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Abstract 

The thesis first evaluates the forecast performance of multivariate long memory 

conditional volatility models among themselves and against that of short memory 

conditional volatility models, using the asset allocation framework of Engle and 

Colacito (2006). While many alternative conditional volatility models have been 

developed in the literature, my choice reflects the need for parsimonious models that 

can be used to forecast high dimensional covariance matrices. In particular, I compare 

the statistical and economic performance of four multivariate long memory volatility 

models (the long memory EWMA, long memory EWMA-DCC, FIGARCH-DCC and 

Component GARCH-DCC models) with that of two multivariate short memory 

volatility models (the short memory EWMA and GARCH-DCC models). The research 

reports two main findings. First, for longer horizon forecasts, long memory volatility 

models generally produce forecasts of the covariance matrix that are statistically more 

accurate and informative, and economically more useful than those produced by short 

memory volatility models. Second, the two parsimonious long memory EWMA models 

outperform the other models – both short memory and long memory – in a majority of 

cases across all forecast horizons. These results apply to both low and high dimensional 

covariance matrices with both low and high correlation assets, and are robust to the 

choice of estimation window. 

The multivariate conditional volatility models are then analysed further to shed light on 

the benefits of allowing for long memory volatility dynamics in forecasts of the 

covariance matrix for dynamic asset allocation. Specifically, the research evaluates the 

economic gains accruing to long memory volatility timing strategies, using the 

procedure of Fleming et al. (2001). The research consistently identifies the gains from 

incorporating long memory volatility dynamics in investment decisions. Investors are 

willing to pay to switch from the static to the dynamic strategies, and especially from 

the short memory volatility timing to the long memory volatility timing strategies across 

both short and long investment horizons. Among the long memory conditional volatility 

models, the two parsimonious long memory EWMA models, again, generally produce 

the most superior portfolios. When transaction costs are taken into account, the gains 

from the daily rebalanced dynamic portfolios deteriorate; however, it is still worth 

implementing the dynamic strategies at lower rebalancing frequencies. The results are 

robust to estimation error in expected returns, the choice of risk aversion coefficients 

and the use of a long-only constraint. 
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The long memory conditional covariance matrix is inevitably subject to estimation 

error. The research then employs a factor structure to control for estimation error in 

forecasts of the high dimensional covariance matrix. Specifically, the research develops 

a dynamic long memory factor (the Orthogonal Factor Long Memory, or OFLM) model 

by embedding the univariate long memory EWMA model of Zumbach (2006) into an 

orthogonal factor structure. The new factor model follows richer processes than 

normally assumed, in which both the factors and idiosyncratic shocks are modelled with 

long memory behaviour in their volatilities. The factor-structured OFLM model is 

evaluated against the six above multivariate conditional volatility models, especially the 

fully estimated multivariate long memory EWMA model of Zumbach (2009b), in terms 

of forecast performance and economic benefits. The results suggest that the OFLM 

model generally produces impressive forecasts over both short and long forecast 

horizons. In the volatility timing framework, portfolios constructed with the OFLM 

model consistently dominate the static and other dynamic volatility timing portfolios in 

all rebalancing frequencies. Particularly, the outperformance of the factor-structured 

OFLM model to the fully estimated LM-EWMA model confirms the advantage of the 

factor structure in reducing estimation error. The factor structure also significantly 

reduces transaction costs, making the dynamic strategies more feasible in practice. The 

dynamic factor long memory volatility model also consistently produces more superior 

portfolios than those produced by the traditional unconditional factor and the dynamic 

factor short memory volatility models. 

 

 

  



 
5

Tables of Content 

Acknowledgement 2 

Abstract 3 

Table of Contents 5 

List of Tables 9 

List of Figures 12 

List of Appendices 13 

List of Abbreviations 14 

Author’s Declaration 16 

CHAPTER 1  INTRODUCTION  17 

1.1  Background and Rationale 17 

1.2  Research Questions and Scope 20 

1.3  Contribution of the Thesis 21 

1.4  Structure of the Thesis 23 

CHAPTER 2   THE CLASSICAL ASSET ALLOCATION 
FRAMEWORK AND COVARIANCE MATRIX ESTIMATORS 25 

2.1   The Classical Asset Allocation Framework 26 
2.1.1  Markowitz’s Mean-Variance Portfolio Optimisation Theory 26 

2.1.2  Portfolio Choice Problem in the Presence of a Risk-Free Asset  The Capital 
Market Line 30 

2.1.3  Incorporating Utility Theory  How to Invest Optimally? 31 
2.1.4  Application of the Classical Asset Allocation Theory 33 
2.1.5  Relaxation of the Assumptions 37 

2.2  Covariance Matrix Estimators 41 
2.2.1  The Sample Covariance Matrix Estimator 41 
2.2.2  Factor Models 42 

2.2.2.1  The Linear Factor Decomposition 43 
2.2.2.2  Single Factor Models 43 
2.2.2.3  Multifactor Models 44 
2.2.2.4  Practical Implementation and Issues 48 

2.2.3  Shrinkage Models 51 
2.2.4  The Constant Correlation Coefficient Model 52 



 
6 

2.3  Conclusion 53 

CHAPTER 3  THE TIME-VARYING CONDITIONAL VARIANCE-
COVARIANCE MATRIX  60 

3.1  Properties of Asset Return Volatility 61 

3.2  Moving Average Models  63 
3.2.1  The Equally Weighted Moving Average Model 64 
3.2.2  The Exponentially Weighted Moving Average Model 64 

3.3  GARCH Models 66 
3.3.1  Univariate GARCH Models 66 

3.3.1.1  The Basic ARCH Model 66 
3.3.1.2  The GARCH Model 68 
3.3.1.3  Other GARCH Models 70 

3.3.2  Multivariate GARCH Models 73 
3.3.2.1  Multivariate GARCH Models 74 
3.3.2.2  The Dynamic Conditional Correlation Model 76 

3.4  Long Memory Volatility Models 78 
3.4.1  The Fractionally Integrated GARCH Model 79 
3.4.2  The Hyperbolic GARCH Model 80 
3.4.3  Component, Break and Regime Switching Volatility Models 80 

3.4.3.1  The Component GARCH Model 81 
3.4.3.2  Structural Break Models 82 
3.4.3.3  Regime Switching Models 82 

3.4.4  Multivariate Long Memory Volatility Models 83 

3.5  Conditional Volatility Models and Asset Allocation 84 

CHAPTER 4  DATA ANALYSIS  85 

4.1  Data Description 85 

4.2  Evidence of Long Memory in Volatility 87 

CHAPTER 5   LONG MEMORY CONDITIONAL VOLATILITY 
AND ASSET ALLOCATION  95 

5.1  Multivariate Long Memory Conditional Volatility Models 96 
5.1.1  The Multivariate LM-EWMA Model 97 
5.1.2  The Multivariate LM-EWMA-DCC Model 99 
5.1.3  The FIGARCH(1,d,1)-DCC Model 100 
5.1.4  The CGARCH(1,1)-DCC Model 101 
5.1.5  The RiskMetrics EWMA Model 102 



 
7

5.1.6  The GARCH(1,1)-DCC Model 102 

5.2  Forecast Performance Measures 103 

5.3  Empirical Results 106 
5.3.1  Low Dimensional Systems: The Stock-Bond and S&P500-DJIA Portfolios 106 
5.3.2  High Dimensional Systems: The International Stock and Bond and the DJIA 
Portfolios 109 
5.3.3  Longer Horizon Forecasts 110 
5.3.4  Additional Robustness Tests 112 

5.4  Conclusion 113 

CHAPTER 6  THE ECONOMIC VALUE OF LONG MEMORY 
VOLATILITY TIMING  146 

6.1  The Economic Value of Dynamic Volatility Timing Strategy 148 
6.1.1  The Dynamic Volatility Timing Framework 148 
6.1.2  Performance Measures of the Dynamic Strategies 149 
6.1.3  Transaction Costs 150 

6.2  Empirical Results 151 
6.2.1  Low Dimensional Systems: The Stock-Bond and S&P500-DJIA Portfolios 151 
6.2.2  High Dimensional Systems: The International Stock and Bond and the DJIA 
Portfolios 156 
6.2.3  Sub-period Performance 160 
6.2.4  An Additional Benchmark 161 
6.2.5  Long-Only Constraints 161 

6.3  Conclusion 162 

CHAPTER 7  DYNAMIC FACTOR LONG MEMORY 
CONDITIONAL VOLATILITY  186 

7.1  The Orthogonal Factor Long Memory Conditional Volatility Model 188 

7.2  Data Analysis 190 

7.3  Forecast Performance Evaluation 192 

7.4  The Economic Value of the Dynamic Factor Long Memory Volatility Timing 
Strategy 194 

7.4.1  Performance Analysis of the Dynamic Factor Long Memory Volatility 
Timing Strategy 194 
7.4.2  Estimation Error in Expected Returns 196 
7.4.3  Sensitivity to Risk Aversion Coefficient 196 
7.4.4  Sensitivity to Estimation Window 197 



 
8 

7.4.5  Performance Analysis with Other Multivariate Conditional Volatility 
Benchmarks 198 
7.4.6  Performance Analysis with Other Factor Models 198 

7.5  Conclusion 199 

CHAPTER 8  CONCLUSIONS  221 

8.1  Conclusions 221 

8.2  Limitations of the Research 224 

8.3  Suggestions for Future Research 226 

REFERENCES  228 

 
 

  



 
9

List of Tables 

Table 4.1. Summary Statistics for the Two Bivariate Systems ...................................... 89 

Table 4.2. Summary Statistics for the International Stock and Bond Returns ............... 90 

Table 4.3. Summary Statistics for the DJIA Components .............................................. 91 

Table 4.4. Fractional Difference Operators for the Two Bivariate Systems .................. 92 

Table 4.5. Autocorrelations and Fractional Difference Operators for the Multivariate 

Systems ................................................................................................................... 93 

Table 5.1. RMSE, MAE and HMSE for the Two Bivariate Systems .......................... 115 

Table 5.2. Mincer–Zarnowitz Regressions for the Two Bivariate Systems ................. 116 

Table 5.3. Comparison of Conditional Volatilities: Bivariate Portfolios ..................... 117 

Table 5.4. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios ................ 118 

Table 5.5. Diebold–Mariano Tests of the Stock-Bond Portfolio .................................. 119 

Table 5.6. Diebold–Mariano Tests of the S&P500-DJIA Portfolio ............................. 120 

Table 5.7. Comparison of Volatilities: Multivariate Portfolios .................................... 121 

Table 5.8. Comparison of Conditional Volatilities: Hedging International Portfolios 122 

Table 5.9. Comparison of Conditional Volatilities: Hedging DJIA Portfolios ............ 123 

Table 5.10. Diebold–Mariano Joint Tests: Hedging Multivariate Portfolios ............... 124 

Table 5.11. RMSE for Longer Horizon Forecasts: Bivariate Systems ......................... 125 

Table 5.12. Mincer–Zarnowitz Regressions for Longer Horizons: Bivariate Systems 126 

Table 5.13. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios with 

Weekly Rebalancing Frequency ........................................................................... 128 

Table 5.14. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios with 

Quarterly Rebalancing Frequency ........................................................................ 129 

Table 5.15. Comparison of Volatilities: Multivariate Portfolios with Different 

Rebalancing Frequencies ...................................................................................... 130 

Table 5.16. Diebold–Mariano Joint Tests: Hedging DJIA Portfolios with Different 

Rebalancing Frequencies ...................................................................................... 131 

Table 5.17. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios with 5-Year 

Estimation Window .............................................................................................. 132 

Table 5.18. Diebold–Mariano Joint Tests: Hedging DJIA Portfolios with 5-Year 

Estimation Window .............................................................................................. 133 

Table 6.1. The Economic Values of Dynamic Strategies: Daily Rebalanced Bivariate 

Portfolios .............................................................................................................. 164 

Table 6.2. The Economic Values of Dynamic Strategies: Weekly Rebalanced Bivariate 

Portfolios .............................................................................................................. 165 



 
10 

Table 6.3. The Economic Values of Dynamic Strategies: Monthly Rebalanced Bivariate 

Portfolios .............................................................................................................. 166 

Table 6.4. Performance Fees to Switch from the Short Memory GARCH Volatility 

Timing Strategy to the Long Memory Volatility Timing Strategy ...................... 167 

Table 6.5. Performance Fees to Switch from the Short Memory EWMA Volatility 

Timing Strategy to the Long Memory Volatility Timing Strategy ...................... 168 

Table 6.6. Breakeven Transaction Costs of the Bivariate Portfolios ........................... 169 

Table 6.7. Estimation Error in Expected Returns: The Sharpe Ratios of the Daily 

Rebalanced Bivariate Portfolios ........................................................................... 170 

Table 6.8. Estimation Error in Expected Returns: Relative Performance Fees of the 

Daily Rebalanced Bivariate Portfolios ................................................................. 171 

Table 6.9. Estimation Error in Expected Returns: The Sharpe Ratios of the Weekly 

Rebalanced Bivariate Portfolios ........................................................................... 172 

Table 6.10. Estimation Error in Expected Returns: The Sharpe Ratios of the Monthly 

Rebalanced Bivariate Portfolios ........................................................................... 173 

Table 6.11. Portfolio Performance of the International Stock and Bond Portfolio ...... 174 

Table 6.12. Portfolio Performance of the DJIA Portfolio ............................................ 175 

Table 6.13. Average Portfolio Performance of the International Stock and Bond 

Portfolio with Bootstrap Experiments .................................................................. 176 

Table 6.14. Average Portfolio Performance of the DJIA Portfolio with Bootstrap 

Experiments .......................................................................................................... 177 

Table 6.15. Comparison of the Static and the Dynamic Volatility Timing Strategies 

Using Different Risk Aversion Coefficients: International Stock and Bond 

Portfolio ................................................................................................................ 178 

Table 6.16. Comparison of the Static and the Dynamic Volatility Timing Strategies 

Using Different Risk Aversion Coefficients: DJIA Portfolio .............................. 179 

Table 6.17. Yearly Performance of the International Stock and Bond Portfolio ......... 180 

Table 6.18. Comparison of Rolling Window and Long Memory Volatility Timing ... 181 

Table 6.19. Portfolio Performance under the Long-Only Constraint ........................... 182 

Table 7.1. Comparison of Out-of-Sample Volatilities ................................................. 201 

Table 7.2. Diebold–Mariano Tests of the Hedging Portfolios ..................................... 202 

Table 7.3. Portfolio Performance of the International Stock and Bond Portfolio ........ 204 

Table 7.4. Portfolio Performance of the DJIA Portfolio .............................................. 205 

Table 7.5. Average Portfolio Performance of the International Stock and Bond Portfolio 

with Bootstrap Experiments ................................................................................. 206 



 
11

Table 7.6. Average Portfolio Performance of the DJIA Portfolio with Bootstrap 

Experiments .......................................................................................................... 207 

Table 7.7. Comparison of the Volatility Timing and Static Strategies Using Different 

Risk Aversion Coefficients: International Stock and Bond Portfolio .................. 208 

Table 7.8. Comparison of the Volatility Timing and Static Strategies Using Different 

Risk Aversion Coefficients: DJIA Portfolio ......................................................... 209 

Table 7.9. Comparison with Other Conditional Volatility Models: DJIA Portfolio .... 210 

Table 7.10. Comparison with Other Conditional Volatility Models: International Stock 

and Bond Portfolio ............................................................................................... 211 

Table 7.11. Comparison of the Factor Models ............................................................. 212 

  



 
12 

List of Figures 

Figure 2.1. The Mean-Variance Efficient Frontier. ........................................................ 54 

Figure 2.2. The Mean-Variance Efficient Frontier and The Capital Market Line. ........ 55 

Figure 2.3. Utilities and Optimal Portfolios. .................................................................. 56 

Figure 2.4. The True, Estimated and Actual Mean-Variance Efficient Frontiers. ......... 57 

Figure 2.5. The True and Actual Mean-Variance Efficient Frontiers. ........................... 58 

Figure 2.6. The Sharpe Ratios of the Tangency Portfolios. ........................................... 59 

Figure 4.1. Autocorrelation of Returns (Black Line), Absolute Returns (Blue Line), and 

Squared Returns (Red Line) ................................................................................... 94 

Figure 6.1. International Stock and Bond Portfolio: The Sharpe Ratios of the Short 

Memory and Long Memory Volatility Timing Strategies. .................................. 183 

Figure 6.2. DJIA Portfolio: The Sharpe Ratios of the Short Memory and Long Memory 

Volatility Timing Strategies. ................................................................................ 184 

Figure 6.3. Year-on-Year Sharpe Ratios of the Static and Long Memory Volatility 

Timing Portfolios. ................................................................................................. 185 

Figure 7.1. Determining the Number of Common Factors. ......................................... 213 

Figure 7.2. The Sharpe Ratios and Adjusted Performance Fees of the Bootstrap LM-

EWMA and OFLM4 Portfolios ............................................................................ 214 

Figure 7.3. Sensitivity to Estimation Window: The Sharpe Ratios of the Dynamic 

Portfolios. ............................................................................................................. 215 

Figure 7.4. Average Sharpe Ratios of the Static and Dynamic Factor Long Memory 

Portfolios over Years. ........................................................................................... 216 

 

  



 
13

List of Appendices 

Equation Section (Next)Appendix 5.1. LM-EWMA Conditional Covariance Matrix 

Forecasts ............................................................................................................... 134 

Appendix 5.2. Bayesian Prior Probabilities ................................................................. 136 

Appendix 5.3. Comparison of Out-of-Sample Volatilities: Hedging International 

Portfolios .............................................................................................................. 137 

Appendix 5.4. Comparison of Out-of-Sample Volatilities: Hedging DJIA Portfolios 138 

Appendix 5.5. MAE for Longer Horizon Forecasts: Bivariate Systems ...................... 139 

Appendix 5.6. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios with 

Monthly Rebalancing Frequency ......................................................................... 140 

Appendix 5.7. Diebold–Mariano Joint Tests: Hedging International Stock and Bond 

Portfolios with Different Rebalancing Frequencies ............................................. 141 

Appendix 5.8. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios with 

Different Estimation Windows and Rebalancing Frequencies ............................. 142 

Appendix 5.9. Diebold–Mariano Joint Tests: Hedging DJIA Portfolios with Different 

Estimation Windows ............................................................................................ 144 

Appendix 5.10. Diebold–Mariano Joint Tests: Hedging International Stock and Bond 

Portfolios with 10-Year Estimation Window ....................................................... 145 

Appendix 7.1. Comparison of the Orthogonal Factor Long Memory EWMA and the 

Orthogonal Factor EWMA Models ...................................................................... 217 

Appendix 7.2. Comparison of the Orthogonal Factor Long Memory EWMA and the 

Orthogonal Factor GARCH Models ..................................................................... 219 

 

 

 



 
14 

List of Abbreviations 

APT Arbitrage Pricing Theory 

AR Autoregressive 

ARCH Autoregressive Conditional Heteroskedasticity 

ARFIMA Autoregressive Fractionally Integrated Moving Average 

ARIMA Autoregressive Integrated Moving Average 

ARMA Autoregressive Moving Average  

BEKK Baba, Engle, Kraft and Kroner 

BIRR Burmeister, Ibbotson, Roll and Ross  

CAPM Capital Asset Pricing Model 

CCC Constant Conditional Correlation 

CGARCH Component Generalised Autoregressive Conditional 

Heteroskedasticity 

CML Capital Market Line 

CRR Chen, Roll and Ross  

DCC Dynamic Conditional Correlation 

DJIA Dow Jones Industrial Averages 

EGARCH Exponential Generalised Autoregressive Conditional 

Heteroskedasticity   

EWMA Exponentially Weighted Moving Average 

FIGARCH Fractionally Integrated Generalised Autoregressive Conditional 

Heteroskedasticity 

GARCH Generalised Autoregressive Conditional Heteroskedasticity 

GJR-GARCH Glosten-Jagannathan-Runkle Generalised Autoregressive Conditional 

Heteroskedasticity 

GMM Generalised Method of Moments 

GMV Global Minimum Variance 

GPH Geweke-Porter-Hudak log periodgram estimator 

HAC Heteroscedasiticity and Autocorrelation Consistent  

HML High Minus Low 

HMSE Heteroscedasticity-adjusted Mean Squared Error 

HYGARCH Hyperbolic Generalised Autoregressive Conditional 

Heteroskedasticity 

i.i.d independently identically distributed 



 
15

IC Information Criterion 

IGARCH Integrated Generalised Autoregressive Conditional Heteroskedasticity 

LM-EWMA Long Memory Exponentially Weighted Moving Average 

MAE Mean Absolute Error 

MS Moulines-Soulier log periodgram estimator 

MSE Mean Squared Error 

OFLM Orthogonal Factor Long Memory 

PCA Principal Components Analysis 

RMSE Root Mean Squared Error 

S&P500 Standard & Poor’s 500 Index 

SMB Small Minus Big 

TGARCH Threshold Generalised Autoregressive Conditional Heteroskedasticity 

 

  



 
16 

Author’s Declaration 

I hereby declare that this thesis incorporates materials that are results of joint research, 

as follows: 

Chapter 5 is based on a paper submitted to the International Journal of Forecasting co-

authored with Professor Richard Harris. Professor Richard Harris provided editorial 

advice and guidance throughout the development of the analysis and the paper. Anh 

Nguyen carried out the analysis and wrote most of the paper. 

Parts of Chapters 6 and 7 are based on a working paper co-authored with Professor 

Richard Harris. Professor Richard Harris provided editorial advice and guidance 

throughout the development of the model and the paper. Anh Nguyen developed the 

model, carried out the analysis and wrote most of the paper. 

I am aware of the University of Exeter’s regulation and I certify that I have properly 

acknowledged the contribution of other researchers to my thesis, and have obtained 

permission from them to include the above materials in my thesis.  

I certify that, with the above qualification, this thesis, and the research to which it refers, 
is the product of my own work. 



 
17

Chapter 1  

Introduction  

1.1 Background and Rationale 

The variance-covariance matrix (hereinafter, the covariance matrix) plays a central role 

in many areas of applied finance, especially in asset allocation and risk management. In 

particular, the covariance matrix is one of the two inputs, along with expected returns, 

in the mean-variance asset allocation theory of Markowitz (1952, 1959). By 

incorporating risk and correlation in the asset allocation decision, Markowitz shifted the 

focus of the financial industry from single asset selection towards the concept of 

diversification through portfolio choice. While the expected return of a portfolio is the 

weighted average of the asset components’ expected returns, its risk is always less than 

the weighted average risk of its components, unless the assets are perfectly positively 

correlated. Assets’ risk and their interactions in a portfolio, implied through the notion 

of volatility and correlation, are hence vital in any investment decision.  

The classic Markowitz’s asset allocation theory assumes expected returns and the 

covariance matrix are known with certainty. However, these parameters are not 

observed in practice, and hence must be estimated. The traditional approach employs 

the sample covariance matrix as a proxy for the unknown true covariance matrix. The 

sample covariance matrix, though being the best unbiased and efficient estimator under 

the assumption of independently, identically distributed returns, is inherently subject to 

estimation error, especially when returns deviate from normality, which, unfortunately, 

is a prevailing feature in financial markets. Estimation error is multiplied in the high 

dimensionality of the covariance matrix typically used in asset allocation. The inversion 

of the covariance matrix may further aggravate the estimation error problem. Indeed, 

there is ample empirical evidence that shows the poor performance of optimal portfolios 

constructed with sample estimates (see, for example, Best and Grauer, 1991, Broadie, 

1993, Britten-Jones, 1999). Estimation error of the sample estimates can be so serious 

that Michaud (1989) even calls the mean-variance optimiser “the estimation error 

maximiser.” Equally-weighted portfolios are found to dominate mean-variance sample-

based optimal portfolios in many cases (see, e.g., DeMiguel et al., 2009). Extensive 

research has thus been done to improve estimates and forecasts of the covariance matrix 
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for robust asset allocation. One popular approach is to impose some structure on the 

covariance matrix, such as in the factor model or in the Bayesian-inspired shrinkage 

model (see Chan et al., 1999, Jagannathan and Ma, 2000, Ledoit and Wolf, 2003, 2004). 

Among others, Briner and Conner (2008) show in both simulation and empirical studies 

that a structured, though biased covariance matrix estimate may have better explanatory 

power than its unbiased, unstructured sample counterpart. Another promising direction 

is to exploit the high persistence of the time-varying conditional covariance matrix to 

generate better input forecasts for asset allocation. Andersen et al. (2006, p.794) 

acknowledge that “even if we rule out exploitable conditional mean dynamics, the 

optimal portfolio weights would still be time-varying from the second-order dynamics 

alone.” Recent evidence suggests that dynamic asset allocation strategies, based on a 

time-varying conditional covariance matrix, dominate static strategies, based on the 

unconditional alternative (see, for example, Fleming et al., 2001, Han, 2006, Engle and 

Colacito, 2006, Thorp and Milunovich, 2007). Exploiting the predictability of the 

covariance matrix is now a key driver in asset allocation. 

Dynamic asset allocation typically employs forecasts of the covariance matrix generated 

from popular conditional volatility models such as the multivariate Riskmetrics EWMA, 

multivariate GARCH, or multivariate Stochastic Volatility models, in which elements 

of the conditional covariance matrix are specified as weighted averages of the squares 

and cross-products of past return innovations with geometrically declining weights, so 

that shocks to variances and covariances dissipate rapidly. Consequently, dynamic 

strategies generally focus on short horizon investors who rebalance their portfolios 

daily. While this approach may make the most use of the forecast power of these 

conditional volatility models, it may not nevertheless correspond to the needs of 

investors, who often rebalance their portfolios at lower frequencies. Moreover, a 

mounting body of empirical evidence suggests that the autocorrelation functions of the 

squares and cross-products of returns decline more slowly than the geometric decay rate 

of the EWMA, GARCH and Stochastic Volatility models, and hence volatility shocks 

are more persistent than these models imply (see, for example, Taylor, 1986, Ding et al., 

1993, Andersen et al., 2001). This ‘long memory’ feature is important not only for the 

measurement of current volatility, but also for forecasts of future volatility, especially 

over longer horizons. In particular, in the GARCH and Stochastic Volatility 

frameworks, forecasts of future volatility converge to the unconditional volatility at an 

exponential rate as the forecast horizon increases. In the EWMA framework, in contrast, 
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a volatility shock has a permanent effect on forecast volatility at all horizons, and so 

forecasts of future volatility do not converge at all despite the fact that it is a short 

memory model. If volatility is indeed a long memory process, as the empirical evidence 

suggests, the short memory EWMA, GARCH and Stochastic Volatility models are 

misspecified. Moreover, the errors in forecasting the elements of the covariance matrix 

that arise from this misspecification are compounded as the forecast horizon increases.  

