The temporal dynamics of switching tasks

Submitted by Heike Elchlepp to the University of Exeter
as a thesis for the degree of
Doctor of Philosophy in Psychology
In July 2011

The thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature:...
Abstract

The topic of this thesis is cognitive control: how the brain organises itself to perform the many tasks it is capable of and how it switches flexibly among them. Task-switching experiments reveal a substantial cost in reaction time and accuracy after a switch in tasks. This "switch cost" is reduced by preparation (suggesting anticipatory task-set reconfiguration), but not eliminated. The thesis focuses on the sources of the "residual" cost. Most accounts attribute it to response selection being prolonged on a task-switch trial by task conflict, e.g. by 'task-set inertia' — persisting activation/inhibition of the previous task's S-R rules — or their associative reactivation by the stimulus.

Four experiments used event-related potentials (ERPs) to determine which stages of task processing are influenced by a change in tasks, looking for delays in process-specific markers in the ERP. Experiments 1 and 2 showed that a prepared switch to a reading task from a perceptual judgement delayed early ERP markers of lexical access by a large fraction of the RT switch cost, suggesting that a substantial part of the residual cost arises in processes earlier than response selection, possibly due to task-related attentional inertia. Markers of lexical access observed in the non-lexical task were larger on switch than repeat trials, providing the first electrophysiological evidence of task-set inertia. Experiment 3 examined the effects of an unprepared switch in the same way. ERP waveforms were modulated by a switch before markers of lexical access were evident, suggesting additional processing demands compete for resources with lexical access. A simple delay, however, was not found; post-stimulus task-set reconfiguration does not just insert an extra processing stage. Experiment 4 looked for a delay in the onset of an early ERP marker of emotional processing when the task switched between categorising facial expression and classifying a superimposed letter. No such delay was found in this case, and ERP markers of emotion processing were present to the same extent in the letter task. This suggests that, given appropriate spatial attention, processing facial emotion unfolds automatically, independent of attention allocation to the facial features.
Experiments 5-7 further explored the link between conflict due to processing the irrelevant stimulus dimension and the ERP post-stimulus negativity that accompanies the residual cost. The negativity could be elicited even on trials of non-switching blocks by prior training on classifying the irrelevant attribute of the stimulus using the same responses. But this effect did not seem to result from the trained class of irrelevant attribute attracting more attention.

Finally, Experiment 8 followed up an incidental observation in Experiment 1 to establish the novel observation that a task-switching context abolishes the usual ERP correlate of withholding a response in a go/no-go paradigm, suggesting an interesting interaction between task-set control and response inhibition.
Results and Discussion 78
 Behavioural results 78
 Lexical decision task: ERP latency analysis 81
 ERPs- PCA-based amplitude analyses 83
General Discussion 87
 Implications for theories of the residual task-switch cost 88
 Possible limitations 90
 Implications of the bigram frequency/neighbourhood size effects 91
 Implications for the automaticity of word-reading 92
Appendix- Chapter 2: Data tables 94

CHAPTER 3: UNPREPARED SWITCHING BETWEEN LEXICAL AND SYMMETRY TASKS 105
 Experiment 3 107
 Method 107
 Participants 107
 Stimuli and Procedure 107
 EEG and ERPs 107
 Results 108
 Behavioural results 108
 ERPs from the semantic task 111
 ERPs from the symmetry task 114
 Discussion 116
 Appendix Chapter 3: Data tables 119

CHAPTER 4: AN ATTEMPT TO DETECT A SWITCH-INDUCED PROCESSING DELAY IN A FACE TASK 123
 Experiment 4 127
 Method 128
 Participants 128
 Stimuli and Procedure 128
 EEG and ERPs 130
 Results 131
CHAPTER 5: A NEURAL CORRELATE OF TASK-SET INTERFERENCE

Abstract 161

Introduction 161

Residual switch cost and task-set conflict 162
Level of task conflict 163
Reconfiguration-based accounts of the residual switch cost 164
An electrophysiological correlate of the residual switch cost: conflict or TSR 164

Experiment 5 166

Method 167

Participants 167
Apparatus 168
Stimuli and Procedure 168
EEG and ERPs 170

Results 171

Behavioural results 171
ERP results 172

Bivalent vs. univalent 172
Response conflict: congruent vs. incongruent 174
Set conflict: congruent vs. univalent 174

Discussion 175

Experiment 6 176

Method 176

Participants, apparatus, stimuli and procedure 176

Results 177
CHAPTER 6: THE EFFECT OF SWITCHING ON THE NOGO-N2

Experiment 1: Go-Nogo contrast in the symmetry task

Method

Results

Go-nogo analysis of the symmetry task

ERP results

Possible early effects of switching (150-250 ms)

N2 time window (250-450 ms)

P3 time window (450-750 ms)

Discussion

Experiment 8

Method

Participants

Stimuli and Procedure

ERPs

Results

Behavioural results

ERP results
CHAPTER 7: GENERAL DISCUSSION

Experiments 2-4 (Chapters 2, 3 and 4) 206
Impact of task-set interference on the ERP (Experiments 5, 6 and 7) 212
Task-switching and the no-go N2 (Experiments 1 and 8) 213
Conclusions 214

REFERENCES 217