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Abstract

This paper derives a functional central limit theorem for the partial sums of fractionally integrated
processes, otherwise known as I(d) processes for |d| < 1/2. Such processes have long memory and
the limit distribution is the so-called fractional Brownian motion, having correlated increments even
asymptotically. The underlying shock variables may themselves exhibit quite general weak dependence,
by being near-epoch dependent functions of mixing processes. Several weak convergence results for
stochastic integrals having fractional integrands and weakly dependent integrators are also obtained.
Taken together, these results permit I(p + d) integrands for any integer p > 1.

1. Introduction

In De Jong and Davidson (2000), we obtain functional limit results for a broad class of seri-
ally dependent and heterogeneously distributed vector processes, which, however, are weakly
dependent, otherwise characterised as ‘short memory’. The defining feature of such processes
is that their normalised partial sums converge to processes having independent Gaussian incre-
ments, specifically, Brownian motion in the case where the variances are uniformly bounded
away from infinity and zero.

The present paper extends these results by allowing the processes to exhibit long memory.
Specifically, we consider fractionally integrated processes, otherwise known as I (d) processes.
The chief interest in this class of processes is that they define a continuum linking the sta-
tionary short-memory case (d = 0) with the integrated or unit root case (d = 1). The limit
processes for the partial sums of these variables for —1/2 < d < 1/2 are the so-called frac-
tional Brownian motions, which differ from ordinary Brownian motion in having correlated

1 We thank Bruce Hansen, Peter Phillips and two anonymous referees for their comments on earlier versions of

this paper. Any errors are ours alone.



increments. For similar results, see among other references Davydov (1970), Taqqu (1975),
Chan and Terrin (1995), Csorgd and Mielniczuk (1995), Chung (1997), Robinson and Marin-
ucci (1998). The main novel feature of the present results is that the shock variables (fractional
differences) are permitted to be near-epoch dependent on a mixing process, a very general form
of weak dependence allowing various forms of nonlinear dynamics (see Davidson 2000). We
also prove stochastic integral convergence for fractionally integrated processes with respect to
weakly dependent integrator processes. These results are useful in, for example, the analysis
of cointegrated regressions where the observed variables are I(1 + d) processes, whereas the
residuals are short memory processes. They are straightforwardly extended to cases where the
variables are I(p + d) for any integer p > 1.

The paper is organised as follows. Section 2 reviews the main properties of the fractional
model. Section 3 derives some technical results and gives the FCLT for a real-valued fractional
process, and then extends the result to the multivariate case. Section 4 gives the results on
stochastic integral convergence with fractional integrands. Different approaches are needed for
the cases of negative and positive values of d. Section 5 concludes the paper, and the proofs are
gathered in Appendices A-C. Extensive use will be made of the results in De Jong and Davidson
(2000), and for convenience we will refer to that paper below as WD (for ‘weak dependence’)
and will also refer to theorems and equations of the paper by attaching the prefix WD to the
reference.

2. Fractionally Integrated Processes

The class of processes we consider are customarily written in the form
2= (1— L), @.1)
where L is the lag operator, —1/2 < d < 1/2, and u,, the fractional difference of z;, is a

stationary, weakly dependent process to be specified. By the obvious binomial expansion, they
have the MA representation

T=> biu (2.2)

7=0

where .
'(j+d) 23)

T T(@r(G+1)

Granger and Joyeux (1980) and Hosking (1981) are standard references on these processes.

Stirling’s approximation formula for the gamma function yields the well-known property that

the MA coefficients decline hyperbolically to zero, and letting x; ~ y; denote that z;/y; — 1
as j — 0o, we can write .

d—1

b ~ F(d)] . (2.4)

The b; are therefore square-summable for d < 1/2, which is the condition necessary for the

processes to be stationary with finite variance, whereas d > —1/2 is necessary for the process

to have an invertible MA representation—see Hosking (1981) for details. The partial sums,

defined as y ;_, z; for s > 0, represent a useful class of models for nonstationary series, con-

taining the popular unit root case corresponding to d = 0 in this setup. They are of particular

interest when —1/2 < d < 0 since, although nonstationary with infinite variance, they have the



property of eventual independence of initial conditions.? It is best to think of the corresponding
x; series as being generated as the simple differences of these nonstationary series, and so to
exhibit a generalised form of over-differencing.
Defining 02 = E(>_7"_, 2:)?, consider the scaled partial sum process
[n€]
X&) =o' (2.5)
t=1

where z; is defined by (2.1) with |d| < 1/2. We show that under appropriate conditions,
X, % X, where X is a fractional Brownian motion, defined for d € (—1/2,1/2) by

1

¢
X = F(d+—1)le/2(/0 (€ —s)"dB(s)

[ ) e

—00

for 0 < ¢ < 1. Here, B is standard Brownian motion and

= 1 1 >~ d_ _d
K PESIE (2d+ 1 +/0 (Q+7) =7 )2d7> 7 2.7)

this scale constant being chosen to make FX(1)? = 1. See Mandelbrot and van Ness (1968)
for additional details.> Note that X = B when d = 0. For the other cases, these processes have
correlated increments, positively correlated when d > 0 and negatively correlated otherwise.
Thus, it is easily verified from the definition in (2.6) that

E(X(£+6) — X(€)* =6 (2.8)
for € [0,1)and 0 < § < 1 — &, and hence that, for example,
BX(©(X(E+6) ~ X@) = 5 (467~ 55y (29)

There are a number of extensions implicit in our results, which we mention here, although
the details must be left to future work. Stationarity of the fractional differences ensures that the
limit process is (2.6), and we will maintain this assumption in the sequel, but it is not a prereq-
uisite for weak convergence as such. In WD we present results under weak dependence which
allow global nonstationarity, with trends in the variances of the process. The limit processes in
such cases are not Brownian motion, but transformations of Brownian motion involving some
squeezing and stretching of the time domain. Combining global nonstationarity and strong de-
pendence could yield an enlarged class of a.s. continuous, Gaussian limit processes, extending
(2.6).