The empirical evidence on volatility dynamics has prompted the development of long 

memory models of conditional volatility, and in the univariate context a number of 

approaches have been proposed. The FIGARCH model of Baillie et al. (1996) 

introduces long memory through a fractional difference operator, which gives rise to a 

slow hyperbolic decay for the weights on lagged squared return innovations while still 

yielding a strictly stationary process. The Hyperbolic GARCH (HYGARCH) model of 

Davidson (2004) is a generalisation that nests the GARCH, FIGARCH and IGARCH 

(or EWMA) models, allowing for a more flexible dynamic structure than the FIGARCH 

model and facilitating tests of short versus long memory in volatility dynamics. The 

Stochastic Volatility framework has been extended to allow for long memory by Breidt 

et al. (1998), who incorporate an ARFIMA process in the standard discrete time 

Stochastic Volatility model. Long memory can also be induced using a component 

structure for volatility dynamics. For example, the Component GARCH (CGARCH) 

model of Engle and Lee (1999) assumes that volatility is the sum of a highly persistent 

long run component and a mean-reverting short run component, each of which follows a 

short memory GARCH process. Similarly, Zumbach (2006) introduces a long memory 

model in which the dynamic process for volatility is defined as the logarithmically 

weighted sum of standard EWMA processes at different geometric time horizons. Like 

the short memory EWMA model of JP Morgan (1994) on which it is based, the long 

memory EWMA model has a highly parsimonious specification, which facilitates its 

implementation in practice.  

In the multivariate context, long memory volatility modelling poses significant 

computational challenges, especially so for the high dimensional covariance matrices 

that are typically encountered in asset allocation and risk management. Indeed, so far 

the literature on long memory multivariate volatility modelling has restricted itself to 

the analysis of low dimensional covariance matrices, and has provided only limited 

evidence on the relative benefits from allowing for long memory in the multivariate 

setting. For example, Teyssiere (1998) estimates the covariance matrix for three foreign 
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exchange return series using both an unrestricted multivariate FIGARCH model and a 

FIGARCH model implemented with the Constant Conditional Correlation (CCC) 

structure of Bollerslev (1990). Similarly, Niguez and Rubia (2006) model the 

covariance matrix of five foreign exchange series using an Orthogonal HYGARCH 

model, which combines the univariate HYGARCH long memory volatility model of 

Davidson (2004) with the multivariate Orthogonal GARCH framework of Alexander 

(2001). They show that the Orthogonal HYGARCH model outperforms the standard 

Orthogonal GARCH model in terms of one-day forecasts of the covariance matrix. 

Zumbach (2009b) develops a multivariate version of the univariate long memory 

EWMA model, in which elements of the covariance matrix are estimated as the 

averages of the squares and cross products of past returns with predetermined 

logarithmically decaying weights. This model is highly parsimonious and capable of 

handling large systems. 

Allowing for long memory volatility dynamics in forecasts of the covariance matrix of 

returns may bring potential benefits for asset allocation over both short and long 

horizons. However, no studies have been done to explore the economic values of the 

long memory conditional covariance matrix for asset allocation. The research aims at 

filling this gap, studying the benefits of incorporating the long memory conditional 

covariance matrix in the asset allocation framework. Presumably, with slowly decaying 

autocorrelations, multivariate long memory volatility models are able to better capture 

the high persistence feature of volatility and covariance, and consequently exploit this 

feature to provide more reasonable forecasts of the covariance matrix over long 

horizons, which will potentially correspond more to the needs of most practical 

investors.  

1.2 Research Questions and Scope 

The overall aims of this research are twofold: (i) to evaluate the forecast performance of 

multivariate long memory conditional volatility models, and (ii) to examine the 

economic benefits that arise from allowing for long memory volatility dynamics in 

forecasting the covariance matrix in the asset allocation framework. Specifically, the 

research addresses the following questions: 
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1. Do multivariate long memory conditional volatility models produce better 

forecasts of the covariance matrix of returns than multivariate short memory 

conditional volatility models, especially for long horizons?  

2. Are there any economic benefits when exploiting the long memory conditional 

covariance matrix for asset allocation, relative to using the unconditional or the 

short memory conditional alternatives?  

3. How to control for estimation error in forecasts of the high dimensional long 

memory conditional covariance matrix? 

The research is restricted to the analysis of multivariate conditional volatility models 

and their application to asset allocation. In particular, the research focuses on 

multivariate EWMA and multivariate GARCH models. Stochastic Volatility, Realised 

Volatility, Option Implied Volatility models are excluded from the research. Investors 

construct portfolios based on Markowitz’s mean-variance asset allocation framework. 

For simplicity, I concentrate primarily on the single-period portfolio choice and ignore 

the hedging demands caused by time-varying investment opportunities. Portfolios 

comprise highly liquid assets, whose price data can be easily obtained at daily 

frequencies. These restrictions can, of course, be relaxed. However, this is beyond the 

scope of the thesis and is reserved for future research. 

1.3 Contribution of the Thesis 

The research evaluates the forecast performance of multivariate long memory 

conditional volatility models among themselves and against that of multivariate short 

memory conditional volatility models. While there exist a large number of conditional 

volatility models in the literature, my choice reflects the need for parsimonious models 

that can be used to forecast high dimensional covariance matrices. I employ four long 

memory volatility models: the multivariate long memory EWMA model of Zumbach 

(2009b), and three multivariate long memory volatility models implemented using the 

Dynamic Conditional Correlation (DCC) framework of Engle (2002). These are the 

univariate long memory EWMA model of Zumbach (2006), the Component GARCH 

model of Engle and Lee (1999) and the FIGARCH model of Baillie et al. (1996). This is 

the first study to evaluate the forecast performance of a range of multivariate long 

memory volatility models in high dimensional systems. The four multivariate long 

memory volatility models are compared with two multivariate short memory volatility 

models. These are the very widely used RiskMetrics EWMA model of JP Morgan 
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(1994), and the GARCH-DCC model. The six models are evaluated on the basis of both 

statistical and economic measures. While the statistical criteria examine the accuracy, 

bias and information content of the models’ forecasts with measures such as the RMSE, 

MAE or Mincer-Zarnowitz regression, the economic criteria employ the economic loss 

function in the asset allocation framework of Engle and Colacito (2006). The research 

reports two main findings. First, for longer horizon forecasts, long memory volatility 

models generally produce forecasts of the covariance matrix that are statistically more 

accurate and informative, and economically more useful than those produced by short 

memory volatility models. Second, the two parsimonious long memory EWMA models 

outperform the other models – both short memory and long memory – in a majority of 

cases across all forecast horizons. These results apply to both low and high dimensional 

covariance matrices and both low and high correlation assets, and are robust to the 

choice of estimation window. 

The multivariate conditional volatility models are then analysed further to shed light on 

the benefits of allowing for long memory volatility in estimating and forecasting the 

covariance matrix for dynamic asset allocation. Specifically, the research evaluates the 

economic value accruing to volatility timing strategies using the procedure of Fleming 

et al. (2001). The research consistently identifies the gains from incorporating long 

memory volatility dynamics in investment decisions. Investors are willing to pay to 

switch from the static to the dynamic volatility timing strategies, and from the short 

memory volatility to the long memory volatility models at both short and long 

investment horizons. Among the long memory conditional volatility models, the two 

parsimonious long memory EWMA models, again, generally produce the most superior 

portfolios. When transaction costs are taken into account, the gains from the daily 

rebalanced dynamic portfolios deteriorate; however, it is still worth implementing the 

dynamic strategies at lower rebalancing frequencies. The results are robust to estimation 

error in expected returns, the choice of risk aversion coefficient and the use of a long-

only constraint. 

The long memory conditional covariance matrix is inevitably subject to estimation 

error. The research then employs a factor structure to control for estimation error in 

forecasting the high dimensional long memory covariance matrix. In particular, the 

research develops a dynamic factor long memory conditional volatility (the Orthogonal 

Factor Long Memory, or OFLM) model by embedding the univariate long memory 

EWMA model of Zumbach (2006) into an orthogonal factor structure. The new factor 



 
23

model follows richer processes than normally assumed, in which both the factors and 

idiosyncratic shocks are modelled with long memory behaviour in their volatilities. The 

OFLM model is a generalisation of the Double Factor ARCH model of Engle (2009). 

The empirical results suggest that the dynamic factor OFLM model generally dominates 

the other multivariate conditional volatility models, both short memory and long 

memory, in terms of forecast performance and economic benefits across all forecast 

horizons. Especially, the outperformance of the factor-structured OFLM model to the 

fully estimated LM-EWMA model confirms the advantage of the factor structure in 

reducing estimation error. The factor structure also significantly reduces transaction 

costs, making the dynamic strategies more feasible in practice. The dynamic factor long 

memory volatility model also consistently produces more superior portfolios than those 

produced by the traditional unconditional factor and the dynamic factor short memory 

volatility models. 

1.4 Structure of the Thesis 

The thesis comprises eight chapters, beginning with this introductory chapter. Chapter 2 

gives an overview of the classic asset allocation theory of Markowitz (1952, 1959). The 

chapter also provides a detailed analysis of the use of the unconditional covariance 

matrix for asset allocation. 

Chapter 3 reviews time-varying conditional covariance matrix estimators and their 

application to asset allocation. The discussion especially focuses on the multivariate 

conditional volatility models that are applicable to a large number of assets. Advances 

in long memory conditional volatility models are highlighted.  

Chapter 4 analyses the data. The research employs four sets of assets. These comprise a 

high correlation bivariate system (the S&P500 and DJIA indices), a low correlation 

bivariate system (the S&P500 and 10-year Treasury bond futures), and two moderate 

correlation high dimensional systems (the international stock and bond indices, and the 

components of the DJIA index). 

Chapter 5 evaluates the forecast performance of long memory conditional volatility 

models. In particular, I compare the statistical and economic performance of four 

multivariate long memory volatility models (the long memory EWMA, long memory 

EWMA-DCC, FIGARCH-DCC and Component GARCH-DCC models) with that of 

two short memory volatility models (the short memory EWMA and GARCH-DCC 
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models). The analysis covers investment horizons of up to 3 months and employs 

different estimation windows. 

Chapter 6 examines the economic benefits of employing forecasts of the long memory 

conditional covariance matrix in asset allocation, using the volatility timing framework 

of Fleming et al. (2001). Portfolios constructed from the six multivariate conditional 

volatility models in Chapter 5 are evaluated using popular performance measures such 

as the out-of-sample Sharpe ratio, the abnormal return and the performance fee. 

Transaction costs are also taken into account. The robustness analysis studies the 

sensitivity of the findings to estimation error in expected returns, the choice of risk 

aversion coefficient and the use of a long-only constraint. 

Chapter 7 turns to estimation error in forecasts of the high dimensional long memory 

conditional covariance matrix. A new Orthogonal Factor Long Memory conditional 

volatility model is developed by imposing a factor structure in the long memory 

volatility framework. The new factor-structured model is evaluated against the six 

multivariate conditional volatility models studied in the previous chapters, and 

especially against the fully estimated long memory EWMA model, in terms of both 

forecasting performance and economic benefits, using the procedures employed in 

Chapters 5 and 6. The performance of the Orthogonal Factor Long Memory volatility 

model is also compared with that of the traditional factor and the dynamic factor short 

memory volatility models. 

The final chapter summarises the research, emphasizing all important findings. It also 

addresses the limitations of the research and suggests some implications for future 

studies. 

(Zumbach, 2009a)  
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Chapter 2  

The Classical Asset Allocation 

Framework and Covariance Matrix 

Estimators   

The seminal work of Markowitz (1952, 1959) laid the foundation for modern portfolio 

theory, providing a simple but powerful framework on how an optimizing investor 

would behave under uncertainty. Two fundamental economic insights, i.e., the concept 

of risk-return trade-off and the concept of diversification where risks are correlated, are 

beautifully captured in the classical asset allocation framework of Markowitz. While the 

benefits of diversification had been identified long before, Markowitz successfully 

translated the risk-return trade-off and diversification into an adequate theory of 

efficient portfolio investment, shifting the focus of the investment industry onto the 

interactions among securities in a portfolio. The classical asset allocation theory of 

Markowitz is reviewed in Section 2.1. Specifically, Section 2.1.1 introduces 

Markowitz’s mean-variance portfolio optimisation theory, in which investors are 

concerned only with returns and risk in their portfolio choice decisions. The economic 

intuitions underlying the theory are illustrated graphically. Section 2.1.2 extends the 

basis framework, allowing investors to borrow and lend unlimitedly at a risk-free rate. 

In this case, investors can obtain better combinations than they can in the absence of the 

risk-free asset. Given the efficient frontiers built in the first two sections, Section 2.1.3 

explains how investors choose their optimal portfolios. The decision is facilitated by the 

integration of utility theory into the model. Section 2.1.4 turns to the application of the 

mean-variance analysis in practice, where investors have to estimate expected returns 

and the covariance matrix for their investment decisions. Section 2.1.5 challenges the 

prohibitively restrictive assumptions of the classical model, introducing extensions in 

terms of, e.g., high-order moments of the return distribution, multiperiod investment 

horizons, and frictions such as transaction costs and taxation.  

The estimation of the covariance matrix for asset allocation is discussed in detail in 

Section 2.2. The estimation of expected returns, which is beyond the scope of this 

research, can be found in, e.g., Jorion (1986), Fama and French (1992), Pesaran and 
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Timmermann (1995), Barberis (2000). In this chapter, the covariance matrix is assumed 

to be constant over time. The time-varying conditional covariance matrix will be studied 

in Chapter 3. Section 2.2.1 introduces the sample covariance matrix. Despite being the 

best unbiased and efficient estimator of the true covariance matrix, the sample 

covariance matrix is inevitably subject to estimation error, which is detrimental to the 

optimal portfolios. Mounting evidence of the poor out-of-sample performance of the 

optimal sample-based portfolios has prompted the development of improved covariance 

matrix estimators for robust asset allocation. A popular approach is to impose some 

structure on the covariance matrix. Section 2.2.2 details the factor structure. Section 

2.2.2.1 sets the stage by introducing the linear factor decomposition. Single factor 

models are analysed in Section 2.2.2.2, whereas multifactor models are studied in 

Section 2.2.2.3. Section 2.2.2.4 investigates the practical implementation of factor 

models in the asset allocation problem, especially comparing the explanatory power 

among different types of factors. The Bayesian-inspired shrinkage structure is then 

described in section 2.2.3. Section 2.2.4 considers another structure, imposing a 

constant pairwise correlation coefficient onto the covariance matrix. Section 2.3 

concludes the chapter. 

The research in this chapter has indeed been well-documented. My contribution is 

simply to summarise existing knowledge on how to optimally allocate wealth in a 

portfolio. This chapter is, nevertheless, important for the thesis as it sets the stage for 

succeeding chapters. 

2.1  The Classical Asset Allocation Framework 

2.1.1 Markowitz’s Mean-Variance Portfolio Optimisation Theory 

Consider an investor who wants to construct an optimal portfolio at time t  and hold it 

for a time horizon of t . Many assumptions lie behind the classical portfolio 

optimisation theory of Markowitz (1952, 1959). First, the investor is risk-averse; he 

requires a higher expected return to accept a higher level of risk. Therefore, we expect a 

positive relationship between expected returns and expected risk. In terms of portfolio 

choice, with a target expected return, the investor will choose the portfolio with the 

minimum risk from a set of all feasible portfolios. Markowitz is the first to quantify risk 

as the variance of the rate of return and use this risk measure to build his portfolio 

optimisation theory. Second, the investor is only concerned with returns and risk in his 

investment decision and constructs the optimal portfolio that is efficient in a return-risk, 



 
27

or mean-variance space. No higher-order moments of the return distribution are taken 

into account. Third, his investment horizon spans a single period t . He will not care 

about the gains or losses that may happen after the period t . He only updates his 

decision at time t t . This behaviour is referred to as myopic (short-sighted) 

behaviour. For ease of notation, in the following I assume 1t  . Fourth, the assets are 

perfectly liquid; there are no transaction costs incurred when updating portfolios.  

Denote tR  an n-dimensional vector of risky asset returns available for investment at 

time t and define  1 1t t tE μ R  as the vector of expected returns and 

1 1 1 1 1[( )( ) ]t t t t t tE 
       µRµR  as the covariance matrix of returns. Note the 

convention that the time subscripts are given for the date at which the variables are 

realised. Here, the investor is assumed to know 1tμ  and 1t  with certainty. His 

objective is to minimise risk with a target portfolio expected return , 1( )t p t µE R   . He 

has to choose an 1n  vector of portfolio weights tw  to optimally allocate wealth 

among the n risky assets. Given the mean-variance optimisation framework, the investor 

solves the following constrained optimisation problem: 

 '
, 1 1min var( )

t
p t t t tR   

w
w w  (2.1) 

subject to  

 '
, 1 1( )t p t t t µE R   µw  and 

1

1
n

i
i

w


 . (2.2) 

The first constraint in (2.2) fixes the expected return of the portfolio to its target, while 

the second, a budget constraint, guarantees that all the wealth is invested. Short selling 

is permitted, which implies iw  can take negative values. Neither taxes nor transaction 

costs are included. Setting up the Lagrangian and the solution to the optimisation 

problem with equality constraints is easily obtained: 

 * 1 1
1 1 1

1 1
( )

² ²
( )t t t t tC B A B

AC B A
µ

C B
 
  

               
µ µw ι ι , (2.3) 

where ι denotes a unit vector, 1
1' tA 
 ι ι , 1

1 1' t tB 
  ι μ , and 1

1
1 1

'
tt tC 
  µ μ . The 

minimised portfolio variance is equal to *' *
1t t tw w . 



 
28 

If the investor follows the global minimum variance (GMV) strategy to construct the 

portfolio with the lowest possible risk regardless of the expected return, the optimal 

portfolio weights in (2.3) reduce to: 

 * 1
11

1

1

't t
t






 


w ι
ι ι

. (2.4) 

The optimisation problem described above is mathematically referred to as a quadratic 

optimisation problem. In this simple optimisation problem with equality constraints, 

solutions can be found analytically. However, in the more complex case when 

inequality constraints, e.g., non-negative portfolio weights, are imposed, numerical 

optimisation techniques may need to be applied to find the optimal solution. 

We now look at a practical example. A rational investor wants to construct an efficient 

portfolio from 49 average-value-weighted industry portfolios of the US.1 Results of the 

mean-variance efficient analysis are demonstrated in Figure 2.1. The vertical axis shows 

the annualised expected returns, while the horizontal axis shows the annualised risk as 

measured by returns’ standard deviations. The blue envelope curve plots the efficient 

combinations of the 49 individual industry portfolios, which are marked with the purple 

stars. This set of combinations, which starts from the global minimum variance (GMV) 

portfolio (marked with the red circle) and going upwards, is called the mean-variance 

efficient frontier. The efficient frontier represents a set of portfolios that have the 

maximum expected return for a given level of risk, or the minimum level of risk for a 

target expected return  GMVR  . Portfolios located inside this frontier are dominated 

by others on the frontier that have the same risk but with higher expected return, or the 

same expected return but with lower risk, and so they are inefficient portfolios.  

The mean-variance optimisation analysis implies two fundamental economic insights. 

First, it suggests the intuitive and powerful concept of diversification. Markowitz (1952, 

1959) is the first to quantitatively evaluate assets not on their standalone performance 

basis, but on their interactions, through the notion of covariance, and contributions in a 

portfolio. While the expected return of a portfolio is the weighted average of the asset 

components' expected returns, its risk is always less than the weighted average risk of 

its components unless the assets are perfectly positively correlated. Figure 2.1 illustrates 

graphically the diversification effect. All the stars representing the individual industry 

                                                 
1 Historical data of monthly returns  of the 49 US industry portfolios are obtained from the Data Library 
of Kenneth R. French at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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portfolios lie inside the blue curve, showing that the portfolios lie on the efficient 

frontier yield lower risk for a target expected return than the individual industry 

portfolios. Second, the framework captures the trade-off between expected return and 

risk. A portfolio is optimal if it has the highest expected return for a given level of risk 

or the lowest risk for a specified expected return. Starting with the least risky GMV 

portfolio at the left tip of the mean-variance efficient frontier, higher expected returns 

can only be achieved with higher levels of risk. 

Alternative Formulations of the Mean-Variance Portfolio Optimisation Analysis 

In the above section, we examine the investor who wants to minimise risk for a target 

expected return. Another perspective is to look at the decision that the investor has to 

make to maximise expected return when he cannot take more risk. This is one of the 

most commonly encountered problems in practice when, for example, portfolio 

managers are required to optimise with respect to tracking error volatility, i.e., the 

standard deviation of the difference between the portfolio's return and the benchmark 

return. 

The investor now pre-determines a given level of risk 2 and maximises his expected 

return of the portfolio. He solves the maximum expected return problem: 

   '
, 1 1max

t
t p t t tE R  

w
w μ  (2.5) 

 subject to the constraints of ' 2
1t t t  w w and 1ii

w  . (2.6) 

The mean-variance analysis can be formulated in an alternative way. Incorporating 

expected return and risk in a utility function in which the investor would prefer a high 

expected return with low variance portfolio, and the maximum expected utility 

formulation is given by 

     2 ' '
1 , 1 , 1 1 1m

2
ax

2t
t t p t p t t t t t tE U E R

         
w

w μ w w  (2.7) 

subject to 1ii
w  . Here,   measures the investor's level of risk aversion. If 

diversification is agreed upon as the sound principle of investment, we would reject the 

objective of simply maximising expected return so that the investor would just invest all 

his wealth in one asset that generates the highest return. The risk aversion factor hence 

allows the investor to trade off mean and variance in a linear fashion. Any portfolio 
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preferred by the investor will depend on his risk aversion. When the risk aversion 

coefficient   is small, which means that the penalty for taking risk is small, the investor 

will choose more risky portfolios. In the extreme case when 0  , the return term 

dominates and the investor is willing to accept any level of risk in exchange for the 

highest return. Conversely, when the value of   is large, risky portfolios will be highly 

penalised, leading to the choice of more conservative portfolios. 

The three formulations as described above are equivalent in the sense that they all 

generate the same efficient frontier as they treat the trade-off between risk and return in 

a similar way, though from different standpoints. 

2.1.2 Portfolio Choice Problem in the Presence of a Risk-Free Asset  The 

Capital Market Line 

Suppose that there is a risk-free asset and the investor can borrow and lend unlimitedly 

at the risk-free rate fR , he then can combine the optimal risky portfolio described 

above with the risk-free asset to create a superior portfolio. In the presence of the risk-

free asset, the investor allocates a fraction tx  of his wealth to the n risky assets and the 

remainder  '1 t x ι  to the risk-free asset. Denote f
t t R r R  the vector of excess 

returns over the risk-free asset. 1tμ  and 1t  are now defined as the expected returns 

and the covariance matrix of the excess returns, respectively. The expected portfolio 

return is then given by 

        '' '
, 1 1 11 f f f

t p t t t t tt t tE R E R R E R         x ιx R x R , (2.8) 

or in terms of excess returns, 

    ' '
, 1 1 1

f f
t p t t t t t tE R R E R     x r x μ , or   '

, 1 1t p t t tE r   x μ . (2.9) 

Given the mean-variance optimisation framework, the investor solves the following 

quadratic program, in terms of excess returns: 

 '
1min

t
t t t

x
x x  (2.10) 

 subject to   '
, 1 1t p t t tE r   x μ .  (2.11) 



 
31

Note that no budget constraint is required. Since the investor can borrow or lend freely 

at the risk-free rate, the weights invested in the risky assets do not necessarily sum to 

one. The solution to this optimisation problem has a simpler form than in the case 

without a risk-free asset (see (2.3)): 

 
1

* 1 1
' 1

1 1 1

t t
t

t t t

 
 

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



μ

x
μ μ

. (2.12) 

Other formulations can be represented in terms of excess returns in a similar way. For a 

particular choice such that 0ii
x  , all the wealth is invested in the risk-free asset. On 

the other hand, if 1ii
x  , the portfolio consists of all risky assets. Graphically, the 

mean-variance efficient frontier is now the straight line from the risk-free rate on the 

vertical axis and tangent to the old curved efficient frontier (Figure 2.2). The point 

where the straight line touches the curved line is called the tangency portfolio, which 

consists of all risky assets. This is the best mix of the risky assets that maximises the 

Sharpe ratio, defined as the sample mean of the realised portfolio excess returns over 

the risk-free rate divided by their sample standard deviation, and represented graphically 

by the slope of straight line. As the straight line lies above the curved line, the investor 

can obtain the target expected return with a lower level of risk than he can in the 

absence of the risk-free asset. The investor can even move aggressively further along 

the straight line past the tangency portfolio by borrowing at the risk-free rate to 

construct a leveraged portfolio. The straight line is popularly referred to as the Capital 

Market Line (CML). The discussion of the CML suggests that the investor optimally 

combines the risk-free asset with the same portfolio of risky assets - the tangency 

portfolio. Depending on his attitude towards risk, he can conservatively move down and 

to the left, or aggressively move up and to the right of the Capital Market Line. 

However, he should not alter the relative ratios of the risky assets in the tangency 

portfolio.  

2.1.3 Incorporating Utility Theory  How to Invest Optimally? 

Given the mean-variance efficient frontier or the CML (in the presence of a risk-free 

asset), how can the investor choose his optimal portfolio? This decision depends largely 

on his tolerance for risk. Each investor has different preferences and attitudes towards 

risk, thus choosing a different optimal portfolio. Utility functions can be incorporated 
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into the framework to help understand how the investor allocates his funds optimally 

when faced with a set of possible choices.  

Utility functions can be illustrated graphically in the form of indifference curves. 

Different indifference curves correspond to different levels of utility. Moving up from 

one indifference curve to another shows higher utility, while moving along one 

indifference curve just shows different combinations for the same level of utility. Figure 

2.3 illustrates the portfolio choice decision when utilities (indifference curves) are 

included. The investor will choose the optimal portfolio at point A, which is the 

tangency of the indifference curve 1U  with the CML, or at point B, the tangency of the 

indifference curve 2U  with the mean-variance frontier. Note that, in the absence of a 

risk-free asset, the investor can only reach point B, obtaining a lower utility level than 

he can with the presence of a risk-free asset. 

Utility functions allow us to generalise the mean-variance framework into a much wider 

class of problems, expected utility maximisation problems. Assume that an investor 

with utility defined over initial wealth  0U W  wants to maximise his expected utility 

with the end-period wealth 0(1 )pW R W  . Also assume that there is no risk-free asset. 

     0 0ma ( )x (1 ) 1p pR WEU W E U W E U R   
   w

 (2.13) 

 subject to 1ii
w  . (2.14) 

The budget constraint (2.14) is removed if there is a risk-free asset. Applying a Taylor 

series expansion of  pU R  around the mean  p pE R  , we have: 

            2' ''1
higher-order terms

2p p p p p p p pU R U R U R U           (2.15) 

Taking expectations on the both sides yields: 

        2 ''1
higher-order terms

2p p p pE U R U U E         (2.16) 

as   0p pE R    and  2 2
p p pE R    . 

It can be inferred from (2.16)  that the expected utility maximisation is equivalent to the 

mean-variance optimisation in two special cases. First, asset returns are jointly 
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elliptically distributed, i.e., fully described by the first two moments (Owen and 

Rabinovitch, 1983). In this case,      01 pEU W E U R W     is just a function of 

portfolio mean and variance, no matter what utility function the investor may adopt. 

Second, the investor has a quadratic utility function, in which case the expectation of 

the higher-order terms vanishes. No distributional assumption is required on asset 

returns. For other utility functions, the mean-variance optimisation can only at best be 

interpreted as a second-order approximation of expected utility maximisation.  

