The Effects of Estrogenic Endocrine Disruptors on the Osmoregulatory Functions in Euryhaline Fish

Submitted by Noura Jalal Al-Jandal, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences in January 2011

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement

I certify that all material in this thesis which is not my own work has been identified and that no material previously submitted and approved for the award to a degree by this or any other University.

Signature

Noura Al-Jandal
Osmoregulation is an essential process to maintain water and ionic balance and when euryhaline fish move between freshwater and seawater environments as part of their life cycle this presents additional osmoregulatory challenges. Migrating fish can be exposed in both environments to pollutants such as endocrine disrupting chemicals (EDCs) that include natural hormones (e.g. 17β-estradiol; E2), synthetic hormones (e.g. 17α-ethinylestradiol; EE2), and industrial chemicals (e.g. nonylphenol). The focus of this thesis was to study the effects of different categories of EDCs on the osmoregulatory functions of euryhaline fish such as three-spined sticklebacks (Gasterosteus aculeatus) and rainbow trout (Oncorhynchus mykiss). Osmoregulatory variables (such as osmolality, water and ionic content) were compared in plasma and tissues (white muscle and carcass) of rainbow trout. This validated the use of specific tissue parameters as a surrogate of plasma responses to various osmoregulatory challenges. Waterborne exposure to 17α-ethinylestradiol revealed differential sensitivity of vitellogenesis in the three-spined sticklebacks (no induction) and rainbow trout, but had a significant effect on calcium homeostasis in both species. Intraperitoneal implants of 17β-estradiol reduced CaCO₃ production and apparent water absorption in the intestine and increased in tissue calcium stores of seawater-acclimated trout, but fish were able to compensate and showed no overall osmoregulatory disturbance. Waterborne exposure to nonylphenol in freshwater trout was also investigated, but no effects on osmoregulation were found up to 2 ng/l. Overall, estrogens can affect osmoregulation differentially in euryhaline fish species, and sometimes at EDC levels lower than the threshold for reproductive effects (i.e. vitellogenin induction).
CONTENT

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>1</td>
</tr>
<tr>
<td>THESIS ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>3</td>
</tr>
<tr>
<td>CO-AUTHORS DECLARATION</td>
<td>6</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>7</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>11</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER 1- GENERAL INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1. OVERVIEW</td>
<td></td>
</tr>
<tr>
<td>2. ENDOCRINE DISRUPTORS</td>
<td></td>
</tr>
<tr>
<td>2.1 Estrogens as endocrine disruptors</td>
<td></td>
</tr>
<tr>
<td>2.1.1 17α-ethinylestradiol (EE2)</td>
<td>19</td>
</tr>
<tr>
<td>2.1.2 17β-estradiol (E2)</td>
<td>20</td>
</tr>
<tr>
<td>2.1.3 4-nonylphenol (NP)</td>
<td>22</td>
</tr>
<tr>
<td>2.2 Endocrine control of reproduction</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Vitellogenin induction as a biomarker for environmental estrogen exposure</td>
<td>24</td>
</tr>
<tr>
<td>2.4 Non-reproductive targets of endocrine disruptors</td>
<td>25</td>
</tr>
<tr>
<td>3. OSMOREGULATION</td>
<td>26</td>
</tr>
<tr>
<td>3.1 Osmoregulation and ion balance in fish</td>
<td>26</td>
</tr>
<tr>
<td>3.2 Osmotic strategies</td>
<td>26</td>
</tr>
<tr>
<td>3.2.1 Osmoconformers</td>
<td>27</td>
</tr>
<tr>
<td>3.2.2 Osmoregulators</td>
<td>27</td>
</tr>
<tr>
<td>3.2.2.1 Problems for osmoregulators</td>
<td>28</td>
</tr>
<tr>
<td>3.2.2.1.A Seawater fish and osmoregulation</td>
<td>28</td>
</tr>
<tr>
<td>3.2.2.1.B Freshwater fish and osmoregulation</td>
<td>29</td>
</tr>
<tr>
<td>3.3 Major osmoregulatory organs</td>
<td>29</td>
</tr>
<tr>
<td>3.3.1 Gills</td>
<td>29</td>
</tr>
<tr>
<td>3.3.2 Intestine</td>
<td>32</td>
</tr>
<tr>
<td>3.3.3 Kidney and urinary bladder</td>
<td>33</td>
</tr>
<tr>
<td>3.3.4 Skin and opercular membrane</td>
<td>35</td>
</tr>
<tr>
<td>3.4 Euryhaline fish osmoregulation</td>
<td>35</td>
</tr>
<tr>
<td>3.5 Endocrine control of osmoregulation</td>
<td>37</td>
</tr>
<tr>
<td>3.6 Endocrine disruption of osmoregulation</td>
<td>39</td>
</tr>
<tr>
<td>4. PROJECT AIM</td>
<td>41</td>
</tr>
</tbody>
</table>

