Sport and Health Sciences, College of Life and Environmental Sciences,
University of Exeter

Perceived Exertion Relationships and Prediction of Peak Oxygen Uptake in Able-bodied and Paraplegic Individuals

Submitted by Harran Qoblan Mefleh Al-Rahamneh to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Sport and Health Sciences (November, 2010)

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Harran Al-Rahamneh
Abstract

Rating of Perceived Exertion (RPE) relates to how ‘hard’ or ‘easy’ an exercise feels. The Borg 6-20 RPE scale is the most widely used scale to estimate the overall, peripheral and central perception of effort. To date, there are a limited number of studies on the use and efficacy of perceived exertion in persons with spinal cord injury and/or disease. The findings from these studies are also equivocal. Therefore, the aims of this thesis were to assess: i) the relationship between the RPE and physical and physiological markers of exercise intensity during arm cranking exercise in able-bodied and individuals with spinal cord disease, ii) the efficacy of sub-maximal RPE values to predict peak oxygen uptake during arm cranking exercise in able-bodied and paraplegic individuals using different exercise protocols, iii) the scalar property of the RPE during arm cranking exercise in able-bodied and paraplegic individuals. To achieve these goals, the thesis has been broken down to a series of seven studies. In each of these studies, except study 6, a group of able-bodied and a group of paraplegic participants were recruited to assess these hypotheses. Paraplegic individuals had spinal cord injury with neurological levels at or below the sixth thoracic vertebra (T6) or flaccid paralysis as a result of poliomyelitis infection. These individuals were physically active and participated in sports like wheelchair basketball, weightlifting, wheelchair racing and table tennis at both professional and recreational levels. Able-bodied participants were healthy and free from pre-existing injuries and physically active but not arm-trained.

There were strong relationships between the RPE and each of the physiological and physical indices of exercise intensity during arm cranking exercise regardless of group or gender. Peak oxygen uptake can be predicted with reasonable accuracy from sub-maximal oxygen uptake values elicited during a sub-maximal perceptually-guided, graded exercise test for paraplegic individuals but not for able-bodied participants. It has also been shown that peak oxygen uptake can be predicted from power output using the equation prescribed by the American College of Sports Medicine (ACSM, 2006). Furthermore, for able-bodied participants using estimation procedures, a
Abstract

passive process in which an individual is asked to rate how ‘hard’ or ‘easy’ an exercise feels, the ramp exercise test provided more accurate prediction of peak oxygen uptake compared to the graded exercise test. For paraplegic persons using estimation procedures, the graded exercise test provided more accurate prediction of peak oxygen uptake compared to the ramp exercise test. Finally, the scalar property of the RPE (i.e., similar proportions of time at a given RPE) was evident during arm cranking exercise regardless of group.

In conclusion, the prediction of peak oxygen uptake from sub-maximal exercise tests would provide a safer environment of exercise testing. In addition, using a sub-maximal protocol would make peak oxygen uptake more available for sedentary and clinical population compared to the graded exercise test to volitional exhaustion. Prediction of peak oxygen uptake from power output using the ACSM equation would make the estimation of peak oxygen uptake more available for large groups of people. Similar proportions of time were observed at a given RPE regardless of group or exercise intensity. The early RPE responses will give an indicator for how long a participant is going to exercise. This has important implications for rehabilitation settings. Based on the RPE responses the tester or the observer can increase or decrease the work rate to enable the participant to exercise for the desired duration.
Acknowledgments

First of all, I would like to thank my sponsor, the University of Jordan, for their full financial support to pursue my studies. I would like to thank and acknowledge my mother, the light of my life, for her total and infinite encouragement, support and inspiration throughout my life and especially the last three years. I would like also to thank my brothers, sisters, nieces and nephews for their support and encouragements.

I would like to thank and acknowledge my supervisor Prof. Roger Eston for his endless encouragement and support during my studies. I would like to thank Prof. Eston as the head of the school for his financial support in shipping some equipment to Jordan to enable me to conduct some of my studies there. I would like to thank Prof. Eston as a co-author in all the papers which have been published from the thesis for his help and support.

