case 9

Fig.3.14: Comparison between case 1 and case 9

This case is a unique case at which the total generating capacity of all DGs is 10

MW. It is obvious that the increase in fault is higher when compared with all cases as

the level of DG penetration into the network is higher. It is clear from the above figure

that the maximum increase in fault level is when the fault is at bus 632, and this is due

to the close distance between bus 632 and the substation in addition to the presence of

two DGs at this bus. The configuration in this case caused a decrease in the percentage

contribution of the substation to faults at all fault locations, but on the other hand, it

caused an increase of the percentage DG contribution to faults.

To study the effect of changing the DG location on the network, cases 2 to 6 are

considered, while cases 7 to 9 are considered to study the difference between

centralising and decentralising the DG. Fig. 3.15 below illustrates a comparison

between fault currents at each fault location for all cases.
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Fig.3.15: Comparison between fault currents for all cases

Referring to Fig. 3.15, when the fault location is at bus 632; case 2 has the maximum

fault current due to the close distance of the fault location from the utility substation and

the presence of a DG at the faulted bus. Placing the DG at bus 634 showed the least

impact on the fault current due to the presence of a transformer between bus 633 and

bus 634, the DG is operating at the low voltage side thus the high short circuit currents

produced by the DG are transformed to the high tension side of the transformer to lower

values. A portion of the transformed current represents the contribution of the DG to the

fault; consequently the fault current will not increase as the rest of the cases, the

percentage DG contribution to the fault is 10% from the total fault current while the

substation contribution is reported to be 77.3%. It is clear from the above figure that

centralising the DG showed less impact on the fault current at bus 632 as cases 7 to 9

caused the fault current to increase. Configurations of DGs used in cases 7, 8 and 9

caused a decrease in the substation contribution to the fault and caused the DGs to play

a higher role during the fault as a result of the presence of a DG at bus 632. The

presence of any DG at a faulted bus has a great impact on this bus fault level.
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The situation at which bus 633 is the faulted bus showed the same response of the

network to the different configurations of the DG but with lower fault currents when

compared with bus 632 as the faulted bus. Fault currents at bus 633 are less than that at

bus 632 due to the increase in the distance between the substation and the fault.

Bus 634 is a unique bus in the system; it is the only bus that is operating at 480V

while the rest of the network buses are operating at 4.16 kV. The presence of a

transformer caused the effect of any DG in the network to be reduced when the fault is

at bus 634, and the effect of the DG when placed at bus 634 to be reduced at all fault

locations other than bus 634 itself. The highest fault currents observed at all fault

locations is at bus 634; this is because of the low operating voltage that causes the fault

currents to be high. The most severe fault current is the current observed in case 3 at

which the DG was placed at bus 634. The DG has a contribution to the fault of 49.7%

while the substation has a percentage contribution of 39%.

Buses 671 and 692 are considered as the same bus as the difference between both is

a switch so the results at both buses are identical. Results are showing less fault levels

than the previous fault locations, and this is due to the increase in distance away from

the substation. At bus 671, the highest short circuit current observed is the current of

case 4, at which one DG was placed at bus 671, followed by case 5 at which the DG

was placed at bus 675. Cases 7 and 8 had less fault currents which showed that

decentralising the DG causes the fault current to be slightly less than cases 4 and 5 but

slightly higher than case 6. The DG configuration used in case 7 resulted in 46.6%

substation contribution and 33.5% DG contribution to the fault when the fault is at bus

671 or at bus 692, while configuration used in case 8 resulted in 47% substation

contribution and 33% DG contribution.

For the fault location at bus 675, the highest fault current observed is case 5 at which

the DG is located at the same bus. This fault location showed that using several small

capacity DG’s is better than using one large centralised DG. The increases in fault

currents at this bus for cases 7, 8 and 9 respectively are 27.3%, 26.9% and 28.3%,

which shows that it is less than cases 4 and 5, but higher than case 6 due the absence of

any DG in a close distance, similarly with cases 2 and 3 the location of the DG is a large

distance from the fault besides the far distance of the fault away from the substation, so

the fault current reported in both cases shows a low increase of 7.8% and 2.7%

respectively. At this fault location, case 9 has the least substation contribution to the

fault due to the use of several DGs, which caused the overall impedance of the network
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to be higher, this causes the current contributed from the substation to the fault to be

reduced.

Bus 680 has the lowest fault currents in the whole system and usually in any fault

location in the system other than bus 680 there will be no current flowing from or to this

bus, if there is no DG located at this bus. Results at 680 show that as the distance of the

fault location increases away from the substation the less the fault level is at that bus.

When comparing cases 7 and 8, it is observed that case 7 has a lower fault level due to

the presence of a DG at bus 680 in case 8. Case 9 showed that the effect of

decentralising the DG has less impact on a faulted bus that does not have a DG

interconnected to it, although the generating capacity of case 9 is higher than that of

case 8, but the value of the short circuit current observed in case 9is less than that of

case 8 and this is due to the DG configuration used.

