DEVELOPING A SYSTEM RESILIENCE APPROACH TO THE IMPROVEMENT OF PATIENT SAFETY IN NHS HOSPITALS

Submitted by

MICHAEL DERMOT ANDREW WILLIAMS

to the University of Exeter as a thesis for the degree of

DOCTOR OF PHILOSOPHY IN MANAGEMENT STUDIES

April 2011

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

.. (Signature)
Abstract

The objective of this thesis is to explore how a systems approach can be used to provide an insight into patient safety in NHS hospitals in England. Healthcare delivers considerable benefits yet there remains a relatively high rate of harm and death for patients through adverse events occurring during the process of treatment. The extant patient safety literature acknowledges the influence of organisational or system factors on patient safety. However, the literature is weak in explaining how system factors affect patient safety. To provide an insight into the interactions within healthcare systems, this research explores the characteristics of NHS hospitals, regarded as complex socio-technical systems, using concepts from resilience, systems, accident and social theory.

A theoretical Safe Working Envelope (SWE) model (Rasmussen, 1997) is developed and contextualised for use in the NHS. The case study field work was carried out in two NHS hospitals during consecutive winter months at times of high demand for inpatient services. A third case study uses secondary data about patient safety failures in the Mid Staffordshire NHS Foundation Trust.

The original SWE model has three failure boundaries. The model is developed by introducing an additional boundary to take account of Government targets. Social theory and system dynamics are used to include the dialectic feedback of social actors and the dynamics of workload. The model depicts the competing pressures, constraints and the workload associated with the need to meet the financial, target, staff workload and patient safety requirements. Three interacting construct sets are explored. These are the constraints within which the system operates, the pressures from the context, and the system dynamics of demand, capacity and decision making. Insights into system behaviours of the hospitals are derived from examining the construct set interactions. The proposition is made that there are five system behaviour archetypes which create the conditions that influence patient safety. The archetypes are derived from the system dynamics and in particular the relationship between reinforcing and balancing feedback loops. The five archetypes are safe practice, drift, tip, collapse and transition towards failure. As hospitals become overcrowded the complexity increases and the reinforcing feedback loops dominate the system and potentially increase the risk to patients. An element of risk arises from staff normalising to the drift in standards of care.
Acknowledgements

Completing this thesis has been a journey shared and made possible by others. My supervisors, Professors Andi Smart and Roger Maull played a huge part in my learning what a PhD needs to achieve; thanks for to them for their patience, understanding and advice. Getting dates in the diaries of supervisors is never easy so special thanks to Francine Carter for her help and assistance.

A special mention and acknowledgement is due to Prof Kieran Sweeney who sadly died in late 2009. Kieran was an informal supervisor who greatly encouraged me in gathering ‘rich data’ from the stories and encounters with staff during my research. He is greatly missed. I can only hope to have done justice to his enthusiasm for qualitative methods. Thanks also to Prof Charles Vincent for his encouragement.

Thanks are due to those who funded my research. In particular to Sir Ian Caruthers, the Chief Executive and Dr Mike Durkin, the Medical Director of the South West Strategic Health Authority for their encouragement and support to undertake this work. Thanks to Taunton & Somerset NHS Trust who helped me make the transition, due to ill health, from being a Chief Executive to a student.

To many former colleagues in the NHS who have kept me sane by involving me in patient safety projects, with particular thanks to Pete Cavanagh, Peter Aitken and Julie Branter. Thanks especially to the Chief Executives and staff of the case study hospitals for allowing me access.

Thanks to my colleagues in the research group for allowing me to test my ideas with them. For a major part of the time my son Jason was part of the research group. I’m grateful that he did not pose too many difficult questions for his old man! To Prof Peta Foxall at the Peninsula College of Medicine and Dentistry for asking me to work with and teach doctors about leadership and patient safety, which has kept my feet rooted in reality. She also helped by reminding me that the PhD would be finished one day and life would return to normal.

Parts of this thesis have been read by a number of people and particular thanks go to Nigel Walsh and Harry Maddern for helping make it read better than it might have.

Gill my wife has been a solid support as always, ably assisted by Jason, Hannah and Fran plus Millie the dog. There is now hope that my study floor will once more see the light of day.
Table of Contents

