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Abstract

Articular cartilage (AC) is a soft connective tissue that lines the ends of synovial bones in
joints. It is responsible for absorbing impact loads and resisting shear associated with joint
articulation. Pathologies such as osteoarthritis have symptoms including degradation and
sometimes complete loss of the articular cartilage, which can lead to poor load support and
considerable pain. There has been considerable work in the field of cartilage mechanics.
The transient deformation behaviour of loaded cartilage has been examined using several
different experimental approaches, and complex models have been developed to accurately

describe this behaviour.

The microstructural response of AC to load is less well understood, however. The aim of
this work was to investigate the anisotropy and heterogeneity of cartilage and its effect on
the load bearing characteristics. Firstly, existing experimental data were used to create
a layered finite element model of cartilage under load. Using this model, three sets of
material parameters were evaluated for their suitability in reproducing experimentally
observed strains, as well as minimising peak stresses. It was found that only by including
the heterogeneity associated with collagen fibre orientation could the layer boundary de-

formations be exactly modelled, whilst preventing potentially damaging interfacial shear.

Tensile testing of cartilage from the equine metacarpophalangeal joint, using samples
obtained from each individual layer, was performed to validate findings from the model
as well as to determine the variation in mechanical properties in regions of different
weight bearing characteristics. It was found that the tensile stiffnesses varied with depth
as predicted by the model, demonstrating an average value of 31.3 MPa at the surface
and 9.4 MPa in the radial zone, although there was considerable variation. Polarised
light microscopy was used to determine the preferential collagen orientation, as well as
qualitatively assess the angular spread and other patterns in collagen organisation. It was
found that the appearance of the collagen network varied both with depth and location
on the joint, with high weight bearing regions showing more isotropic fibre distributions

below the surface than low weight bearing regions.

To directly probe the microstructural response of AC to load, the tensile loading rig



was modified to allow simultaneous imaging of the sample using two photon fluorescence
microscopy. This allowed the relative displacement of cells and elastin fibres, which are
intrinsically fluorescent, to be observed at increasing levels of strain. From locations and
orientations of these features, the strain field could be calculated at two length scales: in
the vicinity of specific elastin fibres (microns) and intercellular strains averaged over whole
stacks (hundreds of microns). The strains at the two different scales did not correlate,
suggesting that the microscopic strain environment varies considerably. The elastin fibre
network was also investigated, and it was found that fibres appear to interconnect both

at pericellular matrices, as well as at 'nodes’ in the extracellular matrix.
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