An important feature of the results is that for the case 0 < d < 1/2, they generalise in
principle beyond the fractional model. The general class of long memory MA processes, in
which the coefficients merely satisfy

by ~ L(j)j" (2.10)

where L(j) denotes any slowly varying component,* have essentially the same asymptotic prop-

For a recent application of this type of model see Byers, Davidson and Peel (1997)

Our formula differs from Mandelbrot and van Ness (1968) equation (2.1) since they do not normalise the
variance of X (1) to unity. We also implicitly impose the condition X (0) = 0 a.s.

4 A sequence is said to be slowly varying at oo if it satisfies L(zj)/L(j) — 1 as j — oo, for any z > 0.

3
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erties as the fractional process. The modifications to the proofs to include a slowly varying
component are straightforward in principle. Moreover, given a nonstationary process of this
general MA form with 1/2 < d < 1, its simple difference has the same asymptotic properties
as the fractional model with —1/2 < d < 0, including, of course, that the partial sums converge
to fractional Brownian motion. However, be equally careful to note that the negative fractional
model behaves differently from the general case of (2.10) with —1/2 < d < 0, since it has the
distinctive ‘over-differencing’ property that the MA coefficients sum to zero. The latter prop-
erty is not a feature by the general class of MA processes with summable coefficients, and if
the partial sums of these processes converge, it is to ordinary Brownian motion. Limit results
of the latter sort may be obtained as corollaries of the theorems of this paper, but we likewise
do not pursue these extensions here.

3.  An FCLT for Fractionally Integrated Processes

Following the approach of Davydov (1970), we note that after substituting z; = Z?io bju;—; in
(2.5) and summing the terms in a different order, we are able to write

[né]
Xn(§) = Xnl(€) = 0" Y am(&, e 3.1
for £ > ¢, where
[n€]—t
an(€,€) = > b;. (32)

j=max{0,[n']—t+1}
When b; has the form in (2.4), this decomposition has the following properties.
Lemma 3.1

(@) If¢ < x <& then
1

U, na] (€, €7) ~ m([nﬂ — [na])?,
and if —oco < x < & then
tni€.€) ~ gy (né] = ) = ([n€) = fne)
(b) hence,
[né]
N aul£,€)? ~ Valn(e — €)™, (33)

(See Appendix B for proofs for this section.)
The following assumption forms the basis of our functional limit results.
Assumption 1 The sequence {u;, —0o0 <t < oo}

(a) has zero mean,
(b) is uniformly L.-bounded for r > 2,
(¢c) is Ly-NED of size —1/2 on V; with d; = 1, where V, is either an a-mixing sequence of size
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—r/(r — 2), or a p-mixing sequence of size —r/(2(r — 1)),

(d) is covariance stationary, and 0 < 0% < oo where

o2 = lim n! i i E(utus). (3.4)

t=1 s=1

The condition o2 < oo actually follows from Assumption 1(c), according to Lemma A.2(a) of
the Appendix. Also note that under Assumption 1(b) it is possible to set the NED and other
magnitude indices to unity without loss of generality, and we do this without comment in the
sequel. Compare Assumption WD.1, and note that the latter assumption is satisfied by the array
o 'n~2u, when u, obeys Assumption 1.

For this model we have the following basic property.

Lemma 3.2 When x; is defined by (2.1) and Assumption I holds, 0> ~ o2 Vyn?3+1,

The following result is then immediate on repeating the argument of Lemma 3.2 with [n&] + 1
and [n(£ + )] substituted for 1 and n as the limits of the sum which defines 02, and modifying
the application of Lemma 3.1 as appropriate:

Corollary 3.1 [f X, is defined by (2.5) and (2.1), and Assumption I holds,
E(Xa(€ +8) = Xa(€))? — 8 (3.5)
asn — oo, for§ € [0,1)and0 <6 <1—¢.

In view of this last result, which shows that the limit distribution of X, has the same covariance
structure as fractional Brownian motion, it remains to show that the limit is Gaussian and has
a.s. continuous sample paths.

Theorem 3.1 [f X, is defined by (2.5) and (2.1) where |d| < 1/2, and Assumption 1 holds,

d . . . .
then X,, — X, where X is fractional Brownian motion.

Note that Davydov (1970) has given this result for the case where u; is i.i.d. and 0 < d < 1/2.

It is of interest to note that our proof of Theorem 3.1 requires us to show that condition
(WD.3.3) holds for the relevant array of constants — see (B-36). This is indeed the case for
d > —1/2. Wooldridge and White’s (1988) FCLT, for example, cannot be adapted to the
present problem, since condition (WD.3.6) does not hold for the case d < 0. The approach to
the FCLT developed in WD turns out to be indispensable for the result. However, note how the
condition fails when d = —1/2. The limiting finite dimensional distributions are still Gaussian
in this case since Assumption WD.1 still holds, but every increment has unit variance in the
limit, and hence the limiting sample paths are not continuous. There are difficulties with the
multivariate extension of the FCLT for limit processes which are not a.s. continuous, since the
generalisation of the Cramér-Wold theorem is not guaranteed to hold without this restriction
(see Davidson 1994 Theorem 29.16). A modified weak convergence result does evidently hold
for this case, but we will not consider that problem here.

