MECHANICAL POWER OUTPUT DURING CYCLING

The efficacy of mobile power meters for monitoring exercise intensity during cycling

February 8, 2011

Submitted by Alfred Nimmerichter, to the University of Exeter as a thesis for the degree of

Doctor of Philosophy in Sports and Health Sciences

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature
Abstract

One of the most meaningful technical innovations in cycling over the past two decades was the development of mobile power meters. With the ability to measure the physical strain under "real world" outdoor conditions, the knowledge of the demand during cycling has improved enormously. Power output has been described as the most direct measure of intensity during cycling and consequently power meters becomes a popular tool to monitor the training and racing of cyclists. However, only limited research data are available on the utilisation of power meters for performance assessment in the field or the analysis of training data. Therefore, the aims of the thesis were to evaluate the ecological validity of a field test, to provide an extensive insight into the longitudinal training strategies of world-class cyclists and to investigate the effects of interval training in the field at difference cadences.

The first study aimed to assess the reproducibility of power output during a 4-min (TT4) and a 20-min (TT20) time-trial and the relationship with performance markers obtained during a laboratory graded exercise test (GXT). Ventilatory and lactate thresholds during a GXT were measured in competitive male cyclists (n = 15; \(\dot{V}O_{2max} 67 \pm 5 \ mL\cdot min^{-1}\cdot kg^{-1}; Pmax 440 \pm 38 \ W \)). Two 4-min and 20-min time-trials were performed on flat roads. Strong intraclass-correlations for TT4 (r = 0.98; 95 % CL: 0.92-0.99) and TT20 (r = 0.98; 95 % CL: 0.95-0.99) were observed. TT4 showed a bias ± random error of \(-0.8 \pm 23 \ W\) or \(-0.2 \pm 5.5 \ %\). During TT20 the bias ± random error was \(-1.8 \pm 14 \ W\) or \(0.6 \pm 4.4 \ %\). Both time-trials were strongly correlated with performance measures from the GXT (p < 0.001). Significant differences were observed between power output during TT4 and GXT measures (p < 0.001). No significant differences were found between TT20 and power output at the second lactate-turn-point (LTP 2) (p = 0.98) and respiratory compensation point (RCP) (p = 0.97).

In conclusion, TT4 and TT20 mean power outputs are reliable predictors of endurance performance. TT20 was in agreement with power output at RCP and LTP 2.

Study two aimed to quantify power output (PO) and heart rate (HR) distributions across a whole season in elite cyclists. Power output and heart rate were monitored for 11 months in ten male (age: 29.1 ± 6.7 y; \(\dot{V}O_{2max} \) 66.5 ± 7.1 \(mL\cdot min^{-1}\cdot kg^{-1} \)) and one female (age: 23.1y; \(\dot{V}O_{2max} \) 71.5 \(mL\cdot min^{-1}\cdot kg^{-1} \)) cyclist. In total, 1802 data sets were sampled and divided into workout categories according to training goals. The PO at the RCP was used to determine seven intensity zones (Z1-Z7). PO and HR distributions into Z1-Z7 were calculated for all data and workout categories. The ratio of mean PO to RCP (intensity factor, IF) was assessed for each training session and for each interval during the training sessions (IF_INT). Variability of PO was calculated as coefficient of variation (CV). There was no significant difference in the distribution of PO and HR for the total season (p = 0.15), although significant differences between workout categories were observed (p < 0.001). Compared with PO, HR distributions showed a shift from low to high intensities. IF was
significantly different between categories \((p < 0.001)\). The \(IF_{INT}\) was related to performance \((p < 0.01)\), although the overall \(IF\) for the session was not. Also, total training time was related to performance \((p < 0.05)\). The variability in PO was inversely associated with performance \((p < 0.01)\). In conclusion, HR accurately reflects exercise intensity over a total season or low intensity workouts but is limited when applied to high intensity workouts. Better performance by cyclists was characterised by lower variability in PO, greater training volume and the production of higher exercise intensities during intervals.