Finally, I would like to thank Dr Christopher Byrne and Dr James Faulkner for their support during the early stages in my studies. I would like to thank all the participants, especially those with paraplegia, for their time and travel to take part in the studies. I would like to thank all the technicians who helped me throughout my studies especially when some of the equipment broke down.
List of Contents

<table>
<thead>
<tr>
<th>Titles</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>4</td>
</tr>
<tr>
<td>List of Contents</td>
<td>5</td>
</tr>
<tr>
<td>List of Figures</td>
<td>11</td>
</tr>
<tr>
<td>List of Tables</td>
<td>14</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>17</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction
19

Chapter 2: Review of Literature
27

2.1. Upper body exercise

2.1.1. Upper body responses to maximal exercise

2.1.2. Upper body responses to sub-maximal exercise

2.1.3. Adaptations to arm exercise

2.1.4. Supine vs. upright exercise

2.2. Perceived exertion

2.2.1. The concept of perceived exertion

2.2.2. The measurement of perceived exertion

2.2.3. Central, local and overall ratings of perceived exertion

2.2.4. Perceived exertion and exercise modality

2.2.5. Perceived exertion and physiological markers of exercise intensity

2.2.5.1. Perceived exertion and oxygen consumption

2.2.5.2. Perceived exertion and heart rate

2.2.5.3. Perceived exertion and ventilation
List of Contents

2.2.5.4. Perceived exertion and lactate concentration 44
2.2.6. Perceived exertion and gender 45
2.2.7. Perceived exertion and disabilities 47
2.2.8. Perceived exertion and prediction of maximal oxygen uptake 48
2.2.9. Perceived exertion and scalar property 50
2.3. Physical disability 52
2.3.1. Poliomyelitis (polio) 53
2.3.2. Spinal cord injury (SCI) 54
2.3.2.1. Effect of spinal cord injury on muscles, bones, heart, the circulation system and the pulmonary system 55
2.3.2.2. Spinal cord injury and exercise 57
2.3.2.3. Spinal cord injury and arm exercise 59
2.3.2.3.1. Arm cranking vs. wheelchair propulsion 59
2.3.2.3.2. Responses to sub-maximal arm exercise 61
2.3.2.3.3. Responses to maximal arm exercise 62
2.3.3. Mechanical efficiency and exercise modality 64
2.4. Purpose of the studies 66

Chapter 3: Common methods 67
3.1. Measurement of height and body mass (for all the studies) 67
3.2. Borg 6-20 RPE Scale 67
3.3. Gas analysis 68
3.4. Arm ergometry 69
3.5. Ramp exercise test 70
3.6. Graded exercise test (study 3, 4, 5a, 5b and 6) 73
3.7. Perceptually-guided, graded exercise test (study 4 and 6) 74
3.8. Determination of the gas exchange threshold (study 6) 75
List of Contents

3.9. Constant-load exercise tests (study 6) 77

Chapter 4: The relationship between perceived exertion and physical and physiological markers of exercise intensity during arm cranking and leg cycling in able-bodied and paraplegic individuals (Study 1)

4.1. Introduction 79
4.2. Methods 83
4.3. Results 90
4.3. Discussion 99
4.5. Conclusion 103

Chapter 5: Prediction of peak oxygen uptake from ratings of perceived exertion during arm cranking, ramp exercise test in able-bodied and paraplegic individuals (Study 2)

5.1. Introduction 106
5.2. Methods 107
5.3. Results 112
5.4. Discussion 115
5.5. Conclusion 116

Chapter 6: Prediction of peak oxygen uptake from the ratings of perceived exertion during a graded and ramp exercise test in able-bodied and persons with paraplegia (Study 3)

6.1. Introduction 119
6.2. Methods 120
6.3. Results 124
6.4. Discussion 128
6.5. Conclusion 132

Chapter 7: The validity of predicting peak oxygen uptake from a perceptually-guided, graded exercise test in able-bodied and paraplegic individuals (Study 4)

7.1. Introduction 135
7.2. Methods 137
7.3. Results 141
Chapter 8: The validity of estimating peak oxygen uptake from peak power output during arm cranking exercise in able-bodied and paraplegic individuals using the ACSM equation (Study 5a) & The validity of predicting peak power output from a perceptually-guided, graded exercise test during arm cranking exercise in able-bodied participants (Study 5b)

8.1. Introduction
8.2. Methods
8.3. Results
8.4. Discussion
8.5. Conclusion

Chapter 9: Rating of perceived exertion during two different constant-load exercise intensities during arm cranking in able-bodied and paraplegic participants (Study 6)