We next consider the extension to a vector of I(d) processes where d may differ between
elements, and may be zero for some elements. Define

v, =AL) tu, (mx1) (3.6)
5



where u; is a m X 1 vector of weakly dependent processes, and A(L) is a diagonal m x m lag
polynomial matrix having diagonal elements (1 — L)%, |d;| < 1/2, fori = 1,...,m. Define

D, = diag(n®*/? . nimt1/2), (3.7)

and X,,(§) = nyl] X, where X,; = 15; Y2, (m x 1). Summing the terms in a different order,
as before, we obtain as the generalisation of (3.1),

[ng]
Xa(€) = Xu(€) = D D A& &, (3.8)
where )
Ant (67 é.,) = diag(a’lnt (67 €,)7 ooy Gmnt (67 gl)) (39)

and a;,,, (&, ') represents the element of the form (3.2) for the case d = d;, for j = 1,...,m. We
introduce the following generalisation of Assumption 1.

Assumption 2 Each element of the m-vector-valued sequence {u;, —oo < t < oo} satisfies
Assumption 1, and

Q= lim n ") > B(uu)) (3.10)
t=1 s=1
is finite and positive definite.
We then have the following result, by a straightforward extension of the arguments of Lem-
mas 3.1 and 3.2.
Lemma 3.3 When Assumption 2 holds,
E(Xa(€+8) = Xa(©)) (Xa(€ +0) = Xu(6)) — K(§) VK (), (3.11)
for€ €[0,1)and 0 < 6 < 1 — &, where K(6) = diag(6“7Y2, ..., 6 *1/2), and, letting w;;
denote the (i, j)th element of 2, the elements of the matrix V (m x m) are defined by

wij
¢ij =

T(d; + 1)0(d; + 1
(gt [ @t = @ent-yar), e

di+d;+1

)X

fori, g =1,...,m.

With this result, we can give a multivariate extension of Theorem 3.1 as follows.

Theorem 3.2 If u; satisfies Assumption 2, then X, <X , where X is a vector whose ith
element is a fractional Brownian motion with parameter d;, and EX (1) X (1) = 0.

4.  Stochastic Integrals

Let X,; = ﬁglxt, where z; (p x 1) is defined by (3.6), and W,,; = n~ 2w, (¢ x 1), and let
X, (€) = 1" X,y and W, (€) = S W, Let

n—1 t
Gn=D > XusWii (px0q) 4.1)

t=1 s=1



and AXW = E(G,,). In this section we derive sufficient conditions for
1
(X, W, G — AV) & (X, W, / XdW’) (4.2)
0

where W is Brownian motion and X is fractional Brownian motion with X (0) = 0. In WD
we showed this convergence for weakly dependent processes under essentially the same best
conditions as for the joint FCLT. We are able to extend the same approach to the ‘negative
fractional’ case, as follows, with a minor additional restriction on the dependence.

Theorem 4.1 Suppose —1/2 < d; < 0 fori = 1,...,p. Let Assumption 2 hold for the vector
(ug, wy), and also suppose that the NED numbers for these variables, v¥ (m) and vV (m), are
of size d — 1/2, where d = min;<;<, d;. Then (4.2) holds.

(See Appendix C for proofs for this section.)

However, we have not been able to adapt this method of proof to the case d > 0. The obstacle
to success is the need to show (for p = 1) that £ max;<;<, (Zizl xS)Z = O(n?*1)5 Given
this, the rest of the proof could be applied with only minor amendments, but in default of this
result we must consider a different approach. We give two theorems, establishing the conver-
gence under slightly different conditions. The first follows Hansen (1992), in making use of one
of the range of weak convergence theorems for semimartingale integrator processes given by
Kurtz and Protter (1991). Some dependence restrictions additional to Assumption 2 must again
be imposed, and we are not able to express these simply in terms of near-epoch dependence
on a mixing process. Let £ and E; respectively represent the expectations conditional on the
o-fields H., = o(V4, ..., V;) and H;, where for convenience of notation we write H; for H" .

Theorem 4.2 Suppose0 < d; < 1/2fori = 1, ..., p. In addition to Assumption 2 for the vector
(ug, wy), assume that this vector is adapted to H;. Then, (4.2) holds in each of the following
cases, where d = max;<;<, d;:

1. (wy,ut) is strong mixing of size —2r/(r — 2).
2. (wy,uy) is uniform mixing of size —2.
3.
HEtwt+j - Eﬁ:erLEtthHZ < B(j,m), (4.3)
where 37 B(j,m) = ((m) < oo defines a sequence of size —d.°

Note that no restrictions additional to Assumption 2 and the adaptation need hold for u,;, under
condition 3.

The novel condition here is (4.3). The algebra of conditional expectations does not permit
us to derive this condition merely from the fact that w; is near-epoch dependent on a mixing
process, but we can show that it holds in some leading cases. For example, it is clearly sufficient
for (wy, H;) to be a martingale difference. Also consider the linear process case, say

Wy = Z @i‘/l,tfi (4'4)
i=0

5 Non-summable series arise in the application of McLeish’s (1975a) maximal inequality to this case, see Lemma

A.3 of the Appendix. For the case d < 0 the lemma establishes that the expected maximum is O(n), which suffices
at the cost of strengthening the NED sizes from —1/2 to d — 1/2, as in Theorem 4.1.
6 For a vector a, l|all,, here denotes 3, [|as|,,. Also, for a matrix A, [|A|[, denotes 3=, >~ [[Ai; .-

7



where Vi; (s x 1) is a i.i.d. sub-vector of V;, and the ©; (¢ X s) are matrices of coefficients.
Letting 0; = max; x |(©;);x|, suppose that §; = O(i=3/2=4%) for ¢ > 0. Since w; — E}"w, =
S ©;V4 4 in this case, we obtain

i=m-+1
- 1/2
o sz, < o 3 )

i=m+1
— O(m~174) (4.5)

for C' = gs maxi<j<s ||viekl|, , so that w; is Lo-NED of size —1 — d on {V4;}, and therefore a
L,-mixingale of size —1 — d, by Theorem 17.6 of Davidson (1994). Moreover, since Fyw;;; =
> 20 ©itjVi,—i, we have

- 1/2
HEtwt+j_Eij;Etwt+jH2 < C( Z 9?)

i=m+j+1
= O((m+j)74 ). (4.6)
Observe that

0o 0o 1/2
Z( > 0?) = O(m~4°), (4.7)

§=0 \i=m+j+1
so that (4.3) holds with ((m) given by (4.7).