The third study tested the effects of low-cadence \((60 \text{ rev} \cdot \text{min}^{-1})\) uphill \((\text{Int}_{60})\) or high-cadence \((100 \text{ rev} \cdot \text{min}^{-1})\) flat \((\text{Int}_{100})\) interval training on PO during 20 min uphill \((\text{TT}_{up})\) and flat \((\text{TT}_{flat})\) time-trials. Eighteen male cyclists \((\dot{V}O_2\text{max}: 58.6 \pm 5.4 \text{ mL} \cdot \text{min}^{-1} \cdot \text{kg}^{-1})\) were randomly assigned to \(\text{Int}_{60}\), \(\text{Int}_{100}\) or a control group \((\text{Con})\). The interval training comprised of two training sessions per week over four weeks, which consisted of 6 bouts of 5 min at the PO at \(RCP\). For the control group, no interval training was conducted. A two-factor ANOVA revealed significant increases on performance measures obtained from \(GXT\) \((P_{max}: 2.8 \pm 3.0 \%; p < 0.01)\) and \(\dot{V}O_2\) at \(RCP\): \(3.6 \pm 6.3 \%\) and \(4.7 \pm 8.2 \%,\) respectively; \(p < 0.05\); and \(\dot{V}O_2\) at ventilatory threshold: \(4.9 \pm 5.6 \%; p < 0.01\), with no significant group effects. Significant interactions between group and the uphill and flat time-trials, pre vs. post-training on time-trial PO were observed \((p < 0.05)\). \(\text{Int}_{60}\) increased PO during both, \(\text{TT}_{up}\) \((4.4 \pm 5.3 \%)\) and \(\text{TT}_{flat}\) \((1.5 \pm 4.5 \%)\), whereas the changes were \(-1.3 \pm 3.6 \%; 2.6 \pm 6.0 \%\) for \(\text{Int}_{100}\) and \(4.0 \pm 4.6 \%; -3.5 \pm 5.4 \%\) for \(\text{Con}\), during \(\text{TT}_{up}\) and \(\text{TT}_{flat}\), respectively. PO was significantly higher during \(\text{TT}_{up}\) than \(\text{TT}_{flat}\) \((4.4 \pm 6.0 \%; 6.3 \pm 5.6 \%\) pre and post-training, respectively; \(p < 0.001\)). These findings suggest that higher forces during the low-cadence intervals are potentially beneficial to improve performance. In contrast to the \(GXT\), the time-trials are ecologically valid to detect specific performance adaptations.
Contents

I Introduction

1 Basic Principles of Mechanical Power Output 22
 1.1 Power Measurement with Mobile Devices 28

2 Exercise Metabolism 29

II Literature Review

3 Physiology of Cycling 31
 3.1 Anthropometry 31
 3.2 Endurance Performance 32
 3.2.1 Aerobic Power 33
 Central Factors 33
 Peripheral Factors 34
 3.2.2 Aerobic Capacity 38
 Lactate and Ventilatory Thresholds 38
 Maximal Lactate Steady State 41
 Critical Power 42
 Interchangeability of Thresholds 46
 3.3 Efficiency 47
 Influence of the Test Protocol 48
 Influence of Power Output and Cadence 48
 Influence of Training 49
 3.4 Anaerobic Performance 51

4 Performance Assessment 53
 4.1 General Considerations of Performance Tests 53
 Validity 54
 Reliability 54
 Accuracy 55
 4.2 Laboratory Tests 55
 4.2.1 Measures of Aerobic Power 55
 4.2.2 Measures of Aerobic Capacity 57
Pre-test Preparation ... 57
Test Protocol .. 58
Blood Collection and Analysis 58
Data Analysis .. 60
4.2.3 Exercise Intensity Zones 60
4.3 Field Tests .. 61

