Plasmonic resonances of metallic nanoparticles in arrays and in isolation

Submitted by Christopher Burrows
to the University of Exeter
as a thesis for the degree of

Doctor of Philosophy in Physics

October 2010

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other university.

Signature ____________________________
Abstract

Plasmonics is the branch of photonics that is concerned with the interactions which take place between metallic structures and incident electromagnetic radiation. It is a field which has seen a recent resurgence of interest, predominantly due to the emerging fields of metamaterials and sub-wavelength optics. The original work contained within this thesis is concerned with the plasmonic resonances of metallic nanoparticles which can be excited with visible light. These structures have been placed in a variety of configurations, and the optical response of each of these configurations has been probed both experimentally, and with numerical simulations.

The first chapter contains some background and describes some recent advances in the literature, set against the broad background of more general concepts which are important in plasmonics.

The best starting point in describing the response of plasmonic systems is to consider individual metallic particles and this is the subject of the second chapter. Three separate modelling techniques are described and compared, and dark-field spectroscopy is used to produce experimental scattering spectra of single particles which support dipolar and higher order modes. Mie theory is used as a starting point in understanding these modes, and finite element method (FEM) modelling is used to make numerical comparisons with dark-field data.

When two plasmonic particles are placed close to each other, interactions take place between them and their response is modified, sometimes considerably. This effect can be even stronger if particles are placed in large arrays. Interactions between the dipolar modes of gold particles form the basis of the third chapter. The discussion begins with pairs of particles, and the coupled dipole approximation (CDA) is introduced to describe the response. Ordered square arrays are considered and different modelling techniques are compared to experimental data. Also, random arrays have been investigated with a view to inferring the extinction spectrum of a single particle from a carefully chosen array of particles in which the inter-particle interactions are suppressed.

The fourth chapter continues the theme of particles interacting in arrays, but the particles considered support quadrupolar modes (and they are silver instead of gold). The optical response is strongly modified, and an explanation is provided which overturns the accepted explanation.

The final chapter of new results is somewhat different to the others in that a very different structure is considered and different parameters are extracted. Instead of far-field quantities, here, near-fields of composite structures are of interest; they can generate greatly enhanced fields in the vicinity of the structure. These enhanced fields, in turn, enhance the fluorescence and Raman emission of nearby dye molecules. A novel field integration technique is proposed which aims to mimic the experiments which were carried out using fluorescence confocal microscopy.
Contents

Abstract 2

Acknowledgements 3

1 The optical response of metallic nanoparticles 22
 1.1 Introduction to particle plasmons 22
 1.2 Material parameters 23
 1.2.1 The Drude-Lorentz model 23
 1.2.2 The Drude model 26
 1.3 Plasmonics 29
 1.3.1 Resonances in metallic wires and particles 29
 1.3.2 Local field enhancement 30
 1.3.3 Metamaterials 31
 1.4 The physics of particle plasmons 32
 1.4.1 Scattering by particles in the electrostatic regime 32
 1.4.2 Cross-sections of particles in the electrostatic regime 33
 1.4.3 Larger particles and other geometries 34

2 Single particle response 36
 2.1 Introduction 36
 2.2 Modelling techniques 36
 2.2.1 Mie theory 36
 2.2.2 Finite element modelling (FEM) 37
 2.2.3 Empirical polarisability functions 38
 2.3 Particle fabrication 40
 2.4 Dark-field scattering spectroscopy 40
 2.4.1 Dark-field procedure 42
 2.4.2 Drawbacks of dark-field spectroscopy 48
 2.4.3 Simulated scattering spectra 49
 2.5 Results from Mie theory 50
 2.5.1 Cross-sections and the effect of the surrounding index 50
 2.5.2 The effect of changing particle size 52
 2.5.2.1 The electrostatic regime 52
 2.5.2.2 Larger particles 55
2.5.3 Higher order modes .. 55
2.5.4 Modes in isolation 58
2.5.5 Very large particles 62
2.6 Angular scattering profiles as calculated by Mie theory 65
 2.6.1 Dipolar mode of a small nanosphere 65
 2.6.2 Higher order modes of larger spheres 68
 2.6.3 Superposition of scattered light from several modes 70
2.7 Validity of FEM — comparison with Mie theory 73
2.8 Dark-field results .. 74
 2.8.1 Experimental .. 74
 2.8.2 Modelling ... 75
 2.8.3 Field profiles — identification of modes 78
2.9 Summary ... 81
3 Extinction and scattering of metallic nanoparticles in ordered and random arrays 82
 3.1 Introduction ... 82
 3.2 Dipole field ... 83
 3.3 Particle pairs ... 88
 3.4 2D arrays of nanoparticles 94
 3.5 Retrieving the single particle response from an array 95
 3.6 Extinction of ordered arrays 97
 3.7 Introducing random particle positions 98
 3.8 Coupled dipole approximation (CDA) and verification of its accuracy 99
 3.9 Extinction of random arrays 103
 3.10 Experimental extinction of ordered arrays 108
 3.11 Experimental extinction of random arrays 111
 3.12 Summary .. 114
4 Interaction between particles which support higher order modes 115
 4.1 Introduction ... 115
 4.2 Interparticle coupling in 2D arrays of metal spheres 116
 4.3 Dense, square arrays of metallic nanospheres 118
 4.4 Method of modelling periodic arrays of nanospheres 120
 4.5 Particle arrays .. 123
 4.6 Finite element modelling 124
 4.7 Varying the incident angle 128
 4.8 Summary ... 130
5 Near-field fluorescence enhancement 132
 5.1 Introduction ... 132
 5.1.1 Two-tier structures 133
List of Figures

1.1.1 A dark-field microscope image of 50nm thick silver discs (diameter 50 to 150nm) surrounded by glass. This demonstrates the dependence of the resonance wavelength on the geometry of the particles. 23
1.2.1 The Drude-Lorentz permittivity (real and imaginary) for a hypothetical material (in order to illustrate the main features) with $\omega_0 = 2$, $\omega_p = 3$, and $\gamma = 0.4$. ... 26