A point of interest about Theorem 4.2 is that the proof is not valid for negative d. This
is apparent on comparing expressions (C-20) and (C-23) of the proof. Both this result and
Theorem 4.1 are needed to cover the complete spectrum of cases. There is no apparent obstacle
to showing joint convergence for a vector containing both positive and negative fractionals,
provided the process (u;, w;) satisfies the conditions of both results. However, we forego the
details here.

A possibly undesirable feature of Theorem 4.2 is the adaptation requirement, which is im-
posed under the theorem of Kurtz and Protter (1991) on which it is based. This implies that
the processes u; and w; must not depend on future values of the underlying process V;. While
this is quite a normal feature of dynamic econometric models, so that the assumption need not
be restrictive in practice, it should be noted that it is not essential. In other words, while the
limiting process W must be a martingale with respect to a filtration to which X must also be
adapted, this need not imply that X,,; and W,,; are H;-measurable, for finite n.

One can avoid the latter condition by obtaining the limiting martingale through a blocking
argument, as used, following Chan and Wei (1988), in Theorems WD.4.1 and 4.1. However, to
combine the Chan-Wei approach with the Hansen-type argument requires an a.s. boundedness
restriction on w;, which for practical applications may be less attractive than adaptation. We
therefore give this result as an alternative to Theorem 4.2.

Theorem 4.3 Let the assumptions of Theorem 4.2 hold, except that w, and u, need not be
adapted to H,, but |w,| < oo and the sequence { Eyw. ;,j > 1} is summable, with probability
1. Then (4.2) holds.

Finally, we point out that these results can be extended to cases where the integrand is

I(1 + p + d) for all positive integers p. Noting that n ! nyl] S X <, fog X (s)ds by the
continuous mapping theorem, we have the following result, which follows by Theorem 2.4(i)

8



of Chan and Wei (1988). Solely for ease of exposition, we give the scalar case of the result, as
follows.

Theorem 4.4 Let the assumptions of Theorem 4.1 hold in the case d < 0, and those of either
Theorem 4.2 or Theorem 4.3 in the case d > 0. Let W,; = n~"?w;, and let

t S1 [e%s)
Xt = m Z T Z Zblusofl (4.8)

sp=1 so=1 =0

forp € N. Then, if X,,, W,, and G,, are defined as before,
1
0

where

&p &1
X(gp):/ / Z(60)dE o 08, (4.10)

0 0
is the p-fold integral of a fractional Brownian motion Z, and

n—1 t S1 e’}
=D DD DT D) (AT @1

t=1 sp=1 so=1 [=0

5. Conclusion

Applying techniques developed in De Jong and Davidson (2000), in this paper we obtain weak
convergence results for the fractionally integrated class of long memory processes, in which the
limit processes are fractional Brownian motion. The functional central limit theorem is proved
assuming that the fractional differences of the process are near-epoch dependent on a mixing
process. We also prove the weak convergence of stochastic integrals having these processes as
integrands, under a range of, collectively, mild dependence restrictions. By combining our re-
sults with the continuous mapping theorem applied to partial sums, it is possible to characterise
these weak limits for normalised I(1 + d) processes for any d > —1/2.

Appendix A. Some Technical Lemmas

Lemma A.1 Ifa <b <0, then

j—1 O(ja+b+1) a>—1
Y kG -k’ =4 O(logj) a=—1
k=1 o(%) a<-1

Proof. For the case a > —1 this follows by an integral approximation using the Beta function,
and for the other cases by elementary summability arguments. i

The following lemmas extend Lemmas WD.A.3 and WD.A.4. Lemma A.3 is stated for
arbitrary coefficients by, and has an application to the fractional model in the case d < 0. Note
that for d > 0 the sum in (A-1) diverges.



Lemma A.2 Let {X,;, G} and {Ynt, gnt} be triangular Lo-mixingale arrays of size —1/2
with mixingale magnitude indices a\, and aY, respectively. Then

(a)

n n n 1/2 n 1/2
S Bt < ( S (ai‘;>2> ( 5 @»2)

t=—00 §=—00 t=—00 t=—00

for C' > 0.

® >0 (aX)P=001)and >} (aX,)? = O(1), and v, > 1is an increasing integer-
valued function of n with vy,, — o0 as n — o<, then

lim Y Y |E(XauYa) (|t — 5| >7,) =0

t=—00 s=—00

Proof. Similarly to Lemma WD.A.3, this is by analogy with Lemma 4 of De Jong (1997). 1

Lemma A.3 Let {Y;, G/} be a stationary Ly-mixingale with mixingale numbers o (§). If Z; =
Z:io ka;,k, then

2

¢ 2 0o j 1/2
E max (Z Zs) <n Y (logj)* [ Cr) bkt (5 — k) +Cy ( > 62> . (A-D)
== \s=1 j=1 k=0

k=j+1

for C1,Cy > 0.
Proof. The argument from McLeish (1975) Thm 1.6 yields the inequality

t 2 o] n
E max (ZZ) < Cy) (logj)®y EE(ZG:;)
== \s=1 j=1 t=1

+Cy Z EE(Zt|gt)2

t=1

+C5 Y (logj)* Y " E(Z — E(Z)|Gus;))? (A-2)
j=1 t=1
for constants C'3, Cy, C'5s > 0. But for j >0,
1E(Z] G5, < ZbkllE skl G=3)ll, + Z S g (A-3)
k=0 k=j+1
using the Minkowski and Jensen inequalities, and similarly,
12 — B(Z|Gers)lly < ) bi Yook = B Yookl Gl - (A-4)

k=0

To bound the second majorant term in (A-3), apply Lemma A.2(a) putting Y,,s = X, = b; .Y,
so that the b coefficients play the role of the mixingale magnitude indices in this case. Finally,
apply the mixingale definition, and note that the first majorant term in (A-2) dominates the
second and third terms to obtain (A-1).

