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INTRODUCTION

The time series properties of a wide range of variables are of long-standing and continuing

interest in the accounting and finance literature.  For example, O’Hanlon (1995) reports that

cited motivations for the study of earnings dynamics include, inter alia, the desire to understand

the true earnings process in order to identify earnings smoothing practices; the desire to observe

the impact of accounting policy changes on the earnings generating process; and the role of

earnings forecasts in equity valuation.  In this last respect, Peasnell (1982) and Ohlson (1991)

made explicit the import of the time series properties of residual income, and paved the way for

a wealth of theoretical development and empirical testing.  In capital markets research,

investigation of the dynamics of asset prices and / or returns has been central to investigation of

market efficiency.  After the early, empirical work of Kendall (1953), which suggested, in

essence, a random walk generating process for asset prices, the formulation of questions

concerning the efficiency of capital markets was refined, and a large body of theoretical and

empirical literature, of increasing sophistication, has developed (Fama, 1970, 1991).

Often central within in the literature have been questions concerning the suitability of

application of various time series modelling techniques, and a recurring issue has been whether

or not time series may be best described by random walk, submartingale or martingale models.

In the case of earnings dynamics, considerable effort has been expended upon identification, for

example, of the form of autoregressive integrated moving average process best suited to

modelling earnings series.  The forecasting performance, however, of such models has generally

been found not to dominate random walk models of behaviour (see, for example, Watts &

Leftwich, 1977; Callen, Cheung, Kwan & Yip, 1993).  With a regard to a range of financial

ratios, Konings and Roodhooft (1997) considered dynamic evolution of the cross-sectional

distribution using a non-parametric Markovian approach, questioning the pertinence of

estimating partial adjustment models in earlier work and the associated maintained assumption

of convergence.  They demonstrated that there is no transition of financial ratios towards some

industry average, and that the ratios show rich dynamics.  In capital markets research, an

established paradigm of widespread support for the efficient markets hypothesis, as

acknowledged by Jensen (1978), has been subject to increasing challenge in recent years, with

the development of so-called ‘behavioural finance’ (Schleifer, 2000).

As is well known, there are technical difficulties in distinguishing whether or not series are truly

random, and a constant vigilance against apparently parsimonious but mis-specified models

must be maintained.  Therefore, in accounting and finance, as elsewhere in the social and

natural sciences, there is strong interest in developing the battery of relevant tests.



4

This paper presents a new framework for testing hypotheses concerning the dynamics of time

series by analysis of the incidence of patterns in the direction of movement of the series as

against a null hypothesis of symmetrical random behaviour.  It may be used as a primary

methodology for the characterisation of time series dynamics, and also as a complement or

response to findings from other tests which provide inferences as to the dynamics, stationarity

and / or random walk nature of series.  It may be applied widely - to time series which are

measured on the nominal, ordinal, interval or ratio scales - and may be combined with a variety

of specific statistical tests.

Thus, the framework provides a new approach to the investigation of hypothesis concerning the

dynamics of interval or ratio scale time series, and also may be of particular interest to

researchers who seek to analyse and draw inferences from ordinal time series data, such as

business confidence survey results, brokers’ buy and sell recommendations, etc. over time.  A

further application may be in the testing of pseudo random number generators, in addition or as

a complement to the extant theoretical and empirical tests1.

The paper proceeds as follows:  section 2 sets out the framework; section 3 deals with

generation of distributions under the null hypothesis; section 4 discusses calculation of the

moments of probability distributions under the null; section 5 gives an illustrative application;

and section 6 concludes.  There are two appendices.