It is clear from results that the system lost its radiality in power and current flow,

thus protection devices are severely affected by the presence of DG in the network. The

DG might cause a failure in the desired existing protection scheme in some cases due to

the impact of DG penetration on the fault levels of the network which is a factor of DG

size, location (configuration) and type of DG used. This leads to various mis protection

scenarios and undesired consequences such as the loss of coordination between

protective devices, which is quite clear in case 5 when the fault is at bus 692 and might

lead to an unintentional islanding if a fuse is blown away at bus 692 leaving the DG

energising part of the network.

Fig.3.16: illustrating the possibility of fuse blowing

It is clear from Fig. 3.16 that after the penetration of the DG, the fault current

flowing through bus 671 to bus 692 is decreased by 16.5% from the normal case which

is case 1. As a result of this decrease, protection devices will not sense a fault, thus no

tripping will occur to isolate the fault at bus 671 as there is no fault conditions from the
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protective devices’ point of view. On the other hand, the fault current flowing from 675

to 692 is 3.72 times the designed current which is considered a large increase that will

have a great effect on protective devices. If the protection scheme is based on the

coordination between fuse, recloser and breaker to perform fuse saving technique, it will

fail due to the several multiples of the fault current that will cause the fuse to operate

first due to the inverse time over current characteristics, the fuse operates before the fast

strike of the recloser. If the fuse blows out, then the DG will be left energising the loads

connected to bus 675 performing a power island, but the DG is capable of supplying

several multiples of these loads which might lead to severe trouble.

Running the simulation on IEEE 13 bus came out with numerical values presenting

the values of currents flowing in the network. Table 3.91 lists the values of fault

currents’ flowing in the branch from bus 650 to bus 632 and Fig. 3.17 is a plot of the

fault currents flowing in the same branch for all the studied cases at all studied fault

locations. Bus 632 is the link between the utility and the entire network thus the current

flowing from bus 650 to bus 632 is the fault current flowing from the utility to the

network.

Table 3. 91: Fault currents in branch from bus 650 to bus 632

632 633 634 671 675 680 692
If (kA) % D If (kA) % D If (kA) % D If (kA) % D If (kA) % D If (kA) % D If (kA) % D

Case 1 7.225 0.00 5.014 0.00 1.749 0.00 3.275 0.00 2.975 0.00 2.358 0.00 3.275 0.00
Case 2 6.632 8.21 4.287 14.50 1.349 22.87 2.602 20.55 2.345 21.18 1.830 22.39 2.602 20.55
Case 3 7.021 2.82 4.797 4.33 1.580 9.66 3.305 -0.92 2.747 7.66 2.167 8.10 3.305 -0.92
Case 4 6.880 4.78 4.592 8.42 1.509 13.72 2.740 16.34 2.414 18.86 1.809 23.28 2.740 16.34
Case 5 6.910 4.36 4.619 7.88 1.525 12.81 2.782 15.05 2.479 16.67 1.850 21.54 2.782 15.05
Case 6 6.939 3.96 4.654 7.18 1.543 11.78 2.833 13.50 2.507 15.73 1.865 20.91 2.833 13.50
Case 7 6.801 5.87 4.485 10.55 1.452 16.98 2.692 17.80 2.391 19.63 1.798 23.75 2.692 17.80
Case 8 6.805 5.81 4.490 10.45 1.454 16.87 2.698 17.62 2.398 19.39 1.804 23.49 2.698 17.62
Case 9 6.673 7.64 4.336 13.52 1.375 21.38 2.570 21.53 2.228 25.11 1.711 27.44 2.570 21.53

%D is the percentage decrease in the short circuit current flowing through that branch
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Fig.3.17: Fault current in branch from bus 650 to bus 632.

Bus 650 to bus 632 has a special behavior as the only source of current in this branch

is the utility so the current is always flowing in one direction cause all the fault

locations on the main feeder. Fig. 3.17 shows a comparison between all cases while the

fault is at different locations. For each fault location nine current values are plotted,

those nine values are called set of results at the certain fault location. i.e. set 1 is the

group of fault current values of 9 cases when fault is at bus 632. Set 2 is the group of

fault currents when the fault is at bus 633 and so on. Current flowing in this bus is the

fault current contributed by the substation to the fault. It is clear that cases 7, 8 and 9

decrease the substation contribution. This shows that decentralising the DG has a

positive impact on the substation.

Set 1 has the highest fault current flowing in branch from bus 650 to bus 632 and the

reason for this is that bus 632 is the closest bus to the utility, so the network's thevenin

equivalent impedance is low; consequently the fault current values are high. As the

distance of fault location increases, the value of fault current decreases. This can be seen

from the comparison figure by considering set 2, the distance increased away from the

substation resulting in a decrease of the fault level. Set 3 is out of spot as it is the only

bus in the network with a voltage of 480 V and it is the only bus that has a transformer

connected to it, bus 634 is operating at the low tension side of the transformer. The

highest fault current in the entire network is at bus 634 but when transformed to the

high tension side the value of fault current contributed from the DG to the fault becomes
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quite low compared to that of naturally high voltage faults, this heads to ignoring set 3

in the comparison.