The investor's decision making process can now be divided into two separate stages. 

This is known as the Separation Theorem of Tobin (1958). First, the investor uses his 

knowledge about assets’ expected returns and covariance matrix to derive the efficient 

frontier and the CML. This process is the same for all investors irrespective of their 

preferences. If expectations are assumed to be homogenous across all investors, then 

they should hold the same proportion of these risky assets. In the second stage, based on 

his subjective risk-return preference, the investor will choose which point on the CML 

to invest. If he is very risk averse, he will put most of his wealth in the risk-free asset 

and little in the risky assets. On the contrary, an investor with higher risk tolerance will 

invest more in the risky assets. In this stage, his subjective preference will not affect the 

relative weights among the risky assets derived in the first stage. 

2.1.4 Application of the Classical Asset Allocation Theory 

Markowitz optimisation treats expected returns, variances and covariances as 

deterministic. However, in practice, these moments of returns are unobservable and 

must be estimated. The sample moment estimates are typically employed as proxies for 

the unknown true parameters. Statistical estimates, nevertheless, are subject to 

estimation error. Define the estimated mean µ̂  and covariance matrix ̂  in a general 

way: ˆ ˆ  µµ µ ε  and ˆ ˆ  ε , where ˆµε  is an 1n  vector and ˆε  is an n n  matrix, 

both representing estimation error. Employing the expected sample proxies, the mean-

variance quadratic optimisation becomes:  
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It can be seen from (2.17)  that the portfolio optimisation may be distorted. Instead of 

trading off the true portfolio expected return w µ  against its true variance w w , we 

trade off the true expected return plus the estimation error ˆ μw ε  against the true 

variance plus the estimation error ˆw ε w . Two sources of estimation error, in the mean 

vector and in the covariance matrix, both interact with the true values. 

The expected optimal weights under (2.17) are: 

          111 1
ˆ ˆ ˆˆˆ .E E E E E

 



          μ

* εμ εx μ  (2.18) 

Under the i.i.d assumption,  ˆ 0E  ε  and  ˆ 0E με , and so the optimal weights 

derived using the sample moments are the unbiased estimates of the true weights. 

However, most financial time series are not independently and identically distributed. 

As a result, non-trivial estimation error will be fed through to portfolio weights, 

distorting the optimisation results. Britten-Jones (1999) derives the exact finite sample 

inference procedure for hypothesis about the weights of efficient portfolios. Applying 

this procedure to an international mean-variance efficient portfolio, he finds excessive 

sampling error in the estimates of the optimal weights. The literature also shows that 

optimisation may produce extreme and non-intuitive weights for some assets, which 

contradicts the notion of diversification. Furthermore, the optimal solution may be 

highly unstable. The weights calculated from the mean-variance optimisation can be 

very sensitive to changes in the two input parameters, the expected return vector and the 

covariance matrix. As the mean-variance analysis exploits the smallest difference, small 

changes in the inputs can lead to dramatic changes in the portfolio weights (see Best and 

Grauer, 1991). Michaud (1989) even calls the mean-variance optimiser “the estimation 

error maximiser,” arguing that mean-variance optimisation may significantly 

overweight securities with large expected returns, low correlations and low variances, 

which are also the ones with the most estimation error.   

To study the problem of estimation error in more detail, I follow Jobson and Korkie 

(1981) and Broadie’s (1993) experiments. Assume an investor wants to optimally 

allocate his wealth among 10 US industry portfolios.2 I set the sample mean and 

covariance matrix to be the true parameters and simulate independent sets of 250 

hypothetical monthly return samples of different sample sizes (60 months and 120 
                                                 
2 Monthly returns on 10 US industry portfolios (Jan 1996 – Dec 2010) are obtained from the Data Library 
of Kenneth French at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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months) from a multivariate normal distribution with the true moments. For each 

hypothetical set of returns, I compute the estimated parameters to construct the 

estimated frontier. The true frontier is constructed from the true parameters. Following 

Broadie, I also generate the actual frontiers, which are achieved by applying the 

portfolio weights derived from the estimated parameters to the true parameters. 

According to Broadie, the estimated frontier is what appears to be the case based on the 

data and estimated parameters, but the actual frontier is what really occurs based on the 

true parameters. The true frontier and the average estimated and actual frontiers are 

plotted in Figure 2.4. The results suggest that for any level of risk, the estimated frontier 

overestimates the expected return, hence shifting the average estimated curve upward 

and to the right relative to the true position. The distance between the two curves 

widens with higher levels of risk and expected returns (see, in particular, the dislocation 

of the upper right-hand point of the true frontier to the corresponding endpoint of the 

average estimated frontier). The estimated frontier tends to exaggerate certain error in 

the input parameters, resulting in optimistically biased estimates of portfolio 

performance (Broadie, 1993). In general, the estimated frontier tends to overestimate 

expected returns and underestimate risk of a portfolio. On the contrary, the actual 

frontier lies below the true frontier, and farther below the estimated frontier. The actual 

frontier can be interpreted as the out-of-sample frontier where the estimated parameters 

are employed to derive the portfolio weights, which are then applied to the realised true 

parameters to compute the realised portfolio performance. The difference in 

performance between the estimated and the actual frontiers illustrates the difference in 

the optimistic in-sample and the dismal out-of-sample performance of the mean-

variance optimal portfolios in practice. 

Figure 2.5 sheds more light on the poor performance of the actual frontiers. The blue 

solid curve is the true efficient frontier, while the red dashed curves are the 250 

simulated actual frontiers. The actual frontiers are extremely volatile and consistently 

inferior to the true frontier. Increasing the sample size reduces the volatility of the actual 

frontiers, but cannot eliminate the problem. 

Despite the simple and intuitive appeal of Markowitz’s mean-variance optimisation, its 

application is often problematic. Extensive research has been done to provide 

resolutions to the well-documented practical problems associated with the mean-

variance framework. Studies focus on reserving the benefits of the traditional 

framework while enhancing its practical value and effectiveness. Improved estimates of 
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expected returns and the covariance matrix have been suggested, ranging from factor 

models to shrinkage estimators. Factor models are based on the evidence that asset 

returns have common risk factors that act as main sources of common variation among 

asset returns. This intuition is justified in some finance theories such as the Capital 

Asset Pricing or the Arbitrage Pricing Theory models. Those asset pricing models are 

useful not only in estimating asset expected returns but also in reducing the 

dimensionality of the covariance matrix. The idea of shrinkage estimators is pioneered 

by James and Stein (1961), who suggest an estimator that “shrinks” the sample mean 

toward a common “grand” mean across all variables. By shrinking the most extreme 

coefficients of the sample mean towards more central values, estimation error is 

suggested to be systematically reduced when it matters most. Mean shrinkage 

estimators have been applied to portfolio optimisation by Frost and Savarino (1986) and 

Jorion (1986), to name a few. For example, Jorion shows theoretically and in a 

simulation analysis that the James-Stein shrinkage estimator has lower estimation error 

than the sample mean. Also based on the idea of James and Stein, Ledoit and Wolf 

(2003, 2004) generalise the mean shrinkage estimator to the covariance matrix. Setting 

in a global minimum variance portfolio framework to abstract from the problem of 

estimating expected returns, they show that their shrinkage estimator produces 

portfolios with significantly lower out-of-sample variances than those produced by a set 

of well-established competing approaches.  

Constraints on portfolio weights, such as no short sales or upper bounds, can be 

imposed on portfolios. These constraints are relevant in practice, though investment 

practitioners are normally faced with more constraints. Constraints are useful for 

controlling portfolio structure, hence reducing estimation error. Frost and Savarino 

(1988) demonstrate that portfolio constraints truncate extreme portfolio weights and 

thereby improve portfolio performance. Jagannathan and Ma (2000) go further when 

interpreting the constraints under certain conditions as a form of shrinkage estimation 

that improves the efficiency of the optimal portfolio. Their Monte Carlo simulations and 

empirical tests show that with nonnegative weight constraints in place, global minimum 

variance and minimum tracking error portfolios constructed using the sample 

covariance matrix perform as well as those constructed using factor and shrinkage 

models. However, Green and Hollifield (1992) suggest that extreme weighting is likely 

to be attributable to the dominance of a single factor in equity returns, which is equally 

true for population and estimated moments of returns. Thus, imposing weight 
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constraints may produce specification error. Due to the trade-off between specification 

and estimation error, constraints may be only useful when estimation error is excessive. 

The investor can follow an alternative approach, in which he chooses the portfolio 

weights that are optimal with respect to his subjective belief about the true return 

distribution. Given parameter uncertainty, he builds his subjective distribution of asset 

returns based on his prior belief about the true parameters and on the data he observes, 

using a Bayesian procedure. He then solves an average optimisation problem over all 

possible sets of parameter values derived from his subjective return distribution, where 

the expected utility of any given set of parameter values is weighted by his subjective 

probability of these parameter values. In this Bayesian approach, priors are of utmost 

importance. Priors can be uninformative, which contain little information about the 

parameters and lead to results that are comparable, but not identical in finite samples, to 

sample estimates (see, for example, Barry, 1974, Klein and Bawa, 1976, Brown, 1979). 

Later research specifies priors to rely on the theoretical implications of economic 

models. Priors can be the risk premia implied in the mean-variance optimisation theory 

and market equilibrium (Black and Litterman, 1992), the belief in market efficiency  

(Kandel and Stambaugh, 1996), or the belief in an asset pricing model (Pástor, 2000).  

2.1.5 Relaxation of the Assumptions 

The pioneering work of Markowitz provides a convenient and practical framework for 

asset allocation, based only on expected returns and the covariance matrix. The 

appealing simplicity of the model is achieved, however, with a set of prohibitively 

restrictive assumptions, which inherently hinders its application in practice. 

Considerable effort has thus been devoted to relaxing those assumptions. One line of 

research is to capture the preferences towards higher-order moments of returns and 

incorporating higher-order utility preferences in investors' objective functions. Other 

directions include, but are not restricted to, extensions to multiperiod investment 

horizons, and analysis of the effects of frictions in the investment decision-making 

process. This section provides a brief summary of some advances in the portfolio choice 

problem. 

Portfolio Choice with Higher Order Moments  

Mounting evidence claims that the problem of maximising investors’ expected utilities 

cannot always be reduced to the problem of mean-variance trade-off (see, for example, 



 
38 

Samuelson, 1970, Kraus and Litzenberger, 1976). The mean-variance analysis is only a 

special case of expected utility maximisation that arises when asset returns are 

elliptically distributed or when investors have a quadratic utility function. However, it is 

well established that financial return’s distribution generally cannot be fully 

characterised by the mean and variance alone. Asset returns typically have fatter tails 

than those implied in the normal distribution and are often not symmetric (see 

Mandelbrot, 1963, Fama, 1965). The literature also suggests that the fat tails and 

skewness of returns may affect investors' decisions in allocating wealth; investors 

generally exhibit preference for positively skewed and light-tailed to negatively skewed 

and heavy-tailed asset return distributions. Incorporating conditional skewness in an 

asset pricing problem, Harvey and Siddique (2000) show that non-increasing absolute 

risk aversion, a critical feature of risk-averse individuals, implies a preference for high 

skewness. Adding an asset with negative coskewness will reduce total portfolio 

skewness, leading investors to require a higher expected return than that required when 

they add an asset with identical risk characteristics but with zero coskewness. Similarly, 

Lai (1991) and Chunhachinda et al. (1997) solve a multi-objective portfolio choice 

problem (i.e., maximising expected returns and skewness with a specified level of risk) 

and suggest that investors trade expected returns for skewness. Incorporating higher-

order moment preference into the asset allocation framework may require the extension 

of utility functions. Studies typically apply the Taylor series expansion to derive higher-

order approximations of expected utility functions (see, for example, Brandt et al., 2005, 

Jondeau and Rockinger, 2006). Uncertainty in parameters is also taken into account. 

Harvey et al. (2010) embed a multivariate skew normal model in a Bayesian framework 

to address the parameter uncertainty of higher-order moments. Similarly, concerned 

about the sensitivity of the conventional moments to outliers, Jurczenko et al. (2008) 

advocate the use of L-moments, deriving optimal portfolios in a four-dimensional non-

convex mean-L-variance-L-skewness-L-kurtosis space and presenting various 

illustrations of the first four L-moment efficient portfolios. All these studies suggest the 

importance of integrating high-order moments into portfolio selection, especially when 

returns show strong deviation from the elliptical distribution. 

Incorporating higher-order moments, on the one hand, allows the mean-variance 

framework to better reflect the characteristics of asset returns observed in practice. On 

the other hand, it makes the practical implementation much more complicated. 

Allowing for higher-order moments implies more parameters to be estimated. High 

dimensionality, which is already a serious concern in the context of covariance matrix 
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estimation (more details are given on Section 2.2.1), is more problematic when 

coskewness and cokurtosis parameters are involved. For example, optimising a 10-asset 

portfolio requires the estimation of 55 variance-covariance, 220 skewness-coskewness, 

and 715 kurtosis-cokurtosis parameters! As a result, the research on high-order 

moments in asset allocation generally restricts itself to very low dimensional systems. 

High dimensionality also generates excessive estimation error. To reduce estimation 

error in estimating higher-order moments, Martellini and Ziemann (2010) extend to 

higher-order comovement several models that have been extensively applied to reduce 

dimensionality and estimation error in the covariance matrix. They find that portfolios 

with improved higher-order estimates yield superior performance to those with sample 

estimates. Improving estimates of the high-order moments promises an interesting 

direction of research. Given the remarkable increase in dimensionality, estimation error 

must be controlled; otherwise, they may be so large that they may offset all the gains 

from a more correctly specified framework. 

Multiperiod Investment Horizons 

The Markowitz process is a single-period portfolio choice, while real-world practice 

normally requires longer horizons with intermediate rebalancing. Extensive research has 

been done to formulate the portfolio choice problem as an intertemporal expected utility 

maximisation (see, for example, Samuelson, 1969, Merton, 1971, Merton, 1973). In 

both discrete and continuous time formulation, the literature shows that dynamic 

intertemporal optimal portfolio choice in a multiperiod context can be substantially 

different from a sequence of myopic single-period portfolio choices in terms of asset 

allocation and expected utilities (see Brandt, 2009, for a detailed analysis). The 

difference is termed the hedging demands as investors try to hedge against changes in 

investment opportunities when deviating from the single period portfolio choice. The 

classic results of Samuelson (1969) and Merton (1971) derive two restrictive conditions 

under which a long-term investor may act myopically, choosing the same portfolios as a 

short-term investor: (i) the investor has constant investment opportunities so that he 

does not need to hedge (an obvious case is power utility and independently, identically 

distributed returns), or (ii) the investor has log utility (in this case returns are not 

required to be i.i.d). However, investment opportunities are not constant as real interest 

rates move over time, and even if expected excess returns on risky assets over risk-free 

assets are constant, time variation in real interest rates is enough to generate large 

differences between optimal portfolios for long-term and short-term investors 
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(Campbell and Viceira, 2002). Short-term and long-term investors are also different in 

the sense that short-term investors' wealth is assumed to consist of only tradable 

financial assets, which is not realistically true for long-term individual investors. Long-

term individual investors, who are working and saving for, among others, retirement, 

own tradable financial assets just as part of their total wealth. They also own a very 

valuable untradable asset, their labour income. The introduction of labour income in 

asset allocation has prompted numerous extensions of the theory (see, for example, 

Heaton and Lucas, 2000, Viceira, 2001, Campbell et al., 2001, Letendre and Smith, 

2001, Cocco et al., 2005, Angerer and Lam, 2009) . 

Transaction Costs and Taxation 

The classic framework can be modified to allow for frictions such as transaction costs 

and taxation. Almost all portfolios require some adjustments during their lifetime, hence 

incurring non-trivial transaction costs. In a continuous time setting, Davis and Norman 

(1990) study a one-risky-asset portfolio where there are charges on all transactions 

equal to a fixed percentage of the amount traded and derive the exact algorithm to solve 

the optimal policies. In a multiple risky asset context, Leland (2000) studies a single-

period investor who minimises the sum of the proportional transaction costs and the 

variance of the tracking error. He develops a numerical procedure to calculate the 

optimal rebalancing rule and implements the procedure in a number of examples. Also 

working with multiple risky assets but in a multiperiod problem with predictable 

returns, Lynch and Tan (2003) develop methods to numerically solve investors’ 

decision making problem when transaction costs are accounted for. They also perform 

some utility comparisons, including the assessment of the utility cost of transaction 

costs. 

Taxation is another friction faced by investors when making investment decisions. For 

example, selling assets generates capital gains tax. Incorporating tax in portfolio choice 

is extremely difficult in the context of the realisation-based feature of tax and of 

complex myriads of tax codes for different types of transactions and investors. The 

usual approach is to adopt the most significant features of the tax code and to assume 

the other unmodelled features are of secondary importance. Recent papers on the 

implications of taxation on portfolio choice include Dammon et al. (2001), DeMiguel 

and Uppal  (2005), Garlappi and Huang  (2006), Huang (2008). 
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2.2 Covariance Matrix Estimators 

Markowitz’s mean-variance portfolio analysis requires the estimation of expected 

returns and the covariance matrix. This section presents a detailed discussion of the 

estimation of the covariance matrix for asset allocation. The review is restricted to 

unconditional covariance matrix estimators. Time-varying conditional covariance 

matrix estimators will be investigated in Chapter 3. The estimation of expected returns, 

which is beyond the scope of this research, can be found in, e.g., Jorion (1986), Fama 

and French (1992), Pesaran and Timmermann (1995), Barberis (2000). 

2.2.1 The Sample Covariance Matrix Estimator 

Consider an n T  matrix of excess returns r  on n  assets over a sample of T  periods. 

Denote μ  and   the mean and covariance matrix of the excess returns, respectively. 

The sample unconditional estimators of the mean µ̂ and covariance matrix ̂  are: 
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where ι  is an 1 T  unit vector, and r  is the matrix of mean-corrected returns: 
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with I being a T T  unit matrix. 

It is obvious that    ˆ min , 1rank n T   . Hence, for n assets, we need at least 1n  

periods if we want the sample covariance matrix to be invertible, a requirement to 

estimate the weights of the efficient portfolio.  

If returns are i.i.d, then the sample covariance matrix has the appealing property of 

being the best unbiased estimate of the true covariance matrix. However, the sample 

covariance matrix is inevitably error-prone. To get a sense of estimation error in the 

covariance matrix, I repeat the experiments in Section 2.1.4. Specifically, I consider an 

optimisation simulation, in which the investor knows the true expected returns but uses 

the sample estimates of the covariance matrix. Figure 2.6 shows the histograms of the 
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Sharpe ratios of the actual tangency portfolios for 24 and 120 monthly observations. 

The vertical line in each plot represents the Sharpe ratio of the true tangency portfolio. 

The Sharpe ratios of the simulated portfolios are volatile and lower than the true Sharpe 

ratio, especially in the case of 24T   (recall that 10n  ). When the sample size T 

increases relatively to the number of assets ( 120)T  , estimation error reduces as there 

are more observations per parameter. The performance of the actual tangency portfolios 

is then improved.  

In practice, we rarely enjoy the luxury of having the number of observations 

significantly larger than the number of assets T n . It is normal that a portfolio 

consists of hundreds of assets while the sample period is bounded by a few years. When 

T is not greatly larger than n, the sample covariance matrix may not be well-

conditioned, yielding huge estimation error when being inverted. Lengthening the 

sample period is problematic since observations far in the distant past may have little 

explanatory power relative to current observations. Dimensionality is another problem. 

The number of estimated parameters increases with the square of the number of assets. 

For an n-asset portfolio, we have to estimate a covariance matrix of 1
2 ( 1)n n   

parameters. For instance, if we have 100 assets to choose from, we have to estimate 

2025 parameters of the covariance matrix. The more parameters to be estimated, the 

more estimation error is likely to arise. Estimation error may be so excessive that it 

renders the optimal portfolio practically worthless and difficult to understand. 

2.2.2 Factor Models 

One popular approach to reduce estimation error in the covariance matrix is to impose a 

factor structure on the covariations among assets. The factor structure reduces the 

number of parameters to be estimated, and hence reduces estimation error. However, it 

comes at a price. The structured covariance matrix with a few factors may not capture 

every relationship among assets, incurring specification error. Increasing the number of 

factors reduces specification error, yet with an increase in estimation error. Selecting the 

‘optimal’ factors involves a trade-off between estimation error, specification error, and 

also ease of use. 
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2.2.2.1 The Linear Factor Decomposition 

In the factor model, asset returns are decomposed linearly into two parts, i.e., the part of 

returns that is correlated to a set of systematic risk factors and the part of asset-specific 

returns: 

 r α + Bf + ε  (2.22) 

where r is an n-dimensional vector of excess returns 1 2( , ,..., )nr r r r , f is a vector of k 

common risk factors  k n , B is an n k  matrix of factor loadings, and ε  is an n-

vector of asset-idiosyncratic returns. The vector of coefficients α is set so that   0E ε . 

The residuals ε  are assumed to be uncorrelated with the factors f . The covariance 

matrix can thus be represented as:  

 '   f εB B  (2.23) 

where f  is the covariance matrix of the factors, and ε  is the covariance matrix of the 

asset-specific returns. 

In the strict factor model suggested by Sharpe (1963) and Ross (1976), the asset-

specific returns are assumed to be cross-sectional uncorrelated ( , ) 0i jE     for i j , 

and so the covariance matrix ε  is a diagonal matrix  2

i
diag  ε . Chamberlain 

(1983), however, finds the uncorrelated residual assumption unnecessarily strong and 

suggests an alternative approximate factor model, in which idiosyncratic components 

are allowed to be weakly correlated. The approximate factor structure is now widely 

applied in dynamic factor models. 

2.2.2.2 Single Factor Models 

The single index model of Sharpe (1963) is an example of single factor models. Sharpe 

is also the first to advocate using the factor covariance matrix to solve the mean-

variance optimisation problem. The single index model has only one systematic risk 

factor that influences asset returns, i.e., the exposure to the overall movement of the 

market. In this model, (2.22) is given by 

 mrr α +β + ε  (2.24) 
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where mr  is the return on the market portfolio comprising all assets in the market. The 

market portfolio is normally proxied by a broad market index such as the S&P500 or the 

FTSE100 index. Returns are now separated into a component that is correlated with the 

market (the market component) and an uncorrelated component (the residual 

component). The exposure of each asset to the market portfolio is measured by its 

market beta , estimated based on historical data of return on the market portfolio and 

return on the asset: 

 
cov( , )

var( )
i m

i
m

r r

r
  . (2.25) 

The covariance matrix implied by the single factor model then becomes: 

 2 '
m  εββ  (2.26) 

where 2
m  is the variance of returns on the market portfolio and ε  is a diagonal 

residual covariance matrix with non-zero elements 2
,i . 

The model significantly reduces the dimensionality of the covariance matrix. We only 

have to estimate 2 1n   parameters: n  parameters of market betas i , n  parameters of 

asset-specific variance 2
,i  and the market variance 2

m , as compared to 1
2 ( 1)n n 

parameters in the fully estimated sample covariance matrix. Since more data is available 

per parameter, we can expect a reduction in estimation error. However, it is likely that a 

single factor does not fully capture the total covariation among asset returns, and so 

single factor models may be severely biased and misspecified. The literature has shown 

that asset returns may be related to factors other than the market returns (see Ross, 

1976, Chen et al., 1986, Fama and French, 1992, Fama and French, 1993). For many 

years, investment professionals have instead relied on multifactor models in portfolio 

management and risk analysis.  

2.2.2.3 Multifactor Models  

With more factors incorporated, multifactor models explain asset returns better than 

single factor models. Multifactor models also provide a more detailed analysis of risk. 

As the number of factors is normally chosen to be much fewer than the number of 

assets, multifactor models reduce the dimensionality of the covariance matrix, making 

them convenient for financial application. If the factors are uncorrelated, there are only 
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( 2)k n k   parameters to be estimated, compared to 1
2 ( 1)n n   parameters in the 

sample covariance matrix. For example, for a 25-asset portfolio with three factors, we 

need to estimate only 78, not 325, parameters. This section presents an overview of the 

three popular types of multifactor models in practice. 

Statistical Factor Models 

In statistical factor models, statistical techniques, such as Principal Components 

Analysis (PCA) or factor analysis, are used to extract the most important uncorrelated 

sources of variations in asset returns. Statistical factor models use a few linear 

combinations of returns, or components/factors, which capture most of the variations 

present in asset returns, to explain the structure of the covariance matrix.  

The PCA technique can be applied to either the covariance matrix or the correlation 

matrix. Here I illustrate the application of the PCA technique to the covariance matrix. 

Note that since the correlation matrix is just the covariance matrix of the standardised 

return vector * 1r D r , where D is the diagonal matrix of the standard deviations of 

returns, the application of the PCA to the correlation matrix is straightforward to derive. 

The PCA analysis employs the eigenvector-eigenvalue decomposition for the symmetric 

positive semi-definite covariance matrix   of returns: 

 '  VΛV  (2.27) 

where n nΛ  is a diagonal matrix of eigenvalues  of Σ, ordered from the highest to the 

lowest, and V is an n n  matrix of eigenvectors v of Σ. 1 2[ , ,..., ]m m m nmv v v v  is the 

eigenvector corresponding to the eigenvalue m . Define mP  as the thm -component of 

the system. mP  can be represented as a linear combination of returns: 

 1 1 2 2
1

...
n

m m m nm n im i
i

P v r v r v r v r


      (2.28) 

where ir  is return on asset i, or in matrix terms: 

 '
m mP  v r . (2.29) 

Putting together all the components of the system, we get: 

 'P = V r . (2.30) 
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The variances and covariances of the components are given by 

      ' ' ' '1 1 1T T T    PP = V rr V = V V = V VΛV V = Λ , (2.31) 

as the eigenvectors are orthogonal ( nVV = I ). Since Λ  is a diagonal matrix, the 

components P are uncorrelated  , 0i jE P P   for i j  and the variance of the thm -

component mP  is the corresponding eigenvalue m . The proportion of the total 

variations in the covariance matrix that is explained by the thm -component is m  . 

In the correlation matrix, as the sum of the eigenvalues is equal to the number of the 

eigenvalues, the explanatory power of the thm -component on the correlation is 

measured by /m n . Since the eigenvalues are ordered according to size, the first 

principal component will explain the greatest amount of the total variations in the 

covariance matrix. 

Because the eigenvectors are orthogonal n
'VV = I , (2.30) can be rewritten as r = VP . 

Hence each asset return can be represented as a linear combination of the components: 

 1 1 2 2 ...i i m ni nr v P v P v P    . (2.32) 

Choose the first k components *
1 2( , ,..., )kP P PP  that explain the most part of the 

variations of asset returns, then * * r = V P ε , where ε  is the vector of residuals, 

accounting for the remaining small variations that are not explained by the first k 

components *P . As the components are uncorrelated, the covariance matrix will then be 

reproduced with fewer factors:  

 
   * * *V VΛ  (2.33) 

where *Λ  is the diagonal matrix of the components’ variances  *
1 2, ,..., kdiag   Λ , 

*V  is the component loadings and   is the diagonal covariance matrix of the residuals 

The PCA technique is very useful in highly correlated systems, where most of 

covariations can be explained by just a few independent sources. The disadvantage of 

this technique nevertheless lies in the interpretation. The factors extracted from the PCA 

are statistical artifacts, and so practitioners have to interpret the economic meaning of 

these statistically-derived factors. The interpretability of the factors is crucial in 

determining the validity of the PCA. 
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Macroeconomic Factor Models 

Macroeconomic factor models trace the sources of the common covariations among 

assets to observable macroeconomic variables, such as inflation, interest rates and 

business cycle. Unlike statistical factor models, this approach is backed economically 

since asset returns are systematically affected by macroeconomic conditions. 

