The identification and characterisation of PPlases from *Burkholderia pseudomallei* and *Burkholderia thailandensis*

Submitted by Isobel Harriet Norville, to the University of Exeter as a thesis for the degree of Doctor of Philosophy

March 2011

This thesis is available for Library use on the understanding that it is copyright material and no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has been previously submitted and approved for the award of a degree by this or any other University.

.....

© Crown copyright 2011. Published with the permission of the Defence Science and Technology Laboratory on behalf of the Controller of the HMSO.

Abstract

The aim of this study was to identify and characterise peptidyl-prolyl *cis-trans* isomerases (PPlases) from the bacterium *Burkholderia pseudomallei*, the causative agent of the disease melioidosis. The longer term goal was to assess their potential as vaccine candidates or antimicrobial targets.

Using bioinformatic approaches, six putative FK506-binding proteins (FKBPs) proteins and three putative parvulin proteins were identified in *B. pseudomallei*. Of these, six were expressed and purified as recombinant proteins. The purified proteins were used to immunise BALB/c mice, with some providing protection against a subsequent *B. pseudomallei* infection. These proteins could therefore be proposed as potential vaccine candidates.

Homologues of Mip or SurA, which are associated with virulence in other bacterial species, were identified in *B. pseudomallei* and closely related *B. thailandensis*. Recombinant Mip or SurA homologues from *B. pseudomallei* were shown to have characteristic PPIase enzyme activity. To evaluate the role of the Mip homologue from *B. pseudomallei* in virulence, an unmarked deletion mutant was constructed. The mutant had reduced intracellular survival; defects in putative virulence mechanisms and attenuated virulence in mice. To assess the role of a SurA homologue, closely related *B. thailandensis* was used as a model organism, with deletion of the gene resulting in defects in intracellular infection, outer membrane integrity and virulence. This indicates that PPIases from *B. pseudomallei* and *B. thailandensis* represent novel virulence determinants and potential antimicrobial targets for therapeutics against melioidosis.

Contents

Title page	1
Abstract	2
List of contents	3
List of figures	12
List of tables	14
Publications	15
Declaration	16
Acknowledgements	17
Abbreviations	18
Chapter 1 – Introduction	20
1.1 The <i>Burkholderia</i> genus	20
1.1.1 B. pseudomallei	21
1.1.2 B. thailandensis	21
1.1.3 <i>B. mallei</i>	22
1.2 Melioidosis	23
1.2.1 Risk factors	23
1.2.2 Clinical presentation	24
1.2.3 Intracellular lifecycle	25
1.2.4 Host immune response	26
1.2.5 Diagnosis	28

1.3 <i>B. pseudomallei</i> virulence factors	30
1.3.1 Quorum sensing	30
1.3.2 Polysaccharides	31
1.3.2.1 Capsule	31
1.3.2.2 Lipopolysaccharide	33
1.3.2.3 Other polysaccharides	34
1.3.3 Proteins	34
1.3.3.1 Adhesins	34
1.3.3.2 Flagella	35
1.3.3.3 Secretion systems	35
1.3.3.4 Isocitrate lyase	37
1.3.4 Secreted factors	38
1.3.4.1 Proteases	38
1.3.4.2 Phospholipase C	39
1.3.4.3 Haemolysin	39
1.3.4.4 Siderophores	39
1.3.4.5 Toxins	40
1.4 Treatment of melioidosis	40
1.4.1 Vaccine development	41
1.4.1.1 Killed whole cell	41
1.4.1.2 Live attenuated whole cell	42
1.4.1.3 Polysaccharide subunits	43
1.4.1.4 Protein subunits	43
1.4.2 Antibiotic resistance	44
1.4.3 Antibiotic regime	46

1.5 Peptidyl-prolyl <i>cis-trans</i> isomerases (PPlases)	47
1.5.1 FKBPs	48
1.5.2 Cyclophilins	50
1.5.3 Parvulins	51
1.6 PPlase activity	51
1.6.1 Measuring PPIase activity	52
1.6.1.1 Protease coupled assay	52
1.6.1.2 Protease free assay	55
1.6.1.3 NMR	55
1.6.1.4 Refolding experiments	56
1.6.2 Inhibition of PPlase activity	56
1.6.2.1 FKBP inhibitors	56
1.6.2.2 Cyclophilin inhibitors	57
1.6.2.3 Parvulin inhibitors	57
1.7 Physiological role of PPlases	58
1.7.1 Human PPlases	58
1.7.2 Plant PPlases	60
1.7.3 Fungal PPlases	61
1.7.4 Microbial FKBPs	61
1.7.4.1 <i>Legionella pneumophila</i> Mip	62
1.7.4.2 Chlamydia trachomatis Mip	64
1.7.4.3 Neisseria gonorrhoeae and Neisseria	
<i>meningitidis</i> Mips	64
1.7.4.4 <i>Trypanosoma cruzi</i> Mip	65
1.7.4.5 Other bacterial Mips	65
1.7.5 Microbial cyclophilins	66

1.7.6 Microbial parvulins	66
1.7.6.1 <i>E. coli</i> SurA	67
1.7.6.2 Other bacterial SurAs	68
1.8 Aim of this project	69
Chapter 2 - Materials and methods	71
2.1 Bacterial strains and cell lines	71
2.1.1 <i>E. coli</i> strains	71
2.1.2 Burkholderia strains	71
2.1.3 Mammalian cell lines	71
2.1.4 Growth media	71
2.1.5 Antibiotics	74
2.1.6 Preparation of reagents and buffers	74
2.2 Bioinformatic tools	77
2.3 Molecular biology	78
2.3.1 Plasmids	78
2.3.2 Extraction of <i>B. pseudomallei</i> and <i>B. thailandensis</i>	
genomic DNA	78
2.3.3 Oligonucleotide primers	78
2.3.4 Polymerase chain reaction	82
2.3.5 Agarose gel electrophoresis	82
2.3.6 DNA gel purification	83
2.3.7 Restriction enzyme digest	83
2.3.8 Ligation	83
2.3.9 Heat shock transformation	83
2.3.10 Production of electrocompetant E. coli	84
2.3.11 Electroporation transformation	84