Bus 680 is the furthest bus from bus 650 thus set 6 has the lowest fault current values

due to the high thevenin equivalent impedance of the network when the fault is at that

bus.

Sets 4 and 7 are identical with all fault currents having the same value as the

difference between bus 671 and 692 is a switch which has no effect on the impedance

between both buses thus the current flowing from 692 to 671 is neither damped nor

increased. The main factor affecting the fault current groups is the distance of the fault

from bus 650 which represents the utility. All sets seem to have the same behavior

meaning that the effect of DG configuration (case) is the same at all fault locations; case

2 is the least fault current of the set while case 1 is the highest, this indicates the

decrease in utility contribution to fault currents. This shows that presence of DG in the

network decreases the contribution of utility to faults while the fault current itself is

increased. (i.e. presence of DG in network decreases the percentage utility contribution

to faults). Cases 2, 3, 4 and 5 are simulated using one centralised DG while cases 7, 8,

and 9 are simulated using a decentralised DG configuration, results show that

centralised DG has less effect on decreasing the percentage utility contribution while

decentralised DG with a total capacity equal to the centralised DG capacity as in cases 7

and 8, causes a decrease in the % utility contribution, except for case 2 which the DG is

at the fault location, this case increases the impedance of the network causing the

percentage DG contribution to increase, while case 9 shows that as the de-centralised

DG capacity increase, the percentage utility contribution decreases while the value of

fault current is increased. Cases 2 and 9 are the two cases that will probably have an

effect on the protection equipment as the percentage decrease of the current flowing

through this branch is high which might decrease the sensitivity of the protection

equipment causing fault conditions to not be discriminated an d no tripping will occur

Studying the branch from bus 632 to bus 671 is performed using the outcome of the

software and results are tabulated below in Table 3.92.
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Table 3. 92: Fault currents for branch from bus 632 to 671

632 633 634 671 675 680 692
Ish. % Ish. Ish. % Ish. Ish. % Ish. Ish. % Ish. Ish. % Ish. Ish. % Ish. Ish. % Ish.

Case 1 0.96 100.00 0.67 100.00 0.23 100.00 3.40 100.00 3.08 100.00 2.44 100.00 3.40 100.00
Case 2 0.91 94.38 0.59 87.84 0.18 78.88 3.80 111.90 3.43 111.09 2.67 109.29 3.80 111.90
Case 3 0.94 98.13 0.65 97.00 0.23 97.41 3.54 104.24 3.20 103.92 2.53 103.36 3.54 104.24
Case 4 2.41 250.88 1.61 242.34 0.54 231.47 2.87 84.48 2.53 81.97 1.89 77.45 2.87 84.48
Case 5 2.28 237.04 1.54 230.48 0.51 221.12 2.91 85.71 2.60 84.20 1.94 79.17 2.91 85.71
Case 6 2.18 226.95 1.47 220.57 0.49 212.07 2.97 87.45 2.62 84.95 1.96 80.03 2.96 87.16
Case 7 2.08 216.65 1.38 207.06 0.45 194.40 3.07 90.40 2.73 88.39 2.05 83.88 3.07 90.40
Case 8 2.06 214.67 1.37 205.26 0.45 192.67 3.08 90.63 2.73 88.65 2.05 84.04 3.08 90.63
Case 9 2.00 208.12 1.31 195.95 0.42 180.60 3.15 92.90 2.80 90.69 2.10 85.97 3.15 92.90

The above table shows the values of fault current (Ish) flowing in the branch from

bus 632 to bus 671 at all fault locations and with different cases, in addition to the

percentage of fault current (%Ish) from the set value which is the current flowing in this

branch without the presence of any DG (case 1). Results in the table were used to plot

the comparison chart shown in Fig. 3.18 below.

Fig.3.18: Short circuit current flowing in branch from bus 632 to bus 671 in all cases with

different fault locations
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This branch is considered as a main feeder branch; at which current passes through to

be delivered to several laterals to reach the loads. It is clear from Fig. 3.15 that there is a

great difference between the current levels flowing through this branch which is

considered as a hazard to the protection equipments when using some of the studied DG

configurations. Designing a protection scheme for this branch will be so difficult in

some cases due to the huge difference in levels of the current flowing through it.

According to Table 3.92, case 2 seems to be the best DG configuration to be used for

maintaining the existing protection scheme for this branch and it may not affect the

coordination of the existing protection devices as the variations reported in this case

have a maximum of 11%.

It is clear that the location of the fault is the main factor affecting the fault level

besides the DG configuration; consider set 1 for study at which the fault is at bus 632.