DATA CHARACTERIZATION, HYPOTHESES AND TESTING

Data characterization

Given a time series xt, for t = 0 to n, measured on at least an interval scale and stripped of drift

and time trend effects, the first difference time series may be generated as follows:

ntxxx ttt to11 =−=Δ − (1)

This may then be transformed into the binary variable tx'Δ :

nt
x

x t
t to1

otherwise

0if
' =







 >Δ

=Δ



(2)
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Alternatively, xt might be measured on an ordinal scale.  In this case, let the scale’s equivalence

classes be defined by true attribute A(x) and denoted by labels L(x) – both of which may be

ranked with a meaningful comparator relation “>”.2  Further, let the lowest and highest ranked

equivalence classes (where either or both exist) be denoted Llowest and Lhighest respectively.  Then

tx'Δ may be generated as follows:

( ) ( )
( ) ( ) ntLxLxL

xLxL

x highesttt

tt

t to1

otherwise

if

if

' 1

1

=
















==

>

=Δ −

−







(3)

In the particular case of an ordinal scale upon which A(xt) represents a comparison between

some matter at time t and that matter at time t-1 (e.g. “more confident”), then tx'Δ  may be

generated as follows given m, Lhighest > m ≥  Llowest:

( )
nt

mxL
x t
t to0

otherwise

if
' =







 >

=Δ



(4)

Finally, xt might be measured on a nominal scale.  Let the scale’s equivalence classes be defined

by true attribute A(x) and denoted by labels L(x), and let one of these equivalence classes be

denoted B.  Then tx'Δ  may be generated as follows:

( )
nt

BxL
x t
t to0

otherwise

if
' =







 =

=Δ



(5)

Null hypothesis

The null hypothesis is one of symmetrical random behaviour, i.e. H0: tx'Δ  is a random binary

sequence, with probability [] = probability [].  For xt measured on at least the interval scale,

the null hypothesis is equivalent to the hypothesis that xt follows a pure random walk, i.e.

ttt uxx += −1 , the u t being independent stochastic error terms with zero mean.  The

homoscedasticity (or otherwise) of the ut has no impact on the analysis which follows.

Alternative hypotheses and hypothesis testing
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By application of some alternative hypothesis (H1) as to the dynamics of the series xt, sub-

sequences of tx'Δ  may be identified whose incidence of occurrence will be of particular

interest in comparison to expectations under the null.  For example, consider analysis of a time

series of annual data, where the alternative hypothesis under investigation is that the series is

cycling with period between four and six years (as against the null set out above).  It is inferred

that, inter alia, the number of incidences of periods of short term (say two to three year)

sustained increase in xt immediately followed by short term decrease, or vice versa, should be

greater than that expected under H0.  Therefore, incidences of occurrence of the following

sequences of tx'Δ  are of special interest:  , , , , , ,

, .  (Note that the terminology ‘sub-sequence’ is dropped at this point in

favour of the less cumbersome ‘sequence’).

Having decided upon those sequences whose incidence of occurrence is of interest, the number

of occurrences of any such sequence, S, may then be counted to yield the count IS.  This may

then be compared to the distribution of the number of occurrences of that sequence generated

under the null hypothesis and statistical inferences drawn.  A variety of specific tests might be

employed, including Kolmogorov-Smirnov or other ‘goodness of fit’ tests.  Further, writing the

expected number of occurrences of the sequence of interest under the null as Sµ  and its

standard deviation as Sσ , and given M time series in the data set which are subject to the same

hypotheses, then application of the central limit theorem yields, for sufficiently large M, the

standard normal z-statistic:

M

MI

Z
S

S

M

j
S

S
σ

µ−

=
∑
=1

(6)

subject to mutual independence and common distribution of the random variables, and existence

of the mean and variance for each (Feller, 1968; Lindeberg, 1922).3

DISTRIBUTIONS OF OCCURRENCE OF SUB-SEQUENCES UNDER THE NULL

Definition:  Let Bn denote a series of outcomes of n independent Bernoulli trials, with +∈ Nn ,

Prob [“success”] ≡ Prob [] = Prob [“failure”] ≡ Prob [] = 0.5.
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The series tx'Δ  under the null hypothesis may then be represented as one of the 2n possible

series Bn.  The task in hand, therefore, is to calculate the distribution of the number of

occurrences of a sequence of interest over all 2n possible series Bn.  This may be approached by

computational exhaustion, but, approached in this way, the task grows exponentially as n

increases.  Therefore, an analytic expression for the distribution is desirable.