Practitioners observe and study the magnitude and persistence of macroeconomic 

variables in explaining historical stock returns and choose pervasive factors for the 

models. A good factor must be able to explain the covariations of asset returns, as well 

as be easy to interpret and robust over time. The factor betas of each asset are typically 

estimated in time series regressions of asset returns on the given factors. Chen et al. 

(1986) are among the first to explore and test macroeconomic factors that affect the 

behaviour of stock returns. They establish a set of five economic variables that can 

affect the discount rate and/or future dividends, which in turn influence the stock prices 

in the US market. These include growth in industrial production, changes in expected 

inflation, unexpected inflation, unexpected changes in risk premia, and unexpected 

changes in the term structure slope. The five-factor Chen, Roll and Ross (CRR) model 

has been popularly applied and extended in many researches. A notable example is the 

BIRR (Burmeister, Ibbotson, Roll, and Ross) model that employs a similar list of five 

macroeconomic factors in the APT framework to construct superior portfolios (see 

Burmeister et al., 2003). The CRR model is nevertheless subject to criticism. For 

example, Shanken and Weinsten (2006) challenge the robustness of the CRR factors. 

They design an experiment that is comparable to that of the CRR model in most 

respects, except only for the use of pre-ranking returns to estimate betas. Using instead 

the post-ranking returns as in Fama and French’s study (1992), they claim that there is 

no indication that the macroeconomic factors, except industrial production, are priced. 

Fundamental Factor Models 

Fundamental factor models concentrate on the explanatory power of security attributes, 

such as market capitalization, industry, book-to-price ratio, dividend yield, on stock 

returns. These security characteristics have been found to be surprisingly powerful in 

describing the comovement of individual equities. The fundamental factor betas, unlike 

those of macroeconomic factors, may not need to be estimated from time series 

regressions. Fundamental factor models may use a company's observed attributes such 

as firm size, industry classification as betas. In this sense, factor betas are exogenously 
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determined, firm-specific attributes rather than estimated sensitivities to random factors 

(Connor, 1995). For instance, the industry factor beta is a dummy variable, taking the 

value of one if a firm belongs to an industry and of zero if it does not. 

One of the most popular fundamental factor models is the Fama-French three-factor 

model. Fama and French (1992, 1993) suggest that two security attributes, market 

capitalization and book-to-price ratios, are strongly correlated with the difference in 

mean returns across securities; smaller capitalization and higher book-to-price ratio 

stocks are found to have higher mean returns. Arguing that these higher mean returns 

are due to non-diversifiable portfolio risk, Fama and French form two combination 

portfolios, i.e., the SMB (small minus big) and the HML (high minus low) portfolios 

and use these two portfolios, together with the value-weighted market index as the 

pervasive risk factors. Factor betas are estimated by time series regressions of the asset 

returns on returns of the factor portfolios. Carhart (1997) and Jegadeesh and Titman 

(2001) extend Fama and French's three-factor model, adding an additional factor-

mimicking portfolio to represent the momentum factor (proxied by high-twelve-month 

returns minus low twelve-month-returns). Goyal and Santa-Clara (2003) and Ang et al. 

(2006, 2009) also suggest evidence of an own-volatility-related factor that adds 

explanatory power to the Fama-French model, for explaining both return comovements 

and mean returns. Commercially, MSCI BARRA has developed a multifactor model 

covering the world's major equity markets. For instance, for the US market, their model 

consists of 12 risk indices such as volatility, size, growth, earning-to-price, book-to-

price, financial leverage and 55 industry dummies, further classified into 13 industry 

categories. 

2.2.2.4 Practical Implementation and Issues 

Factor models have gained significant popularity in practical portfolio management. 

The parsimony of the factor structure reduces the number of estimated parameters, and 

hence reduces estimation error. Besides, the factor structure also avoids the ill-

conditioned problem of the inverse covariance matrix, providing a better conditioned 

alternative to the fully estimated covariance matrix (Fan et al., 2008). However, to 

reduce the dimensionality of the covariance matrix, the number of factors is normally 

chosen to be much smaller than the number of assets ( )k n , which means factor 

models could concentrate only on the strongest sources of covariations. Thus, the 

models may be mispecified in the sense that they omit some important sources, or that 



 
49

the chosen factors may be transitory and lose their explanatory power over the next 

period. Increasing the number of factors offers more flexibility in approximating the 

data generating process, but at a cost of estimation error. Besides, including too many 

factors may run the risk of overfitting the data, producing poor out-of-sample forecast 

performance.  

Another vital concern in applying the multifactor models is to decide which types of 

factors to include. Connor (1995) compares the explanatory power of the three types of 

multifactor models for US equity returns. Theoretically, he shows that the three types 

are not necessarily inconsistent; in the absence of estimation error and with no limits on 

data availability, the three models are simply restatements or rotations of one another. 

However, in practice where estimation error is common and data is restricted, the three 

models may differ. Connor finds empirically that the fundamental and statistical 

multifactor models outperform the macroeconomic factor models in terms of 

explanatory power. He also finds that the explanatory power of a macroeconomic factor 

model is marginally negligible when it is added to a fundamental factor model, 

implying that fundamental factors may capture the same risk as the macroeconomic 

factors. On the contrary, Burmeister et al. (2003) advocate the use of macroeconomic 

factors while raising concerns about the fundamental factor models. They argue that the 

fundamental factors are based on accounting data that may come from different 

accounting rules, or even if they are from the same accounting rules they may be 

released at different report dates that makes it difficult to obtain time-synchronised 

comparison. Nevertheless, macroeconomic factor models incur the same problem. 

Economic variables such as GDP, inflation are normally released at different time, and 

since they are aggregate variables, their estimation error may also be very large. 

Statistical factor models, though estimated by maximum explanatory power, are faced 

with different problems. After extracting factors from the PCA or factor analysis, 

practitioners have to interpret the economic meaning underlying those factors. To make 

thing more complicated, factors change over time, which means a third factor in one 

sample period may be completely different from the third factor in another sample 

period. 

Determining the number of factors is also a central issue, especially in statistical 

models. The factors, of course, should be robust, statistically significant, and justified 

by an economic intuition. Until lately, the number of factors in statistical models was 

often assumed rather than determined by the data. Fortunately, recent studies have 
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proposed tests to estimate the number of factors from observed data. Connor and 

Korajczyk (1993)  suggest a test under a sequential limit asymptotic assumption, i.e., n 

converges to infinity with a fixed T and then T converges to infinity. Starting with some 

certain factors, they will add an additional factor if they find an increase in explanatory 

power from adding that factor. Their tests are based on the difference in the cross-

sectional averages of asset-specific variances with and without the additional factor. Bai 

and Ng (2002) have a different approach. They set up the determination of factors as a 

model selection problem. Working in the PCA framework, they develop two types of 

information criterion, which represent the trade-off between good fit and parsimony. 

Their criteria are developed under the assumption that ,n T  , thus applicable for 

many datasets. Another approach is motivated by the work on Random Matrix Theory 

for stock correlations of, e.g., Plerou et al. (2002). Benghtsson and Holst (2002) suggest 

choosing the number of principal components that are determined by the eigenvectors 

corresponding to the eigenvalues that deviate significantly from the maximum 

eigenvalue bound obtained for a random matrix. 

In portfolio choice and risk management, factor models have been popularly applied to 

produce better estimates of the covariance matrix. Chan et al. (1999) study the 

performance of different factor models in a portfolio choice problem. Testing the 

predictive power of different factor models (ranging from one factor to ten factors), they 

show that factor models clearly improve the forecast performance of the covariance 

matrix. However, they also find that only a few factors such as the market, size, book-

to-market value of equity are sufficient in capturing the general structure of the 

covariance matrix. Extending the number of factors beyond this relatively small set does 

not lead to superior forecast performance. In another study, Briner and Connor (2008) 

compare performance of three covariance matrix estimators, i.e., the sample covariance 

matrix, the single market factor model, and the multifactor model. Their simulation and 

empirical results show that the multifactor model performs best for large investment 

universes and typical sample lengths. This result is consistent with conventional 

wisdom, proposing that the market model underperforms because of excessive 

specification error, while the sample covariance matrix underperforms due to high 

estimation error. 
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2.2.3 Shrinkage Models 

Ledoit and Wolf (2003, 2004) extend the mean shrinkage estimator of James and Stein 

(1961) to the covariance matrix. They propose a shrinkage covariance matrix estimator 

ˆ
s  that is a convex combination of the usual sample covariance matrix ̂  and a 

shrinkage target S (or its estimate Ŝ ):   

  ˆ ˆˆ 1s      S  (2.34) 

where   is the shrinkage constant or shrinkage intensity,  0,1  . The underlying 

idea is to shrink the sample covariance matrix to the shrinkage target so as to address 

the trade-off between estimation error and specification error. The sample covariance 

matrix is unbiased but full of excessive estimation error, while the shrinkage target, due 

to their simple dimensionality, has less estimation error, but may be misspecified. The 

new covariance matrix ˆ
s  can be seen as a weighted average of the biased and 

unbiased estimators with the weight  . This weight  , representing the optimal trade-

off, controls how much structure to be imposed: the heavier the weight, the stronger the 

imposed structure. 

 As suggested by Ledoit and Wolf, the shrinkage target should fulfil two requirements: 

(i) involving a small number of parameters, and (ii) reflecting important characteristics 

of the true covariance matrix. Ledoit and Wolf (2003, 2004) choose the single-index 

factor model of Sharpe (1963) and the constant correlation model of Elton and Gruber 

(1973) as their shrinkage targets. Bengtsson and Holst (2002) extend the study of Ledoit 

and Wolf to shrink the covariance matrix to a k-factor model derived from a PCA 

analysis. A positive definite target also guarantees the positivity of the shrinkage 

estimate, even when the sample covariance matrix itself is singular. This makes 

shrinkage a particularly practical statistical tool for constructing large-scale equity 

portfolios. 

Ledoit and Wolf develop algorithms to estimate the shrinkage constant   by 

minimising a loss function that does not involve the inverse of the covariance matrix. 

This is an advance as previous shrinkage intensity estimation was normally based on 

loss functions involving the inverse covariance matrix, which makes the estimators 

break down when n T . In their two articles, Ledoit and Wolf apply their shrinkage 

covariance matrix estimator in a global minimum variance portfolio choice problem and 
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show that their estimator produces portfolios with significantly lower out-of-sample 

variance than those produced by a set of well-established competing approaches, 

including the multifactor models. Interestingly enough, they find that the shrinkage 

intensity with a single-factor target is remarkably stable through time with a value of 

around 0.8, suggesting that there is about four times as much estimation error in the 

sample covariance matrix as there is bias in the single-factor covariance matrix. 

Janagathan and Ma (2000), however, challenge the complicated algorithm of Ledoit and 

Wolf to estimate  . They argue that different covariance matrix estimators contain 

error in different directions, hence using a portfolio of covariance matrix estimators 

(e.g., a simple average of a sample covariance matrix, a single index estimate, and a 

matrix consisting of the diagonal part of the sample covariance matrix) may cancel the 

error out. Motivated by the study of Jagannathan and Ma, Disatnik and Benninga 

(2007), while acknowledging that the shrinkage estimator of the covariance matrix is 

indisputably better than the sample covariance matrix estimator, find no statistical 

differences in the ex post standard deviations of the global minimum variance portfolios 

constructed with the more sophisticated shrinkage estimator of Ledoit and Wolf and 

those with simpler portfolios of estimators of Jagannathan and Ma.  

2.2.4 The Constant Correlation Coefficient Model 

Given the drawbacks of the sample covariance matrix as an input to the portfolio 

optimiser, Elton and Gruber (1973) suggest the use of a constant correlation coefficient 

model, where all pairwise correlation coefficients are assumed to be equal and equal to 

the average pairwise correlation coefficient. In the empirical study, they show that their 

estimator is both statistically significant in producing better five-year estimates of future 

correlation coefficients, and economically significant in yielding superiour out-of-

sample portfolio performance, even with or without short sales constraints, than those 

produced from the sample or single factor covariance matrices. 

Arguing that the model of Elton and Gruber still has many parameters to estimate (all 

the pairwise correlation coefficients have to be estimated to obtain their average), Aneja 

et al. (1989) suggest  a simplified but exact portfolio approach of estimating the average 

correlation coefficient without having to estimating all the pairwise correlations. To 

estimate the covariance matrix of an n-asset portfolio, their approach will only have to 

estimate 1n  variances: the variances of n assets and the variance of a portfolio where 

investment in each security equals to the reciprocal of its sample standard deviation. 
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This method greatly reduces the computational requirements for estimating the average 

correlation coefficient. 

2.3 Conclusion 

Markowitz’s mean-variance optimisation theory provides a convenient and objective 

framework to allocate wealth in a portfolio. The theory also beautifully captures the two 

fundamental economic insights of risk-return trade-off and diversification. However, 

despite its obvious appeal, the Markowitz paradigm is faced with several criticisms. 

Theoretically, academics have consistently attacked on the prohibitively restrictive 

assumptions of the Markowitz analysis, e.g., the quadratic utility, the single-period 

investment horizon. In application, practitioners have traditionally resisted the use of the 

classical framework, not least because of the difficulty in estimation of the inputs. The 

limitations of Markowitz theory have spurred numerous extensions of the paradigm. 

Many models have been suggested, ranging from small calibrations of estimation of the 

moments of returns to incorporating sophisticated statistical developments into the 

optimiser. Each approach has its own advantages and limitations that make no approach 

emerge as a clear favourite. However, in a striking study, DeMiguel et al. (2009) show 

that the naïve diversified equally weighted portfolio cannot be dominated by any of the 

fourteen popularly used optimal portfolio models, ranging from the classical sample 

mean-variance efficient strategy to the Bayesian approach to estimation error, or to the 

models that impose constraints on portfolio weights. Despite considerable progress in 

the design of optimal portfolios, estimation error in expected returns and the covariance 

matrix may still be so excessive that it erodes all the gains from optimal, relative to 

naïve diversification. The needs for more reliable estimates of the moments of asset 

returns still pose significant challenges. Exploiting the predictability of the covariance 

matrix in conditional volatility models suggests an interesting direction. The next 

chapter will turn to the analysis of conditional covariance matrix estimators and their 

implications for practical asset allocation. 
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Figure 2.1. The Mean-Variance Efficient Frontier.  

The figure plots the mean-variance efficient frontier of 49 average-value-weighted industry 
portfolios of the US, using data of monthly returns. Expected returns and volatilities are 
annualised. 
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Figure 2.2. The Mean-Variance Efficient Frontier and The Capital Market Line.  

The figure plots the mean-variance efficient frontier and the Capital Market Line, constructed 
from 49 average-value-weighted industry portfolios of the US, using data of monthly returns. 
The risk-free rate is assumed 4%. Expected returns and volatilities are annualised. 
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Figure 2.3. Utilities and Optimal Portfolios.  

The figure shows how an investor chooses his optimal portfolios based on the efficient frontiers 
and his utility indifference curves. The risk-free rate is assumed 4%. Expected returns and 
volatilities are annualised. 
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Figure 2.4. The True, Estimated and Actual Mean-Variance Efficient Frontiers.  

The figure plots the mean-variance frontiers generated using real and simulated data of 10 US 
industry portfolios (T = 120 observations for the simulated data). The true and the estimated 
frontiers are constructed using the true and the estimated parameters, respectively. The actual 
frontiers are obtained by applying portfolio weights derived from the estimated parameters to 
the true parameters to calculate portfolios’ expected returns and risk. Expected returns and 
volatilities are annualised. 
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Figure 2.5. The True and Actual Mean-Variance Efficient Frontiers.  

The figure illustrates the estimation error problem in using the sample estimates of expected 
returns and the covariance matrix to construct the mean-variance efficient frontiers. The blue 
solid curve is the true efficient frontier, while the red dashed curves are the 250 simulated actual 
frontiers. The frontiers are constructed using real and simulated data of 10 US industry 
portfolios for two sample sizes of 60 and 120 monthly observations. Expected returns and 
volatilities are annualised. 
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Figure 2.6. The Sharpe Ratios of the Tangency Portfolios.  

The figure shows the histograms of the Sharpe ratios of the 250 actual tangency portfolios. The 
portfolios are constructed using real and simulated data of 10 US industry portfolios with two 
sample sizes of 24 and 120 monthly observations. The investor is assumed to know the true 
expected returns but uses the sample estimates of the covariance matrix. The vertical red line in 

each plot represents the Sharpe ratio of the true tangency portfolio.  
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Chapter 3  

The Time-Varying Conditional 

Variance-Covariance Matrix  

Applications of the classical mean-variance portfolio optimisation typically assume a 

constant return distribution, in which expected returns and risk do not change over time. 

However, it is now well established that the covariance matrix of short horizon financial 

asset returns is both time-varying and highly persistent. Starting from the seminal work 

of Engle (1982), a number of conditional volatility models such as the multivariate 

Exponentially Weighted Moving Average (EWMA), multivariate Generalised 

Autoregressive Conditional Heteroskedasticity (GARCH) and multivariate Stochastic 

Volatility (SV) models have been developed to capture these features of the covariance 

matrix. These models are now routinely used in many areas of applied finance, 

including asset allocation, risk management and asset pricing. Mounting evidence now 

suggests that multivariate conditional volatility models produce better forecasts of the 

covariance matrix than those produced by the unconditional covariance matrix estimator 

(see, for example, Engle and Colacito, 2006). Practical problems, such as asset 

allocation, consequently benefit from better forecasts of the covariance matrix. Indeed, 

ample evidence clearly demonstrates that dynamic asset allocation strategies, based on 

time-varying conditional covariance matrices, dominate static strategies, based on 

constant unconditional alternatives (see, for example, Fleming et al., 2001, Han, 2006, 

Thorp and Milunovich, 2007). 

Estimation of the time-varying conditional covariance matrix has been the subject of 

extensive research. This chapter provides a summary of some popular conditional 

volatility models and their application to asset allocation. The chapter will primarily 

focus on the Moving Average and the GARCH models, highlighting their similarities 

and differences. Stochastic Volatility, Realised Volatility, Option Implied Volatility 

models are out of the research scope of this chapter and of the thesis. Due to space 

limits, the chapter will not provide an exhaustive list of all Moving Averages and 

GARCH models, nor cover all details of each model. Particularly, I will not cover some 

areas, such as the testing and estimation procedure, or the forecast evaluation. The 

purpose here is to help readers get a glimpse of the developments of conditional 
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volatility models in both univariate and multivariate context, before guiding them 

through the multivariate long memory conditional volatility models studied in the next 

chapters. More details of the conditional volatility models can be found in excellent 

reviews of, among others, Poon (2005), Andersen et al. (2006), Xiao and Aydemir 

(2007). 

Section 3.1 begins with some well-known properties of asset return volatility. Extensive 

research that captures these properties to produces better estimates and forecasts of the 

covariance matrix is then summarised in the following sections. My focus is especially 

on the multivariate conditional volatility models that are applicable to a large number of 

assets. Section 3.2 presents the Moving Average models, with due attention paid to the 

widely-used Riskmetrics Exponentially Weighted Moving Average (EWMA) of JP 

Morgan (1994). Section 3.3 is devoted to the GARCH family. Alternative univariate 

GARCH models are discussed in Section 3.3.1, while their multivariate generalisations 

are detailed in Section 3.3.2. Owing to their importance in the research, long memory 

conditional volatility models are studied in a separate section (Section 3.4). Finally, 

Section 3.5 briefs some applications of the conditional volatility models in the asset 

allocation framework. 

3.1 Properties of Asset Return Volatility 

This section introduces some of the well-established properties of asset return volatility. 

The recognition of those properties has sparked off the development of numerous 

conditional volatility models in the last 30 years. 

Fat tails 

The unconditional distribution of asset returns is known to exhibit fatter tails than those 

exhibited in the normal distribution. An ample body of evidence suggests that although 

the normal distribution may closely explain financial asset returns in the middle of the 

curve where most gains and losses occur, it fails to do so in the extreme edges. There 

are more days of spectacular price increases or falls than it is expected under the normal 

distribution assumption. For example, we typically observe financial returns of four 

standard deviations many days in a year, which is inconsistent with the normal 

distribution. This non-normality feature of the asset return distribution should be taken 

into account in the construction of any volatility model. 
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Volatility persistence 

It is generally agreed that volatility is time-varying and persistent. While returns 

themselves contain little autocorrelation, which is consistent with the efficient market 

hypothesis, absolute returns and squared returns (proxies of volatility) are found to be 

highly correlated and persistent. This property holds for returns of equities, bonds, 

exchange rates, interest rates in different markets and different countries at daily or even 

weekly frequencies, and is even more pronounced at high frequency intra-day returns.  

Volatility persistence is among the first features of volatility to be recognised. 

Mandelbrot (1963) observes that “large changes tend to be followed by large changes -

of either sign- and small changes tend to be followed by small changes.” However, 

Mandelbrot then emphasises the unconditional non-normality of returns, rather than 

volatility clustering. The first formal study of volatility persistence is credited to Engle 

(1982), who exploits this feature to develop the Autoregressive Conditional 

Heteroskedasticity (ARCH) model. Volatility persistence implies that information in the 

past can be exploited to generate future forecasts of volatility. The seminal work of 

Engle has served as the foundation for extensive and ongoing research on time-varying 

conditional volatility. 

Mean reversion 

Volatility persistence implies that when volatility is high, it is likely to remain high, and 

vice versa. However, this effect is time bounded so that a period of high volatility will 

eventually give way to a period of normal volatility and conversely, volatility will rise 

after a period of low volatility. This ‘mean reversion’ feature implies volatility will 

eventually revert to a long-run normal level. Consequently, long-run forecasts of 

volatility will converge to this normal level, no matter when they are made. 

 Asymmetric volatility 

Volatility asymmetry has been noticed in equity markets. It has been observed that 

volatility is higher in bear markets than it is in bull markets. A negative return shock 

(unexpected price drop) will lead to a higher subsequent volatility than a positive return 

shock (unexpected price increase) of the same magnitude. Black (1976), among others, 

attributes this phenomenon to the ‘leverage effect’, in which a fall in stock price 

increases financial leverage and hence financial risk of the firm, leading to changes in 
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volatility. Pindyck (1984) and French et al. (1987), however, have a different 

explanation. They argue that the asymmetric nature of volatility response to shocks 

could simply reflect the time-varying risk premium – the ‘volatility feedback’. An 

anticipated increase in volatility raises the required returns, hence provoking an 

immediate decline in stock price. Though addressing the same behaviour of volatility, 

the two approaches have different causality. While the leverage effect treats the return 

shock as the cause to the conditional volatility, the volatility feedback mechanism treats 

it as the effect. Which direction dominates has not got a clear-cut answer and still 

remains an open question for academic researchers. 

Long memory behaviour of volatility 

A mounting body of empirical evidence now suggests that the autocorrelation function 

of squared return innovations declines more slowly than the exponential decay implied 

in the EWMA and GARCH models, and hence volatility shocks are more persistent 

than these models imply. Ding et al. (1993) are the first to identify the so-called long 

memory behaviour in volatility. They investigate the volatility of the daily S&P500 

index returns and find that the sample autocorrelation function of volatility decreases 

slowly and remains significantly positive after very long lags; yet, the volatility process 

is still essentially stationary. This feature is important not only for the measurement of 

current volatility, but also for forecasts of future volatility, especially over longer 

horizons.  

These properties of financial asset return volatility have spurred the development of 

numerous volatility models to provide accurate estimates and reliable forecasts of future 

volatility. In the following sections, various approaches to model the conditional 

covariance matrix will be investigated. 

3.2 Moving Average Models 

Moving average models are a simple, yet practically powerful approach to estimate and 

forecast the time-varying covariance matrix. The simplest specification of this class is 

the Equally Weighted Moving Average model, in which elements of the covariance 

matrix are estimated as sample squares and cross products of returns over rolling 

windows. This is sometimes referred to as ‘the historical volatility’. It offers the 

simplest way of incorporating actual data in the estimation of the time-varying 

covariance matrix. Another specification is the widely used RiskMetrics Exponentially 
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Weighted Moving Average (EWMA) model of JP Morgan (1994). This section 

provides a brief overview of these two models. 

3.2.1 The Equally Weighted Moving Average Model 

Consider an n-dimensional vector of returns  1 2, , , , 't t t ntr r r r  with conditional mean 

zero and conditional covariance matrix tH : 

 
1
2
tt t Hr z , (3.1) 

where tz  is i.i.d with   0tE z  and  var t nz I . The ‘historical’ covariance matrix is 

calculated on a T-day window that is rolled through time, each day adding the new 

return and taking off the oldest return: 

 '

1

.
1 T

t t i t i
iT  


 H r r  (3.2) 

The sophistication of this model lies in the choice of the window length T. If the length 

is short, the estimate may be noisy since the sampling error is proportional to 1
T . The 

longer the window, the less noisy the estimate, but the more biased it is when far more 

distant observations, which may not be relevant today, are included in the calculation. 

Hence, the length of the window T directly determines the trade-off between the 

sampling error and the unbiasedness of the estimate.  

The model captures the time-varying property of volatility and covariance in a 

simplistic way, through a rolling window. However, by putting equal weights on both 

recent and distant observations, the model fails to capture the persistence of volatility 

and covariance. Empirical studies, consequently, suggest that the historical method is 

not very effective for short-term horizons. Long-term volatility could be estimated with 

this method, but only when we assume that the past is an accurate reflection of the 

future. 

3.2.2 The Exponentially Weighted Moving Average Model 

Unlike the Equally Weighted Moving Average model, the Exponentially Weighted 

Moving Average (EWMA) model puts more weight on the recent observations and less 

on the distant past, hence capturing the volatility persistence and enabling volatility to 
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react faster to shocks. The impact of the shocks also dies out exponentially instead of 

remaining the same until they are excluded out of the equally weighted model. The 

EWMA covariance matrix has the following specification: 

   '
1 1 11 ,t t t t     H r r H  (3.3) 

where   is the decay factor (0 1)  . The first term of the right hand side of (3.3), 

  1 11 't t   r r , denotes the response of volatility to one-period news, while the second 

term, 1t H , determines the persistence in volatility. The higher the value of , the 

more persistent the process and the slower the response to new shocks. However, in the 

EWMA model, the reaction and persistence parameters are not independent because 

they sum to one.  