Title Page ... 1
Abstract .. 2
Acknowledgements ... 3
Table of Contents .. 4
Publications ... 9
List of Figures .. 9
List of Tables .. 12
Abbreviations ... 15
Glossary ... 16
Chapter 1 - Introduction ... 18
 1.1 Introduction ... 18
 1.2 Context of the research .. 18
 1.3 Scope of the research ... 20
 1.4 Research aims and objectives ... 23
 1.5 Significance of the study .. 25
 1.6 Organisation of the thesis .. 26
 1.6.1 Chapter 2 – Patient Safety and Systems Thinking .. 28
 1.6.2 Chapter 3 – Developing a system resilience approach 28
 1.6.3 Chapter 4 – Research philosophy, design and methodology 28
 1.6.4 Chapter 5 – Developing the Conceptual Model ... 29
 1.6.5 Chapter 6 – Investigating the Boundaries of the Safe Working Envelope 30
 1.6.6 Chapter 7 – Investigating the Gradient and Operating Point 30
 1.6.7 Chapter 8 – Investigating the Structure and Feedback 31
 1.6.8 Chapter 9 - Discussion .. 31
 1.6.9 Chapter 10 - Conclusions, Implications and Limitations 31
Chapter 2 – Patient Safety and Systems Thinking ... 33
 2.1 Introduction ... 33
 2.2 Patient Safety – the influence of the ‘system’ ... 33
 2.3 System models in the patient safety literature ... 38
 2.4 Systems Thinking ... 41
 2.4.1 What is a system? ... 41
 2.4.2 System Dynamics .. 43
 2.4.3 Decision Making .. 47
Chapter 5 - Contextualising the Conceptual Model

- **5.1 Introduction** ... 109
- **5.1 Developing the conceptual model** 110
- **5.1.1 Synthesising the literature** .. 110
- **5.2 Contextualising the Safe Working Envelope model** 113
- **5.2.1 Policy Context** .. 114
- **5.2.2 Extant literature on targets and performance** 116
- **5.2.3 Developing the model** .. 117
- **5.3 Applying the model** .. 125
- **5.4 Summary** .. 128

Chapter 6 – Investigating the Boundaries of a Safe Working Envelope

- **6.1 Introduction** ... 129
- **6.2 Staff views on the priorities of the boundaries** 133
- **6.3 Patient Safety Boundary** .. 135
- **6.4 Unacceptable Workload Boundary** 144
- **6.5 Financial Failure Boundary** ... 150
- **6.6 Target Failure Boundary** ... 155
- **6.7 Summary** .. 162

Chapter 7 – Investigating the Gradients and Operating Point

- **7.1 Introduction** ... 166
- **7.2 Event one – Norovirus** ... 168
- **7.2.1 Response** ... 170
 - **7.2.1.1 Opening additional inpatient beds** 171
 - **7.2.1.2 Increasing the rate of medical outliers** 172
 - **7.2.1.3 Implications for the patients** .. 173
 - **7.2.1.4 Keeping ED flowing** .. 176
 - **7.2.1.5 Not cancelling elective patients** 177
 - **7.2.1.6 Staff workload** ... 179
- **7.2.2 The Operating Point and Gradient dimensions** 181
- **7.3 Event two – post Christmas surge in emergency admissions** .. 184
- **7.3.1 Response - staff workload and patient safety** 187
- **7.3.2 Response – decision making hierarchy** 188
- **7.3.3 Consequence – shifting the safety failure marginal zone boundary** 189
- **7.3.4 Analysis of event two** .. 191
Chapter 8 – Investigating the Structure and Feedback

8.1 Introduction... 206
8.2 The planned design of the structure .. 207
8.3 Factors that affect the planned stock flow design 210
8.4 Tipping from loose to tight coupling.................................. 217
8.5 Increasing the rate of flow out of the medical wards 221
8.6 Conceptual analysis.. 231
8.6.1 ‘Structure’ .. 231
8.6.2 ‘Feedback’ ... 231
8.6.3 Implications on the OP ... 233
8.7 Summary.. 234

Chapter 9 – Discussion... 235

9.1 Introduction.. 235
9.2 The development of the Safe Working Envelope model............. 235
9.2.1 Key points from the literature ... 236
9.2.2 Insights about the constructs and dimensions of the SWE v3 model 236
9.2.3 Resilience – the buffer of adaptive capacity 243
9.3 Characteristics of the case study hospitals............................... 245
9.3.1 Insights into system archetypes....................................... 245
9.3.2 System archetypes that may influence patient safety 247
9.3.1 One – Safe Practice .. 247
9.3.2 Two – Drift towards Failure .. 247
9.3.3 Three – Tip towards Failure .. 247
9.3.4 Four – Collapse towards Failure 249
9.3.5 Five – Transition towards Failure 251
9.4 Proposals for improvement.. 253
9.5 Summary of the contribution to knowledge 255
9.6 Summary.. 257

Chapter 10 - Conclusions, Implications and Limitations................. 258

10.1 Introduction... 258
10.2 Summary of Conclusions.. 258
10.2.1 Conclusions about safe working envelope model................................. 258
10.2.2 Conclusions about the systemic characteristics influence on patient safety
260
10.3 Implications .. 262
10.3.1 Implications for theory .. 262
10.3.2 Implications for policy .. 264
10.3.3 Implications for practice ... 265
10.3.4 Contribution to knowledge ... 267
10.4 Limitations of the research .. 268
10.5 Further research .. 270
10.5.1 System Behaviours ... 270
10.5.2 Operational and patient safety management 271
10.5.3 Development of the model .. 271

