Motor cooperation in bi-directional early endosome motility

Submitted by Martin Schuster

to the University of Exeter as a thesis for the degree of Doctor of Philosophy in

Biological Sciences

February 2011

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper

acknowledgement.

I certify that all material in this thesis which is not my own work has been

identified and that no material has previously been submitted and approved for

the award of a degree by this or any other University.

Martin Schuster

1

Abstract

In mammalian cells and fungi, early endosomes form a dynamic compartment that undergoes bi-directional motility along microtubules. Previous work has shown that in the model system *Ustilago maydis* early endosome motility involves the opposing motor proteins dynein and kinesin-3. Here I performed a detailed analysis of the role of the motors in early endosome motility, using quantitative live cell imaging of kinesin-3, dynein and the endosomal GTPase Rab5a. In the first part of my work, I analysed the role of dynein at MT plusends, where the motor forms a strong accumulation that was thought to be involved in capturing early endosomes. I could demonstrate that ~55 dynein motors build up the dynein accumulation. In collaboration with Ms. Congping Lin and Prof. Peter Ashwin (Institute for Mathematics, Exeter), I found theoretical evidence that ~25 dynein motors concentrate and leave the plus-ends stochastically. In addition, dynein motors are captured by an interaction of dynactin and the plus-end binding protein EB1. Together both mechanisms increase the number of motors, which ensures that EEs will be loaded onto dynein before they reach the end of their track. In a second project, I provide evidence that loading of dynein is not restricted to the plus-ends. Instead, dynein leaves the plus-ends and is able to bind to kinesin-3 delivered early endosomes, which changes their transport direction from anterograde to retrograde. Kinesin-3 remains bound to these retrograde EEs. When dynein leaves the organelle, it switches back to anterograde motility. Interestingly, a single dynein wins over three to five kinesin-3 motors. I discuss these findings in the light of current motor cooperation concepts. In a third part, I demonstrated that kinesin-3 has an unexpected role in long-range retrograde endosome motility. In contrast, dynein is only responsible for the distal 10-20 µm. This is possible because most of the hyphal cells contain a symmetric and bi-polar MT array. This MT organization is reminiscent of that in dendrites. Kinesin-3-based retrograde motility is required to mix the organelles and might support longrange communication between both cell poles.

Table of contents

	List of Figures	
	List of Tables	
	Author's declaration	
	Acknowledgements	
	Abbreviations	
1.	General Introduction	18
1.1	Bidirectional Transport	18
1.2	Molecular Basis of Organelle Transport along microtubules	19
1.2.1	The Microtubules	19
1.2.2	The molecular motors in long distance organelle transport	20
1.2.2.1	Kinesin-1	21
1.2.2.2	Kinesin-3	22
1.2.2.3	Dynein	23
1.3	Motor cooperation in bidirectional organelle transport	25
1.3.1	Model systems for bi-directional motility	25
1.3.2	Concepts of motor cooperation in bidirectional organelle transpor	t 26
1.4	Early endosomes	27
1.5	The model fungus Ustilago maydis	28
1.6	The role of kinesin-1, kinesin-3 and dynein in early endosome	29
	motility in <i>U. maydi</i> s	
1.7	Conclusions and objectives	30
2.	The mechanism of organelle capture at the end of a	31
	microtubule	
	Summary	31
	Introduction	32
	Results	33
	Endosomes are rapidly loaded onto apical dynein	33
	A large number of dyneins form the comet at MT plus-ends	33
	Two different populations of dynein are found in the apical	34

comet

An interaction between dynactin and EB1 retains half of the	34
dynein in the come	
Transport properties of antergrade and retrograde	36
dynein motility	
Mathematical modelling suggests that dynein accumulates	37
stochastically	
The high number in the dynein comet is required to keep EEs	38
on the track	
Discussion	39
Dynein is anchored at MT plus-ends by an interaction of	38
dynactin and EB1	
A mathematical model suggests that a stochastic mechanism	40
accounts for about one-half of the dynein comet	
The comet serves as a 'buffer stop' for arriving endosomes	41
Conclusions	41
Materials and methods	41
Strains and plasmids	41
Growth conditions	41
Freeze-fracture electron microscopy and Laser-based	41
epifluorescence microscopy	
Quantitative analysis of fluorescent intensities	42
Protein extraction and immunodetection	42
Activation of photoactivatable dynein and	42
photoactivatable Rab5a	
Fluorescent recovery after photobleaching experiments and	42
photobleaching analysis	
Determination of the dynein flux from bleaching-step analysis	42
Mathematical modelling	42
Non-linear regression and statistical analysis	42
References	42
Supplementary Methods	45
Strains	45
Plasmid construction	46
Laser-based epifluorescence-microscopy	48
Quantitative photo-bleaching analysis	49