10



Lemma A4 Let {X,, G} and {Y;, G} be stationary Ly-mixingales with mixingale numbers
N (G) and O (). If Z = 332 g baYi s, then

" . 0o 1/2
YN Xz <n (Z(logj)2¢x(j)2>

t=1 s=1 J=1

2\ 1/2

00 1/2
X Z log j)? Clzbkq/} j—k)+Cy < Z b2> . (A-5)
j=1

k=j+1

Proof. This follows straightforwardly by combining the arguments of Lemmas WD.A.4 and
A3 1

Appendix B. Proofs for Section 3

B.1  Proofof Lemma 3.1

To prove part (a) of the lemma, we approximate sums by integrals. Consider first the case
0<d<1/2. If¢ <z <&, then using (2.4),

[n€]—[na]

apEE) = Y b
Z

1 /[nsunx] i
e vy
(d) Jo

1
Fagy (€l — sl (B-1)

and if similarly if z < ¢’ then
[n€]—[nz]

Qn,[nx) (57 é.,) - Z bk

k=[n¢'14+1—[nz]

1 [n€] i1
~ /[ (o )y

(- b - (- ). @

Since Y77 bz’ = (1 —z)7¢, note that 3 3°°  b; = 0 for —1/2 < d < 0. Hence, if ' <z <¢
then

~Y

o0

an,[nx](€7€,) = - Z bk

k=[n€|+1—[nal

—1 / * -1
Yy Yy dy

11



~ B-3
el — a” (B3)
and if z < ¢’ then similarly,
A [na] (57 é.,) = Z bk - Z bk
k=[n¢'|+1—[nz] k=[n&]+1—[nz]
1 d d
~ T+ (([n€] = [na])* = ([ng'] — [na])’) . (B-4)
To prove part (b), write
[ng] [n€] [ng']
Z ant(€7 5,)2 = Z ant(f, 5,)2 + Z ant(€7 5,)2
t=—00 t:[nﬁ']+1 t=—o00
= My, + My,. (B'S)
Letting 6,,; denote any positive constant array, note that Zyﬁn& i1 ant (€, &)? Zﬁ"ﬁ]ng 1 a0

if @y ) (€, €)? ~ O, g Tor every z in the interval (¢, £]. This holds in view of the fact that the
latter convergence is equivalent to g, [,,] — 0 as n — oo where
|an [nx] (57 5,)2 - en [nx]|

9n,nz] = : 0 ina] : . (B'6)

Letting ) _,(.) represent the sum over the specified indices, we have

ne
|Zt Qpg (57 5 ) Zt 0nt| S Zt gntent S max Ot (B-7)
>t Ont Do Ont T ingl<t<ing
We may argue similarly for the interval (—oo, £’], and so approximate M;,, and Ms, by the
sums of squares of the expressions derived in part (a). Further integrations yield

1 2d+1
(2d + 1)I'(d + 1)2 s(n(€ =€) (B-8)

Mln ~

and
fooo((l +7) = Td)ZdT 241

where in the second case we made the change of variable 7 = ([n€’] — t)/([n&] — [n€']). B

M2n ~

B.2 Proofof Lemma 3.2

Consider Lemma 3.1 in the case £ = 1 and &’ = 0. For brevity, we write a,,; to denote a,,(1,0).
Let B, be an increasing integer sequence with the property B,, — oo and B,,/n — 0, and define
rn = n/B,. For the purposes of the argument, assume that n increases through a sequence of
values such that r,, is always an integer. Write

n

n
E Ty = E AUy
t=1

t=—00

12



Tn iB,
= E E At Ut
i=—00 \t=(i—1)B,+1

Tn

= B}L/Z Z anyiBnSm +B2/2 Tzn gms:w

= Ay, + Aoy (B-10)
(say), where
1 iBn
Sni = 12 Z Ut, (B-11)
B DB+
Zn Apt —
Su= D, Toptu (B-12)

t=(i—1)Bn+1 By gni
and g,,; > 0 is to be chosen. We show that

M) i an) T E(A],) — 0y, and

nt
(i) O . a2,) tE(A3,) — 0 for a suitable definition of g,,;.
This is sufficient to prove the lemma, in view of the Cauchy-Schwarz inequality.
Under Assumption 1 the sequences {E(S2;), n > |i|B,} converge to o2 for each fixed
integer 7, such that
sup |E(S%) — 02| — 0asn — oo (B-13)

—oco<1<ry,

Exploiting the mixingale property (Lemma WD.A.1), this follows by Lemma A.2(a) with Y,,; =

X,; = Bn' 2ut+(i,1) B,, since the covariances of the terms are both absolutely summable and
independent of ¢. It follows similarly, using Lemma A.2(b), that

o0

sup Z |E(SniSni+m)| = 0(1) as n — oo. (B-14)