Definitions:  Let lS  be a sequence of outcomes of l Bernoulli trials, +∈ Nl .  Let ( )baSl , , with

+∈Na , +∈ Nb  and lba ≤≤≤1 , be the sub-sequence from the a th to the b th terms

(inclusive) of S.  Let the overlap order of S be denoted ( )lSp  and defined as follows:  ( )lSp  =

max(i) such that ( ) ( )lilSiS ll ,1,1 +−≡ , Ni∈ .  Let pO  denote the set of sequences of

outcomes of Bernoulli trials with overlap order p.  It is noted that lp ≤≤0 .  It is further noted

that ( )0,1lS  and ( )llSl ,1+  are not defined, so in the case of no overlap p = 0 is correct.

The concept of overlap order is demonstrated in the following examples, with parentheses used

to highlight the maximum potential overlap as each of the example sequences is repeated:

 is in 0O (     )(     )(     ) (• • •

 is in 1O (   {)  (}  {) • • •

 is in 2O (    { )  ( }  { ) • • •

Definition:  Let ( )plinX ,,,  be the number of series Bn in which a sequence lS  from set pO

occurs i times, Ni∈ .

The following are evident:

if ln = then ( ) 1,,1, =plnX (7)

if pln −= 2 then ( ) 1,,2, =plnX (8)

and, generally, for i > 0:

if ( ) ( ) pplipiiln +−=−−= 1 then ( ) 1,,, =plinX (9)
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if ( ) pplin +−< then ( ) 0,,, =plinX (10)

The distribution of ( )plinX ,,,  represents the distribution under the null hypothesis which is

sought in respect of a sequence of interest of length l from set pO .  An analytic expression for

this distribution is derived in Appendix 1 for the cases p = 0 and p = 1.  This expression is in the

form of a backwards recursive formula involving an intermediate variable, ( )plinY ,,, , which

is also derived in Appendix 1.  Appendix 2 gives a numerical illustration of the reasoning in

these derivations.

The analytic expressions are as follows:

( )

( ) ( ) ( )

( )
























+−<

+−≥−

=

∑
>

pplin

pplinpljnXCplinY

plinX
ij

i
j

for0

for,,,,,,

,,, (11)

where, writing ( )[ ] kpplin =+−− :

case p = 0

( )














<

≥⋅
=

+

iln

ilnC
linY

k
k

ki

for0

for2
0,,, (12)

case p = 1

( ) ( ) ( )
( )( )

( )

( ) 





























+−<

+−≥

>
−⋅⋅⋅−

=

= ∑
−−

=

+
−

−

11for0

11and

0for
121

0for 2

1,,,
1,0max

1

lin

lin

i
CC

i

linY
k

ik
j

jj
j

ji
jk

ik

n

(13)

These expressions have been verified computationally for n up to 31 for various l.
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PROBABILTY DISTRIBUTION MOMENTS UNDER THE NULL HYPOTHESIS

For given n, l, and p, we write:

( ) iYplinY =,,, (14)

( ) iXplinX =,,, (15)

The probability distribution, iX ' , for the number of series nB  in which sequence of interest of

length l from set pO  occurs i times is given by:

n
i

i

X
X

2
' = (16)

We also calculate iY '  as follows:
n
i

i

Y
Y

2
' = (17)

From expression (11), we deduce that:

i
ij

i
j

i XCY '' ∑
≥

= (18)

Expression (18) encapsulates the useful result that iY '  is a factorial moment generating

function4 for iX ' .  Using ()⋅E  to denote expectation, and with readily calculable

Zi ∈⋅⋅⋅ −121 ,,, ααα :

iY '
( )( ) ( )( ) ( )

!

''' 1
1

1

i

XEXEXE i
i

i αα +⋅⋅⋅++
=

−
− (19)

Expression (19) allows the central moments of the distribution of 'X  to be deduced readily.  In

particular, the fist and second order central moments are given by:

( ) 1'' YXE = (20)

( )2112 '''2)'( YYYXSD −+⋅= (21)
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ILLUSTRATIVE APPLICATION

Consider a time series xt of annual data measured on an interval scale over, say, 32 years.  The

binary time series, tx'Δ , generated by application of expressions (1) and (2) then has 31 terms.