9.1. Introduction
9.2. Methods
9.3. Results
9.4. Discussion
9.5. Conclusion

Chapter 10: General discussion
10.1. Comparison of physical and physiological variables observed at the completion of the exercise test
10.2. The relationship between the RPE and physical and physiological variables of exercise intensity
10.3. Prediction of peak oxygen uptake from sub-maximal RPE
10.4. The scalar property of the RPE during arm cranking exercise
10.5. Proportion of peak oxygen uptake at a given RPE
10.6. Overall vs. peripheral RPE
10.7. The importance of using limits of agreement
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8. The thesis has added</td>
<td>196</td>
</tr>
<tr>
<td>Chapter 11: Conclusion, limitations and recommendations for future research</td>
<td>198</td>
</tr>
<tr>
<td>11.1. Conclusion</td>
<td>198</td>
</tr>
<tr>
<td>11.2. Limitations and Recommendations for future research</td>
<td>199</td>
</tr>
<tr>
<td>Chapter 12: References</td>
<td>201</td>
</tr>
<tr>
<td>Appendices</td>
<td>233</td>
</tr>
<tr>
<td>Appendix 1A: Relationship between perceived exertion and physiological markers during arm exercise with able-bodied participants and participants with poliomyelitis</td>
<td>234</td>
</tr>
<tr>
<td>Appendix 1B: Prediction of peak oxygen uptake from ratings of perceived exertion during arm exercise in able-bodied and persons with poliomyelitis</td>
<td>239</td>
</tr>
<tr>
<td>Appendix 1C: Prediction of peak oxygen uptake consumption from the ratings of perceived exertion during a graded exercise test and ramp exercise test in able-bodied participants and paraplegic persons</td>
<td>244</td>
</tr>
<tr>
<td>Appendix 1D: The validity of predicting peak oxygen uptake from a perceptually guided graded exercise test during arm exercise in paraplegic individuals</td>
<td>251</td>
</tr>
<tr>
<td>Appendix 1E: Rating of perceived exertion during two different constant-load exercise intensities during arm cranking exercise in paraplegic and able-bodied participants</td>
<td>256</td>
</tr>
<tr>
<td>Appendix 2A: Information Sheet (study 1 and 2 for able-bodied and paraplegic individuals)</td>
<td>264</td>
</tr>
<tr>
<td>Appendix 2B: Information Sheet (study 3 and 6 for paraplegic individuals)</td>
<td>266</td>
</tr>
<tr>
<td>Appendix 2C: Information Sheet (study 3 and 6 for able-bodied participants)</td>
<td>268</td>
</tr>
<tr>
<td>Appendix 2D: Information Sheet (study 4 for paraplegic individuals)</td>
<td>270</td>
</tr>
<tr>
<td>Appendix 2E: Information Sheet (study 4 and 5b for able-bodied participants)</td>
<td>272</td>
</tr>
<tr>
<td>Appendix 3A: Informed Consent (study 1 and 2 for able-bodied and paraplegic individuals)</td>
<td>274</td>
</tr>
<tr>
<td>Appendix 3B: Informed Consent (study 3 and 6 for paraplegic individuals)</td>
<td>275</td>
</tr>
<tr>
<td>Appendix 3C: Informed consent (study 3 and 6 for able-bodied participants)</td>
<td>276</td>
</tr>
<tr>
<td>Appendix 3D: Informed consent (study 4 for paraplegic individuals)</td>
<td>277</td>
</tr>
</tbody>
</table>
List of Contents