—oo<t<rn m=1

Next define

B CL2 1/2

W, = | =i if i <7, 0otherwi B-15

ni Zn .2 it 1 < r7,, 0 otherwise. ( )
t=—o0 “'nt

It is easily verified using the arguments of Lemma 3.1 that > ;" _ W2 — 1. We may write

rn—1 rn—1

n -1 Tn

t=—00 i=—00 i=—oco m=1

= Tin + 2712, (B-16)
(say). Using (B-13),

Tznwji—l

i=—00

T2, — 0% < sup |B(SZ) -2 S W2 402

—00<1<Tp,

i=—00

— 0Oasn — oo. (B-17)
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Also, (B-14) implies that

m=1 \i=—o0
— (OQasn — oo, (B-18)
noting that the weights |W,,;W,, ;1. | in the majorant have a sum over i of at most 1. This

completes the proof of (i).
To prove (ii), note that, for —oo <t < s < n,

—t

n—t
ant —ans] < | D b HIE<0) Y by

j=n—s+1 j=max{0,1—s}
< (8 - t) (|bnfs+1| + |bmax{0,lfs}|[(t < 0)) . (B'19)
Therefore, define
gni = |bnani+1| + I(Z < 0)|bmax{0,lani}| (B'zo)
such that
|ant - an,iBn| S Bngnz (B'zl)
for (i — 1)B,, < t <iB,. In view of (B-21) and previous arguments we can say that
sup  E(S:) =0(1)asn — oo, (B-22)
—00<1<Tp,
and that
sup Z E(S5:Shivm) = o(1) asn — oo. (B-23)
foo<z<rn
Now, defining
B3 g2 1/2
W, = ( LELE ) 1< Ty, (B-24)

note from (B-20) and the properties of b; that

rn—1 - 0
2 Bl = 0 (B (Z (r— )2+ Y ||>>

= 0B}, (B-25)
and hence .
Z Wi = O(r, ). (B-26)

In view of the previous arguments relating to Ay, it is clear that

n -1 Tn rpn—1 Tn—1
2 2 _ *2 Q*2 * Qi
E At A2n - E Wm Sm + 2 E E n z+mSmSn i+m
t=—o0 1=—00 1=—00

= 0(1)7 (B'27)
which completes the proof. i
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B.3  Proof of Theorem 3.1

The proof follows the lines of Theorem WD.3.1, by establishing that conditions (WD.3.4) and
(WD.3.5) hold for X,,(§), where the limit in distribution specified in (WD.3.4) is the fractional
Brownian motion, rescaled such that £X,,(1)? = 1.

To determine the finite dimensional distributions, apply Theorem 2 of De Jong (1997) to the

arrays {0, ra,:(£,0)us, t = 1—N,, ..., [n€],n > 1}, where N,, is a sequence of natural numbers
such that
—N,
Ru(€,€) = 0,0 > au(€,€)u, 23 0asn — oo (B-28)
t=—o00

for any choice of £ and &'. Such a sequence exists, given Corollary 3.1. Consider, for each &,
the arrays o a,;(&,0)u;. Under Assumption 1, these satisfy Assumption WD.1 with respect
to the constant arrays c,; = o, 'a,:(£,0). The style of the latter assumption can be adapted
to the present case by considering the blocks of terms corresponding to ¢ > O and ¢t < 0
separately, with K,, = [n¢] and K,, = N, respectively. The argument is easily extended to the
joint distribution of (X, (;), ..., Xn(§,)), for any finite set of p coordinates using the Cramér-
Wold Theorem (Davidson 1994, Theorem 25.5) since the random variable Z;’:l 7, Xn (€ j), with
arbitrary weights 7y, ..., 7, is the partial sum of the array {o* o1 Tjant (€5, 0)us }, which
similarly satisfies Assumption WD.1 as required.

The second part of the proof is to establish stochastic equicontinuity, and we adapt the proof
of Theorem WD.3.1 as follows. Note first that (WD.B.2) holds as before since v2(.) is an
arbitrary sequence in that expression. It remains to show that Y, in (WD.B.3) is uniformly
square integrable, for an appropriate choice of v,,.

Write »
ng
Xn(f) - Xn(fl) = 0-771 Z ant(€7 gl)ut + Rn(€7 €,)7 (B'29)
t=—Np,
and define
[n min{¢+46,1}]
Va6 8) =020 Y aml€ 46,6 (B-30)
t=—00
Now consider the sequence corresponding to (WD.B.3),
[n€]
Y, (6,6) = sup ng Z Ty y;l(f’,é). (B-31)
{&:6-¢'<6} t=[n€']+1
Observe that
Ya(6,8") < Y1n(6,8) + Yan(6,€') (B-32)
where
[n€]
}/in(57 5,) = sup Z ant(€7 SI + 5)“15 Vrjl (6,7 6) (B'33)
{ee—¢'<8} |2,
and
Yon(6,€) = sup |R, (&) v, (£,0). (B-34)
{&:6-¢'<6}

The inequality in (B-32) must hold, because it holds (by the triangle inequality) if the value of
¢ defined by the sup in (B-31) also appears in (B-33) and (B-34). In that case the sums have
the same terms merely added up in a different order, according to (B-29). Taking the individual
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sups in (B-33) and (B-34) can only increase the majorant side.