It is decided to analyse, inter alia, incidences of occurrence of  as a sub-sequence of tx'Δ ,

with the specific alternative hypothesis that the number of occurrences of this sequences will be

greater than that expected under the null.  In this case, n = 31, l = 4 and p = 0.  Table 1 shows

the pertinent distributions of Y, Y’, X and X’ as calculated from expressions (12), (17), (11) and

(16) respectively, and includes the mean and standard deviation of X’ as calculated from

expressions (20) and (21) respectively. It also includes the cumulative probability distribution of

X’.

*** Table 1 about here ***

If the observed number of occurrences of  in the series is four, say, then we may deduce

from the cumulative probability distribution that the that the null hypothesis may be rejected in

favour of the alternative with 95.7% confidence; if the observed number is five, the confidence

level is 99.6%; etc.

If we have, say, a sample of say, 53 such series (all subject to the same hypotheses, and subject

to usual caveats concerning mutual independence, etc.), and the number of observed

occurrences of  across the whole sample is 112, then expression (6) yields the standard

normal z-statistic 2.60; and the null hypothesis may be rejected in favour of the alternative with

confidence of over 99.5% (one tail test).

CONCLUSIONS AND FURTHER WORK

Analytic expressions for distributions of incidence of occurrence of sequences with overlap

order equal to 0 or 1 within series of Bernoulli trials, and for the moments of those distributions,

have been produced under the null hypothesis that the series of Bernoulli trials are

symmetrically random.  These expressions may readily be used for speedy calculation of

statistics which allow the testing of a range of hypotheses concerning dynamics of time series

measured on any scale.
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The restriction of the analytic expressions to the cases of overlap order p = 0 and p = 1 is not

onerous.  For example, if the incidence of monotone increase (or decrease) is of interest,

sequences of interest for test purposes might be chosen as , , , etc., which are

all in set O0.  Similarly for incidence of monotone decrease.  If the incidence of monotone

increase followed by monotone decrease (or vice-versa) is of interest, sequences of type ,

, , etc. are also all in the set O0.  If the incidence of monotone increase

or decrease of some exact duration in time periods is of interest, sequences of the type ,

, etc. are all in the set O1.  Nevertheless, theoretical work to further generalise the

analytic expressions is desirable.
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APPENDIX 1:  DERIVATION OF ANALYTIC EXPRESSIONS

Introduction and overview

Definitions of Bn, lS , ( )baSl , , overlap order ( )lSp , pO  and ( )plinX ,,,  (including the

permissible arguments for these) are as per the third section of the paper.

The derivations are based upon combinatorial mathematics.  The basic approach is to consider a

base series of Bernoulli trials which contains a number of occurrences of a sequence of interest;

to count the ways in which this may be augmented by the addition of terms whilst preserving

the occurrences of the sequence of interest; and to thereby generate general analytic expressions

for ( )plinX ,,,  for the cases p  = 0 and p = 1.  Therefore, the derivations start with some

definitions designed to unambiguously define a framework in which we may discuss the

building of series of Bernoulli trials and the ‘legality’ of those builds.

Definitions

Given a series nB  containing i occurrences of a sequence lS :

Let ‘allowable building positions’ (ABPs) be defined as follows, in order to define exact

positions at which terms may be added / inserted to augment the series nB .  The idea is to

allow addition of terms before, between or after occurrences of lS .  (Note that arbitrary

choices between possible candidate positions have been made):

If i > 1, let ‘allowable building positions’ (ABPs) denote: (i) the positions at the end

of the series nB  - giving two ABPs, to be termed ‘exterior ABPs’; and (ii) the

positions immediately to the right of the first (i-1) occurrences of lS  - giving a

further (i-1) ABPs, 1≥i , to be termed ‘interior ABPs’.

If i = 1, let ‘allowable building positions’ (ABPs) denote the positions at the end of

the series nB  - giving two ABPs, to be termed ‘exterior ABPs’.  Note that in this

case there are no interior ABPs.
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If i = 0, let ‘allowable building position’ (ABP) denote the position at the end of the

series nB  - giving a single ABP only.