	2.3.12 Extraction of plasmid DNA	85
	2.3.13 Nucleotide sequencing	85
	2.3.14 Southern hybridization	85
2.4 R	Recombinant protein purification	86
	2.4.1 Protein expression	86
	2.4.2 Large scale protein expression	87
	2.4.3 His-tagged protein purification	88
	2.4.4 GST-tagged protein purification	88
	2.4.5 Dialysis	89
	2.4.6 BCA assay	89
	2.4.7 SDS-PAGE	89
	2.4.8 Gel staining or transfer to nitrocellulose membrane	89
	2.4.9 Western blot	90
	2.4.10 Mass spectrometry	90
	2.4.11 Circular dichroism	91
	2.4.12 Crystallisation and structure solution	92
2.5 E	nzymology	92
	2.5.1 Protease-coupled PPlase assay	92
	2.5.2 Protease-free PPIase assay	93
	2.5.3 Inhibition by rapamycin or	
	cycloheximide-N-ethylethanoate	93
	2.5.4 Kinetic analysis	93
2.6 N	lutant construction and characterisation	94
	2.6.1 Conjugation	94

	2.6.2 Sucrose selection	95
	2.6.3 Complementation	95
2.7 I	n vitro assays	95
	2.7.1 Growth curves	95
	2.7.2 Antimicrobial sensitivity assay	96
	2.7.3 Time kill assay	96
	2.7.4 Motility assay	97
	2.7.5 Protease assays	97
2.8 1	Tissue culture	98
	2.8.1 Invasion assay	98
	2.8.2 Adhesion assay	98
2.9 <i>I</i>	<i>n vivo</i> studies	99
	2.9.1 Galleria mellonella challenge	99
	2.9.2 Vaccine study	99
	2.9.3 Production of polyclonal antibodies	100
	2.9.4 Enzyme linked immunosorbant assay (ELISA)	100
	2.9.5 Determination of median lethal dose (MLD)	100
2.10	Statistical analysis	101
Cha	pter 3 - Identification and characterisation of	
FK5	06-binding proteins and parvulins in <i>B. pseudomallei</i>	102
3.1 I	ntroduction	102
3.2 F	Results	104

3.2.1 Identification and characterisation of FKBPs and parvulins

in Burkholderia pseudomallei using bioinformatic tools	104
3.2.1.2 Conservation of <i>B. pseudomallei</i> FKBPs and parvuling	s in other
Burkholderia species	106
3.2.1.3 Bioinformatic characterisation of PPIases encoded by	В.
pseudomallei	106
3.2.1.4 Identification of a Mip homologue in	
B. pseudomallei	109
3.2.1.5 Identification of SurA homologues in	
B. pseudomallei and B. thailandensis	111
3.2.2 Characterisation of recombinant FKBPs and parvulins in	В.
pseudomallei	113
3.2.2.1 Construction of expression plasmids	113
3.2.2.2 Expression of recombinant proteins	113
3.2.2.3 Purification of recombinant proteins	119
3.2.2.4 Determination of PPIase activity of recombinant	
FKBPs and parvulins from <i>B. pseudomallei</i>	126
3.2.2.5 Determination of X-ray structure of BPSS1823	134
3.2.3 Evaluation of FKBPs and parvulins from <i>B. pseudomallei</i>	as
protective antigens	135
3.2.3.1 The immune response and protection provided by rec	ombinant
proteins 135	
3.3 Discussion	139

Chapter 4 - Evaluation of a Mip homologue in

B. pseudomallei	145
4.1 Introduction	145
4.2 Results	
4.2.1 Deletion of BPSS1823 in B. pseudomallei	147
4.2.1.1 Production of a deletion construct	147
4.2.1.2 Mutant production	147
4.2.1.3 Complementation of mutant strain	150
4.2.2 In vitro characterisation of BPSS1823 mutant strains	152
4.2.2.1 Growth in media	152
4.2.2.2 Growth in J774 macrophages	152
4.2.2.3 Growth in A549 epithelial cells	155
4.2.2.4 Adherence to A549 epithelial cells	157
4.2.2.5 Exposure to environmental stresses	159
4.2.2.6 Exposure to low pH	161
4.2.2.7 Measurement of swarming motility	161
4.2.2.8 Measurement of secreted proteases	164
4.2.3 Virulence of BPSS1823 mutant strains in vivo	165
4.3 Discussion	168
Chapter 5 – Evaluation of a SurA homologue in	
B. thailandensis	174
5.1 Introduction	174
5.2 Results	175

5.2.1 Comparison of BPSL0659 and BTH_10576 genomic

regions	175
5.2.2 Production of a deletion construct	175
5.2.3 Mutant production	176
5.2.4 In vitro characterisation of BTH_10576 mutant strain	178
5.2.4.1 Growth studies	178
5.2.4.2 Growth in cell lines	178
5.2.4.3 Measurement of swarming motility	182
5.2.5 Virulence of <i>B. thailandensis</i> \triangle <i>BTH_10576 in vivo</i>	182
5.3 Discussion	184
Chapter 6 – General discussion	189
6.1 General discussion and future work	189
Chapter 7 - Bibliography	194