In set 1, the values of the short circuit current flowing through this branch in cases 2 and

3 are 5.62% and 1.87% less than that of case 1, which will not cause a considerable

effect. The current flowing in these two cases does not contain the short circuit current

contributed from any DG to the fault. Fig. 3.19 below illustrates the short circuit

currents flowing through this branch during a fault at bus 632.
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The rest of the cases caused a considerable increase in the currents flowing through

this branch with case 4 as the most severe configuration with a 250.88% increase in the

short circuit current flowing. The reason for the high currents reported in cases 4-9, is

that the short circuit current contributed from the DG to the fault is flowing through the

branch so If the DG and fault are on the same side of branch 632 to 671, the DG current

will not be part of the current flowing through this branch on the other hand, if the DG

and the fault location are on opposite or different sides then the DG contribution current

is part of the fault current and it has a great effect on increasing the branch currents this

is the situation of cases 4, 5, 6, 7, 8 and 9. The value of the current is varying according

to the configuration of DG used.

It is clear from Fig. 3.18 that decentralising the DG reported less currents flowing

through this branch to the fault, even case 9 which has the highest generating capacity

but it reported the least short circuit currents when compared with cases 4-9.

Sets 1-3 have the same behaviour but with different levels.

Referring to set 4 from fig. 3.18 above, it is clear that case 2 is generating the most

severe short circuit current flowing in branch from bus 632 to bus 671, the value of this

current is 3.799 kA and it is 77.5% of the total fault current. Fig. 3.20 below illustrates

the current flowing through this bus.
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Case 4 at this fault location caused the least short circuit current to flow through this

branch due to the fact that the DG contributed current is not part of the short circuit

current flowing through this branch, similarly the current of cases 5 and 6 does not

contain the DG current. Cases 7-9 showed a small increase in the short circuit current

flowing through this branch, but the current is less than that of case 1. Case 9 is the best

DG configuration to be used when considering the existing protection devices at this

bus as the variation of the current from the normal case is within 15%. Set 4 is similar to

sets 5-7 but with different current levels according to the distance from the substation.
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Chapter 4: Conclusion and Future Work

4.1 General Review

The main objective of this thesis is to analyse the different types of faults occurring in

distribution systems and investigating the effect of penetrating DG into the distribution

system. The model used in this thesis is the IEEE 13 bus system and it was simulated

using software named ETAP. The output of the software is in the form of tables listing

the fault currents of four different types of faults which are single line to ground, three

phase, line to line and line to line to ground faults. The main type of fault that is focused

on in this thesis is the common type of fault which is the single line to ground fault.

Simulation was repeated nine times with different configurations of the DG, six out of

the nine cases were simulated with one large DG placed at different locations in the

network, while the other three cases were simulated with smaller DGs but distributed in

the network.

4.2 Conclusions Based on the Simulation

1. Penetration of any DG into a distribution system causes an increase in the fault

level of the network at any fault location.

2. Penetration of a DG in the system causes it to lose its radial power flow

characteristics.

3. Presence of the DG in a location close to the substation causes a decrease in the

utility contribution to the fault but the fault current is still increased.

4. Increase in the level of DG penetration into the network causes a decrease in the

contribution of the utility to faults.

5. Fault current is the sum of three contributed currents which are from the utility,

DG and the network itself through the shunt capacitor banks and the shunt

admittance.

6. Presence of a DG in the network provides higher voltage magnitude during

faults.

7. As the distance between the DG and the fault location increases the value of the

fault current decreases.
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8. Interconnecting a DG at bus 634 has the most severe effect on the fault level

when the fault is at the same bus.

9. Loads and protective devices located downstream of the DG will not be exposed

to the contributed fault current of the DG as in the case of bus 680, fault currents

at this bus are always zero except if a DG is interconnected at that bus.

10. Presence of the DG causes a decrease in the short circuit current flowing through

some branches which leads to the loss of sensitivity of the protective devices.

11. Placing the DG at bus 634 will cause unnecessary tripping (sympathetic

tripping) of protective devices at its feeder when the fault location is

downstream of bus 632.

12. If the DG and the fault are at two different feeders, the protective device at the

feeder at which the DG is interconnected will unnecessarily trip in most cases,

and this might lead to an unintentional islanding condition.

13. Decentralising the DG has more impact rather than one centralised DG on

reducing the utility contributed currents.

14. Decentralising the DG reduces the effect on the branches protective devices as

the short circuit pattern is nearly the same.

4.3 Future Work

1. The simulation conducted in this thesis was performed using a doubly fed

induction generator; it can be repeated using an inverter type DG to investigate

the impact of the DG type and technology on the short circuit level of the

network.

2. Simulation can be repeated with Voltage Regulator taken into consideration in

all calculations.

3. Repeating the simulation with placing the DG at one of the laterals not on one of

the main branches to study the effect on the current flowing in the laterals.
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Appendix: Coordination of Directional Overcurrent
Relays to Prevent Islanding of Distributed Generators

This chapter consists of a paper that was presented and published in the proceedings of

EUROMED-ICEGES 2009 in Amman-Jordan, organised by the Hashemite University

from 15-06-2009 to 17-06-2009.

This paper is proposing a new technique for the coordination of the directional

overcurrent relays that are used in distribution networks to prevent the unintentional

islanding of a DG placed in the system during the occurrence of a fault. Types of

islanding detection techniques are also mentioned in this paper.

The role of the author in this paper was running the PSCAD simulation.
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Abstract

Distribution systems are conventionally radial in nature with one feeding source.