CHAPTER 2- A comparison of osmoregulatory responses in plasma, white muscle, and carcass of rainbow trout (*Oncorhynchus mykiss*) following acute salinity challenges

1. ABSTRACT
2. INTRODUCTION
CHAPTER 3- Differential osmoregulatory responses to 17α ethinylestradiol between three-spined sticklebacks (Gasterosteus aculeatus) and rainbow trout (Oncorhynchus mykiss)
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 Plasma vitellogenin</td>
<td>84</td>
</tr>
<tr>
<td>4.3 Osmoregulatory variables</td>
<td>87</td>
</tr>
<tr>
<td>4.4 Histological findings</td>
<td>92</td>
</tr>
<tr>
<td>5. DISCUSSION</td>
<td>95</td>
</tr>
<tr>
<td>5.1 Overview</td>
<td>95</td>
</tr>
<tr>
<td>5.2 Comparative estrogenic responses in rainbow trout and stickleback</td>
<td>95</td>
</tr>
<tr>
<td>5.3 Effect of EE2 on osmotic regulation</td>
<td>97</td>
</tr>
<tr>
<td>5.3.1 Osmolality and water body content</td>
<td>97</td>
</tr>
<tr>
<td>5.3.2 Effect on monovalent ions</td>
<td>100</td>
</tr>
<tr>
<td>5.3.3 Effect on divalent ions</td>
<td>102</td>
</tr>
<tr>
<td>6. CONCLUSION</td>
<td>106</td>
</tr>
</tbody>
</table>

CHAPTER 4- Effects of a sublethal waterborne exposure to 4-nonylphenol in freshwater and seawater on ion regulation capabilities in rainbow trout (Oncorhynchus mykiss)

1. ABSTRACT
2. INTRODUCTION
3. MATERIALS AND METHODS
 3.1 Fish
 3.2 Experimental design and exposure
 3.3 Fish sampling
 3.4 Analytical techniques
 3.4.1 Determination of chemical concentrations in exposure water
 3.4.2 Plasma ions analysis
 3.5 Statistical analysis
4. RESULTS
 4.1 Determination of tank water concentrations of nonylphenol
 4.2 Plasma vitellogenin
 4.3 Osmoregulatory variables
5. DISCUSSION
 5.1 The concentration of nonylphenol in the exposure tanks
 5.2 Plasma vitellogenin
 5.3 Osmoregulatory variables

CHAPTER 5- The influence of 17β-estradiol on intestinal calcium carbonate precipitation and osmoregulation in seawater-acclimated rainbow trout (Oncorhynchus mykiss)

1. ABSTRACT
2. INTRODUCTION
 2.1 Osmoregulation by marine teleost fish
 2.2 Role and mechanism of the intestine osmoregulation
 2.3 The role of estrogens in fish osmoregulation
2.4 The aim of the study

3. MATERIALS AND METHODS

3.1 Experimental animals and acclimation to seawater
3.2 Implantation of 17β-estradiol (E2)
3.3 In vivo experimental procedures and sampling
3.4 Analytical techniques for plasma and muscle variables
3.5 Determination of carbonate content of intestinal precipitates
3.6 Calculations and data analysis

4. RESULTS

4.1 Plasma vitellogenin and osmoregulatory variables
4.2 Intestinal fluid chemistry and fractional water absorption
4.3 Intestinal excretion of calcium carbonate precipitates

5. DISCUSSION

5.1 Plasma vitellogenin as a marker of elevation of circulating E2
5.2 The role of E2 in promoting absorption of divalent cations via the intestine
5.3 Effect of E2 on calcium homeostasis
5.4 Effect of E2 on the plasma and the white muscle osmoregulatory variables
5.5 Effect of E2 on ion and water handling processes in the intestine

6. CONCLUSION

CHAPTER 6- GENERAL DISCUSSION

REFERENCES