	Fluorescent recovery after photo-bleaching (FRAP)	49
	experiments and photo-bleaching analysis	
	Freeze-fracture transmission electron microscopy	50
	Determination of the dynein flux from bleaching step analysis	50
	Estimation of mean run-lengths/turning rates	51
	Non-linear regression and statistical analysis	51
	Mathematical modelling	52
	Supplementary movie legends	57
	References "Supplementary Information"	59
3.	Dynein controls bidirectional motility of early endosomes	61
	by transient binding to the organelle	0.4
	Summary	61
	Introduction	62
	Results	62
	Early Endosomes Switch Between Long Phases of	62
	Anterograde and Retrograde Motility.	00
	Kinesin-3 and Dynein Mediate Bidirectional	63
	Endosome Transport.	60
	Single Dynein Opposes Several Kinesin-3 Motors.	63
	In Vivo Observation of Cargo and Motors Supports an	65
	"On-the-Run" Loading of EEs. Discussion	65
	Methods	66
	Strains, Plasmids, and Growth Conditions.	66
	Microscopy and Image Analysis.	67
	References	67
	Supporting Information	68
	Strains.	68
	Plasmid Construction.	68
	Microscopy and Image Analysis.	68
	Activation of Photoactivatable Rab5a and	68
	Photoactivatable Dynein.	00
	Visualization of Fluorescent Motor Proteins.	69
	CCCP Influence on Signal Intensity.	69
	CCCI illination off Digital litteriolity.	55

	Quantitative Photobleaching.	69
	Quantitative Analysis of Fluorescent Intensities.	69
	Mathematical Modeling.	69
	References "Supplementary Information"	70
	Supplementary movie legends	73
4.	Kinesin-3 mediates long-distance anterograde and	77
	retrograde endosome motility	
	Summary	77
	Abstract	79
	Introduction	80
	Results	82
	Hyphal cells contain an extended anti-polar array	82
	of MT bundles	
	Motility of early endosomes across the bi-polar MT array	84
	is symmetric	
	Dynein supports short range retrograde EE motility	85
	Kinesin-3 is required for long-range retrograde	87
	endosome transport	
	Discussion	89
	Kinesin-3 and dynein participate in retrograde EE motility	89
	A bi-polar microtubule array allows extended motility of	91
	early endosomes	
	U. maydis cells contain a non-uniform microtubule array	92
	similar to dendrites	
	Conclusion	93
	Material and Methods	95
	Strains and plasmids	95
	Generation of a temperature-sensitive kinesin-3 mutant	96
	Growth conditions	97
	Laser-based epi-fluorescent microscopy	98
	Analysis of microtubule bundling	98
	Visualization and analyse the run-length of fluorescent	99
	motor proteins and EEs	
	Analysis of the co-localisation of EE with	100
	Dynein and Kinesin-3	

	References	102
	Supplementary Movie legends	122
5.	General conclusion	125
5.1	The Microtubules in the hyphal cell of <i>U. maydis</i> are	
	symmetrically organized	125
5.2.	Dynein prevents early endosomes from falling off the microtubule	125
5.3	A single dynein overcomes three to five kinesin-3 motors.	127
5.4	Motors cooperate to allow long-range early endosomes motility	128
5.5	Summary and outlook	129
	References	132
	Supplementary movies chapter 2	CD
	Supplementary movies chapter 3	CD
	Supplementary movies chapter 4	CD