References .. 273
Appendices

Appendix 2.1: Conventions of System Dynamic Models 289
Appendix 4.1: Documents and Statistical data collected 292
Appendix 4.2: Research Protocol 297
Appendix 4.3: List of Interviewees 299
Appendix 4.4: Interviewee Questionnaire 301
Appendix 4.5: Information about the research 302
Appendix 4.6: Consent Form 304
Appendix 4.7: Ethical Approval 305
Appendix 5.1: Summary of key points from NHS Operating Framework Documents (2006/07 – 2009/10) 310
Appendix 5.2: Results of Content Analysis 318
Appendix 6.1: Extracts from Filed Notebooks 320
Appendix 6.2: Extracts from coded data 324
Appendix 6.3: Questionnaire results 360
Appendix 7.1: Examples of Daily bed information 362
Appendix 8.1 Admission and discharge graphs 365

Publications

Publication 1: Patient safety: a casualty of target success? 370
Publication 2: System resilience and patient safety during a bed crisis in an NHS hospital in England 387
Publication 3: Rebellion against the ‘normal’ to improve safety for patients 398
Publication 4: Safety, systems, complexity, and resilience: What makes organizations safe? 408

List of Figures

Figure 1.1: Outline approach of the thesis 22
Figure 1.2: Overview of research process and chapter content 27
Figure 3.1: Reason’s Swiss Cheese model (Reason, 1997) 52
Figure 3.2: Blunt and sharp end of an organisation 53
Figure 3.3: Two views of ‘resilience’ 58
Figure 3.4:	Safe working envelope model	63
Figure 3.5:	Gradients of pressure on the operating point	66
Figure 3.6:	Counter gradient to hold the operating point in safe position	66
Figure 4.1:	Assumptions about the nature of social science	77
Figure 4.2:	Two axis framework depicting schools of management research	80
Figure 4.3:	High level overview of empirical research process	89
Figure 5.1:	Safe Working Envelope (v2) model developed from synthesis of the literature	113
Figure 5.2:	The four boundary SWE for NHS hospitals	118
Figure 5.3:	Four boundary SWE with gradients	119
Figure 5.4	SWE set within the wider context of stakeholder influences	121
Figure 5.5:	Four boundary SWE with SD diagrams to depict system ‘structure’ within the envelope	122
Figure 5.6:	Basic stock flow diagram of the emergency medical patient pathway into and through a NHS hospital	123
Figure 5.7:	Basic stock flow diagram of the emergency medical patient pathway into and through a NHS hospital with diversion flow from MAU to ED	124
Figure 5.8:	Causal Loop Diagram showing the relationship of the emergency medical patients rate of arrival to a hospital system	125
Figure 5.9	Combination and interaction of construct sets depicted by the SWE model	126
Figure 6.1	Combination and interaction of construct sets depicted by the SWE model	130
Figure 6.2:	Coding hierarchy for ‘Safe Working Envelope’	130
Figure 6.3:	Coding hierarchy for ‘Actual Design’ theme	131
Figure 6.4:	Coding hierarchy for ‘Rich Pictures’	131
Figure 6.5:	Relationship of themes to SWE (v3) model	132
Figure 6.6:	Movement of the marginal zone boundary for control of MRSA and C.Diff	137
Figure 6.7:	Movement of the marginal zone boundary for inpatient patient falls	139
Figure 6.8:	Location of the marginal zone boundary for nurses and	146
doctors

Figure 6.9: The SWE with boundaries dimensions

Figure 7.1: Combination and interaction of construct sets depicted by the SWE model

Figure 7.2: The OP breaching the patient safety failure boundary due to the rapid spread of the Norovirus in CS 1

Figure 7.3: Movement of the OP following the outbreak of the Norovirus

Figure 7.4: Statistical Process Control Chart - Medical outliers before, during and after sickness virus

Figure 7.5: Elective Admissions 2008 Before, During and After Sickness Virus and 2007 over same period

Figure 7.6: Event one – SWE (v3) with operating point and actions and consequences associated with gradients from each boundary

Figure 7.7: CS 1 Predicted emergency medical admission with control limits with actual admissions Dec 08 – Jan 09

Figure 7.8: Number of medical outliers by day May 08 – Feb 09

Figure 7.9: CS 1 Shifting the marginal zone boundary outwards

Figure 7.10: Event two – SWE (v3) with operating point and actions and consequences associated with gradients from each boundary

Figure 8.1 Combination and interaction of construct sets depicted by the SWE model

Figure 8.2: CS 1 Elective Inpatient Admissions, Plan vs Actual, Apr 08 – Sept 09

Figure 8.3: CS 1 Emergency (Non-Elective) Inpatient Admissions, Plan vs Actual, April 08 – Sept 09