Considering Y7, (6, &") first, note that this sequence is uniformly square integrable by The-
orem 16.14 of Davidson (1994), if u? is uniformly integrable, which holds by Assumption 1.
Moreover Ya,(8, &) — 0 in Ly norm, so that uniform square integrability holds trivially for this
term. Therefore, subject to

lim sup limsup v2(£,6) =0, (B-35)
6—0¢e[0,1—5] n—oo

the FCLT is proved. But by Lemma 3.1,

[nmin{é+46,1}]
sup limsup o202 Z Ay (€ + 6,6)% = 624 (B-36)
£€[0,1-6] n—oo t=—00

which converges to 0 with é for d > —1/2. This completes the proof. i

B.4  Proof of Theorem 3.2

We appeal, as in the case of Theorem WD.3.2, to Theorem 29.16 of Davidson (1994). The
result follows if \'X,, converges in distribution to an a.s. continuous Gaussian limit, \'X, for
all m-vectors A of unit length. These limits are not fractional Brownian motions in general, but
as a consequence of Lemma 3.3, the cases A = e;, j = 1...,m (the columns of the identity
matrix of order m) yield the pure fractional BMs with parameters d;.

To establish convergence of the finite sample distributions, we can apply Theorem 2 of
de Jong (1997) as previously, since by Assumption 2, Assumption WD.1 holds for the array
ND-1A,,(€,0)u, with respect to constants

. R N “ 1/2
Cnt = (A,DglAnt (67 O)QuAnt (67 O)Drjl/\) : (B-37)

The argument now proceeds in a similar way to that of Theorem 3.1. Stochastic equicontinuity
is established in the same manner as before, by considering the random variables \'(X,,(£) —
X,,(£¢')) defined according to (3.8), and also defining the sequences
[n min(&£+6),1] X X X X
V268 = Y ND'Au(E+ 6,0 An(E +6,6)D A (B-38)
t=—o00

by analogy with (B-30). Note that in this case, using Lemma 3.3, we have
sup limsup v2(€,68) = XK (6) WK (8)\ (B-39)

fe [07175] n—00

which converges to 0 as § — 0 provided d; > —1/2 for each j. I
Appendix C. Proofs for Section 4

C.1  Proof of Theorem 4.1

The proof follows that of Theorem WD.4.1 at most points. As there, we assume without loss
of generality that X and W are scalars, and can therefore write d in place of d;. However,
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the proof of Theorem 30.13 of Davidson (1994) must be further modified, as follows. The
number of blocks, k,, must be chosen to be O(n¥/(~%) where ¢ > 0 is defined by the NED
size assumptions, such that the NED numbers vV (m) and v" (m), are of O(m?~'/27¢). The
convergence specified in (30.64) of Davidson (1994) is now to the pair (X, W) where X is the
process specified in (2.6), and W is ordinary Brownian motion. Since X is a.s. continuous, this
fact affects the subsequent argument only at the point of equation (30.78) of Davidson (1994),
where the expression in the third member becomes (in our notation)

kn gj
) /é (€ — ¢, )" de (B)
j=1 Y&

which, however, converges to 0 as before.
Next, note the modifications to the remainder of the proof of Theorem WD.4.1. We have
kn mij—1 ¢
= Z Z Z(anWn,t+1 — EXpsWhti1) (C-2)
J=1 t=p; s=p;
where as before we write p; for n;_; + 1, and similarly,
kn mnj—1 nj
Bu=Y >, > EXaWisn (C-3)
j=1t=n;_1 s=1
To show B,, — 0, it is convenient to rewrite it in the form
kn Ti— nj—1
B,=)_ Z D (&5 1, 0)EU W i1 (C-4)
j=1 t=nj_1 s=—o0
where U,,, = n~"/?~%u,. The same argument as before now goes through using Lemma A.2(b)
and applying Lemma 3.1, noting that the mixingale magnitude index for the random variable
s (§5_1,0)Uns is 72 a,,(€;_4,0).
To show that A, % 0, note first that the argument as far as equation (WD.C.14) can be
copied after making the substitution
t

Zan = Z ans(t/n 53 1) ns» (C'S)

s5=p; §=—00

similarly to above. At this point the problem reduces, as before, to showing that A,, = Z?Zl Yo,

20. Defining X,,, similarly to (C-5), but with U,,, replaced by the truncated form U,,, accord-
ing to (WD.C.9), we can write
njfl t
Yn] - Z Z(anWn,t+l - EanWn,t+1)- (C'6)
t=p; s=p;

Instead of (WD.C.18), we have, for m > 0,
I Yo = B[S0 Yo [k

n;—1
Z HWnt+1 _E Wnt+1H Zan
t=pj; S=Pj

2
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n;—1 n;—1 n;—1

2 s = B X, || 22 Waana | + [ D B W) | (C-D)
5=pj t=pj 9 t=pj 9
By Lemma A.3 and the assumptions,
t
> Xo| <CinkM? (C-8)
s=p;

2
for constant C'; > 0, and p; <t < n; — 1. Also note that form > 0,and s — 1 > n;_,,_1,

[T st = B2 O s
|Un,s—t = E(Un,s—1|0 (Van, 1515 - Va2(s—0=ny—m-1)]| 5
n 20 (mn/k, — 1), (C-9)
and hence by the Minkowski and Jensen inequalities,
X = 520 X |

IN A

2

mn/kp, 00
S Z bl HUn,sfl - Ej+m n s— lH +2 Z blUn,sfl
= l=mn/kn+1 9
mn/kn 0o 1/2
< Con V77" b (mn/ky, — 1) + Cyn /270 >y (C-10)
1=0 I=mn/kn+1

for Uy, C5 > 0. where Lemma A.2(a) has been used to bound the last term. The sum in the
first term of the majorant is of order (mn/k,)* />~ by Lemma A.1, and the sum in the second
term of the majorant is of order (mn/k,)??~!. After simplification, we obtain

| Yoj — B Yo 1< Caky ' (K /)* 4m 12, (C-11)

for Cy > 0, where n=%(k,/n)¢ = O(1) by the choice of k,, and hence, {V,;, F,;} is a
L;-mixingale of size —1/2, with summable magnitude indices. The rest of the proof closely
follows Theorem WD.4.1 from (WD.C.22) onwards, except that the substitution corresponding
to (C-5) is made in the expressions, and Lemma A.4 is applied in place of Lemma WD.A.4. 1