Let ‘build’ denote the generation of the series jnB +  from the series nB  by the addition of

j terms one by one to ABPs, +∈ Nj .

Let ‘legal build’ denote a build from nB  to jnB +  which, with each term added, maintains

the original i occurrences of the sequence lS .

Let ‘illegal build’ denote any build which is not a legal build.

Let ‘illegal addition’ denote the addition of a term in an allowable building position but

which results in an illegal build.

Derivation:  case p = 0

In this case, statement (9) becomes: if iln =  then ( ) 10,,, =linX .  We now consider the

specific case in which l divides n where il = N1, say.  There are then i contiguous and non-

overlapping occurrences of the sequence of interest of length l.  There are i+1 allowable

building positions where terms of either type (i.e.  or ) may be added to generate legal builds

as n is increased beyond N1.  See, for example, Figure 1.

Figure 1:  example:  i = 3, l = 6, p = 0,

Situation when n = 18, X(18,3,6,0) = 1

Therefore, ( )0,,, linY  defined as follows represents the number of series nB  in which the

sequence of interest occurs at least i times5:

 

allowable building positions -
terms  or  may be added in these positions
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( )
( )

( )( ) ( )

















<

≥
=

−
−

−+

iln

ilnC
linY

iln
iln

ilni

for0

for2
0,,, (22)

Writing ( )[ ] kpplin =+−− , and given that we are dealing with case p = 0, expression (22)

can be seen to be equivalent to expression (12) (QED).  For ease of reading, notice that k = (n-

il) is the number of Bernoulli trials in the series in excess of the number N1 at which ( )0,,, linX

equalled 1, i.e. k represents the number of terms added to the series 
1N

B  in which i occurrences

of the sequence of interest was first achieved.

Now, the ( )0,,, linY  as defined take no account of the fact that as n increases beyond N1 it will

reach (i+1)l, (i+2)l, and so on; therefore, it ignores the possible advent of occurrence of (i+1),

(i+2), etc. incidences of the sequence of interest.  In order to derive ( )0,,, linX , the ( )0,,, linY

must be reduced to remove the number of series which need be counted in ( )0,,, ljnX  rather

than in ( )0,,, linX , +∈ Nj , ij > .  Consider the case l divides n where, say, jl = N2 and

( )0,,, ljnX  = 1.  There are then j contiguous non-overlapping occurrences of the sub-sequence

interest of length l, and the point of interest here is to deduce the count within ( )0,,,2 liNY

which is (properly) accounted for by ( )0,,,2 ljNX .  Imagine the series containing j contiguous

occurrences of the sequence of interest as being built (by the addition of terms to the series)

from one which contained exactly i occurrences:  these original i occurrences of the sequence of

interest may be seen to coincide with any of the j occurrences of the sequence of interest in the

series which is built, i.e. ( )0,,,2 ljNX  properly accounts for jCi of the count within

( )0,,,2 liNY .  Therefore, the ( )0,,, linX  may be calculated by adjustment of the ( )0,,, linY  by

application of the following backwards recursive formula:

( )

( ) ( )

























<

≥−

=

∑
>

iln

ilnljnXClinY

linX
ij

i
j

for0

for0,,,0,,,

0,,, (23)

It is noted that when i = 0 this formula may be re-arranged to give, as expected,

( )∑
≥

=
0

20,,,
j

nljnX .  Expression (23) is equivalent to expression (11) for p = 0 (QED).
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Derivation:  case p = 1

In this case, statement (9) becomes: if ( ) 11 +−= lin then ( ) 1,,, =plinX .  We now consider

the specific case in which ( ) 11 +−li = N3, say.  There are then i occurrences of the sequence of

interest of length l, each of which overlaps its right and left hand immediate neighbours (where

such exist) by one term.  There are i+1 allowable building positions where terms of either type

(i.e.  or ) may be added to generate builds as n is increased beyond N3.  In order, however,

that such builds are legal builds, the first term added to each of the interior allowable building

positions must be of the same type as that of the overlap term in the sequence of interest.  There

is no such restriction on any terms added to the exterior allowable building positions, or on the

second subsequent terms added to interior allowable building positions.  See, for example,

Figure 2.