Figure 8.4: The planned stock and flow of surgical and medical patients in CS 1

Figure 8.5: CS 1 Daily medical admissions and discharges Dec 08 – Jan 09

Figure 8.6: CS 1 Monday Median Elective and Emergency Admissions vs Discharges by Hour of the Day 2006-07

Figure 8.7: CS 1 Friday Median Elective and Emergency Admissions vs Discharges by Hour of the Day 2006-07

Figure 8.8: CS 1 Variation between Elective and Emergency Admissions vs Discharges April 06 – March 07
Figure 8.9: CS 1 31 Bed Acute Medical Ward: ‘Enhanced’ Occupancy (number of patients on ward per day) in October 2008 215

Figure 8.10: CS 1 31 Bed Acute Medical Ward: Midnight and ‘Enhanced’ Percentage by day - October 2008 215

Figure 8.11: Changes (depicted in red) to the planned design of the stock and flow of surgical and medical patients in CS 1 and 2 when medical wards are full 218

Figure 8.12: CLD of reinforcing loops created in situation where medical ward occupancy is too high to absorb variation in demand. (Stocks in boxes) 219

Figure 8.13: CLD with balancing loops of increasing rate of flow out of medical wards 222

Figure 8.14: CS 1 Number of Medical Outliers Dec – June 2006-2009 224

Figure 8.15: CS 2 Number of Outliers Jan 09 – Jan 10 (with missing data points) 224

Figure 8.16: CS 1 Length of Stay of Medical Patients by Discharge Ward 225

Figure 8.17: Reinforcing feedback loops generated by ‘medical outliers’ 227

Figure 8.18: Feedback loops generated by transfer of medical patients to surgical wards 230

Figure 9.1: The constructs of the SWE v3 model 242

Figure 9.2: Overview of the system characteristics and behaviour archetypes 246

List of Tables

Table 1.1: The contrast between human error and system vulnerability to failure 21

Table 2.1 Overview of main themes in the patient safety literature 35

Table 2.2 Variety of ‘system’ concepts found in the literature 37

Table 3.1: Dimensions of the SWE constructs 71

Table 4.1: Categorising the implications for research of the four paradigms 79

Table 4.2: Case study tactics to meet the four design tests 92
Table 4.3: Summary of sources of data and data collection methods
97
Table 4.4: Summary of data sources and their application to themes
98
Table 4.5: Summary of data sources used to establish the characteristics of the SWE constructs
98
Table 4.6: Case study 1 number of interviewees by profession and embedded level in the hospital
101
Table 4.7: Case study 2 number of interviewees by profession and embedded level in the hospital
101
Table 5.1: Mean scores by boundary type from content analysis of Department of Health ‘Operating Frameworks’ for the NHS in England 2006/07 – 2009/2010
115
Table 6.1: Dimensions of the SWE ‘boundaries’ constructs derived from literature
132
Table 6.2: CS 1 - Ranking of the highest priority for different organisational levels
133
Table 6.3: CS 2 - Ranking of the highest priority for different organisational levels
133
Table 6.4: Dimensions of the SWE ‘Patient safety failure boundary’ construct with examples from the data
143
Table 6.5: Dimensions of the SWE ‘Unacceptable workload boundary’ construct with examples from the data
150
Table 6.6: Dimensions of the SWE ‘Financial failure boundary’ construct with examples from the data
155
Table 6.7: Dimensions of the SWE ‘Financial failure boundary’ construct with examples from the data
162
Table 7.1: Dimensions of the SWE ‘operating point’ and ‘gradients’ constructs derived from literature
167
Table 7.2: Summary of the dimensions of the ‘operating point’ during Event 1
184
Table 7.3: Summary of the dimensions of the ‘gradients’ during Event 1
184
Table 7.4: Medical Emergency Admissions and Medical Outliers (29th Dec 2008 – 14th Jan, 2009)
185
Table 7.5: Summary of the dimensions of the ‘operating point’ during
195
the surge in demand event

Table 7.6: Summary of the dimensions of the ‘gradients’ during the surge in demand event 195

Table 7.7: Summary of the dimensions of the ‘operating point’ during Event 3 201

Table 7.8: Summary of the dimensions of the ‘gradients’ during Event 3 201

Table 8.1: Explanation of loops 5 – 9 in Figure 8.16 228-9

Table 8.2: Dimensions of the ‘structure’ and ‘feedback’ constructs of the SWE (v3) 232

Table 9.1: Concepts from accident theory and their relationship to the SWE v3 model constructs. 238

Table 9.2: Summary of the contribution to knowledge from the development of the SWE model 240-1

Table 9.3 Measurable indicators of the constructs to provide an insight into state of resilience of a hospital 244