5 Endurance Training in Cyclists 63

6 Summary and Purpose 70

III Experimental Procedures 72

7 General Methods .. 72
7.1 Laboratory Incremental Graded Exercise Tests 72
7.2 Mobile Power Meters 73
7.3 Data Analyses ... 74

8 Evaluation of a Field Test to Assess Performance in Elite Cyclists .. 75
8.1 Introduction .. 75
8.2 Materials and Methods 76
8.2.1 Participants ... 76
8.2.2 Study Design .. 77
8.2.3 Laboratory Incremental Graded Exercise Tests ... 77
8.2.4 Field Tests ... 77
8.2.5 Data Analyses .. 77
8.3 Results ... 78
8.4 Discussion .. 80
8.5 Conclusion .. 84

9 Longitudinal Monitoring of Power Output and Heart Rate Profiles in Elite Cyclists 85
9.1 Introduction ... 85
9.2 Materials and Methods 86
9.2.1 Participants ... 86
9.2.2 Periodization .. 86
9.2.3 Quantification of Exercise Intensity 87
10 The Effects of Low and High Cadence Interval Training in the Field on Power Output in Flat and Uphill Cycling Time-Trials

10.1 Introduction ... 103
10.2 Materials and Methods .. 104
 10.2.1 Participants ... 104
 10.2.2 Study Design ... 105
 10.2.3 Laboratory Incremental Graded Exercise Tests 105
10.2.4 Time-Trials ... 106
10.2.5 Interval Training ... 106
10.2.6 Data Analyses ... 108
10.3 Results ... 108
 10.3.1 Training Records .. 108
 10.3.2 Laboratory Incremental Graded Exercise Test 108
 10.3.3 Time-Trials ... 110
 10.3.4 Interval Training .. 112
10.4 Discussion .. 116
10.5 Conclusion .. 118

IV Summary ... 118
11 General Discussion

11.1 Maximum Power Field Tests .. 119
Reliability of the Field Tests .. 119
Relation Between Laboratory and Field Tests 120
Power Output during 20-min Uphill and Flat Time-Trials 121

11.2 Training Strategies in Cyclists ... 126
Workout Categories and Intensity Factors 126
Distribution of Power Output and Heart Rate Exercise Intensity Zones 129
Variability in Power Output ... 131

11.3 Appraisal of Hypotheses .. 133

11.4 Conclusions and Directions for Future Research 135

V Appendices

12 Appendix 1 .. 136

12.1 Publication Resulted from Study One 136
12.2 Conference Communication European College of Sports Sciences, Oslo 2009 143
12.3 Field Test Instructions .. 146
12.4 Example of the Results from the 4-min and 20-min Maximal Power Time-Trial 147
12.5 Example of the Results from a Laboratory Graded Exercise Test 149

13 Appendix 2 .. 152

13.1 Publication Resulted from Study Two 152
13.2 Conference Communication World Congress on Cycling Science, Edinburgh 2010 161
13.3 Conference Communication European College of Sports Sciences, Antalya 2010 166
13.4 Example of the Diary .. 168
13.5 Example of the CVs during Basic Aerobic Endurance Training Sessions in World Class
and National Class Cyclists ... 169
13.6 Example of a Training Session at the Anaerobic Threshold 170
13.7 Example of an Interval Training Session to Improve Maximum Oxygen Uptake 170
13.8 Examples of Low-cadence/High-force Interval Training Sessions of a World Class MTB
Cyclist .. 171
13.9 Example of a Maximum Power Interval Training Session 172
13.10 Example of a mountain-bike Cross Country Race 172
13.11 Example of a Road Race ... 173
13.12 Example of a Road Time-Trial .. 173
13.13 Example of a Short-Circuit Criterium Race 174

14 Appendix 3 .. 175

14.1 Publication Resulted from Study Three 175
14.2 Example of the Results from the 20-min Maximum Power Uphill and Flat Time-Trials . 185
14.3 Example of an Uphill and Flat Interval Training Session 186