By backward substitution, the covariance matrix can be written as: 

   1

1

' .1 i
t it i

i
t 




 


   r rH  (3.4) 

The model derives its name from this formulation, in which the elements of the 

covariance matrix are the exponentially weighted moving averages of past squares and 

cross products of returns. In practice, the process is often estimated with a cut-off time 

T, scaling the infinite sum in (3.4) by  

 
 

1

'1

1

T
i

t T t i
i

t i




 
 




  r rH . (3.5) 

Under the RiskMetrics (1994),  takes the values of 0.94 and 0.97 for daily and weekly 

forecasts, respectively. The EWMA process is hence easily estimated in a spreadsheet 

for any dimensional system. The one-step ahead forecast is readily given in the model: 

   '
1 1 .t t t t    H r r H  (3.6) 

By recursive substitution, the h-step forecast is equal to the one-step ahead forecast: 

 1 2 1... .t h t h t t       H H H H  (3.7) 

Assuming returns are serially uncorrelated, the expected covariance matrix over k 

cumulative steps is given by 1: 1t t k tk   H H . The multiple-period forecast is a simple 
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product of the one-day forecast with the forecast horizon, k. This is also known as the 

‘square root of time’ rule for volatility forecasts. The EWMA model can thus be thought 

of as a random walk model, where a shock will have a permanent effect on the 

expectation of future variance and covariance. The volatility process in the EWMA 

model is not mean-reverting, which is quite counterfactual since financial return 

volatility tends to eventually converge to its long-run average.  

The multivariate Riskmetrics EWMA model of JP Morgan (1994), though being non-

mean-reverting and very restrictive when imposing the same degree of smoothness on 

all elements of the estimated covariance matrix, enjoys the most popular practical 

application among multivariate conditional volatility models due to its high parsimony.  

3.3 GARCH Models 

Observing that squared residuals are often autocorrelated even though residuals 

themselves are not, Engle (1982) sets the stage for the new class of time-varying 

conditional volatility models with the Autoregressive Conditional Heteroskedasticity 

(ARCH) model. The new model has inspired a huge amount of related research on its 

development, generalisation and application, and deserved Engle a Nobel Prize in 

Economics in 2003.3 This section introduces the ARCH model and some of its popular 

generalisations in both univariate and multivariate context.  

3.3.1 Univariate GARCH Models 

3.3.1.1 The Basic ARCH Model 

The ARCH model of Engle (1982) parallels the Wold representation for the conditional 

mean to modelling the conditional variance. Engle is the first to treat the unconditional 

mean and variance as constant, while letting both the conditional mean and variance be 

time-varying. Allowing for the time-varying conditional variance (conditional 

heteroskedasticity), the ARCH model successfully captures the persistent volatility 

feature of financial time series, providing a natural and powerfully simple framework 

for estimating and forecasting volatility. 

                                                 
3 Engle shared the 2003 Nobel Prize in Economics with Granger. Engle’s contribution was recognised 
“for methods of analyzing economic time series with time-varying volatility (ARCH),” whereas 
Granger’s was “for methods of analyzing economic time series with common trends (cointegration).” 
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Let tr  be the log return of an asset at time t. The return is decomposed into an expected 

conditional mean  1t t t
E r


   based on the information set 1t  available at time 

1t   and an innovation .t  The return series has no serial autocorrelation or minor 

autocorrelation, if any.4  

 t t tr     (3.8) 

 ,t t th z   (3.9) 

where tz  is a white noise process with zero mean and unit variance and th  is the 

conditional variance at time t. In practice, tz  is often assumed to follow the standard 

Gaussian or the standardised Student-t distributions. In the ARCH model, the residuals 

t  are serially uncorrelated while their squares are autocorrelated over time. In the 

following, to facilitate the presentation, the conditional mean is assumed constant and 

equal to zero, a common assumption in risk management at least when a short horizon 

is considered. Under the ARCH(p) model, the conditional variance is estimated by 

taking the weighted average of past squared errors: 

 2

1

p

t i t i
i

h    


   (3.10) 

with 0   and 0i   to ensure the strict positivity of 2
t . Under this structure, large 

past changes (large 2
t i  ) imply that the current conditional variance th  is also large, and 

vice versa. The ARCH model is thus able to capture the volatility clustering observed in 

asset returns. One advantage of the ARCH model is that the weight i  can be estimated 

from historical data, based on, e.g., the Maximum Likelihood procedure, even though 

the ‘true’ volatility is never observed. The unconditional variance of tr  is 

 2 1 i    , a constant even though the conditional variance is time-varying. 

The ARCH(p) model is covariance stationary if 1
i

  . 

                                                 
4 The conditional mean equation can be of any form. However, as the ARCH family concentrates on 
modelling the conditional variance, they usually have a simple conditional mean equation to extract all 
serial autocorrelations in the residuals. Many of the ARCH models in practice just let the simple 
conditional mean to follow a stationary ARMA process or even assume that t  is equal to zero. 
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A good volatility model must produce good forecasts. As 2
t  is serially correlated, this 

dependence can be exploited to produce accurate volatility forecasts. From (3.10), th  is 

known at time  1t  , so the one-step forecast is readily available. The multi-step 

forecast can be formulated by assuming that  2
ht thE h   . 

Another remarkable feature of the ARCH model is that the implied unconditional 

distribution of even a conditionally Gaussian ARCH process is leptokurtic. It is shown 

that for an ARCH(1) process, if 2 1
3   so that a finite fourth moment exists, then the 

kurtosis is greater than 3 for a positive  , and so the ARCH model yields observations 

with heavier tails than those generated by a normal distribution. Therefore, the ARCH 

model captures the two most common features of real high frequency financial asset 

returns, i.e., volatility clustering and heavy-tailed unconditional distributions. 

In the ARCH(p) model, past shocks of more than p periods ago have no effect on the 

current volatility, hence the order p determines how long a shock is persistent to 

volatility. For financial time series, it typically requires a very high order p to capture 

the dependence. Bollerslev (1986) proposes a parsimonious way to handle with this 

problem, introducing the Generalised Autoregressive Conditional Heteroskedasticity 

(GARCH) model. 

3.3.1.2 The GARCH Model 

Applying the principles of the ARMA model, Bollerslev suggests a parallel proposal to 

the ARCH process.5 In the GARCH(p,q) model, the conditional variance is modelled as 

 2

1
1

1

p q

i i i
i

t
i

tth h   





    (3.11) 

with 0.    The GARCH process is covariance stationary if 1
i i

    . In 

practice, the GARCH(1,1) model is the most popular specification for estimating and 

forecasting volatility. The GARCH(1,1) process has just one lag of past squared error 

and one autoregressive term: 

 2
1 1t tth h      . (3.12) 

                                                 
5 Taylor (1986) also proposes a similar model in an independent study. 
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Here   and   are non-negative to ensure the strict positivity of th . Note that for the 

GARCH ( , )p q  model, the positivity constraints are much more complex.6 The 

conditional variance is a weighted average of three different variables: a constant  , a 

forecast that was made in the previous period 1th   and new information unavailable last 

period 2
1t  .  The GARCH(1,1) process can capture a very high order of lags p of the 

ARCH(p) model. Indeed, by recursive substitution, the GARCH(1,1) model can be 

alternatively represented in the form of an ARCH     process:  

 1 2

1

.
1

i
t it

i

h
   








 
   (3.13) 

It obviously follows that the GARCH model is also an exponentially weighted moving 

average process. However, there are two major differences between the GARCH and 

the EWMA models. First, while the parameter   of the EWMA process is often set ad 

hoc, the parameters of the GARCH process have to be estimated by rigorously 

statistical methods, normally using the Maximum Likelihood procedure. Second, the 

GARCH model allows the volatility process to eventually revert to its long-run level. 

Assume that 1    so that the long-run, or unconditional variance exists 

  12 1       , the h-step ahead forecast, by recursive substitution, is then given 

by 

    12
1

2
t h t

h
h h   

      (3.14) 

It is inferred from (3.14) that when 1   ,    dies out quickly at an exponential 

rate as the horizon h increases, hence t hh   will revert to its long-run mean 2 . Note that 

while   determines how fast the conditional variance responds to new information, 

   governs how fast it reverts to its long-run average. In the alternative case when 

1   , the volatility dynamics will not converge and have to be modelled by 

different models. 

With serially uncorrelated returns, the optimal variance forecast over the k cumulative 

steps is then given by 

                                                 
6 See Nelson and Cao (1992) for more details. 
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    2 2
1

1

1
.

1i
t i

kk

tkh h
 

 
  



 
  

   (3.15) 

3.3.1.3 Other GARCH Models 

The dynamics of the GARCH(1,1) model allow for intuitive interpretations as they 

capture some of the most important features of volatility, e.g., high persistence, fat tails 

and mean reversion. Moreover, it may be readily extended to richer specifications to 

account for other volatility features. This section gives some generalisations of the 

GARCH model. 

The Integrated GARCH Model 

The GARCH(1,1) model assumes 1    so that forecasts of the conditional variance 

will revert to the long-run volatility level. However, it is commonly found in empirical 

research that volatility is so highly persistent that the sum of the estimated GARCH 

parameters is very close to one. Taylor (1986) estimates the GARCH(1,1) model for 40 

different time series and finds that for all but six of the 40 series, the sum of the 

estimated parameters is equal or greater than 0.97. Engle and Bollerslev (1986) then 

propose the Integrated GARCH (IGARCH) to model this long-run volatility persistence. 

The IGARCH(1,1) model is constructed similarly to the ARIMA model for the 

conditional mean, thus being considered a non-stationary GARCH(1,1) version where 

1   . Putting   , hence 1   , the IGARCH(1,1) process is specified by 

   1 1
21 tt th h         (3.16) 

When 1   ,   12 1        , and so the IGARCH process has no finite 

unconditional variance. Note that the Riskmetrics EWMA model is a special case of the 

IGARCH(1,1) model without the drift term  . The IGARCH(1,1) model can also be 

expressed as an exponentially weighted moving average process: 

   1 2

1

 1 i
t t i

i

h    







    . (3.17) 

As with the EWMA model, while a shock to volatility in the IGARCH process will 

eventually die out at an exponential rate, it nevertheless has a permanent effect on 

forecast volatility at all horizons. The h-step ahead variance forecast is given by 
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 1 .t h thhh     (3.18) 

Although the IGARCH model is considered a non-stationary version of the GARCH 

model for the conditional variance as the ARIMA model is a non-stationary version of 

the ARMA model for the conditional mean, there are some interesting twists in the case 

of the conditional variance. Nelson (1990) shows that the IGARCH(1,1) model with 

drift is strictly stationary, ergodic and the IGARCH(1,1) model without drift goes to 

zero almost surely even though it is not covariance stationary. Though the model is 

called Integrated GARCH, it does not follow that 2
t  behaves like an integrated process; 

on the contrary, it is still a martingale difference process. Also, while the effect of a 

shock is the same to both the expectation and the true process for a random walk in 

mean, a shock in the IGARCH process may permanently affect the expectation of a 

future conditional variance process, but it does not permanently affect the ‘true’ 

conditional variance process itself.  

Though the IGARCH (EWMA) model may be counterfactually non-stationary, it 

generates better volatility forecasts than those produced by the stationary GARCH 

model in many empirical studies. This may be owing to the fact that IGARCH processes 

are not constrained by a mean level of volatility and hence can be readily adjusted to 

changes in unconditional volatility.   

Asymmetric GARCH Models 

The GARCH model suggests a symmetric volatility response to market news. The 

unexpected return t  enters the conditional variance as a square, making no difference 

between a positive or negative shock. However, empirical evidence suggests that in 

equity markets, negative shocks normally have larger effects on volatility than positive 

shocks of the same magnitude. Research has thus been extended to accommodate the 

asymmetric volatility response to market shocks, including the Exponential GARCH 

(EGARCH) model of Nelson (1991), the GJR-GARCH model of Glosten et al.(1993),  

and the Threshold GARCH (TGARCH) model of Zakoian (1994). 

The Exponential GARCH (EGARCH) model 

The EGARCH model of Nelson (1991) is the first asymmetric GARCH model. Instead 

of using the squared residuals, Nelson develops his model around the logarithmic 

conditional variance. The EGARCH(1,1) model also takes a different functional form: 
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  1 1log logtt tg zh h       (3.19) 

where the logarithm of th  is a function of the past   1

t tt hz 


 ,  .g  is an 

asymmetric response function  t t t tg z z z E z       , where   and   are real 

constants. This specification enables the conditional variance to response 

asymmetrically to rises and falls in t , since for 0tz   and 0tz  ,  tg z  will have 

different slopes,    and   , respectively. The EGARCH model can capture the 

magnitude, as well as the sign of past shocks to volatility. Besides, by formulating 

conditional variance in the logarithmic form, the EGARCH model ensures that the 

conditional variance is positive, hence ruling out the necessity of imposing non-negative 

constrains on the parameters as in the GARCH model.  

The conditional volatility forecast of the EGARCH process is readily available in 

logarithmic form. However, interests normally focus on the conditional volatility, not 

on the logarithmically conditional volatility. The transformation from log t hh   to t hh  , 

nevertheless, requires the entire h-step ahead forecast distribution of the return series.  

As a result, the solution is not generally available in closed form and normally derived 

based on rigorous procedures, such as the Monte Carlo simulation. Other models have 

thus been suggested to provide more straightforward specifications to forecast 

asymmetric conditional volatility. 

The GJR-GARCH and Threshold GARCH Models 

The GJR-GARCH model of Glosten et al. (1993) extends the GARCH model by still 

allowing quadratic response of volatility to news, but adding another ARCH term to 

account for asymmetric response to good and bad news. The conditional variance under 

the GJR-GARCH(1,1) process is specified as: 

 1 1
2 2

1 1t t tt th hD           (3.20) 

 where 1

1

1 if  0 

0  if  0
t t

t t

D

D








 
  

 (3.21) 
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To ensure the positivity of the conditional variance,   is positive, while  ,   and 

   are non-negative. It immediately follows that when 0  , negative shocks will 

have a higher impact on volatility than positive shocks.  

The Threshold GARCH (TGARCH) model of Zakoian (1994) is constructed similarly 

to the GJR model, but it is formulated with the conditional standard deviation instead of 

the conditional variance. The TGARCH(1,1) model is given by 

 1 1 11 .t t tt th hD            (3.22) 

Forecasts of the GJR-GARCH and TGARCH models are straightforward to estimate. 

Assume further that    0 0 0.5t tP z P z    , the h-step ahead variance forecast of 

the GJR process is given by 

    1

12 20.5t h t

h
h h     

      (3.23) 

with the unconditional volatility   12 1 0.5         . 

The GARCH model is also generalised to account for long memory behaviour in 

volatility. Details of the long memory volatility models are summarised in Section 3.4. 

Other developments of the GARCH model include, but are not restricted to, the ARCH-

in-Mean model of Engle et al. (1987), the Asymmetric GARCH model of Engle and Ng 

(1993) and the Quadratic GARCH model of Sentana (1995).  

3.3.2 Multivariate GARCH Models 

As with univariate GARCH models, multivariate GARCH processes have attracted a 

huge interest. This section investigates some multivariate GARCH specifications, 

especially those that can be applied in vast dimensions. Assuming zero conditional 

mean, the expressions in (3.8) and (3.9) can be generalised as: 

 
1
2 ,t t tr H z  (3.24) 

 where tH  is the conditional covariance matrix and tz  is a vector of white noise process 

with   0tE z  and  var t nz I . Estimating the conditional covariance matrix is, 

inherently, challenging. The conditional covariance matrix has 1
2 ( 1)n n   distinct 

parameters and structure has to be imposed to guarantee the positivity of all these 
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parameters. Great efforts have been devoted to modelling multivariate GARCH 

processes, e.g. the full parameterisation VEC model of Engle and Kroner (1995), the 

positive definite parameterisation BEKK model (named after Baba, Engle, Kraft and 

Kroner), the Constant Conditional Correlation (CCC) model of Bollerslev (1990), and 

the Dynamic Conditional Correlation (DCC) model of Engle (2002). Section 3.3.2.1 

introduces some of the common multivariate GARCH models. Due to its popular use, 

the DCC model is separately presented in Section 3.3.2.2.  

3.3.2.1 Multivariate GARCH Models 

The full parameterisation VEC representation 

The full parameterisation, or VEC, representation, introduced in Engle and Kroner 

(1995), is the most general formulation of the multivariate GARCH models. The model 

converts the conditional covariance matrix into vectors of conditional variances and 

covariances. Under the VEC approach, the multivariate generalisation of the 

GARCH(1,1) model in (3.12) is defined by 

      '
1 1 1t t t tvech Avech Bvech     H ε ε H  (3.25) 

where 
1
2

t t tε H z , vech denotes the operator that converts the unique upper triangular 

elements of a symmetric matrix into a 1
2 ( 1) 1n n   column vector,   is a 1

2 ( 1) 1n n    

column vector, and A and B are 1 1
2 2( 1) ( 1)n n n n   matrices. In a similar approach, we 

can generalise the VEC representation to the integrated or asymmetric GARCH models. 

Forecasts of the conditional covariance matrix can also be estimated using a recursive 

procedure as with the univariate models.  

However, notice the number of parameters to be estimated in the full model of (3.25), 

which is equal to  4 3 2 41 1
2 2n n n n O n    . For a 25-asset conditional covariance 

matrix, the full model has 211,575 parameters! This is infeasible to estimate in practice. 

Moreover, without any additional structure imposed on the model, there is little chance 

that all conditional variances are positive. Therefore, several simplifications have been 

developed to guarantee the semi-definite positivity of the covariance matrix and to 

reduce the number of parameters to a manageable level. 
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The BEKK representation 

The BEKK representation, discussed in Engle and Kroner (1995), provides a convenient 

way to impose restrictions on the VEC representation. The BEKK(1,1) model is given 

by 

  ' ' '
1 1 1t t t tA A B B     H ε ε H  (3.26) 

where  , A and B are symmetric positive definite n n  matrix. It is clear that the 

conditional covariance matrix tH  in (3.26) is positive definite under very weak 

assumptions. (3.26) is also sufficiently general when it allows all the variances and 

covariances to influence one another. More restrictions can be imposed in the BEKK 

model. In the diagonal BEKK model, A and B matrices are assumed to be diagonal, in 

which each element of the conditional covariance matrix tH  only depends on its own 

lagged values. The dynamics of variance depends only on its past variances, and the 

dynamics of covariance depends only on its past covariances. The BEKK representation 

is simplified further in the scalar BEKK model, where A and B matrices reduce to 

single values of   and  : 

 '
1 1 1t t t t      H ε ε H . (3.27) 

The Orthogonal GARCH model 

Another way to reduce the number of estimated parameters is to impose a factor 

structure on the covariance matrix. Arguing that in a highly correlated system, only a 

few factors are required to accurately represent the system variations, Alexander (2001) 

proposes the Orthogonal GARCH model that combines conditional GARCH volatilities 

in an orthogonal Principal Component structure. 

Using a Principal Components Analysis, the covariance matrix with k factors can be 

represented as 

 '
 H V V HΛ  (3.28) 

where V is an n k  matrix of factor weights, Λ  is a diagonal matrix of the variances of 

the k factors/principal components, and H  is the covariance matrix of the error terms. 

Ignoring  H  gives the approximation: 

 'H VΛV . (3.29) 
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As the principal components are orthogonal, the estimation of the covariance matrix 

reduces to the estimation of the orthogonal principal components’ variances, which 

significantly enhances the computational efficiency. Alexander suggests that different 

conditional volatility EWMA or GARCH models can be employed to estimate the 

variances of the components. Note that the covariance matrix in (3.29) is positive semi-

definite, but not strictly positive definite as there is no guarantee that 'VΛV  is strictly 

positive definite when the number of factors is less than the number of assets. 

3.3.2.2 The Dynamic Conditional Correlation Model    

An alternative way to model multivariate GARCH processes in large systems is to 

model volatilities and correlations separately. Note that the conditional covariance 

matrix can be decomposed as: 

 t t t tH D R D  (3.30) 

where tR  is the conditional correlation matrix, tD  is a diagonal matrix with the 

standard deviations ih  on the ith  diagonal, i.e.,  t idiag hD . In the Constant 

Conditional Correlation (CCC) model of Bollerslev (1990), the conditional correlation 

matrix tR  is assumed constant t R R  and the variations in the covariance matrix are 

only driven by the variations in the conditional variances. The assumptions reduce the 

estimation of the covariance matrix into two steps. First, a univariate GARCH model is 

estimated to each return series, and estimates are combined to form the diagonal matrix

tD . Second, returns are divided by their conditional volatility to obtain the standardised, 

zero-mean residuals 1
t t t

e D r . The constant correlation matrix R is then given by the 

sample analogue 1 '
t tt

T   eR e . The model is simple to estimate, and more 

importantly, it follows that the conditional covariance matrix tH  will be positive 

definite as long as each of the n conditional variances is well defined and the correlation 

matrix is positive definite.  

Bollerslev suggests a convenient framework to estimate and forecast the conditional 

covariance matrix in large systems. However, the assumption of constant conditional 

correlation may be too restrictive and not suitable in many practical applications. 

Generalising the CCC model, Engle (2002) develops the Dynamic Conditional 
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Correlation (DCC) model with time-varying correlations. In the DCC model, the 

conditional correlation matrix is given by 

    
1 1

2 2
t t t tdiag diag

 R Q Q Q  (3.31) 

 1 1 1,t t t t      Q e e Q'  (3.32) 

where tQ  is the approximation of the conditional correlation matrix tR . In this DCC 

model, tQ  converges to the unconditional average correlation '1
1 1t tT   R e e , and 

(1 )     R . This model is an analogy to the scalar multivariate GARCH(1,1) 

model (see (3.27)) but in terms of volatility-adjusted returns. The positive semi-definite 

feature of tQ  is guaranteed if   and   are positive with 1    and the initial 

matrix 1Q  is positive definite. 

Again, each conditional volatility in tD  can be estimated employing any univariate 

conditional volatility model. Returns are then divided by their conditional volatility, and 

the standardised, zero-mean residuals 1
t t
e Dt r  are used to compute the quasi-

conditional correlation matrix tQ . As the diagonal elements of tQ  are equal to unity 

only on average, tQ  is rescaled to obtain the conditional correlation matrix 

   
1 1
2 2

t t t tdiag diag
 R Q Q Q . The conditional volatility tD  and conditional 

correlations  tR are then combined to estimate the conditional covariance matrix tH . 

The h-step-ahead conditional covariance matrix is given by 

 t h t h t h t h   H D R D  (3.33) 

t hD  is, again, estimated using the forecast procedure of the univariate volatility 

models. Since tR  is a non-linear process, the h-step forecast of tR  is not 

straightforward and cannot be computed using a recursive procedure. Assuming for 

simplicity that  1 1 1t t t tE   e e Q' , Engle and Shephard (2001) show that the forecasts of 

t hQ  and t hR  are given by 

      
2

1

1
0

1
h

j h

t h t
j

     



 



     Q Q Q  (3.34) 
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    
1 1

2 2 .t h t h t h t hdiag diag
 

   R Q Q Q  (3.35) 

The DCC model is the most widely used multivariate GARCH model, especially in 

large systems, owing to its simple estimation. Specifically, we only need to estimate n 

univariate GARCH processes plus two additional parameters in (3.32). Different 

GARCH processes may be applied to different return series. The DCC structure is also 

readily flexible to allow for richer specifications. For example, in the Asymmetric DCC 

of Cappiello et al. (2003),  an additional term is added in (3.32) so that the model allows 

correlation to rise more when both returns are falling than when they are both rising. 

3.4 Long Memory Volatility Models 

In all the conditional volatility models described above, elements of the conditional 

covariance matrix are typically estimated as exponentially weighted moving averages 

of the squares and cross products of returns. However, ample empirical evidence now 

suggests that although volatility is almost certainly stationary, the autocorrelation 

functions of the squares and cross-products of returns decline more slowly than the 

geometric decay rate of the EWMA and GARCH models, and hence volatility shocks 

are more persistent than these models imply (see, for example, Taylor, 1986, Ding et 

al., 1993, Andersen et al., 2001). Baillie (1996) suggests the volatility process is in a 

halfway house between I(0) and I(1). This empirical evidence has prompted the 

development of volatility models that incorporate long memory in volatility dynamics, 

either explicitly or implicitly. The explicit approach is to develop a model that produces 

hyperbolic decay in volatility’s autocorrelation functions, such as the Fractionally 

Integrated GARCH (FIGARCH) model of Baillie et al. (1996) and the Hyperbolic 

GARCH (HYGARCH) model of Davidson (2004). Long memory volatility can be 

modelled in an implicit way, in which a combination of short memory volatility 

processes can generate spurious long memory behaviour, such as in the structural 

break, regime switching or component volatility models. As with the GARCH family, 

the Moving Average framework has been extended to allow for long memory volatility 

dynamics by Zumbach (2006), who develops a long memory EWMA model in which 

the dynamic process for volatility is defined as the logarithmically weighted sum of 

standard EWMA processes at different geometric time horizons. Like the short memory 

EWMA model of JP Morgan (1994) on which it is based, the long memory EWMA 
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model has a highly parsimonious specification, which facilitates its implementation in 

practice. 

This section presents some popular long memory GARCH models. The long memory 

EWMA model will be discussed in Chapter 5. Section 3.4.1 introduces the FIGARCH 

model, the most commonly used and tested long memory volatility model in the 

literature. Section 3.4.2 describes the Hyperbolic GARCH model that nests the 

GARCH, FIGARCH and IGARCH models. It allows for a more flexible dynamic 

structure than the FIGARCH model and facilitates tests of short versus long memory in 

volatility dynamics. Implicit long memory volatility models are analysed in Section 

3.4.3. Section 3.4.4 gives some comments on the multivariate long memory volatility 

models.  

3.4.1 The Fractionally Integrated GARCH Model 

Baillie et al. (1996) propose the Fractionally Integrated GARCH, or FIGARCH, model, 

a direct conditional volatility analogy to the conditional mean ARFIMA model. In the 

FIGARCH model, long memory is introduced through a fractional difference operator, 

d. This model incorporates a slow hyperbolic decay for lagged squared innovations in 

the conditional variance while still letting the cumulative impulse response weights tend 

to zero, thus yielding a strictly stationary process. The conditional volatility of a 

FIGARCH(1,d,1) is given by 

    2
1[1 1 1 ]

d

t t th L L L h            . (3.36) 

When 0d  , the FIGARCH process reduces to the GARCH process. The FIGARCH 

model also encompasses the IGARCH model with 1d  . Baillie et al. (1996) show that 

for 0 1d  , the FIGARCH process has no finite unconditional variance, and is not 

weakly stationary, the same feature with the IGARCH process. However, they show 

that the FIGARCH process is still strictly stationary and ergodic by a direct extension of 

the proof for the IGARCH case.  

The one-step ahead forecast is given by 

       1 1 2
1 t ,1 [1 1 1 1 ]

d

th L L L     
         (3.37) 

and the h-step ahead volatility forecast by 
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       1 1 2
11 [1 1 1 1 ] .

d

t h t hh L L L     
          (3.38) 

Asymmetries are also introduced into the FIGARCH by parameterising the logarithmic 

conditional variance as the fractionally integrated distributed lag of past values (the 

Fractionally Integrated Exponential - FIEGARCH model of Bollerslev and Mikkelsen, 

1996, corresponding to the EGARCH model of Nelsen, 1991), or by allowing separate 

influences of past positive and negative innovations as in the GJR or TGARCH model.  