Figure 2:

Example:  sequence of interest , i = 3, l = 5, p = 1

Situation when n = 13, X(13,3,5,1) = 1

Therefore, to calculate the number of distinct series nB  in which the sequence of interest occurs

at least i times, being ( )1,,, linY , we adopt the following approach.  This approach is illustrated

numerically in Appendix 2.

Definition:  Let jL to be the number of possible distinct series nB  for n > N3 which can be built

from 
3N

B  by addition of terms one by one to allowable building positions, the first j of which

additions are illegal additions to distinct interior allowable building positions,

11, −≤≤∈ ijNj .

           

exterior allowable building positions -
terms  or  may be added in these

positions



interior allowable building positions -
first term added in these positions must be
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We may then deduce the number of distinct nB  for n > N3 built from 
3N

B  via illegal builds to

be:

( )( )( ) ( ) ( )∑
−

=
−− −−=⋅⋅⋅−−⋅⋅⋅−−−

1

1
12321 11

i

j
j

j
ii LLLLLL (24)

Writing ( )[ ]11 +−−= link , we calculate jL  as:

( ) ( )jk
jk

jkij
j

i
j CCL −

−
−+− ⋅⋅⋅= 211 (25)

The total number of distinct nB  for n > N3 built from 
3N

B  via all builds (legal and illegal) is

given by ( )0,,, linY , calculated using expression (22) adapted to the following and again

writing ( )[ ]11 +−−= link :

( )
( )

( ) 













+−<

+−≥
=

+

11for0

11for2
0,,,

lin

linC
linY

k
k

ki

(26)

Therefore, the number of distinct nB  built from 
3N

B  via legal builds, ( )1,,, linY , is given by

the following expression, deduced by combination of expressions (24), (25) and (26):

( ) ( ) ( )
( )( )

( )

( ) 





























+−<

+−≥

>
−⋅⋅⋅−

=

= ∑
−−

=

+
−

−

11for0

11and

0for
121

0for 2

1,,,
1,0max

1

lin

lin

i
CC

i

linY
k

ik
j

jj
j

ji
jk

ik

n

(27)

This expression is the same as expression (13) (QED).

The logic of calculation of ( )1,,, linX  from ( )1,,, linY , and generally of ( )plinX ,,,  from

( )plinY ,,, , follows similarly to that used in the case p = 0.  Therefore, we have:
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( )

( ) ( ) ( )

( )
























+−<

+−≥−

=

∑
>

11for0

11for1,,,1,,,

1,,,

lin

linljnXClinY

linX
ij

i
j

(28)

which is equivalent to expression (11) for p = 1 (QED).

More generally, given an analytic expression for ( )plinY ,,, :

( )

( ) ( ) ( )

( )
























+−<

+−≥−

=

∑
>

pplin

pplinpljnXCplinY

plinX
ij

i
j

for0

for,,,,,,

,,, (29)
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APPENDIX 2: NUMERICAL ILLUSTRATION OF REASONING IN THE DERIVATION
FOR CASE p = 1

Consider the sequence of interest , for which l  = 6 and p = 1, and suppose that

( )1,6,4,26X  is sought, i.e. the number of series of 26 Bernoulli trials in which the sequence of

interest occurs four (and only four) times.

When n equals ( ) 11 +−li  = 21, there is just one series of 21 Bernoulli trials in which the

sequence of interest is repeated four times, i.e. ( )1,6,4,21Y  = 1.  We now seek to add 26 – 21 =

5 = k terms to that series, maintaining at each addition the four ‘original’ occurrences of the

sequence of interest.  There are two exterior allowable building positions where either  or 

may be added; and there are i – 1 = 3 interior allowable building positions where, in each case,

the first term added must be .

We are concerned, therefore, with: (a) counting the number of ways in which 26B  may be built

from the 21B ; and (b) deducting the number of such builds which are illegal.

