Agent-based Hierarchical Planning
and Scheduling Control in
Dynamically Integrated Manufacturing System

Submitted by Naihui He to the University of Exeter
as a thesis for the degree of
Doctor of Philosophy in Engineering
In July 2011

This thesis is available for Library use on the understanding that it is copyright material and
that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and
that no material has previously been submitted and approved for the award of a degree by
this or any other University.

Signature: ..............................................
ABSTRACT

It has been broadly recognised that today’s manufacturing organisations face increasing pressures from continuous and unexpected changes in the business environment such as changes in product types, changes in demand pattern, changes in manufacturing technologies etc. To enable manufacturing organisations to rapidly and timely deal with these changes, operational decisions (e.g., process planning and production scheduling) have to be integrated with dynamic system restructure or reconfiguration so that manufacturing organisations do not only use the flexible resource utilisations to deal with these changes, but also can dynamically reconfigure their existing system structures in response these changes. A manufacturing system concept and implementation methodology is proposed by the Exeter Manufacturing Enterprise Centre (XMEC), which is called the Dynamically Integrated Manufacturing System (DIMS). The overall aim of DIMS is to provide a systematic modelling and control framework in which operational decisions can be integrated with the dynamic system restructuring decisions so as to help manufacturing systems to dynamically deal with changes in the business environment.

This PhD research is a part of DIMS research, which focuses on the investigation on operational control in DIMS. Based on the established agent-based modelling architecture in DIMS, this research develops two agent bidding mechanisms for the hierarchical control of production planning and scheduling. These two mechanisms work together to assist manufacturing systems in making optimal and flexible operational decisions in response to changes in the business environment. The first mechanism is the iterative agent bidding mechanism based on a Genetic Algorithm (GA) which facilitates the determination of the optimal or near optimal allocation of a production job containing a set of sub-jobs to a pool of heterarchical resources. The second mechanism is the hierarchical agent bidding mechanism which enables product orders to be cost-efficiently and flexibly planned and scheduled to meet the orders’ due dates. The novelty of this mechanism is that it enables orders to be fulfilled within structural constraints of manufacturing systems as far as possible and however enables resources to be regrouped flexibly across system boundaries when orders cannot be fulfilled within structural constraints of manufacturing systems.
## CONTENTS

Acknowledgement ........................................................................................................2
Abstract .......................................................................................................................3
Contents .......................................................................................................................4
List of Tables ..............................................................................................................8
List of Figures ...........................................................................................................10
List of Abbreviations ...............................................................................................11
Publications ..............................................................................................................17

### Chapter 1: Introduction

1.1 Introduction .........................................................................................................18
1.2 Research Background .........................................................................................18
1.3 Research Questions ............................................................................................21
1.4 Research Objectives ............................................................................................23
1.5 Thesis Organisation .............................................................................................23

### Chapter 2: A Literature Review on Manufacturing System Approaches to Dealing with the Changes in the business Environment

2.1 Introduction .........................................................................................................25
2.2 Changes in the Business Environment ................................................................25
2.3 The Approaches of Manufacturing Systems to Dealing With Changes in the Business Environment ........................................................................................................26
   2.3.1 The Integrated Process Planning and Production Scheduling – the Operational Level ......................................................................................................................27
       2.3.1.1 The Non-linear Process Planning (NLPP) ........................................28
       2.3.1.2 The Closed-loop Process Planning (CLPP) .....................................30
       2.3.1.3 The Distributed Process Planning (DTPP) .....................................31
   2.3.2 The Dynamic, Robust and Reconfigurable Layouts – the Layout Design Level ......................................................................................................................33
       2.3.2.1 The Dynamic Layout .....................................................................34
       2.3.2.2 The Robust Layout .......................................................................36
       2.3.2.3 The Reconfigurable Layout .............................................................37
2.3.3 The Flexible Manufacturing System and Reconfigurable Manufacturing System – the System Design Level ..........................39
2.3.3.1 The Flexible Manufacturing System ........................................39
2.3.3.2 The Reconfigurable Manufacturing System ...............................41
2.4 Discussions ....................................................................................44
2.5 Summary ......................................................................................47

Chapter 3: Modelling and Control of Manufacturing Systems

3.1 Introduction ....................................................................................49
3.2 The Requirements of an Integrated Decision Platform ..................49
3.3 Modelling and Control of Manufacturing Systems .......................50
  3.3.1 Centralized Control Architecture ...........................................50
  3.3.2 Hierarchical Control Architecture ...........................................51
  3.3.3 Heterarchical Control Architecture ...........................................52
  3.3.4 Hybrid Control Architecture ...................................................54
    3.3.4.1 Holonic Manufacturing System (HMS) ...............................55
    3.3.4.2 Fractal Manufacturing System (FrMS) ..............................58
    3.3.4.3 Bionic Manufacturing System (BMS) ...............................61
  3.4 Discussions ...................................................................................62
  3.5 Summary .....................................................................................63

Chapter 4: Modelling Architecture in DIMS

4.1 Introduction ....................................................................................65
4.2 The Concept of Dynamically Integrated Manufacturing System (DIMS) .......65
4.3 The Modelling Architecture in DIMS ..............................................67
  4.3.1 Agents in DIMS .......................................................................69
  4.3.2 Agent Architecture in DIMS ...................................................69
    4.3.2.1 The Control Unit ............................................................70
    4.3.2.2 The Common Environment ............................................71
  4.4 Summary .....................................................................................72

Chapter 5: Iterative Agent Bidding Mechanism

5.1 Introduction ....................................................................................74
5.2 Problem Identification ....................................................................74
  5.2.1 Formulation of the Basic Problem .........................................76
  5.2.2 Approaches to Resource Allocation in Distributed Agent-based
Chapter 8: Conclusions and Future Work

8.1 Introduction ........................................................................................................138
8.2 Research Conclusions ......................................................................................138
8.3 Research Contributions ..................................................................................141
8.4 Summary ........................................................................................................141

Appendix A: Setup Parameters and Machines in the Test Manufacturing System...143
Appendix B: Product Orders in Test 2-2.................................................................145
Appendix C: Production Plans and Schedules for Product Orders in Test 2-2.....167
Bibliography .......................................................................................................222