3.4.2 The Hyperbolic GARCH Model 

Davidson (2004) notes that the FIGARCH model has non-summable autocovariances, 

which contradicts what we know about the actual characteristics of the volatility 

process. In particular, FIGARCH processes are characterised through theoretical 

autocorrelations decaying toward zero at a polynomial rate. This decay is so slow that 

the autocorrelations are not absolutely summable and, therefore, the unconditional 

variance is not well-defined. He then suggests the Hyperbolic GARCH (HYGARCH) 

model as a generalisation of the FIGARCH model (and also of the GARCH and 

IGARCH models). The model allows for covariance stationarity while still exhibiting 

hyperbolic memory. The conditional volatility of the HYGARCH model is given by 

    21
1

.1 1 1
1 tt

dL
Lh

L

  


           



  (3.39) 

The FIGARCH and GARCH models correspond to 1   and 0  , respectively. 

Also, when 1d  , the parameter   reduces to an autogressive root, and the process in 

(3.39) becomes a GARCH or an IGARCH process, depending on whether 1  or 

1  . Consequently, one can test for short versus long memory in volatility dynamics 

by testing the hypothesis . When 1  , (3.39) is inherently non-stationary. On the 

contrary, when 0 1  , (3.39) is covariance stationary and their cumulative impulse 

response weights decay towards zero at a higher rate than that implied in the FIGARCH 

model. 

3.4.3 Component, Break and Regime Switching Volatility Models 

Granger (1980) shows that the aggregation of stationary short memory AR(1) processes 

may result in an integrated, or a long memory process. A parallel approach applies to 

volatility. Long memory volatility can be modelled as a combination of different short 

1d 
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memory volatility processes as in, for example, volatility component, structural break 

and regime switching models. 

3.4.3.1 The Component GARCH Model 

Engle and Lee (1999) introduce the Component GARCH (CGARCH) model, in which 

the long memory volatility process th  is modelled as the sum of a long-run (trend) tq  

and a short run (transitory) ts  volatility component, each following a GARCH-type 

process. The GARCH(1,1) model can be rewritten as: 

  2
1 1

2 2 2( )tt th h           . (3.40) 

The CGARCH(1,1) model allows the long-run volatility 2
tq   to be time-varying and 

follow an autoregressive process. The CGARCH(1,1) model has the following 

specification: 

  2
11 1 1( )t t t tt tq qh h q            (3.41) 

 1 1
2

1( )t t t thq q         , (3.42) 

where t tts qh   is the transitory volatility component. The volatility innovation

2
1 1t th    drives both the permanent and the transitory components. The long run 

component evolves over time following an AR process with   close to 1, while the 

short run component mean reverts to zero at a geometric rate   . It is assumed that 

0 1       so that the long run component is more persistent than the short run 

component. 

The Component GARCH model is able to capture the high persistence of volatility 

dynamics and is simpler to estimate than the FIGARCH model. However, it is still 

computationally intensive owing to its relatively high degree of parameterisation. Engle 

and Lee (1999) show that the component GARCH model is in fact a constrained 

version of the stationary GARCH(2,2) model. 

The one-step ahead forecast is given by 

  2
1 1 ( )t t t t t th q q h q         (3.43) 
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 2
1 ( )t t t tq q h        , (3.44) 

and the h-step ahead volatility forecast by 

   1
( )

h

t h t h t th q h q  
      (3.45) 

 1

1 1
h

t h tq q
 
 




 
     

. (3.46) 

3.4.3.2 Structural Break Models 

Lamoureux and Lastrapes (1990) argue that the high persistence of volatility dynamics 

may be attributed to time-varying GARCH parameters. In particular, they allow for 

structural breaks in the unconditional variance of the process. They then develop a more 

general GARCH(1,1) model with deterministic structural breaks: 

 2
1 1 1 1 1 1,t t k kt t th D D h             (3.47) 

where  1, ,itD i k  are dummy variables that correspond to periods over which the 

GARCH process is stationary. Note that there are 1k   such periods in (3.47). The 

difficulty here lies in the determination of the timing of the breaks in the unconditional 

variance. The one-step ahead forecast is given by 

 2
1 1 1 1 1t t k kt t th D D h            , (3.48) 

and the h-step ahead volatility forecast by 

 1 1 1 1 1( )t h t k kt t hh D D h            . (3.49) 

3.4.3.3 Regime Switching Models 

An alternative to modelling long memory volatility is to use regime switching models. 

Hamilton and Susmel (1994) note that financial markets react to large and small shocks 

differently and the rate of mean reversion is faster for large shocks. They originate a 

new class of regime switching models, where the GARCH volatility process can take 

different parameter values, depending on whether it is in a high or a low volatility 

regime. The most general regime switching model takes the form suggested in Gray 

(1996): 
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1 1 1 1 1

2 2
, 1

2
1 ,t t t t tS S S t S St t    

        (3.50) 

where tS  defines the regime at time t. Numerous regime switching models have been, 

since then, developed to allow different switching probability. 

3.4.4 Multivariate Long Memory Volatility Models  

Though correctly specified to capture the high persistence property of volatility 

dynamics, long memory volatility models are often problematic to implement in 

practice, not least because of their complexity in estimation. For example, the 

FIGARCH model requires very long periods of historical data in order to calibrate the 

hyperbolic decay functions on which it is based. Consequently, their use is limited in 

many practical situations, especially where volatility forecasts are required in real time 

(such as on an options trading desk) or where the model must be estimated a large 

number of times over a rolling window (such in the back testing of risk management 

systems). In the multivariate context, long memory volatility modelling poses even 

more significant computational challenges, especially so for the high dimensional 

covariance matrices that are typically encountered in asset allocation and risk 

management. As with the GARCH models, the univariate long memory conditional 

volatility models can be generalised to the multivariate case using the VEC, BEKK or 

DCC models. However, the complexity and computational intensity have limited the 

use of multivariate long memory volatility models to very low dimensional systems, 

even though many applications in finance require forecasts of high dimensional 

covariance matrices. For example, Teyssiere (1998) estimates the covariance matrix for 

three foreign exchange return series using both an unrestricted multivariate FIGARCH 

model and a FIGARCH model implemented with the Constant Conditional Correlation 

(CCC) structure of Bollerslev (1990). Similarly, Niguez and Rubia (2006) model the 

covariance matrix of five foreign exchange series using an Orthogonal HYGARCH 

model, which combines the univariate HYGARCH long memory volatility model of 

Davidson (2004) with the multivariate Orthogonal GARCH framework of Alexander 

(2001). Zumbach (2009) develops a multivariate version of the univariate long memory 

EWMA model, in which elements of the covariance matrix are estimated as the 

averages of the squares and cross products of past returns with predetermined 

logarithmically decaying weights. The parsimony of the long memory EWMA model 

promises potentially beneficial application in high dimensional systems   
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3.5 Conditional Volatility Models and Asset Allocation 

The literature suggests that there are significant economic benefits to exploiting the 

forecasts of multivariate conditional volatility models relative to using the unconditional 

covariance matrix in the asset allocation framework. Fleming et al. (2001, 2003) are 

among the first to study the economic value of exploiting conditional covariance 

matrices for investors. In a volatility timing asset allocation framework where investors 

assume constant expected returns and rebalance their portfolios based on forecasts of 

the covariance matrix, they show that investors are better off in terms of utility when 

switching from a static to a dynamic asset allocation strategy. Recent studies 

incorporate more properties of volatility dynamics in application to investment 

decisions. Thorpe and Milunovich (2007) allow for asymmetries in modelling 

volatilities and correlations, and show that investors are willing to pay to switch from 

symmetric to asymmetric forecasts. Similarly, Hyde et al. (2010) demonstrate the 

benefits of accounting for volatility jumps in asset allocation strategies. Conditional 

volatility models have also been embedded with a factor structure to reduce estimation 

error. For example, Briner and Connor (2008) allow for the dynamic variations of 

returns’ volatility and covariance in a traditional factor model by imposing an 

exponential weighting on the factor covariance matrix. Han (2006) develops a dynamic 

factor multivariate stochastic volatility model, which utilises unobserved factors to 

capture the dynamic  behaviour of volatility (and also returns) in an asset allocation 

problem. The research generally favours the use of the dynamic factor-structured 

covariance matrix to the unstructured alternatives. Owing to the complexity in 

estimation, long memory conditional volatility models have rarely been used in the asset 

allocation framework where forecasts of the high dimensional covariance matrix are 

normally required. The next chapters will fill in this gap, studying the benefits of 

allowing for long memory volatility dynamics in forecasts of the covariance matrix for 

asset allocation.  

(Nelson and Cao, 1992)  
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Chapter 4  

Data Analysis 

4.1 Data Description 

The research first evaluates the forecast performance of a range of multivariate long 

memory conditional volatility models using the asset allocation framework of Engle and 

Colacito (2006). Details of these multivariate long memory volatility models will be 

provided in Chapter 5. The empirical research hence employs the same three sets of 

assets as in Engle and Colacito (2006). These comprise a high correlation bivariate 

system (the S&P500 and DJIA indices), a low correlation bivariate system (the S&P500 

and 10-year Treasury bond futures), and a moderate correlation high dimensional 

system (21 stock international stock indices and 13 international bond indices). I 

additionally consider another high dimensional system, comprising the components of 

the DJIA index. The four datasets are also used to study the economic benefits of 

allowing for long memory volatility dynamics in estimating and forecasting the 

covariance matrix for dynamic asset allocation in Chapter 6.  

The two bivariate systems are now described in detail. The low correlation Stock-Bond 

system uses daily data for the S&P500 index and 10-year Treasury bond futures, while 

the high correlation S&P500-DJIA system uses daily data for the S&P500 and Dow 

Jones Industrial Average indices. All data are from Datastream and cover the period 01 

January 1988 to 31 December 2009. The futures prices are continuous series of futures 

settlement prices, starting at the nearest contract month, which forms the first values for 

the continuous series until either the contract reaches its expiration date or until the first 

business day of the notional contract month, whichever is sooner. At this point prices 

from the next trading contract month are taken. There may be a non-synchronicity issue 

in the Stock-Bond futures as the Bond and Stock futures contracts close at 2:00 CST 

and 3:15 CST, respectively. Returns are calculated as the log price difference over 

consecutive days. I exclude from the sample all days on which any of the markets was 

closed, yielding 5548 observations for each dataset. As the futures contracts require no 

initial investment, the futures returns are approximately equivalent to excess spot 

returns. The returns of the S&P500 and DJIA indices are converted to excess returns by 
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subtracting the daily 1-month T-Bill rate.7 Table 4.1 reports some descriptive statistics 

of the four return series. The annualised average return on Stock is nearly five times as 

much as the return on Bond. Expectedly, the higher return on Stock is accompanied by a 

higher level of risk, 19.06% as compared to that of 6.53% of Bond. The sample 

correlation of the stock index futures and the bond futures is very close to zero, while 

for the S&P500 and DJIA indices, it is close to one. As a result, the return and risk 

properties of the S&P500 and DJIA indices are similar, though the DJIA index performs 

slightly better with a higher return and lower risk. For all series, returns are negatively 

skewed and leptokurtic.  

Following Engle and Colacito (2006), I also consider a moderate correlation high 

dimensional system. An international stock and bond portfolio is constructed from 34 

assets, comprising 21 stock indices from the FTSE All-World indices and 13 five-year 

average maturity bond indices. The 21 stock indices and 13 bond indices include all of 

the major world stock and government bond markets. All data are taken from 

Datastream and converted to US dollar denominated prices. Following Engle and 

Colacito (2006), I use weekly returns to avoid the problem of non-synchronous trading. 

Weekly returns are calculated as the log price difference using Friday to Friday closing 

prices. The dataset comprises 22 years of weekly returns, yielding a total of 1147 

observations from 01 January 1988 to 31 December 2009. Descriptive statistics for the 

international dataset are given in Table 4.2. For all countries for which both stock and 

bond indices are present, the stock index has a higher return and higher risk than the 

corresponding bond index. The US is the least risky market for both stocks and bonds. 

Smaller countries, such as Austria, Hong Kong, Ireland and Mexico generally have 

higher risk, although this is not always accompanied by higher returns. Japan and New 

Zealand have negative annualised average stock returns over the sample considered. 

Returns are, again, leptokurtic and, in most cases, negatively skewed. The international 

stock markets are relatively highly correlated, as are the international bond markets. The 

average correlation coefficient among the 21 stock market return series is 0.54, while 

among the bond market return series it is 0.61. However, the stock and bond markets as 

a whole have an average correlation coefficient of only 0.20. 

                                                 
7 This is the simple daily rate that, over the number of trading days in the month, compounds to 1-month 
T-Bill rate from Ibbotson and Associates, Inc. 
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I additionally consider a higher frequency high dimensional system, comprising the 

components of the Dow Jones Industrial Average (DJIA) index as of 31 December 

2009. Daily data are collected from the Centre for Research in Security Prices from 01 

March 1990 to 31 December 2009. I exclude Kraft, which was listed only in June 2001. 

Returns are calculated as the log price difference over consecutive days. All days on 

which the market was closed are excluded from the sample, yielding 5001 observations. 

Table 4.3 provides the summary analysis of the 29 DJIA stocks. Annualised average 

returns are positive for all 29 stocks, with Bank of America (BAC) being the lowest 

(1.51%) and Cisco (C) being the highest (28.74%). The return series are again highly 

non-normal, with very high leptokurtosis. The average correlation coefficient of the 

DJIA components is 0.34.  

4.2 Evidence of Long Memory in Volatility 

Figure 4.1 plots the sample autocorrelations of returns, absolute returns and squared 

returns for the four return series of Stock, Bond, S&P500 and DJIA. While the 

autocorrelations of normal returns are not significantly different from zero, the 

autocorrelations of absolute returns and squared returns are highly persistent and still 

positively significant up to lag 100. The autocorrelations of absolute returns are also 

consistently higher than those of squared returns, a feature first identified by Taylor 

(1986). The slowly decaying autocorrelation functions of absolute returns and squared 

returns suggest the presence of long memory in volatility. 

Formal tests are conducted to confirm the visual evidence of long memory in volatility, 

the results of which are reported in Table 4.4.8 The parametric FIGARCH model is 

estimated for the whole sample, and the estimated fractional difference orders ( )I d

range from 0.35 to 0.49. Semi-parametric long memory tests such as the narrow band 

log periodogram (GPH) estimator of Geweke and Porter-Hudak (1983) and the broad 

band log periodogram (MS) estimator of Moulines and Soulier (1999) are also applied. 

To estimate the GPH and MS operators, I use the recommended bandwidth m equal to 

the square root of the sample size ( 77)m   and the Fourier term p equal to the log of 

the sample size ( 4)p  , respectively. The table reports the results for both squared 

returns and absolute returns. All the tests suggest long memory in volatility for all four 

series and that stock return volatility has longer memory than bond return volatility. 

                                                 
8 The tests are conducted using the Time Series Modelling software of James Davidson. 
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Consistent with the graphical results of the autocorrelations, absolute returns 

demonstrate a higher level of persistence than squared returns. The one-sided tests for 

the hypothesis 0.5d   are conducted against the alternative 0.5d  . Rejecting the 

hypothesis, I confirm that the volatility processes of all four series are characterised by 

long memory, but are nevertheless stationary. 

The presence of long memory volatility is now examined in the multivariate systems. 

Table 4.5 reports the sum of the first 100 autocorrelation coefficients of squared returns 

and of absolute returns for some return series and their average values for the 21 

international stock indices, the 13 international bond indices, and the 29 stocks of the 

DJIA index. The table also reports the fractional difference operators estimated using 

the FIGARCH, the GPH and the MS tests. To conduct the GPH and MS tests, I use the 

recommended bandwidths 33m   and the Fourier terms 3p   for the international 

stock and bond portfolio, and the corresponding values of 71m  , and 4p   for the 

DJIA portfolio. All return series show long memory behaviour in volatility. Again, the 

level of persistence of absolute returns is consistently higher than that of squared 

returns, which is clearly demonstrated in both the sum of autocorrelation coefficients 

and the fractional difference operators. For all countries for which both stock and bond 

indices are present, stock index volatility is also more persistent than the corresponding 

bond index volatility. The average fractional difference operator of squared returns on 

the stock indices is 0.44 with the parametric FIGARCH test, and 0.32 with the semi-

parametric GPH tests, while for the international bond indices, the corresponding results 

are 0.30 and 0.25. Long memory volatility is also clearly evident in the individual DJIA 

stocks, with the average fractional difference orders of 0.37 with the FIGARCH test, 

and of 0.42 with GPH test. Based on the standard errors, not reported here, all the 

fractional difference operators estimated using both the GPH and MS tests are 

significantly greater than zero.  
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Table 4.1. Summary Statistics for the Two Bivariate Systems 

The table reports descriptive statistics for the daily returns on Stock and Bond futures, and the 
daily excess returns on the S&P500 and DJIA indices. Means and standard deviations are 
annualised. The sample period is from 01 January 1988 to 31 December 2009. The table also 
reports the statistics for the Jarque-Bera tests of the null hypothesis that the series follows 
normal distribution. All the statistics confirm the rejection of the normality hypothesis at 1% 
significance level. 

Return 
series 

Mean 
(%) 

Std. Dev. 
(%) 

Skewness Kurtosis 
Min 
(%) 

Max 
(%) 

Normality 
test 

Corr. 

Stock 6.83 19.06 -0.19 14.18 -10.40 13.20 28936 
-0.04 

Bond 1.48 6.53 -0.28 6.63 -2.86 3.57 3123 

S&P500 2.80 18.34 -0.25 12.32 -9.47 10.95 20117 
0.96 

DJIA 3.59 17.72 -0.20 11.62 -8.20 10.51 17194 
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Table 4.2. Summary Statistics for the International Stock and Bond Returns 

The table reports summary statistics for the weekly returns on 21 international stock indices and 
13 government bond indices. Means and standard deviations are annualised. The sample period 
is from 01 January 1988 to 31 December 2009. The table also reports the statistics for the 
Jarque-Bera tests of the null hypothesis that the series follows normal distribution. All the 
statistics, except for those with *, confirm the rejection of the normality hypothesis at 1% 
significance level. * denotes rejection of the normality hypothesis at 5% significance level. 

Return 
series 

Mean 
(%) 

Std. Dev. 
(%) 

Skewness Kurtosis
Min 
(%) 

Max 
(%) 

Normality 
test 

Panel A. International Stocks 
Australia 7.30 21.64 -1.77 21.33 -34.86 14.52 16657 
Austria 6.03 25.81 -1.52 18.70 -38.22 20.94 12223 
Belgium 5.45 20.98 -1.21 12.68 -26.88 12.53 4757 
Canada 7.58 20.68 -1.13 13.91 -25.92 17.61 5930 
Denmark 9.89 21.00 -1.31 13.35 -26.39 13.66 5446 
France 7.44 21.25 -0.90 10.94 -27.16 13.76 3167 
Germany 6.69 23.49 -0.80 8.93 -26.11 15.00 1800 
Hongkong 9.22 25.37 -0.62 6.57 -21.08 13.85 682 
Ireland 3.44 25.49 -1.72 19.88 -39.31 16.18 14184 
Italy 2.91 24.82 -0.60 8.85 -26.71 19.04 1705 
Japan -1.29 22.56 0.07 4.67 -16.02 11.75 134 
Mexico 19.21 33.81 -0.33 7.66 -30.20 23.23 1060 
Netherland 6.88 20.89 -1.44 17.48 -31.48 14.85 10416 
New Zealand -0.08 22.04 -0.63 7.44 -23.06 12.07 1017 
Norway 8.93 26.82 -0.84 10.37 -28.54 19.82 2733 
Singapore 6.99 26.29 -0.69 13.21 -33.13 23.02 5071 
Spain 6.92 22.28 -0.90 10.21 -26.22 13.76 2641 
Sweden 9.79 26.88 -0.52 7.73 -25.12 19.05 1123 
Switzerland 8.44 19.42 -0.70 11.14 -24.01 13.96 3263 
UK 4.44 19.13 -1.05 16.81 -27.73 16.30 9324 
US 7.03 16.81 -0.81 10.54 -20.19 11.45 2845 
Panel B. International Bonds 
Austria 0.92 10.58 -0.03 3.64 -5.85 5.72 20 
Belgium 0.95 10.68 -0.02 3.47 -5.16 5.55 11 
Canada 2.36 8.71 -0.51 6.53 -8.38 5.34 647 
Denmark 1.60 10.92 0.00 3.84 -5.82 5.67 33 
France 1.81 10.54 -0.02 3.47 -4.88 5.79 11 
Germany 0.73 10.62 0.01 3.37 -4.52 5.77 7* 
Ireland 1.83 10.89 -0.25 4.19 -7.52 5.94 79 
Japan 1.67 12.11 0.89 8.33 -6.05 14.30 1509 
Netherland 0.55 10.64 -0.02 3.36 -4.82 5.45 6* 
Sweden 0.06 12.06 -0.18 3.84 -7.85 5.93 40 
Switzerland 0.95 12.05 0.11 3.72 -6.28 6.89 27 
UK 0.13 10.60 -0.24 4.93 -7.12 6.48 188 
US 1.23 4.43 -0.19 3.82 -2.61 2.06 39 
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Table 4.3. Summary Statistics for the DJIA Components 

The table reports summary statistics for the daily returns on the 29 components of the DJIA 
index. Means and standard deviations are annualised. The sample period is from 01 March 1990 
to 31 December 2009. The table also reports the statistics for the Jarque-Bera tests of the null 
hypothesis that the series follows normal distribution. All the statistics confirm the rejection of 
the normality hypothesis at 1% significant level. 

Return 
series 

Mean 
(%) 

Std. Dev. 
(%) 

Skewness Kurtosis
Min  
(%) 

Max 
(%) 

Normality 
test 

AA 3.47 39.12 -0.02 11.23 -17.50 20.87 14102 
AXP 7.22 38.76 0.03 9.94 -19.35 18.77 10043 
BA 4.61 31.89 -0.33 9.73 -19.39 14.38 9525 
BAC 1.51 45.21 -0.29 30.90 -34.21 30.21 162245 
CAT 10.19 33.62 -0.08 7.18 -15.69 13.74 3652 
C 28.74 46.95 0.00 7.48 -22.10 21.82 4175 
CVX 7.62 25.60 0.13 12.63 -13.34 18.94 19331 
DD 2.76 29.39 -0.09 7.10 -12.03 10.86 3513 
DIS 6.43 32.11 0.00 10.40 -20.29 14.82 11410 
GE 5.44 29.93 0.01 11.17 -13.68 17.98 13916 
GM 13.54 35.10 -0.67 16.81 -33.88 13.16 40119 
HD 11.51 40.37 -0.08 9.21 -20.70 18.99 8044 
HPQ 8.14 30.53 0.04 9.76 -16.89 12.37 9537 
IBM 13.99 42.72 -0.38 8.26 -24.89 18.33 5884 
INTC 11.37 23.70 -0.19 9.75 -17.25 11.54 9510 
JNJ 8.01 42.10 0.26 13.11 -23.23 22.39 21336 
JPM 9.39 24.79 0.08 8.01 -11.07 13.00 5230 
KO 10.43 26.89 -0.04 6.98 -13.72 10.31 3305 
MCD 7.12 24.25 0.01 7.50 -10.08 10.50 4214 
MMM 5.82 29.95 -1.09 22.53 -31.17 12.25 80485 
MRK 19.06 35.23 0.01 7.94 -16.96 17.87 5087 
MSFT 10.01 29.62 -0.18 6.07 -11.82 9.69 1997 
PFE 10.26 25.33 -2.78 68.38 -37.66 9.73 897033 
PG 3.50 28.68 0.08 7.39 -13.54 15.08 4027 
T 6.01 30.34 0.34 16.22 -20.07 22.76 36490 
UTX 11.97 28.77 -1.13 28.55 -33.20 12.79 137065 
VZ 1.90 27.61 0.17 7.64 -12.61 13.66 4503 
WMT 11.39 29.21 0.13 5.83 -10.26 10.50 1681 
XOM 8.91 24.83 0.09 11.92 -15.03 15.86 16591 
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Table 4.4. Fractional Difference Operators for the Two Bivariate Systems 

The table reports the fractional difference operators, d, estimated using the FIGARCH, Geweke-
Porter-Hudak (GPH) and Moulines-Soulier (MS) tests. The GPH and MS estimators are applied 
for both squared returns and absolute returns. The standard errors are reported in parentheses. 

Return 
series 

 ˆ
FIGARCHd  

Squared returns Absolute returns 
ˆ

GPHd  ˆ
MSd  ˆ

GPHd  ˆ
MSd  

Stock 0.403 0.357 0.373 0.553 0.406 
  (0.080) (0.032) (0.080) (0.032) 
Bond 0.355 0.410 0.190 0.456 0.209 
  (0.080) (0.032) (0.080) (0.032) 
S&P500 0.492 0.441 0.461 0.607 0.443 
  (0.080) (0.032) (0.080) (0.032) 
DJIA 0.487 0.396 0.417 0.584 0.427 
  (0.080) (0.032) (0.080) (0.032) 
 



 
93

  

Table 4.5. Autocorrelations and Fractional Difference Operators for the 
Multivariate Systems 

The table reports the sum of the first 100 autocorrelation coefficients of squared returns 

 2r  and of absolute returns  r  for some return series and their average values for 

the 21 international stock indices, the 13 international bond indices, and the 29 stocks of the 
DJIA index. The fractional difference operators, d, are estimated using the FIGARCH, the 
Geweke-Porter-Hudak (GPH) and the Moulines-Soulier (MS) tests. The GPH and MS 
estimators are applied for both squared and absolute returns. 

Return 
series 

No. of 
obs 

 2r
 

 r
 

ˆ
FIGARCHd

Squared 
returns 

Absolute 
returns 

ˆ
GPHd  ˆ

MSd  ˆ
GPHd  ˆ

MSd  

Panel A. International Stock and Bond Portfolio 

 
Stock Market Indices 
France 1147 3.47 6.03 0.41 0.30 0.36 0.40 0.37 
Germany 1147 3.41 5.53 0.45 0.26 0.48 0.36 0.45 
Japan 1147 1.44 1.74 0.16 0.29 0.20 0.32 0.26 
UK 1147 3.52 7.00 0.38 0.27 0.54 0.46 0.45 
US 1147 4.02 8.92 0.42 0.37 0.34 0.55 0.37 
Averages of 21 stock 

indices 
3.37 6.44 0.44 0.32 0.33 0.44 0.36 

 
Bond Indices 
France 1147 1.84 3.15 0.26 0.30 0.24 0.38 0.19 
Germany 1147 1.42 2.93 0.28 0.15 0.18 0.27 0.19 
Japan 1147 1.00 1.86 0.30 0.29 0.13 0.36 0.19 
UK 1147 2.96 3.41 0.19 0.43 0.23 0.37 0.26 
US 1147 1.69 1.42 0.32 0.17 0.15 0.06 0.13 
Averages of 13 bond 

indices 
1.89 2.79 0.30 0.25 0.22 0.29 0.20 

 

Panel B. DJIA Portfolio 

AA 5001 16.56 19.21 0.33 0.43 0.35 0.54 0.34 
BAC 5001 18.12 31.34 0.45 0.78 0.33 0.77 0.42 
C 5001 7.52 13.11 0.42 0.59 0.21 0.67 0.30 
DIS 5001 5.64 12.03 0.28 0.47 0.31 0.56 0.33 
MSFT 5001 5.76 9.39 0.33 0.44 0.21 0.47 0.26 
T 5001 8.81 15.42 0.37 0.49 0.35 0.63 0.38 
Averages of 29 stocks 7.80 13.22 0.37 0.42 0.25 0.55 0.30 
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Figure 4.1. Autocorrelation of Returns (Black Line), Absolute Returns (Blue Line), and Squared Returns (Red Line)  
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Chapter 5  

Long Memory Conditional 

Volatility and Asset Allocation 

In this chapter, I evaluate the forecast performance of the long memory covariance 

matrix over both short and long horizons, using the asset allocation framework of Engle 

and Colacito (2006). In so doing, I compare the performance of a number of long 

memory and short memory multivariate volatility models. While many alternative 

volatility models have been developed in the literature, my choice reflects the need for 

parsimonious models that can be used to forecast high dimensional covariance matrices. 