Interconnection of Distributed Generation (DG) on a radial distribution system presents

situations not normally encountered by the distribution engineer because of the loss of

its single source nature. Besides coordination problems, a particularly demanding

protection requirement is the need to guard the system against the accidental isolation

(unintentional islanding) of the distributed generator's site from the main source of

utility power. In this paper, we propose the use of directional overcurrent relays on a

distribution system with embedded DG. A novel approach to optimally coordinate

between directional overcurrent relays to protect the system from faults while

preventing the islanding phenomenon is proposed. The distribution system was

simulated on PSCAD/EMTDC and then the GAMS optimization software was used to

calculate the optimum settings of the relays. The results prove that directional

overcurrent relays could be used successfully to prevent islanding by proper relay

setting.

KEYWORDS

Coordination, deregulation, Distributed Generation, Fault current, Protective relaying,

Power distribution protection.

A.1 Introduction

Deregulation and the unbundling of the vertical structured utilities into independent

generating stations has simultaneously decreased the cost, yet, improved productivity.
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As a consequence of deregulation, changes in information, control, and protection

technologies must be made in order to maintain the safe operation and functionality of

the power system [1].

Distributed generators have a profound impact on the overall system protection. In

cases, where the DG is added to a distribution feeder with a pre-existing recloser, fuse,

or relay, coordination might not hold. This is due to the change in the value of the fault

currents flowing in the distribution system as a result of the distributed generators

contribution to the fault [2],[3]. There is even a possibility of fault current backflow.

Some of the factors affecting the effectiveness of the coordination are size, location, and

type of DG used [4]. In addition to problems concerning coordination, the use of

parallel DG units within the local utility network degrades the reliability and safety of

the distribution system due to unintentional islanding. The difficulties are a result of the

DG's ability to provide power while the utility is disconnected. Thus, the DG is no

longer under the utility's direct control. A rigorous protection requirement is necessary

to prevent the accidental isolation (unintentional islanding) of the DG from the primary

utility source otherwise the DG could continue feeding some of the utility's loads and

operates as an independent power island. The creation of the power island imposes a

difficulty in reconnecting the islanded portion of the system to the power supply

network. As well, it becomes a potential safety hazard to both the public and utility

personnel. Furthermore, customers connected to this power island might experience

some fluctuations in voltage and frequency levels. Thus, the power supplied to the loads

on the island could deviate from the standard required levels [5].

Within the recent decades, several islanding detection methods have been proposed

to protect the system from unintentional islanding. An efficient and direct method is to

monitor the status of the main utility circuit breaker. As soon as the main circuit breaker

opens, a signal is sent to the intertie circuit breaker connecting the DG to the utility

system. This signal is responsible for opening the intertie circuit breaker and thus

preventing islanding from occurring. Resynchronization between the DG and the utility

can occur once the utility system is restored to its normal state. While this method is

straight forward, implementation of this method is very hard due to the need of a

comprehensive monitoring system. In addition, applying this method is further

complicated by the fact that the distributed generators are distributed within a large

geographic expanse [6]-[7].
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Currently, the standard approach is to measure the DG output parameters and from

these parameters a decision is taken to decide whether or not an islanding situation has

occurred. These methods could be divided into two main groups: active methods and

passive methods. Active methods directly interact with the power system operation,

where as, passive methods identify the problem based on measured system parameters.

Active methods detect islanding by measuring changes in the system frequency and

output power. Central to this idea, is the creation of small variations at the output of the

distributed generator by designing a control circuit that provides the necessary

variations. If the utility is connected to the distribution system, negligible changes will

occur in the frequency or output power and will not be sufficient to initiate the operation

of the protective relay responsible for disconnecting the DG. However, this variation

becomes significant enough to trip the protective relays once the utility is disconnected,

preventing the islanding scenario to occur. Although effective for anti-islanding

situations, an active circuit is difficult to implement with certain types of distributed

generators. As well, the small changes produced by the active methods' control circuit

may affect the power quality of the system. Nevertheless, in cases where there is a

balance between the load and generation on the island, the detection might fail due to

the existence of a non-detective zone. A non-detective zone (NDZ) could be defined as

island load values for which the detection method fails to detect islanding [8-10].

Passive methods, on the other hand, monitor the changes in the power system

parameters such as changes in the rate of output power, phase displacement and system

fault level monitoring. In almost every case, a loss of utility disrupts the normal system

voltage, current and/or frequency. This technique utilises these changes to detect

abnormal operation of the distributed generator (unintentional islanding). Though this

method is less expensive in comparison to the active methods, it may also fail in cases

where the amount of power mismatch between load and DG on the island is not

significant [6].

There are two current engineering practices when a fault occurs on a radial

distribution system with DG interconnected. The first practice is to disconnect all the

distributed generators on the faulted feeder and thus the system returns to its radial

nature. Thus, the typical protective devices such as fuses and overcurrent relays could

operate correctly and the coordination problem becomes a simple task. On the contrary,

disconnecting all DG once a fault occurs decreases the system reliability. Distributed

generators provide voltage support and in some cases mitigate power quality problems.
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In this practice, DG could be disconnected, although these generators will not produce

any islanding condition, thus losing the positive impacts of interconnecting the DG.