C.2  Proof of Theorem 4.2

It is sufficient to show G, — AXW % fol XdW’, since the joint convergence follows by the
discussion following Theorem WD.4.1.
The first step in the proofis to show that (w;, H;) is a Ly-mixingale of size —1, and also that

<Z utEthH — Eutwiﬂ-, Ht> (C-12)

j=1
is a L;-mixingale whose ith row is of size —d;. We show that any of Conditions 1, 2 and 3 are
sufficient. Under Condition 1, the mixingale property for (w;, H;) follows by Theorem 17.6 of
Davidson (1994). For (C-12), apply of Theorem 3.2 of Hansen (1992), element by element to
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obtain, for constants C, Cy > 0,7

o0
< Oymal ' + ¢y Z oz,l;Z/r
1 k=m

— O(m™), (C-13)

where o, denotes the strong-mixing numbers. Under Condition 2, similar arguments follow
after substituting the uniform mixing inequality of Serfling (1968) for the strong mixing in-
equality.® Under Condition 3, the required mixingale property of (w;, H;) is implicit in (4.3).
The same condition implies (by the Minkowski inequality) that Z;; FEiyw,yj is Ly-NED on
{V;} of size —d. Hence, when Assumption 2 holds for u,, the mixingale property for (C-12)
follows by Theorems 17.9 and 17.6 of Davidson (1994), applied element by element.

In the second step, the argument is applied, in effect, to each pairing of elements of z; and
wy. We therefore assume without loss of generality that x; and w; are scalars. Apply the identity

o0
/ /
Et,m E UtEtwt+j — Eutwtﬂ-

J=1

Wt = € + 24—1 — 2t (C-14)
where .
€ = (Etwt+k - Etflwt+k) (C-15)
k=0
and .
2 = Z Eywg g, (C-16)
k=1

fort =1,...,n — 1, and set z,, = 0. Noting that

n—1

t n—1
Z sz(zt - Zt+1) = thzt, (C'17)
t=1

t=1 s=1
we may write

n—1 t
YN T waw = Av, + Agy (C-18)
t=1 s=1
where
n—1 t
Ay =m0 Z Z Ts€tt1 (C-19)
t=1 s=1
and
n—1
A =070 "z (C-20)
t=1
Under the assumptions,
1
A, S Xdw (C-21)

0
by Theorem 3.1 of Hansen (1992), noting that the application of the strong mixing inequality
in Hansen’s inequality (A.1) simply makes use of the mixingale property of a centred strong
mixing process, and is valid in this case by assumption. Next, consider A,,. Note that for

In Hansen’s notation we set 3 = 2, permissable under our stationarity assumption, and p = 7.

8 In this case set p = 3 = 2, in Hansen’s notation.
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constants C';, Cy > 0, and ¢ > 0,

n—t

Ei E e Byweyj — Eug_pwig )
J=1

Z brs—p,

k=m+1

||Etfmxtzt —EﬂftZtHl < Zbk
k=0

n—t
Z | Evwell,

2 j=1

1/2
< qukam k) +02< Z bZ) ZC(])

k=0 k=m-+1
= O(m™)+0 (m*1?), (C-22)

where ((j) and (k) are the mixingale numbers for {w;,H;} and the process in (C-12), re-
spectively. The first of the inequalities in (C-22) uses the Minkowski, Jensen and Cauchy-
Schwarz inequalities. The second inequality applies the mixingale assumptions and Lemma
A.2(a), putting Y,,, = X, = b;_su,. The first order-of-magnitude term is evaluated using
Lemma A.1, and the second follows by assumption.

The sequence {x;z;, H;} is therefore a stationary L;-mixingale, and accordingly, uniformly
integrable. It follows by the weak law of large numbers of Davidson (1993) (or see Davidson
1994, Theorem 19.11) that

n—1
’Ithzt Ex,z) 2 0. (C-23)

Noting that E(A,,) = AXW ompletes the proof.

C.3  Proof of Theorem 4.3

As before, assume x; and w; are scalars. The first part of the argument follows the same modifi-

cation of Theorem WD.4.1 as used in Theorem 4. 1. It remains to show that |G, — G* —AUW | 2
0, similarly to expression (WD.4.7). Using the decomposition in (C-14), and noting that

n;—1 n;—1 n;—1
Z Z (2 — 2e41) = Z T2y — Z TtZn;, (C-24)
t= =n;_ 141 s= =n;_ 1+1 t= nj,1+1 t=’nj71
we can write
Gn - G; - Aln + A2n - A3n (C'zs)
where
t—mj;_1—1
Z Tt—m€t+1, (C'26)
n]fl
n1- dz > ma (C-27)
j=1t=n;_1+1
and

kn 715 -1

=nY TN mz,, (C-28)

j=1 t=n;—1
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Now, by the assumption on wy, |¢;| < oo a.s., and by Holder’s inequality,
2

t—m;j_1—1 t—mj;_1—1

E€, ( > xm> < e’ E ( > xm> . (C-29)
m=0 m=0

Therefore, in view of the martingale difference property of ¢,

n;—1

B(A%) < ole S E(Xa(t/n) — Xa(§;))"

j=1t=n;_1+1

kn
< Oty (g - &)
j=1

= 0 ( max (§; — €j1)2d+1> =0(1). (C-30)

1<j<kn

for constant C' > 0. The proof is completed by arguments similar to those used for Theorem
4.2, noting that the term A,, — F(A,,) converges in probability to 0, that F|As,| < n~¢, and
that |E(Ay,) — AXW| — 0. 1
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