Appendix 3E: Informed consent (study 4 and 5b for able-bodied participants) 278

Appendix 4: Table used to transform correlation coefficients (r) to Fisher Z_r values to approximate for normality distribution 279
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The three effort continua: perceptual, physiological and performance</td>
<td>36</td>
</tr>
<tr>
<td>2.2</td>
<td>RPE responses during arm cranking and leg exercise at different heart rates</td>
<td>39</td>
</tr>
<tr>
<td>2.3</td>
<td>An example showing the curvilinear relationship between Borg 6-20 RPE Scale and blood lactate levels during incremental leg cycling exercise test</td>
<td>44</td>
</tr>
<tr>
<td>2.4</td>
<td>An example showing the relationship between CR10 Scale and blood lactate levels during incremental arm cranking exercise test</td>
<td>45</td>
</tr>
<tr>
<td>2.5</td>
<td>Structure of the nervous system</td>
<td>53</td>
</tr>
<tr>
<td>2.6</td>
<td>Mechanical efficiency during synchronous and asynchronous exercise</td>
<td>65</td>
</tr>
<tr>
<td>3.1</td>
<td>An example showing how the height of the arm crank and the distance between the arm crank and the participant were set</td>
<td>69</td>
</tr>
<tr>
<td>3.2</td>
<td>An example showing the Biodex chair and the arm crank ergometer</td>
<td>70</td>
</tr>
<tr>
<td>3.3</td>
<td>The ramp exercise test for both groups</td>
<td>73</td>
</tr>
<tr>
<td>3.4</td>
<td>The graded exercise test exercise test for both groups</td>
<td>74</td>
</tr>
<tr>
<td>3.5</td>
<td>Example of the linear relationship between power output and RPEs of 9, 11, 13, 15 and 17 during arm cranking exercise</td>
<td>75</td>
</tr>
<tr>
<td>3.6</td>
<td>$\dot{V}O_2$ regressed against $\dot{V}CO_2$ using the V slope method to determine the GET for an able-bodied participant during an arm cranking ramp exercise test</td>
<td>76</td>
</tr>
<tr>
<td>3.7</td>
<td>$\dot{V}E/\dot{V}O_2$ and $\dot{V}E/\dot{V}CO_2$ regressed against time to confirm the GET for the same participant</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>An individual performing an arm cranking exercise</td>
<td>85</td>
</tr>
<tr>
<td>4.2</td>
<td>Individual $\dot{V}O_2$ and RPE values reported at the completion of each minute of an able-bodied male participant during an arm cranking exercise test</td>
<td>87</td>
</tr>
<tr>
<td>4.3</td>
<td>Scatterplot illustrating the RPE against PO relationship during arm crank exercise for able-bodied men and women participants</td>
<td>98</td>
</tr>
<tr>
<td>4.4</td>
<td>Scatterplot illustrating the RPE against %PO relationship during arm crank exercise for able-bodied men and women participants</td>
<td>98</td>
</tr>
</tbody>
</table>
List of Figures

Figure 5.1 Prediction of $\dot{V}O_2$peak from RPEs up to and including RPE 13 when extrapolated to RPE20 from a ramp exercise test for an able-bodied participant 110

Figure 5.2 Proportions of $\dot{V}O_2$peak observed at RPE13, 15 and 17 for able-bodied and paraplegic individuals 113

Figure 6.1 Prediction of $\dot{V}O_2$peak from RPEs prior to and including RPE 17 when extrapolated to RPE20 from a ramp exercise test for a paraplegic individual 123

Figure 6.2 Proportions of $\dot{V}O_2$peak observed at RPE13, 15 and 17 for able-bodied and paraplegic individuals during the GXT and the ramp exercise test 128

Figure 7.1 $\dot{V}O_2$ values elicited at RPEs of 9, 11 and 13 extrapolated to RPE20 on Borg 6-20 RPE scale to predict $\dot{V}O_2$peak for a paraplegic participant 140

Figure 7.2 Proportions of $\dot{V}O_2$peak observed at RPE9, 11, 13, 15 and 17 for able-bodied and paraplegic individuals during the first (P1) and the second (P2) production trials 144

Figure 7.3 Absolute $\dot{V}O_2$ values observed at RPEs of 9, 11, 13, 15 and 17 during the first production trial for both able-bodied and paraplegic persons 145

Figure 7.4 Absolute $\dot{V}O_2$ values observed at RPEs of 9, 11, 13, 15 and 17 during the second production trial for both able-bodied and paraplegic persons 145

Figure 8.1 The 95 % Limits of agreement (bias ± 1.96 x SD difference, ml·kg$^{-1}$·min$^{-1}$) for measured $\dot{V}O_2$peak and predicted $\dot{V}O_2$peak from the American College of Sports Medicine equation for able-bodied participants 160

Figure 8.2 The 95 % Limits of agreement (bias ± 1.96 x SD difference, ml·kg$^{-1}$·min$^{-1}$) for measured $\dot{V}O_2$peak and predicted $\dot{V}O_2$peak from the American College of Sports Medicine equation for paraplegic individuals 160

Figure 9.1 The rate of change of the RPEp when regressed against time to exhaustion during both constant-load exercise intensities in able-bodied participants 176

Figure 9.2 The rate of change of the RPEp when regressed against time to exhaustion during both constant-load exercise intensities in paraplegic individuals 176