This practice doesn't require any detection method cause there is no chance islanding

will occur since the DG will be disconnected before the operation of the protective

relays on the feeder circuits.

Figure A.1 shows a radial distribution system with two distributed generators. If a

fault occurs between bus 3 and bus 4, then according to the former current practice,

circuit breakers K and L will disconnect the DGs. The system returns to its radial

nature and circuit breaker E opens to disconnect the fault. If proper coordination was

used, DG at bus 2 could have been left operating parallel to the utility since it will not

create an island.

Fig. A.1. A radial distribution system with two distributed generators interconnected.

The second practice is to implement a detection method such that when a fault

occurs, the protective relays on the feeders will operate first and then one of the

detection methods operates, disconnecting the DG. The advantage of this practice over

the other one is that only the distributed generators that are islanded will be

disconnected leaving the others operating still in parallel with the utility. Unfortunately,

the drawback of this method is that the detection method could fail due to non-detective

zones. In this case, for a fault between bus 3 and bus 4, circuit breakers E and F will

operate first to isolate the fault, then circuit breaker L will operate since DG2 is

islanded. Thus DG1 is left operating in parallel with the utility.
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In this paper, a novel approach to optimally coordinate between protective relays

(which are made directional by adding a directional element) while preventing islanding

is proposed to overcome drawbacks in current protection practices. This new method is

based on selecting the optimal settings of the directional overcurrent relays in order to

detect faults on the distribution system while preventing islanding by addition of new

constraints responsible for islanding prevention. The method proposed prevents

islanding when a fault occurs. If islanding occurs due to non-fault conditions, the over-

voltage/under-voltage and over-frequency/ under-frequency protection of the DG will

be able to detect islanding. The only possible case where islanding will not be detected

is when is occurs due to non-fault conditions and at the same time the load matches the

generation on the islanded portion. However, the probability of the occurrence of such

situation is very low.

The paper is organized as follows. Section II presents the proposed method to

prevent islanding. Section III presents the problem formulation. Section IV presents the

results. Lastly section V draws the conclusions.

A.2 Proposed Method

Islanding detection methods suffer from the following drawbacks:

1. Some of the detection techniques can be applied to certain types of distributed

generators and not to every DG.

2. The majority of detection methods experience a NDZ.

3. Some of the detection methods fail when there are multiple distributed generators.

4. There is a high probability that most detection methods could not detect islanding

when there is a match between load and DG power output.

All detection methods rely on a change in voltage or frequency to detect the

occurrence of an island. Thus, when a fault occurs, the utility switch opens. Then, the

detection method begins to detect abnormal conditions and then a signal is sent to

disconnect the DG. Still, the possibility exists that island formation may fail to be

detected by the detection methods. As a result, DGs that do not contribute to island

formation are also disconnected. The method outlined in this paper proposes a method

that will detect faults and disconnect a DG only when it produces an island. This is

accomplished by analyzing the system to determine which relay operation will cause

islanding. Subsequently, a new "islanding constraint" is introduced into the coordination

problem formulation, which drives the DG relay to operate in advance to the feeder
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relay in instances where there is a probability of islanding. Thus, only the DG that will

contribute to an islanding situation is disconnected, leaving the rest of the DGs

operating in parallel with the utility.

A.3 Problem Formulation

Previously, distribution system coordination between overcurrent relays was a relatively

simple process as the distribution system was radial, possessing no loops, and had

power supplied from one direction. But, in case of transmission systems, the task of

coordination is rather a complex task since the transmission system consists of loops

and several feeding points.

The challenge in coordinating protective relays in electric power systems is selecting

the optimal settings such that their fundamental protective function is met under the

requirements of sensitivity, selectivity, reliability, and speed [11-15]. The addition of

distributed generators to the distribution system further complicates the coordination of

relays as the system loses its radial characteristics. It is critical, then, to analyze the

coordination problem within the new environment. Though the distribution system and

the transmission system appear to be similar, it is not possible to apply the same

problem formulation to optimally coordinate protective relays, as unintentional

islanding must be prevented, a situation which doesn't exist in transmission systems.

Figure A.2 shows a 6-bus radial distribution system with a single DG connected at

bus 2. The relevant data for this system is given in the appendix. The objective is to

choose the settings of the directional overcurrent relays in order to minimize the time of

operation of all relays while preventing islanding. The overcurrent unit has two values

to be set, the pickup current value (Ip) and the time dial setting (TDS). The pickup

current value is the minimum current value for which the relay operates. The time dial

setting defines the operation time (T) of the device for each current value, and is

normally given as a curve T vs. M where M is the ratio of the relay current, I, to the

pickup current value.

The objective function can be written as follows:


i j k

ijkTmin (1)

where Tijk is the operation time of relay i of branch j for fault k. The function is

minimized under the following constraints:
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A. Coordination Criteria

TTT ijknmk  (2)

where Tnmk is the operation time of the first backup of R ij for a given fault in protection

zone k.