Calculation (a)  Is given by expression (26), yielding: 5
5

9 2⋅C  = 4,032

Calculation (b)  Requires calculation of L1, L2 and L3 as given by expression (25)

L1 = number of series of 26 Bernoulli trials built from the original series of 21 Bernoulli

trials by first making the illegal addition of a single   to one of the three interior

allowable building positions, then addition of four more terms of either type amongst the

five allowable building positions = ( )( )44
81

1
3 21 ⋅⋅⋅ CC  = 3,360

L2 = number of series of 26 Bernoulli trials built from the original series of 21 Bernoulli

trials by first making the illegal addition of a single   to two of the three interior

allowable building positions, then addition of three more terms of either type amongst the

five allowable building positions = ( )( )33
72

2
3 21 ⋅⋅⋅ CC  = 840

L3 = number of series of 26 Bernoulli trials built from the original series of 21 Bernoulli

trials by first making the illegal addition of a single  to each of the three interior building
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positions, then addition of two more terms of either type amongst the five allowable

building positions = ( )( )22
63

3
3 21 ⋅⋅⋅ CC  = 60

In illustration of expression (24), note that L3 is counted in L2, so L2 – L3 = 780 series of 26

Bernoulli trials are built from the original series of 21 Bernoulli trials by first making exactly

two non-allowable additions into two separate interior allowable building positions, and then

proceeding with “legal” additions.  But these L2 – L3 are counted in L1, so L1 – (L2 – L3) = 2,580

series of 26 Bernoulli trials are built from the original series of 21 Bernoulli trials by first

making exactly one non-allowable addition into an interior allowable position, and then

proceeding with “legal” additions.  It is this number which must be eradicated from the count

made under Calculation (a).  This is equivalent to imposing the condition that in building the

series of 26 Bernoulli trials by the addition of terms, we must start and continue using only legal

additions.

Therefore, ( )1,6,4,26Y  = 4,032 – 2,580 = 1,452.

This calculation is encapsulated and generalised in expression (27).

Since ( )1,6,5,26Y  = 1, because 26 = ( ) 115 +−l , and ( )1,6,,26 iY  = 0 for all i  > 5,

( )1,6,4,26X  may be calculated from expression (28) as: 1452,1 4
5 ⋅− C  = 1,447.
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NOTES

1. See, for example, Knuth (1998) section 3.

2. Nomenclature regarding attributes, labels and ranking of ordinal scale classes follows Siegel and

Castellan (1988) section 3.3.

3. Existence of mean and variance being satisfied (see sections on distributions and their moments),

conduct of a z-test is against the null hypothesis as expanded to include the mutual independence of

the time series under investigation.

4. Kendall et al (1987) sections 3.7-3.11 give a general treatment of factorial moments and associated

generating functions.

5. Noting that the number of possible distinguishable arrangements of a indistinguishable objects into b

distinguishable compartments is a
ba C1−+ , where y

xC  represents combination and equals 
( )!!

!

yxy

x

−

with ( ) +∈+∈ NyxNy ,  (see, for example, Gray, 1967 pp. 97-98).
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TABLE 1

Distributions in respect of the incidence of occurrence of sequence  within series of 31 independent Bernoulli trials

 Number of occurrences of sequence of interest (i)

 0 1 2 3 4 5 6 7 8 or more
Mean SD

Y(31,i,4,0) 2,147,483,648 3,758,096,384 2,516,582,400 807,403,520 127,008,768 8,945,664 219,648 960 0 n/a n/a

Y'(31,i,4,0) 1.0000 1.7500 1.1719 0.3760 0.0591 0.0042 0.0001 0.0000 0.0000 n/a n/a

X(31,i,4,0) 216,847,936 682,524,224 770,242,368 384,465,728 85,541,568 7,647,936 212,928 960 0 n/a n/a

X'(31,i,4,0) =
probability

0.1010 0.3178 0.3587 0.1790 0.0398 0.0036 0.0001 0.0000 0.0000 1.7500 1.0155

cum X'(31,i,4,0) =
cum probability

0.1010 0.4188 0.7775 0.9565 0.9963 0.9999 1.0000 1.0000 n/a n/a n/a