Figure 9.3 The rate of change of the RPEp when regressed against %time to exhaustion during both constant-load exercise intensities in able-bodied participants 177
Figure 9.4 The rate of change of the RPEp when regressed against %time to exhaustion during both constant-load exercise intensities in paraplegic individuals 177
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Borg 6-20 RPE scale and the corresponding Arabic version</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>Rating of perceived exertion measured during an incremental exercise test for upper body and lower body.</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Rating of perceived exertion measured during a constant-load exercise test at different proportions of POpeak for upper body and lower body</td>
<td>81</td>
</tr>
<tr>
<td>4.3</td>
<td>Demographic information for all participants</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>Descriptive statistics for physiological, perceptual and physical variables observed at the termination of the leg cycling exercise test for able-bodied men and women</td>
<td>90</td>
</tr>
<tr>
<td>4.5</td>
<td>Descriptive statistics for physiological, perceptual and physical variables observed at the termination of the arm cranking exercise test for able-bodied and paraplegic men and women</td>
<td>90</td>
</tr>
<tr>
<td>4.6</td>
<td>Mean R^2 values for the relationships between $\dot{V}O_2$: RPE, HR: $\dot{V}E$: RPE, PO: RPE, PO: $\dot{V}O_2$ and PO: HR, when reconvertin Fisher Zr scores to R^2 values during arm cranking and leg cycling exercise tests for able-bodied and paraplegic participants and for men and women</td>
<td>93</td>
</tr>
<tr>
<td>5.1</td>
<td>Participant characteristics and relative disability descriptions and mean ± SD for groups</td>
<td>108</td>
</tr>
<tr>
<td>5.2</td>
<td>Peak physiological and perceptual values observed at the termination of the arm cranking test for able-bodied and paraplegic participants</td>
<td>112</td>
</tr>
<tr>
<td>5.3</td>
<td>The $\dot{V}O_2$ values and %$\dot{V}O_2$peak observed at RPE 13, 15 and 17 for both able-bodied and paraplegic individuals</td>
<td>113</td>
</tr>
<tr>
<td>5.4</td>
<td>Measured and predicted $\dot{V}O_2$peak (ml.kg$^{-1}$.min$^{-1}$) for able-bodied and paraplegic participants</td>
<td>114</td>
</tr>
<tr>
<td>6.1</td>
<td>Peak physiological, physical and perceptual values observed at the completion of the GXT and the ramp exercise test for able-bodied and paraplegic individuals</td>
<td>124</td>
</tr>
<tr>
<td>6.2</td>
<td>$\dot{V}O_2$peak (ml.kg$^{-1}$.min$^{-1}$) observed at the termination of the GXT and ramp exercise test and predicted $\dot{V}O_2$peak from RPEs prior to and including RPE of 13, 15 and 17 for able-bodied and paraplegic individuals</td>
<td>126</td>
</tr>
<tr>
<td>6.3</td>
<td>Limits of agreement and ICC between measured and predicted $\dot{V}O_2$peak from RPEs up to and including RPE of 13, 15 and 17 extrapolated to RPE20 for able-bodied and paraplegic</td>
<td>127</td>
</tr>
</tbody>
</table>
participants for the GXT and the ramp exercise test

Table 6.4 Proportions of $\dot{V}O_{2\text{peak}}$ at RPE13, 15 and 17 during the GXT and the ramp exercise test for able-bodied participants and persons with paraplegia

Table 7.1 Demographic and relevant disability descriptions

Table 7.2 Physiological, physical and overall and localised perceptual (i.e., RPEo and RPEp) values observed at the termination of the GXT for able-bodied and paraplegic individuals

Table 7.3 Measured and predicted $\dot{V}O_{2\text{peak}}$ for able-bodied and paraplegic individuals from the three RPE ranges (i.e., 9-13, 9-15 and 9-17) from the first and second perceptually-guided, graded exercise test

Table 7.4 Proportions of $\dot{V}O_{2\text{peak}}$ observed at each RPE level during the first and second production trials for able-bodied and paraplegic individuals

Table 7.5 Proportions of POpeak observed at each RPE level during the first and second perceptually-guided, graded exercise test for able-bodied and paraplegic individuals

Table 7.6 LoA and ICC between measured and predicted $\dot{V}O_{2\text{peak}}$ (ml.kg$^{-1}$.min$^{-1}$) from the three RPE ranges (i.e., 9-13, 9-15 and 9-17) during the first (P1) and second (P2) perceptually-guided, graded exercise test for able-bodied and paraplegic individuals