B. Bounds on relay settings and operation times

maxmin ijijij TDSTDSTDS  (3)

maxmin ijijij IPIPIP  (4)

maxmin ijijij TTT  (5)

where TDS is the time dial setting and Ipij is the pickup current.

C. Relay characteristics

All relays were assumed identical and with characteristic functions approximated by:

  1//14.0 02.0  ijijkijijk IPITDST  (6)

where Tijk is the time of operation of relay Rij and Tijk is the current passing through

the relay.

D. Islanding Constraint

From Fig. 1, the constraint could be written as follows:

TCBB - TCBK >0.2 (7)

where TCBB is the time of operation of circuit breaker B and TCBB is the time of

operation of circuit breaker K. This constraint ensures the disconnection of the DG

before any islanding can occur as a result of a fault on the line between bus 1 and bus 2.

For N number of DGs, there will be N number of islanding constraints.

4. Simulation Results

The distribution system under study is a 6-bus radial distribution system with a DG

connected at one of the buses as shown in Fig. 2. The system was simulated on

PSCAD/EMTDC to calculate the short circuit currents, which were then inputted in the

General Algebraic Modeling System (GAMS) software.
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GAMS/MINOS is the oldest NLP (Non linear programming) solver available with

GAMS and it is still the NLP solver that is used. Linearly constrained models are solved

with a very efficient and reliable reduced gradient technique that utilises the sparsity of

the model. Models with nonlinear constraints are solved with a method that iteratively

solves sub-problems with linearized constraints and an augmented Lagrangian objective

function.

By analyzing the coordination problem for the above system, it can be concluded that

the selection of the settings for all relays on the laterals is easy since the system is radial

in these branches. Since distributed generators are connected on the main buses on the

main feeder branch, then the selection of the settings of the relays on the main feeder

circuit is the task that needs to be studied. As a result, the system could be simply

reduced to the one shown in Fig. 3 where the lateral and its loads are simplified into one

load at the bus at which the lateral is connected.

Fig. A. 2 A radial distribution system with distributed generators interconnected at bus 2.

For some cases under study, not all relay settings have to be identified because these

relay settings could be calculated easily from the settings of the other relays in the

system. For instance, if the case in Fig. 3 was simulated, then there is no need to include

the settings for relays D, F, H, and J in the optimization problem. This is because from

line section 2-3 to the end, the system is radial and for any fault beyond this section, the

current will flow in only one direction. As for relays E, G, and I their settings do not

need to be included in the optimization problem since these relays are located in the

radial part of the system and choosing the settings of these relays is a simple task and
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doesn't need to be optimally set. If a setting is not included in the optimization problem,

it is represented by a dashed line in the results table 2.

Fig. A. 3. A simplified radial distribution system with distributed generators interconnected at bus 2.

The core of the directional overcurrent relay coordination study lies within the

calculation of the two settings: TDS and Ip. It must be noted that, generally, directional

overcurrent relays can accommodate continuous time dial settings, but for pickup

current settings, discrete values are used. In this study, the assumption was made that

both Ip and TDS were continuous variables to avoid the use to mixed nonlinear-integer

programming. Thus, nonlinear programming was used to calculate the optimum relay

settings. The discrete Ip solutions are obtained by rounding off the continuous Ip

solutions to the nearest discrete values [16]. The radial distribution system shown in

Fig. 3 was studied for different ratings and location of the DG. The cases studied are

shown below:

• The DG location was fixed at bus 2 and its rating was changed.

• The DG rating was fixed and its location was changed.

• Addition of DG2 of 20 MVA at bus 3 with DG1 fixed at bus 2.

Table 1, 2 and 3 show the results obtained for the 3 cases, respectively.

The results in Table A.1 show that as the distributed generator rating decreases, the

time of operation of all relays on the feeder increase. As the distributed generator’s

rating decrease, its short circuit current decreases. This causes the current in the section

between bus 1 and bus 2 to be almost the same as the current in the section between bus

2 and bus 3. This makes the task of coordination harder and the time of operation of the

relay increases.
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Table A. 1. The Effect of the DG's MVA

DG Rating (MVA)
12 10 8 6 4

TDSA 0.148 0.13 0.13 0.142 0.145
TDSB 0.233 0.221 0.191 0.166 0.113
TDSC 0.1 0.1 0.1 0.1 0.1
TDSE 0.1 0.1 0.1 0.1 0.1
TDSK 0.142 0.228 0.208 0.191 0.153
TBA1 0.408 0.399 0.407 0.424 0.438
TBB1 0.777 0.801 0.817 0.829 0.853
TBC2 0.384 0.401 0.417 0.429 0.453
TBE3 0.348 0.357 0.417 0.429 0.453
TBK1 0.577 0.601 0.617 0.629 0.653
IpA 612.668 790.513 819.56 739.71 755.4
IpB 600 600 600 600 600
IpC 1219.41 1185.79 1151.9 1083.395 1048
IpE 600 600 600 600 600
IpK 860.572 300 300 300 300