I employ four long memory volatility models: the multivariate long memory EWMA 

model of Zumbach (2009b), and three multivariate long memory implemented using the 

Dynamic Conditional Correlation (DCC) framework of Engle (2002). These are the 

univariate long memory univariate EWMA model of Zumbach (2006), the component 

GARCH model of Engle and Lee (1999) and the FIGARCH model of Baillie et al. 

(1996). I compare the four multivariate long memory models with two multivariate 

short memory models. These are the very widely used RiskMetrics EWMA model of JP 

Morgan (1994), and the DCC model implemented with the univariate GARCH model. 

I use the six multivariate volatility models to forecast the covariance matrices for the 

four datasets described in Chapter 4. These comprise low/high dimensional, low/high 

correlation systems. In particular, the two bivariate systems include a low correlation 

S&P500 and 10-year Treasury bond futures (Stock-Bond) portfolio and a high 

correlation S&P500 and DJIA index (S&P500-DJIA) portfolio, while the two moderate 

correlation, high dimensional systems consist of an international stock and bond 

portfolio and a US all-stock portfolio. The analysis is conducted using data over the 

period from 1 January 1988 to 31 December 2009, and considers forecast horizons of up 

to three months. For the two bivariate systems, I first evaluate the forecast performance 

of the models using a range of statistical criteria that measure the accuracy, bias and 

informational content of the models’ forecasts over varying time horizons. For all four 

systems, I then employ Engle and Colacito’s (2006) approach to assess the economic 

value of the forecast covariance matrices in an asset allocation setting. I report two main 

findings. The first is that for longer horizon forecasts, multivariate long memory 
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volatility models generally produce forecasts of the covariance matrix that are both 

statistically more accurate and informative, and economically more useful than those 

produced by short memory volatility models. The second is that the two long memory 

models that are based on the Zumbach (2006) univariate model outperform the other 

models – both short memory and long memory – in a majority of cases across all 

forecast horizons. These results apply to all four datasets and are robust to the choice of 

estimation window. 

The remainder of this chapter is organised as follows. Section 5.1 provides details of the 

multivariate conditional volatility models used in the empirical analysis. Section 5.2 

describes the methods applied to evaluate forecast performance for the six models. In 

Section 5.3, I report the empirical results of the analysis, while Section 5.4 offers some 

concluding comments and some suggestions for future research.  

5.1 Multivariate Long Memory Conditional Volatility Models 

Motivated by the need for parsimonious models that can be used to forecast high 

dimensional covariance matrices, I first consider two simple multivariate long memory 

conditional volatility models based on the univariate long memory volatility model of 

Zumbach (2006). The first is the multivariate long memory EWMA (LM-EWMA) 

model of Zumbach (2009b), which is a simple multivariate extension of the univariate 

long memory EWMA model in which both the variances and covariances are governed 

by the same long memory process, and is thus the long memory analogue of the short 

memory multivariate RiskMetrics EWMA model of JP Morgan (1994). In the second, I 

employ the Dynamic Conditional Correlation framework of Engle (2002) to model the 

dynamic processes of the correlations directly, using the univariate long memory 

EWMA model for the individual variances. This is the long memory EWMA-DCC 

(LM-EWMA-DCC) model. I compare the two long memory EWMA models with the 

multivariate FIGARCH(1,d,1) and Component GARCH(1,1) (CGARCH) long memory 

models, both implemented using the DCC framework. To evaluate the relative benefits 

of allowing for long memory in forecasting the covariance matrix, I compare the four 

multivariate long memory volatility models with two multivariate short memory 

volatility models. These are the multivariate RiskMetrics EWMA model of JP Morgan 

(1994) and the GARCH(1,1) model implemented using the DCC framework. In this 

section, I give details of each of these six models.  
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5.1.1 The Multivariate LM-EWMA Model 

Consider an n-dimensional vector of returns  1 2, , , , 't t t ntr r r r  with conditional mean 

zero and conditional covariance matrix tH : 

 
1
2
tt t H zr , (5.1) 

where tz  is i.i.d with   0tE z  and  var t nz I . Zumbach (2009b) considers the class 

of conditional covariance matrices that are the weighted sum of the cross products of 

past returns:  

 '
1

0

( )t t i t i
i

i


  


H r r , (5.2) 

with ( ) 1i  . In the RiskMetrics EWMA model of JP Morgan (1994), the weights 

( )i  decay geometrically, yielding a short memory process for the elements of the 

covariance matrix. The long memory conditional covariance matrix is defined as the 

weighted average of K standard (short memory) multivariate EWMA processes: 

 1 ,
1

K

t k k t
k

w


 H H  (5.3) 

where  

  , , 1 1 'k t k k t k t t   H H r r . (5.4) 

The decay factor k  of the kth EWMA process is defined by a characteristic time k  

such that  1exp ,
kk    with geometric time structure 1

1
k

k     for  (1,..., ).k K

Zumbach (2006) sets   to the value of 2 . The memory of the volatility process is 

determined by the weights kw , which are assumed to decay logarithmically: 

 

 
 0

1
1 k

k

ln
w

lnC




 
   

 
 (5.5) 

with the normalization constant  
 0

kln

lnk
C K 

   such that 1kk
w  . The conditional 

covariance matrix is therefore parsimoniously defined as a process with just three 
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parameters: 1  (the shortest time scale at which volatility is measured, i.e. the lower cut-

off), K  (the upper cut-off, which increases exponentially with the number of 

components K), and 0  (the logarithmic decay factor). For the univariate case, Zumbach 

(2006) sets the optimal parameter values at 0   1560 days = 6 years, 1   4 days, and 

K   512 days, which is equivalent to 15K  . 

The EWMA process in (5.4) can also be expressed as 

   '
,

0

1 i
k t k k t i t i

i

 


 


  H r r . (5.6) 

Hence the LM-EWMA model can be written in the form of (5.2):  

 
  ' '

1
0 1 0

1 ( )
K

i
t k k k t i t i t i t i

i k i

w i  
 

    
  

   H r r r r
 (5.7) 

with   ( ) 1 i
k k kk

i w     and   1
i

i   (which is satisfied by 1kk
w  ). 

When 1K  , the LM-EWMA process reduces to the short memory RiskMetrics 

EWMA process. Note that since ,k tH  is a positive definite matrix (see Riskmetrics, 

1994), 1tH , which is a linear combination of ,t kH  with positive weights, will also be 

positive definite. Since the LM-EWMA covariance matrix is the sum of EWMA 

processes over increasing time horizons, forecasts of the covariance matrix are 

straightforward to obtain using a recursive procedure, which is detailed in Appendix 

5.1. The one-step-ahead forecast of the covariance matrix is already given by (5.7). 

Under the assumption of serially uncorrelated returns, the h-step cumulative forecast of 

the covariance matrix given the information set t  at time t is equal to: 

 '
1:

0

( , )
T

t t h t i t i
i

h h i   


 H r r  (5.8) 

with the weights  ,h i  given by 

    1

,
1 1

11
,

1

K h
k i

j k kT
k j k

h i w
h


 





 




   (5.9) 
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where T is the cut-off time, ,j kw  is the k element of vector   ''
j

j    w = w M ι μ w , μ  

is the vector of k , M is the diagonal matrix consisting of k , and ι  is the unit vector. 

Since 1kk
w  , we obtain ( , ) 1h i  . Also note that when 1K  , then 1w  , and 

so the LM-EWMA process reduces to a standard short memory EWMA process with 

forecast weights      , 1 1i T
k k kh i      , independent of the forecast horizon. As 

the weights  ,h i  can be estimated a priori, without reference to the data, the forecast 

in (5.8) is straightforward to compute. As with the standard EWMA model, the LM-

EWMA model circumvents the computational burden of other multivariate long 

memory models, and indeed can easily be implemented in a spreadsheet. 

5.1.2 The Multivariate LM-EWMA-DCC Model 

In the Dynamic Conditional Correlation (DCC) model of Engle (2002), the conditional 

covariance matrix is decomposed as follows: 

 t t t tH D R D  (5.10) 

    
1 1

2 2
t t t tdiag diag

 R Q Q Q  (5.11) 

 1 1 1t t t t      Q ε ε Q'  (5.12) 

where tR  is the conditional correlation matrix, tD  is a diagonal matrix with the time 

varying standard deviations ,i th  on the ith diagonal, i.e.,  ,t i tdiag hD , and tQ  is 

the approximation of the conditional correlation matrix tR . In the DCC model, tQ  

converges to the unconditional average correlation '1
1 1t tT   R ε ε , and 

(1 )     R . The positive semi-definiteness of tQ  is guaranteed if   and   are 

positive with 1     and the initial matrix 1Q  is positive definite. 

Here, I estimate the conditional volatility tD  employing the univariate long memory 

volatility model of Zumbach (2006). I divide returns by their conditional volatility and 

use the standardized, zero-mean residuals 1
t t
ε D rt  to compute the quasi-conditional 

correlation matrix tQ . As the diagonal elements of tQ  are equal to unity only on 

average, tQ  is rescaled to obtain the conditional correlation matrix 
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   
1 1

2 2

t t t tdiag diag
 R Q Q Q . The conditional volatility tD  and conditional 

correlations  tR are then combined to estimate the conditional covariance matrix tH . 

The h-step-ahead conditional covariance matrix is given by 

 t h t h t h t h   H D R D . (5.13) 

The forecast of each volatility in t hD  is estimated using the forecast procedure derived 

by Zumbach (2006) (see Appendix 5.1 for the details). Since tR  is a non-linear process, 

the h-step forecast of tR  cannot be computed using a recursive procedure. However, 

assuming for simplicity that  1 1 1t t t tE    Q'ε ε , Engle and Shephard (2001) show that 

the forecasts of t hQ  and t hR  are given by 

      
2

1

1
0

1
h

j h

t h t
j

     



 



     Q Q Q , (5.14) 

and 

    
1 1

2 2
t h t h t h t hdiag diag

 
   R Q Q Q . (5.15) 

5.1.3 The FIGARCH(1,d,1)-DCC Model 

In the FIGARCH(1,d,1) model of Baillie et al. (1996), the conditional volatility is 

modelled as: 

    2
1[1 1 1 ]

d

t t th L L L h            . (5.16) 

Baillie et al. (1996) show that for 0 1d  , the FIGARCH process does not have finite 

unconditional variance, and is not weakly stationary, a feature shared with the IGARCH 

model. However, they show that the FIGARCH model is strictly stationary and ergodic 

by a direct extension of the corresponding proof for the IGARCH model.  

The one-step ahead forecast of the FIGARCH(1,d,1) model is given by 

       1 1 2
1 t1 [1 1 1 1 ]

d

th L L L     
        , (5.17) 

and the h-step ahead forecast by 
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       1 1 2
11 [1 1 1 1 ]

d

t h t hh L L L     
         . (5.18) 

To implement the FIGARCH(1,d,1) model in the multivariate context, I use the DCC 

approach described above, with the same forecast functions for t hQ  and t hR .  

5.1.4 The CGARCH(1,1)-DCC Model 

In the Component GARCH model of Engle and Lee (1999), the long memory volatility 

process th  is modelled as the sum of a long term trend component, tq , and a short term 

transitory component, ts . The CGARCH(1,1) model has the following specification: 

  2
1 1 1 1( )t t t t t th q q h q           (5.19) 

 2
1 1 1( )t t t tq q h          (5.20) 

where t t ts h q   is the transitory volatility component. The volatility innovation 

2
1 1t th    drives both the trend and the transitory components. The long run component 

evolves over time following an AR process with   close to 1, while the short run 

component mean reverts to zero at a geometric rate   . It is assumed that 

0 1       so that the long run component is more persistent than the short run 

component. 

The one-step ahead forecast of the CGARCH(1,1) model is given by   

  2
1 1 ( )t t t t t th q q h q         (5.21) 

 2
1 ( )t t t tq q h        , (5.22) 

and the h-step ahead forecast by 

   1
( )

h

t h t h t th q h q  
      (5.23) 

 1

1 1
h

t h tq q
 
 




 
     

. (5.24) 
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As with the FIGARCH(1,d,1) model, in order to implement the CGARCH(1,1) model 

in the multivariate context, I use the DCC approach described above, with the same 

forecast functions for t hQ  and t hR .  

5.1.5 The RiskMetrics EWMA Model 

The short memory RiskMetrics EWMA covariance matrix is defined by 

  1 1 11 ' t t t t     H H r r  (5.25) 

where   is the decay factor 0 1  . The larger the value of  , the higher the 

persistence of the covariance matrix process and the lower the response of volatility to 

return shocks. It is straightforward to show that the h-step cumulative forecast of the 

EWMA model is given by 

 1: 1t t h th   H H . (5.26) 

In the empirical analysis, I set   to the values suggested by JP Morgan (1994) of 0.94 

and 0.97 for daily and weekly forecasts, respectively.  

5.1.6 The GARCH(1,1)-DCC Model 

The short memory GARCH(1,1) model of Bollerslev (1990) is given by 

 2
1 1t t th h      . (5.27) 

The parameter   determines the speed at which the conditional variance responds to 

new information, while the parameter    determines how fast the conditional 

variance reverts to its long run average. In the GARCH(1,1) model, the weights on past 

squared errors decline at an exponential rate. The one-step ahead forecast of the 

GARCH(1,1) model is given by 

 2
1 ,t t th h       (5.28) 

and the h-step ahead forecast by 

    12 2
1

h

t h th h   
      (5.29) 
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where 2  is the unconditional variance. In order to implement the GARCH(1,1) model 

in the multivariate context, I again use the DCC approach described above, with the 

same forecast functions for t hQ  and t hR .  

5.2 Forecast Performance Measures 

The forecast performance of the six conditional volatility models is evaluated with a 

range of statistical and economic measures. I first measure the accuracy, bias and 

information content of the models’ forecasts for each element of the covariance matrix 

using the squares and cross-products of daily returns as proxies for the actual variances 

and covariances being forecast. Forecast accuracy is evaluated using the Root Mean 

Squared Error (RMSE), the Mean Absolute Error (MAE) and the Heteroscedasticity-

adjusted MSE (HMSE) of Bollerslev and Ghysels (1996). These are given by 

  2

, , ,
1

1
ˆ

T

i t j t ij t
t

RMSE r r
T




   (5.30) 
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   

 
 . (5.32) 

The Heteroscedasticity-adjusted MSE (HMSE) of Bollerslev and Ghysels (1996) 

penalises underpredictions more heavily than overpredictions, and hence may better 

match the user’s actual loss function. Forecast bias and information content are 

measured using the Mincer-Zarnowitz regression, given by  

 , , ,ˆi t j t ij ij ij t ijr r       . (5.33) 

A forecast is conditionally unbiased (i.e. weak-form efficient) if and only if 0ij   and 

1ij  .  

As noted by Engle and Colacito (2006), the statistical evaluation of covariance matrix 

forecasts on an element-by-element basis has a number of drawbacks, particularly for 

high dimensional systems. In particular, direct comparisons between two covariance 

matrices are difficult because the distance between them is not well specified. Indeed, 

the statistical approaches described above implicitly assume that all elements of the 
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covariance matrix are equally important (in the sense that the same error in each 

element is equally costly in economic terms), but there is no priori reason why this 

should necessarily be the case. Moreover, the use of low frequency realized volatility as 

a proxy for true volatility introduces considerable noise that inflates the forecast errors 

of the conditional volatility forecasts, substantially reducing their explanatory power. 

This has prompted tests of covariance matrix forecast performance based instead on 

economic loss criteria. Such tests have shown that conditional volatility models perform 

better when performance is measured using an economic loss function than when based 

on traditional statistical measures (see, for example, West et al., 1993, Engle et al., 

1996). 

In this chapter, I employ the economic loss function developed by Engle and Colacito 

(2006), who study the usefulness of forecasts of the conditional covariance matrix in an 

asset allocation framework. Assume that an investor allocates a fraction tw  of his 

wealth to n risky assets and the remainder  '1 tw ι  to the risk-free asset, where ι  is the 

1n  unit vector. In the mean-variance optimization framework, the investor solves the 

following optimization problem at time t: 

 '
1min

t
t t t

w
w H w  (5.34) 

 subject to  ' ' *1 f
t t t pr   w μ w ι  (5.35) 

where 1tH  is the covariance matrix at time t+1, μ  is the vector of expected returns, f
tr  

is the risk-free rate and *
p  is the target return. As μ  is assumed to be constant, the 

optimal weight of each asset changes over time as a result of changes in the covariance 

matrix. Since the true covariance matrix 1tH  is unobserved, the optimisation problem 

is solved using a forecast of 1tH  obtained from a multivariate conditional volatility 

model, to yield an approximation to the true optimal portfolio. The investor chooses 

among competing forecasts of the conditional covariance matrix on the basis of the 

volatility of the resulting portfolio. Engle and Colacito (2006) show that the lowest 

volatility of the investor’s portfolio is obtained when the forecast covariance matrix is 

equal to the true covariance matrix, irrespective of both the expected excess return 

vector μ  and the target return *
p . This then yields a straightforward economic test of 
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the relative performance of competing covariance matrix forecasts based on the 

volatility of the optimal portfolio. 

Engle and Colacito (2006) also note that in the bivariate context, the relative volatilities 

of portfolios depend on the relative returns of the n risky assets, and not on their 

absolute returns. Using polar coordinates, all possible pairs of relative expected returns 

can be expressed in the form 20 20sin ,cos ,j j       for  0, ,10j  . When 5,j   for 

example, the expected returns are identical, which yields the global minimum variance 

portfolio. To obtain a single summary vector of expected returns, I construct prior 

probabilities for different vectors of expected returns using the sample data and the 

quasi-Bayesian approach introduced by Engle and Colacito (2006). I use these 

probabilities as weights to estimate a single weighted average vector of expected 

returns. Appendix 5.2 provides details on the derivation of these weights. In the 

empirical study, I assume a target excess return equal to 1.9  

For each vector of expected returns, and for each pair of covariance matrix forecasts, I 

test whether the portfolio variances are equal using the Diebold and Mariano (1995) 

test. In particular, I consider the loss differential    2 21, 2, ,k k k
t t tu     where  21,k

t  

and  22,k
t  are the conditional variances of portfolios 1 and 2, respectively, for the 

expected return vector k . The null hypothesis is that the mean of u  is equal to zero for 

all k. By regressing k
tu  on a constant, and using the Newey and West (1987) adjusted 

covariance matrix, the null hypothesis of equal variances is simply a test that the mean 

of u  is zero. Engle and Colacito note that since k
tu is itself heteroscedastic, a more 

efficient estimator can be obtained by dividing u  by the true variance. Since the true 

covariance matrix is unknown and there are two estimators being compared, they 

suggest using the geometric mean of the two variance estimators as the denominator. 

The improved loss differential is given by 

      
1

1 1' 1 ' 22k k k k k k
t t t tv u    


     

H H . (5.36) 

I apply the Diebold and Mariano tests to both the u and v series. Joint tests for all 

vectors of expected returns are also conducted. 

                                                 
9 The choice of the target return is immaterial in the sense that it does not affect the relative volatilities of 
portfolios. 
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5.3 Empirical Results 

The empirical research employs the same three portfolios of assets as in Engle and 

Colacito ((2006) and one additional portfolio of the DJIA components. Details of the 

four datasets have been provided in Chapter 4. For each portfolio, the whole sample is 

divided into an initial estimation period of 252 observations (one year for the daily 

return series and five years for the weekly return series), and a forecast period of 5296, 

895 and 4749 observations for the two bivariate portfolios, the international stock and 

bond portfolio and the DJIA component portfolio, respectively. The initial estimation 

period is used to estimate each model to generate out-of-sample forecasts of the 

covariance matrix for observation 253. The estimation window is then rolled forward 

one observation, the models re-estimated, and forecasts made for observation 254, and 

so on until the end of the sample is reached. I initially estimate the conditional 

covariance matrix using all multivariate conditional volatility models described in 

Section 5.1, except the FIGARCH(1,d,1)-DCC model. This model is excluded owing to 

the prohibitively short estimation period. In Section 5.3.4, I employ longer estimation 

periods and consider all six models. 

5.3.1 Low Dimensional Systems: The Stock-Bond and S&P500-DJIA 

Portfolios 

Statistical Evaluation 

Table 5.1 reports the statistical evaluation of the accuracy of the five conditional 

volatility models using the RMSE, MAE, and HMSE measures for the two bivariate 

systems, namely the Stock-Bond and S&P500-DJIA portfolios. The LM-EWMA and 

LM-EWMA-DCC models yield identical RMSE, MAE and HMSE measures for the 

variances since in both models, the variance forecasts are based on the univariate long 

memory EWMA model. However, the LM-EWMA model performs better with respect 

to the covariance forecasts. The LM-EWMA model also yields the lowest RMSE and 

MAE for all elements in the Stock-Bond covariance matrix, while the short memory 

EWMA model performs best in the S&P500-DJIA case, although the difference 

between the EWMA and LM-EWMA models is small. Among the DCC models, the 

LM-EWMA-DCC model dominates, suggesting potential benefits from allowing for 

long memory in volatility. The short memory GARCH-DCC model is the worst model 

in terms of forecast accuracy under symmetric RMSE and MAE measures. However, 
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the HMSE measure, which accounts for asymmetry in the treatment of under- and over-

predictions, chooses the models least favoured by the RMSE and MAE measures, with 

the GARCH-DCC and CGARCH-DCC models producing the lowest forecast errors. I 

do not report the results of the HMSE for the low correlation Stock-Bond covariance 

because the conditional correlation for some individual observations is very close to 

zero, leading to very high values of , , ,ˆi t j t ij tr r  , which severely distorts the reported 

statistics. 

The results of the Mincer-Zarnowitz regressions for the two bivariate systems are 

summarised in Table 5.2. The table reports the estimated coefficients of the regression, 

the R-squared statistic and the p-value for each element of the covariance matrix for the 

null hypothesis of conditional unbiasedness. The unbiasedness hypothesis cannot be 

rejected at conventional significance levels for any of the stock variance forecasts, nor 

for the covariance forecasts in the S&P500-DJIA system for the LM-EWMA and LM-

EWMA-DCC models, but it is rejected in all other cases. In the cases that the 

unbiasedness hypothesis cannot be rejected, the LM-EWMA and LM-EWMA-DCC 

models have slope coefficients that are very close to unity. The EWMA model, though 

evidently not as efficient, performs slightly better in terms of explanatory power, as 

measured by the R-squared statistics. The CGARCH-DCC model performs rather badly, 

indeed only marginally better than the GARCH-DCC model. 

Economic Evaluation 

I use the forecasts of the covariance matrix to construct the minimum variance 

portfolios subject to a target excess return of 1. The relative conditional volatilities of 

portfolios constructed using the different conditional covariance matrix estimators and 

all possible vectors of expected returns are compared in Table 5.3. The pairs of 

Bayesian prior weighted returns are obtained from non-overlapping consecutive 

subsamples of 63 days (3 months) from the full datasets. Engle and Colacito (2006) 

show that by considering unconditional mean-adjusted returns, one can obtain a 

consistent estimator of the true conditional portfolio variance. The lowest conditional 

volatility, corresponding to the best covariance matrix estimate, is normalised to 100. 

The ‘Const’ portfolio is the fixed weight portfolio constructed with the ex-post 

unconditional covariance matrix. It is clear that the conditional covariance matrices 

generally outperform the unconditional covariance matrix, highlighting the economic 

value of volatility timing strategies. The results are favourable for the two LM-EWMA 
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models. For both the low correlation Stock-Bond portfolio and the high correlation 

S&P500-DJIA portfolio, the LM-EWMA model consistently yields the lowest portfolio 

volatility. Incorporating long memory into the EWMA structure therefore appears to   

improve the forecasts of the conditional covariance matrix in a way that is economically 

valuable. Among the DCC models, the LM-EWMA-DCC model again dominates. 

Although the CGARCH model is designed to capture long memory volatility, its high 

degree of parameterisation, which potentially produces high estimation error, evidently 

hinders its performance. It is also interesting to note that the simple EWMA model 

outperforms more sophisticated models such as the GARCH-DCC and CGARCH-DCC 

models, and is even superior to the LM-EWMA-DCC models in most cases. 

In practice, investors may be more concerned with out-of-sample realised volatility than 

conditional volatility. This is reported in Table 5.4 for each model for the two bivariate 

portfolios. Here, the results are similar, with the LM-EWMA model consistently 

yielding the lowest out-of-sample portfolio volatility. 

Next, Diebold-Mariano tests are applied to test for the equality of different models with 

each vector of expected returns. Instead of reporting all of the results, I focus on those 

with expected returns close to the sample mean, i.e.,  , [0.95,0.31]Stock Bond    and 

[0.99,0.16] , and  & 500 , [0.59,0.81]S P DJIA    and [0.71,0.71] . Joint tests are also 

carried out for all vectors of expected returns applying the GMM method with a robust 

HAC covariance matrix. Table 5.5 and Table 5.6 show the results of both the standard 

and the improved Diebold-Mariano tests for the Stock-Bond and the S&P500-DJIA 

portfolios, respectively. Each cell in the tables corresponds to the test of the hypothesis 

that the two models in the row and column are equal in terms of volatility forecasting 

against the alternative that the model in the row is better or worse than the model in the 

column. A positive sign indicates that the model in the row is better than the model in 

the column, and vice-versa. The Diebold-Mariano tests confirm our earlier results. The 

conditional volatility models, especially the long memory volatility models, consistently 

outperform the unconditional constant model at conventional confidence levels in both 

versions of the Diebold-Mariano test. The standard Diebold-Mariano test also shows 

that the LM-EWMA model significantly dominates all other conditional volatility 

models, both short memory and long memory. With the improved version of the 

Diebold-Mariano test, the difference between each pair of models is less clearly marked 
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and the outperformance of the LM-EWMA model is not significant in some cases. 

However, the Diebold-Mariano statistics are still positive.   