Table 8.1 Participant characteristics and relative disability description

Table 8.2 Peak physiological, physical and perceptual values observed at the termination of the GXT for able-bodied and paraplegic individuals

Table 8.3 Measured $\dot{V}O_{2\text{peak}}$ (ml.kg$^{-1}$.min$^{-1}$) and predicted $\dot{V}O_{2\text{peak}}$ from POpeak using the ACSM equation for able-bodied and paraplegic individuals

Table 8.4 LoA and ICC between measured and predicted $\dot{V}O_{2\text{peak}}$ (ml.kg$^{-1}$.min$^{-1}$) from the American College of Sports Medicine equation

Table 8.5 Physical and perceptual values observed at the termination of the GXT

Table 8.6 Measured and predicted POpeak from the three RPE ranges (i.e., 9-13, 9-15 and 9-17) during the first (P1) and the second (P2) perceptually-guided, graded exercise test
Table 8.7	The predicted \(\dot{V}{O}_{\text{peak}} \) (ml.kg\(^{-1}\).min\(^{-1}\)) for measured PO\(_{\text{peak}}\) and predicted PO\(_{\text{peak}}\) from the three sub-maximal RPE ranges	162
Table 8.8	LoA and ICC between measured and predicted peak power output from the three RPE ranges (i.e., 9-13, 9-15 and 9-17)	162
Table 9.1	Participant characteristics and relative disability description and mean ± SD for groups	170
Table 9.2	Peak values observed at the termination of the ramp exercise test and the GXT for paraplegic and able-bodied individuals	173
Table 9.3	Power output, time to exhaustion, the relationship between RPE\(_{\text{O}}\) and time to exhaustion and between RPE\(_{\text{P}}\) and time to exhaustion for 50% and 70% \(\Delta \) and for both groups	174
Table 9.4	Physiological variables observed at 2 min in the exercise and at the termination of the constant-load exercise tests at 50% and 70% \(\Delta \) for able-bodied and individuals with paraplegia	178
Table 9.5	Perceptual responses observed at 2 min and at the termination of the constant-load exercise tests at 50% and 70% \(\Delta \) for able-bodied and individuals with paraplegia	180
List of abbreviations

ACSM - American College of Sports Medicine
BACR - British Association of Cardiac Rehabilitation
BASES - British Association of Sport and Exercise Sciences
\(\dot{\text{VO}}_2 \) - Volume of Oxygen Uptake
\(\dot{\text{VO}}_{2\text{max}} \) - Volume of Maximal of Oxygen Uptake
\(\dot{\text{VO}}_{2\text{peak}} \) - Volume of Peak Oxygen Uptake
\(\dot{\text{CO}}_2 \) - Carbon Dioxide
RER - Respiratory Exchange Ratio
\(\dot{\text{VE}} \) - Volume of expired air per minute (Ventilation)
\(\dot{\text{VE}}_{\text{max}} \) - Maximal Expired Air per Minute (Ventilation)
HR - Heart Rate
HRmax - Maximal Heart Rate
\(\dot{\text{VE}}/\dot{\text{VO}}_2 \) - Ventilatory Equivalent for Oxygen
\(\dot{\text{VE}}/\dot{\text{CO}}_2 \) - Ventilatory Equivalent for Carbon Dioxide
RPE - Rating of Perceived Exertion
RPEo - Overall Rating of Perceived Exertion
RPEp - Peripheral Rating of Perceived Exertion
PO - Power Output
POmax - Maximal Power Output
POpeak - Peak Power Output
W - watt
rpm - Revolutions per Minute
SCI - Spinal Cord Injury
SCD - Spinal Cord Disease
ANOVA - Analysis of Variance
ANCOVA - Analysis of Covariance
LoA - Limits of Agreement
List of abbreviations

ICC - Intraclass Correlation Coefficients
SD - Standard Deviation
GXT - Graded Exercise Test
GET - Gas Exchange Threshold
HRR - Heart Rate Reserve
\(\dot{V}O_{2R} \) - Oxygen Uptake Reserve
CNS - Central Nervous System
PNS - Peripheral Nervous System
SNS - Somatic Nervous System
ANS - Autonomic Nervous System
Polio - Poliomyelitis
s - second
min - minute
T - Thoracic vertebra
L - Lumbar vertebra
C - Cervical
S - Sacral
SPSS - Statistical Package for Social Sciences