Table A. 2. The Effect of the DG's Location

Bus 2 Bus 3 Bus 4 Bus 5
TDSA 0.13 0.161 0.177 0.167
TDSB 0.221 0.154 0.128 0.121
TDSC 0.1 0.1 0.1 0.1
TDSD 0.191 0.112 0.1
TDSE 0.1 0.1 0.1 0.1
TDSF ……… ……… 0.165 0.1
TDSG ……… ……… 0.1 0.1
TDSH ……… ……… ……… 0.16
TDSI ……… ……… ……… 0.1
TDSJ ……… ……… ……… ………
TDSK 0.228 0.185 0.164 0.168
TBA1 0.399 0.439 0.486 0.491
TBB1 0.801 0.852 0.849 0.92
TBC2 0.401 0.427 0.534 0.566
TBE3 0.357 0.297 0.447 0.521
TBD2 0.69 0.859 0.931
TBK1 0.601 0.652 0.649 0.72
TBF3 ……… ……… 0.623 0.893
TBG4 ……… ……… 0.278 0.442
TBH4 ……… ……… ……… 1.103
TBI5 ……… ……… ……… 0.289
TBJ5 ……… ……… ……… ………
IpA 790.513 600 664.77 775.494
IpB 600 600 600 600
IpC 1185.796 698.239 960.769 1031.761
IpD ……… 600 809.814 805.847
IpE 600 600 600 716.501
IpF ……… ……… 680.323 918.848
IpG ……… ……… 300 400
IpH ……… ……… ……… 733.449
Ipl ……… ……… ……… 300
IpK 300 300 300 300
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TDSA and IpA are the time dial setting and the pickup setting of relay A, TDSB and

IpB are the time dial setting and the pickup setting of relay B, etc.

TBA1 represents the time of operation of relay A for a fault in zone 1 at its close end,

TBB1 represents the time of operation of relay B for a fault in zone 1 at its close end,

and so on.

Table A.2 shows the effect of the DG location on the settings of the relays. As the

DG is located further from the utility, the time of operation of some of the relays will

increase. Thus this method is much preferable when the DG is located close to the

utility. By observing the case where the DG is located at bus 6 (the last bus), it was

noticed that the time of operation of some of the relays, that had an increase in time

operation as the DG location was shifted away from the utility, have decreased. The

reason for that is because when the DG is located at the last bus, its relay will only be

constrained with one constraint since there are no other sections after bus 6. But for all

previous locations, the DG relay was under two constraints. Fig. A.4 and Fig. A.5 show

the effect of the DG rating and location on the time of operation of the relays.

Fig. A. 4. Effect of the DG MVA rating on the relay operating
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Fig. A. 5. Effect of the DG location on the relay operating time.

An additional DG was added at bus 3 and the optimal settings of the relays are

calculated. Fig. A.6 shows a radial distribution system with two DGs connected. Both

distributed generators are of the same rating.

Fig. A. 6. A radial distribution system with two distributed generators interconnected.

It can be concluded from Table 3 that directional overcurrent relays could be

successfully coordinated optimally in a radial distribution system with more than one

DG. By using the proposed problem formulation, if a fault occurs in the section between

bus 2 and bus 3, circuit breakers C, D and L will operate. Thus, DG2 is disconnected

because it will form an island while DG1 is left operating in parallel with the utility.
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Table A. 3: Time Dial And Pickup Current Settings With Two Distributed Generators Interconnected

TDSA 0.145

TDSB 0.231

TDSC 0.1

TDSD 0.188

TDSE 0.1

TDSk 0.172

TDSL 0.146

TBA1 0.369 sec

TBB1 0.7 16 sec

TBC2 0.31 2 sec

TBD2 0.634 sec

TBE3 0.1 89 sec

TBK 0.771 sec

TBL 0.389 sec

IpA 500

IpB 551.364

IpC 666.278

IpD 509.383

IpE 200

IpK 300
IpL 300

A.5 Conclusions

This paper proposes a new method for islanding prevention using directional

overcurrent relays. By studying the system and determining the sections that could

cause islanding of the DG, a new constraint was added to the coordination problem

formulation to prevent islanding occurrence. Using GAMS optimization software, the

settings of the relays were determined. It is also concluded that the closer the DG

location to the utility the less time it takes for the relays to operate under the new

formulation. The method proved to be successful in cases where there is more than one

distributed generator connected. This method could be used as a primary means of

preventing islanding and the other islanding detection methods could be used as backup

for this method to prevent islanding during non-fault conditions. Thus, leaving the other

DGs running in parallel with the utility providing voltage support. This method

overcomes the drawbacks in the current protection practice since it disconnects only the

DGs which will cause islanding and at the same time overcomes the probability that an

island will not be detected by proper relay coordination.
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APPENDIX

VRMS (Line) = 24kV

Rated MVA Source = 100 MVA

Rated MVA DG = 4 – 12 MVA

X source = XDG = 10%

X feeder = 0.4 + J1.0 / mile

Length feeder = 2 mile

T = 0.2
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