List of Figures

2 .1	Figure 1 Loading of photoactivated EEs onto dynein at the apical	33
	MT plus-ends.	
2.2	Figure 2 EE-independent retrograde motility of dynein.	35
2.3	Figure 3 Nuclear pores as internal calibration standard for	36
	quantitative fluorescence intensity measurements.	
2.4	Figure 4 Experimental evidence for two populations of dynein at	37
	MT plus-ends.	
2.5	Figure 5 Motility behaviour and quantitative analysis of motor	38
	numbers in moving dynein signals.	
2.6	Figure 6 A stochastic model for dynein dynamics at MT plus-ends.	39
2.7	Figure 7 Dynein numbers and EE escape rate at MT plus-ends.	40
2.8	Figure 8 Model of the formation and function of the apical	40
	dynein comet.	
2.9	Supplementary Figure 1 Growth of wildtype, a conditional dynein	54
	mutant and strains expressing the fusion proteins GFP ₃ -Dyn2 and	
	paGFP ₃ -Dyn2.	
2.10	Supplementary Figure 2 Double labeling of GFP ₃ -Dyn2 and the	55
	EB1-homolouge Peb1 fused to monomeric RFP.	
2.11	Supplementary Figure 3 Immunoblot showing expression	55
	of GFP ₃ -Dyn2.	
2.12	Supplementary Figure 4 A stochastic 2-lane model for dynein	56
	dynamics at MT plus-ends.	
2.13	Supplementary Figure 5 Cytoplasmic background within the apex	56
	of a hypha expressing GFP ₃ -Dyn2.	

2.14	Supplementary Figure 6 Image series from a 13-lane simulation	5/
3 .1	Figure 1. Motility of early endosomes in U. maydis.	63
3.2	Figure 2. Motility of molecular motors and their cargo.	64
3.3	Figure 3. Determination of motor numbers.	64
3.4	Figure 4. Anterograde-to-retrograde turning of photoactivated EEs	65
	and run length of photoactivated dynein.	
3.5	Figure 5. Role of kinesin-3 and dynein in reversing the direction	66
	of endosome motility.	
3.6	Figure 6. Model for the interaction of kinesin-3 and dynein during	66
	bidirectional EE motility.	
3.7	Supplementary Figure 1 Morphological phenotype of wild-type,	70
	kinesin-3 null mutants, kinesin-3 null mutants rescued with a	
	kinesin-3-GFP fusion protein, a temperature-sensitive dynein	
	mutant and a cells that express a 3x GFP-dynein heavy chain	
	fusion protein.	
3.8	Supplementary Figure 2 Dynein and anterograde EEs.	71
3.9	Supplementary Figure 3 Immobilization of Kin3-GFP and	71
	GFP3-Dyn2 in living cells.	
3.10	Supplementary Figure 4 Run length of paGFP3-Dyn2 signals	71
	activated in the hyphal apex.	
3.11	Supplementary Figure 5 Modelling the "on-the-run" loading.	72
4 .1	Figure 1 Microtubule organization in hyphal cells of	108
	Ustilago maydis	
4.2	Figure 2 Motility of early endosomes labeled with	110

	photo-activatable paGFP-Rab5a.	
4.3	Figure 3 Dynein accumulations at MT ends near the tip and the	112
	septum.	
4.4	Figure 4 Retrograde motility of EEs in conditional dynein mutants.	113
4.5	Figure 5 Co-localization of GFP ₃ -dynein and mCherry-Rab5a on	115
	retrograde EEs.	
4.6	Figure 6 Run-length of EEs in temperature-sensitive kinesin-3	116
	mutants.	
4.7	Figure 7 Motility of EEs, dynein and the temperature-sensitive	118
	kinesin-3 ^{ts} protein in kinesin-3 mutants.	
4.8	Figure 8 Model for motor cooperation in long-range retrograde	119
	EE motility.	
4.9	Supplementary Figure S1 Bi-directional of EEs in	121
	temperature-sensitive dynein mutants at permissive temperature.	
4.10	Supplementary Figure S2 Distribution of EEs in kinesin-3 ^{ts}	121
	mutants after 30 minutes at restrictive conditions.	

List of Tables

2.1	Table I Strains and plasmids used in this study	34
3.1	Table S1. Parameters of early endosome motility	72
3.2	Table S2. Strains and plasmids used in this study	73
4.1	Table 1. Strains and plasmids used in this study	120