5.3.2 High Dimensional Systems: The International Stock and Bond and the 

DJIA Portfolios 

Economic Evaluation 

In practice, a portfolio may comprise hundreds of assets and consequently an investor 

may want to examine the forecast performance of different conditional volatility models 

in a higher dimensional framework. In an asset allocation problem, the investor needs to 

estimate both the expected returns and the covariance matrix. However, since there are a 

prohibitively large number of possible expected return vectors for the high dimensional 

portfolios, I study the value of covariance matrix forecasts in two restricted cases. First, 

I form global minimum variance portfolios, where all expected returns are assumed to 

be equal. Note that the correctly specified covariance matrix will produce portfolios 

with the lowest volatility for any particular vector of expected returns, including the 

case that they are all equal. The results are reported in Table 5.7. For the multivariate 

portfolios, I assume a risk free rate of 4%. Consistent with the previous findings, in the 

international stock and bond portfolio, the LM-EWMA model yields the lowest 

conditional and out of sample volatilities. Owing to its simplicity, the simple EWMA 

model also performs very well, indeed better than the long memory LM-EWMA-DCC 

and CGARCH-DCC models. The short memory GARCH-DCC model is the least 

desirable model. However, the results for the DJIA portfolio are markedly different in 

that the DCC models tend to outperform the non-DCC models. Indeed, the superiority 

of the LM-EWMA model deteriorates significantly, although it still renders better 

forecasts than the EWMA model. Consistent with the results for the bivariate portfolios, 

the LM-EWMA-DCC model always produces the best portfolios among the DCC 

models. 

In the second experiment, I form hedging portfolios in which one asset is hedged 

against all other assets in the portfolio. In so doing, I select the expected return vectors 

such that one entry is equal to one and all others are set to zero. With this strategy, the 

LM-EWMA-DCC model produces portfolios with the lowest conditional volatilities in 

33 of the 34 hedging portfolios of international stocks and bonds, and 24 of the 29 

portfolios of DJIA components (Table 5.8 and Table 5.9). The LM-EWMA model, 

though still dominating the EWMA model, is generally inferior to the GARCH-DCC 
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and CGARCH-DCC models. The Diebold-Mariano joint tests for all hedging expected 

returns are applied and the findings are consistent with those of the relative volatilities 

(Table 5.10). The LM-EWMA-DCC model significantly outperforms all other models 

in both versions of the Diebold-Mariano tests. The LM-EWMA model performs badly, 

significantly outperforming only the EWMA model. In the DJIA portfolio, the LM-

EWMA model is even dominated by the unconditional estimator. The result with the 

out-of-sample volatilities is similar and reported in Appendices 5.3 and 5.4.  

These results show consistently that incorporating long memory in volatility dynamics 

improves the forecasts of the covariance matrix. Also, the more parsimonious the 

model, the less estimation error it generates and so the higher benefit it brings. The LM-

EWMA model generally outperforms the EWMA model, while the LM-EWMA-DCC 

model always yields the best results among the DCC models. Besides, our results reveal 

an important difference in the relative forecasting power of the DCC and non-DCC 

models, in low dimensional and high dimensional systems. In particular, the greater 

flexibility that arises from separately estimating volatility and correlation is evidently 

beneficial in the high dimensional case. This deserves attention for future research. 

5.3.3 Longer Horizon Forecasts 

Practical problems often require forecasts over longer horizons than the one-step ahead 

forecasts considered above. In this section, I evaluate the forecast performance of 

different conditional volatility models, both statistically and economically, for horizons 

up to three months. Table 5.11 reports the RMSE of different conditional volatility 

models for one week, one month and one quarter ahead forecasts. The benchmarks are 

the true variances and covariances, proxied by the sum of squares and cross products of 

daily returns over the forecast horizons. The long memory volatility models generally 

outperform the short memory models, with the LM-EWMA models consistently 

yielding the smallest forecast errors, although the standard EWMA model again proves 

itself a simple yet statistically accurate model. Note again that the LM-EWMA and LM-

EWMA-DCC models yield identical results for the variance forecasts since in both 

models, the variance forecasts are based on the univariate long memory EWMA model. 

The MAE results are similar and are reported in Appendix 5.5. 

The Mincer-Zarnowitz regressions are implemented for the longer horizons in Table 

5.12. Compared to the one-step ahead forecasts, the forecasts for longer horizons have 
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higher information content, which may be attributable to the use of more accurate 

proxies of the true variances and covariances. Again, the two LM-EWMA models 

dominate the other short and long memory conditional volatility models at all forecast 

horizons. They are the only two models that generally yield conditionally unbiased 

forecasts for the elements of the covariance matrix.  

The economic usefulness of alternative covariance matrix estimators is assessed for 

both low and high dimensional portfolios over longer investment horizons. I let the 

investor rebalance his portfolios weekly, monthly and quarterly. These rebalancing 

frequencies would cover the situations of most investors in practice, at least 

approximately, from a day trader to a mutual fund. Table 5.13 gives the out-of-sample 

performance of the weekly rebalanced bivariate portfolios. Results for the conditional 

volatilities are similar. The gains from employing the conditional volatility models of a 

weekly trader, as compared to those of a day trader, are smaller. The two LM-EWMA 

models still outperform both the short memory models and the long memory CGARCH-

DCC model, though the gains, again, are lower. Among the two LM-EWMA models, 

neither dominates. The LM-EWMA model tends to perform better when the 

hypothetical vectors of expected returns are close to the unconditional mean and in the 

overall returns (which use the Bayesian priors as the weighting factors).  

For the monthly and quarterly rebalanced portfolios, the results are similar. The two 

long memory EWMA models consistently produce better forecasts than the constant 

and short memory volatility models. The short memory conditional volatility models 

either rapidly revert to the unconditional volatility at an exponential rate or, in the case 

of the EWMA model, do not converge at all, and consequently have relatively 

uninteresting long-run forecasts. With slowly decaying autocorrelations, the long 

memory volatility models are able to better exploit past information and consequently 

yield more accurate forecasts over longer horizons. The outperformance of the two long 

memory models in the monthly and quarterly rebalanced portfolios confirms this 

intuition. To save space, only the out-of-sample results of the quarterly rebalanced 

portfolios are reported in Table 5.14. Monthly results are reported in Appendix 5.5. 

Results for the two high dimensional portfolios are consistent with those for the two low 

dimensional portfolios. Under the global minimum variance strategy, the two long 

memory LM-EWMA models generally yield the most favourable results over horizons 

up to three months (Table 5.15). The CGARCH-DCC model also consistently 
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outperforms the GARCH-DCC model. A similar conclusion follows from the hedging 

strategy. Table 5.16 reports the results of the Diebold-Mariano joint tests of the hedging 

DJIA portfolios for the equality of the different models’ forecasts at different forecast 

horizons. Results, again, are in favour of the long memory volatility models. However, 

as with the daily rebalanced portfolios, the DCC models outperform the non-DCC 

models. The LM-EWMA model only dominates the EWMA model. For all rebalancing 

frequencies, the LM-EWMA-DCC model generally yields the most economically useful 

forecasts in both high dimensional portfolios. The Diebold-Mariano tests of the hedging 

international stock and bond portfolios are similar and reported in Appendix 5.6. 

5.3.4 Additional Robustness Tests 

Forecast performance is potentially affected by the size of the rolling window used to 

estimate the conditional volatility models. Therefore, I re-evaluate the forecast 

performance of the multivariate conditional volatility models using estimation windows 

of two years, five years and ten years of daily returns. In the cases of five-year and ten-

year rolling windows, I also estimate the conditional covariance matrix using the 

FIGARCH-DCC model. I do not estimate the FIGARCH-DCC model with one-year 

and two-year rolling windows since the estimation of the FIGARCH model requires a 

prohibitively high upper lag cut-off. Following standard practice in the literature, I set 

the truncation lag for the FIGARCH model equal to 1000.  

The outperformance of the two long memory volatility models reported above is found 

to be insensitive to the choice of estimation window length, in the both low dimension 

and high dimension cases. To save space, Table 5.17 only reports the economic 

evaluation for the two bivariate portfolios with a five-year estimation window. The two 

long memory models consistently produce forecasts that are more accurate and 

informative, and more economically useful than other short and long memory models. 

The simple EWMA model, although not as good as the LM-EWMA model, generally 

outperforms the more sophisticated GARCH model. The long memory FIGARCH 

model is the worst performing model, which may be attributable to the complexity of its 

specification. Although not reported, the use of long forecast horizons (one week, one 

month, and one quarter ahead) yields very similar conclusions. See Appendix 5.8 for 

more results.  
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Consistent results are identified with the multivariate portfolios. Table 5.18 reports the 

Diebold-Mariano tests for the hedging DJIA portfolios with five-year estimation 

window. The long memory models such as the LM-EWMA-DCC and CGARCH 

models consistently generate portfolios with the lowest variances in all investment 

horizons. Again, the DCC models outperform the non-DCC models in the multivariate 

systems. The high parameterisation of the FIGARCH model evidently hinders its 

performance, leading to poor results. More results of the two high dimensional 

portfolios with different estimation windows and rebalancing frequencies are reported in 

the Appendices 5.9 and 5.10. 

5.4 Conclusion 

In this chapter, I evaluate the economic benefits that arise from allowing for long 

memory in forecasting the covariance matrix of returns over both short and long 

horizons, using the asset allocation framework of Engle and Colacito (2006). In so 

doing, I compare the performance of a number of long memory and short memory 

multivariate volatility models. Incorporating long memory property improves forecasts 

of the conditional covariance matrix. In particular, I find that long memory volatility 

models generally dominate short memory and unconditional volatility models on the 

basis of both statistical and economic criteria, especially at longer horizons. Moreover, 

the relatively parsimonious long memory EWMA models outperform the more complex 

multivariate long memory GARCH models. The high degree of parameterisation of the 

Component GARCH and FIGARCH models evidently generates large estimation errors 

that are detrimental to their performance. The results are consistent across different 

datasets, and are robust to different investment horizons and estimation windows. The 

findings of the paper are consistent with those in the univariate volatility literature. 

The non-DCC conditional covariance matrix estimators (such as the EWMA model with 

exponential weights and the LM-EWMA model with logarithmic weights) impose the 

same dynamic structure on all elements of the covariance matrix, which facilitates their 

implementation in high dimensional systems, but it comes at a cost in terms of 

estimation error. In a high dimensional system, employing a potentially less correctly 

specified but more flexible DCC structure may yield better results. Also, some of the 

eigenvalues of the high dimensional covariance matrix are inevitably very small, and so 

the inverse of the covariance matrix used in the asset allocation is likely to be ill-

conditioned (see, for example, Zumbach, 2009a). This may partly explain the poor 
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performance of the LM-EWMA model in large systems. It would be interesting to 

investigate this issue in greater detail.  

The use of the long memory conditional covariance matrix produces optimal portfolios 

with lower realised volatility than the static unconditional covariance matrix. However, 

since our aim is simply to evaluate the forecasts of alternative conditional covariance 

matrices, and to choose the estimator that produces the lowest portfolio volatility, I do 

not explicitly consider realised portfolio returns. In particular, it does not follow that the 

portfolio with the lowest volatility is necessarily the best portfolio in terms of portfolio 

performance measures such as the Sharpe ratio. Thus it would also be of interest to 

investigate further the economic value of long memory volatility timing in the asset 

allocation framework, allowing for differences in return as well as risk, and for the 

effect of transaction costs. 
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Table 5.1. RMSE, MAE and HMSE for the Two Bivariate Systems 

The table reports the RMSE, MAE and HMSE for each element of the conditional covariance 
matrix estimated using five multivariate conditional volatility models over the forecast period. 
The squares and cross-products of daily returns are used as proxies for the actual variances and 

covariances. 

 EWMA 
GARCH  

DCC 
LM-EWMA 

LM-EWMA 
DCC 

CGARCH 
 DCC 

Panel A. Root Mean Square Error (RMSE) 

Variances      
Stock 4.7483 4.7953 4.7459 4.7459 4.7649 
Bond 0.3964 0.3978 0.3957 0.3957 0.3988 
S&P500 4.0336 4.0921 4.0434 4.0434 4.0646 
DJIA 3.6876 3.7295 3.6900 3.6900 3.7076 
Covariances      
Stock-Bond 0.7442 0.7593 0.7432 0.7536 0.7575 
S&P500-DJIA 3.7951 3.8402 3.8015 3.8015 3.8166 

Panel B. Mean Absolute Error (MAE) 

Variances      
Stock 1.5342 1.5372 1.5337 1.5337 1.5577 
Bond 0.1803 0.1874 0.1799 0.1799 0.1880 
S&P500 1.4088 1.4251 1.4089 1.4089 1.4407 
DJIA 1.3079 1.3232 1.3077 1.3077 1.3357 
Covariances      
Stock -Bond 0.3298 0.3335 0.3278 0.3295 0.3398 
S&P500 -DJIA 1.3284 1.3435 1.3296 1.3306 1.3583 

Panel C. Heteroskedasticity-adjusted Mean Square Error (HMSE) 

Variances      
Stock 13.5870 8.6617 11.3285 11.3285 8.9257 
Bond 5.0709 4.1601 4.6114 4.6114 4.5520 
S&P500 8.1334 5.5538 6.8703 6.8703 5.6967 
DJIA 9.6358 5.9739 7.9015 7.9015 6.0413 
Covariances      
S&P500-DJIA 9.7683 6.0861 8.0231 7.8463 6.1982 
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Table 5.2. Mincer–Zarnowitz Regressions for the Two Bivariate Systems 

The table reports the estimated coefficients of the Mincer-Zarnowitz regression for each element 

of the covariance matrix. The p-values are for the tests of the joint hypothesis H0: 
0ij   and 

1ij  . The numbers in the parentheses are the t-statistics to test 0ij   and 1ij  , 

respectively. 

 Intercept Slope R2 p-value Intercept Slope R2 p-value

 Panel A. EWMA Panel B. GARCH-DCC 
Stock 0.167 0.888 0.176 0.421 0.312 0.783 0.169 0.003 
 (1.218) (-0.798)   (3.750) (-2.993)   
Bond 0.058 0.657 0.037 0.000 0.051 0.642 0.030 0.000 
 (5.443) (-4.687)   (4.248) (-4.656)   
S&P500 0.132 0.906 0.207 0.460 0.257 0.801 0.193 0.006 
 (1.110) (-0.739)   (3.423) (-2.748)   
DJIA 0.142 0.889 0.179 0.381 0.242 0.801 0.168 0.009 
 (1.275) (-0.876)   (3.204) (-2.627)   
Stock-Bond -0.010 0.698 0.046 0.006 -0.052 0.554 0.022 0.001 
 (-1.263) (-2.762)   (-3.593) (-3.472)   
S&P500-DJIA 0.130 0.899 0.195 0.430 0.228 0.811 0.183 0.012 
 (1.180) (-0.789)   (3.129) (-2.490)   
 Panel C. LM-EWMA Panel D. LM-EWMA-DCC 
Stock -0.006 1.011 0.174 0.941 -0.006 1.011 0.174 0.941 
 (-0.044) (0.074)   (-0.044) (0.074)   
Bond 0.050 0.706 0.037 0.000 0.050 0.706 0.037 0.000 
 (4.377) (-3.853)   (4.377) (-3.853)   
S&P500 -0.005 1.011 0.201 0.933 -0.005 1.011 0.201 0.933 
 (-0.044) (0.084)   (-0.044) (0.084)   
DJIA 0.005 1.001 0.175 0.991 0.005 1.001 0.175 0.991 
 (0.040) (0.011)   (0.040) (0.011)   
Stock-Bond -0.010 0.735 0.046 0.018 -0.051 0.648 0.030 0.002 
 (-1.278) (-2.357)   (-3.765) (-3.105)   
S&P500-DJIA -0.002 1.008 0.189 0.955 -0.010 1.012 0.189 0.927 

 (-0.015) (0.057)   (-0.087) (0.092)   
                            Panel E. CGARCH-DCC      
Stock 0.248 0.802 0.178 0.020      
 (2.712) (-2.329)        
Bond 0.059 0.606 0.028 0.000      
 (4.916) (-5.097)        
S&P500 0.208 0.817 0.203 0.030      
 (2.457) (-2.172)        
DJIA 0.200 0.814 0.177 0.035      
 (2.411) (-1.823)        
Stock-bond -0.067 0.625 0.025 0.002      
 (-4.375) (-2.952)        
S&P500-DJIA 0.184 0.822 0.192 0.042      
 (2.074) (-2.035)        
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Table 5.3. Comparison of Conditional Volatilities: Bivariate Portfolios 

The table reports the average conditional volatilities for the two bivariate portfolios, constructed 
with the objective of minimizing variance subject to the target excess return of 1. Each row in 
the table shows the results for the pair of expected returns in the corresponding first two 
columns. The overall returns are the pair of weighted returns using the Bayesian prior 
probabilities. The lowest volatility in each row is normalised to 100. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH 

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH 
DCC 

Const 

0.00 1.00 100.247 102.156 100.000 101.909 104.206 105.938 
0.16 0.99 100.243 102.330 100.000 101.983 104.557 105.148 
0.31 0.95 100.402 102.580 100.000 102.077 105.025 104.422 
0.45 0.89 100.505 102.587 100.000 101.956 105.457 103.754 
0.59 0.81 100.580 102.465 100.000 101.827 105.655 103.074 
0.71 0.71 100.521 102.632 100.000 101.746 105.472 102.840 
0.81 0.59 100.390 102.705 100.000 102.017 104.974 103.507 
0.89 0.45 100.317 102.673 100.000 102.040 104.832 105.564 
0.95 0.31 100.237 101.994 100.000 101.301 104.207 108.904 
0.99 0.16 100.465 101.949 100.000 100.509 103.752 111.038 
1.00 0.00 100.385 103.277 100.000 102.335 105.200 106.434 

Overall 
(weighted) 

100.208 102.097 100.000 101.496 104.307 108.365 

 
Panel B. S&P500-DJIA Portfolio 

µSP500 µDJIA EWMA 
GARCH 

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH 
DCC 

Const 

0.00 1.00 100.402 102.054 100.089 100.000 102.233 101.206 
0.16 0.99 100.491 101.925 100.076 100.000 102.227 101.435 
0.31 0.95 100.511 101.534 100.090 100.000 102.136 101.865 
0.45 0.89 100.308 100.836 100.022 100.000 101.695 102.751 
0.59 0.81 100.172 100.917 100.000 100.559 101.547 105.244 
0.71 0.71 100.191 102.031 100.000 100.658 102.946 102.088 
0.81 0.59 100.184 101.040 100.000 100.658 101.317 107.019 
0.89 0.45 100.377 101.256 100.000 100.586 101.988 106.425 
0.95 0.31 100.347 101.473 100.000 100.404 102.137 103.928 
0.99 0.16 100.256 101.681 100.000 100.219 102.119 102.558 
1.00 0.00 100.261 101.697 100.000 100.087 102.045 101.784 

Overall 
(weighted) 

100.204 102.057 100.000 100.719 103.022 102.508 
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Table 5.4. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios 

The table reports the out-of-sample volatilities for the two bivariate portfolios, constructed with 
the objective of minimizing variance subject to the target excess return of 1. Each row in the 
table shows the results for the pair of expected returns in the corresponding first two columns. 
The overall returns are the pair of weighted returns using the Bayesian prior probabilities. The 
lowest volatility in each row is normalised to 100. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH 

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH 
DCC 

Const 

0.00 1.00 100.540 102.133 100.000 101.876 104.291 105.164 
0.16 0.99 100.532 102.228 100.000 101.950 104.659 104.432 
0.31 0.95 100.537 102.320 100.000 102.051 105.031 103.736 
0.45 0.89 100.530 102.372 100.000 102.119 105.435 103.109 
0.59 0.81 100.446 102.462 100.000 102.208 105.816 102.696 
0.71 0.71 100.401 102.638 100.000 102.332 105.791 102.695 
0.81 0.59 100.370 102.808 100.000 102.673 105.027 103.413 
0.89 0.45 100.303 103.046 100.000 102.642 105.631 105.039 
0.95 0.31 100.328 102.932 100.000 102.117 105.474 107.664 
0.99 0.16 100.386 103.133 100.000 100.936 104.811 109.317 
1.00 0.00 100.428 105.932 100.000 103.005 107.182 104.709 

Overall 
(weighted) 

100.312 102.920 100.000 102.192 105.446 107.262 

 
Panel B. S&P500-DJIA Portfolio 

µSP500 µDJIA EWMA 
GARCH 

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH 
DCC 

Const 

0.00 1.00 100.292 103.208 100.130 100.000 103.694 101.879 
0.16 0.99 100.302 102.995 100.110 100.000 103.956 102.280 
0.31 0.95 100.352 102.353 100.132 100.000 104.288 103.012 
0.45 0.89 100.323 101.148 100.048 100.000 102.441 104.170 
0.59 0.81 100.304 101.361 100.000 100.408 102.366 105.967 
0.71 0.71 100.073 102.290 100.000 100.589 102.886 104.349 
0.81 0.59 100.142 102.236 100.000 100.717 101.208 109.425 
0.89 0.45 100.421 101.519 100.000 100.617 101.730 107.279 
0.95 0.31 100.456 102.817 100.000 100.476 102.217 104.268 
0.99 0.16 100.393 102.854 100.000 100.314 102.488 102.723 
1.00 0.00 100.374 102.871 100.000 100.218 102.621 101.934 

Overall 
(weighted) 

100.096 102.368 100.000 100.691 102.936 104.723 
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Table 5.5. Diebold–Mariano Tests of the Stock-Bond Portfolio 

The table reports the t-statistics of the Diebold-Mariano tests for the Stock-Bond portfolio using 
the improved version of the test described in Engle and Colacito (2006). Panels A and B 
correspond to [µStock, µBond ] = [0.95; 0.31] and [0.99; 0.16], respectively. Panel C reports the 
joint tests of all the expected vectors of returns. The t-statistics for the standard version of the 
Diebold-Mariano test are reported in parentheses. A positive number indicates that the model in 
the row is better than that in the column, and vice-versa. *, ** and *** denote rejection of the 
equality hypothesis of the two models at 10%, 5% and 1% significance level. 

 EWMA GARCH 
DCC 

LM 
EWMA 

LM-
EWMA 

DCC

CGARCH 
DCC Const 

Panel A. µ=[0.95; 0.31] 

EWMA 
 2.005* -1.227 3.539*** 2.763*** 2.645*** 
 (2.746***) (-2.151**) (3.475***) (4.757***) (4.211***)

GARCH 
DCC 

-2.005*  -2.302** -0.952 1.132 1.632 
(-2.746***)  (-3.075**) (-1.189) (3.491***) (2.469**)

LM-EWMA 
1.227 2.302**  3.946*** 3.175*** 2.788*** 

(2.151**) (3.075***)  (4.042***) (5.041***) (4.391***)

LM-EWMA 
DCC 

-3.539*** 0.952 -3.946***  1.952** 2.102** 
(-3.475***) (1.189) (-4.042***)  (3.943***) (3.094***)

CGARCH 
DCC 

-2.763*** (-1.132) -3.175*** -1.920*  1.065 
(-4.757***) (-3.491***) (-5.041***) (-4.060***)  (1.382) 

Constant 
-2.645*** -1.632 -2.788*** -2.102** -1.065  

(-4.211***) (-2.469**) (-4.391***) (-3.094***) (-1.382)  

Panel B. µ=[0.99; 0.16] 

EWMA 
 0.804 -0.208 -0.287 1.023 2.272** 
 (1.895*) (-1.985**) (-1.147) (3.136***) (4.266***)

GARCH 
DCC 

-0.804  -0.812 -1.455 0.807 1.526 
(-1.895*)  (-2.087**) (-1.723*) (3.780***) (2.673***)

LM-EWMA 
0.208 0.812  -0.112 1.006 2.461** 

(1.985**) (2.087**)  (1.766*) (3.285***) (4.499***)

LM-EWMA 
DCC 

0.287 1.455 0.112  2.101** 2.341** 
(-1.147) (1.723*) (-1.766*)  (3.090***) (3.886***)

CGARCH 
DCC 

-1.023 -0.807 -1.006 -2.017**  1.560 
(-3.136***) (-3.780***) (-3.285***) (-3.179***)  (1.954*) 

Constant 
-2.272** -1.526 -2.461** -2.366** -1.560  

(-4.266***) (-2.673***) (-4.499***) (-3.945***) (-1.954*)  

Panel C. Joint tests 

EWMA 
 2.001** -0.422 1.741* 1.742* 3.229*** 
 (4.072***) (-6.393***) (5.806***) (4.710***) (7.849***)

GARCH 
DCC 

-2.001**  -2.054** -1.944* 0.171 0.044 
(-4.072***)  (-4.442***) (-2.385**) (4.719***) (2.156**)

LM-EWMA 
0.422 2.054**  1.807* 1.726* 3.629*** 

(6.393***) (4.442***)  (6.624***) (4.957***) (8.451***)

LM-EWMA 
DCC 

-1.741* 1.944* -1.807*  1.462 2.209** 
(-5.806***) (2.385**) (-6.624***)  (3.719***) (5.003***)

CGARCH 
DCC 

-1.742* -0.171 -1.726* -1.462  -0.322 
(-4.710***) (-4.719***) (-4.957***) (-3.719***)  (-0.134) 

Constant 
-3.229*** -0.044 -3.629*** -2.209** 0.322  

(-7.849***) (-2.156**) (-8.451***) (-5.003***) (0.134)  
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Table 5.6. Diebold–Mariano Tests of the S&P500-DJIA Portfolio 

The table reports the t-statistics of the Diebold-Mariano tests for the S&P500-DJIA portfolio 
using the improved version of the test described in Engle and Colacito (2006). Panel A and B 
correspond to [µS&P500, µDJIA] = [0.59; 0.81] and [0.71; 0.71], respectively. Panel C reports the 
joint tests of all the expected vectors of returns. The t-statistics for the standard version of the 
Diebold-Mariano test are reported in parentheses. A positive number indicates that the model in 
the row is better than that in the column, and vice-versa. *, ** and *** denote rejection of the 
equality hypothesis of the two models at 10%, 5% and 1% significance level. 

 
EWMA 

GARCH 
DCC 

LM 
EWMA 

LM EWMA 
DCC 

CGARCH 
DCC 

Const 

Panel A. µ=[0.59; 0.81] 
EWMA 2.068** -1.466 -0.073 1.617 3.452*** 

(1.673*) (-2.429**) (0.156) (2.157**) (4.063***) 
GARCH DCC -2.068** -2.434** -2.204** 0.948 2.588*** 

(-1.673*) (-2.323**) (-1.753*) (1.048) (3.613***) 
LM EWMA 1.466 2.434** 0.352 1.687* 3.689*** 

(2.429**) (2.323**) (0.911) (2.401**) (4.267***) 

LM EWMA 
DCC 

0.073 2.204** -0.352 1.594 3.496*** 
(-0.156) (1.753*) (-0.911) (1.672*) 

CGARCH 
DCC 

-1.617 -0.948 -1.687* -1.594 1.335 
(-2.157**) (-1.048) (-2.401**) (-1.672*) (-2.413**) 

Constant -3.452*** -2.588*** -3.689*** -3.496*** -1.335 
(-4.063***) (-3.613***) (-4.267***) (-4.264***) (-2.413**) 

Panel B. µ=[0.71; 0.71] 
EWMA 2.373** 0.601 1.254 2.577*** 2.036** 

(3.454***) (-0.438) (1.559) (4.103***) (2.497**) 
GARCH DCC -2.373** -2.571*** -2.582*** -0.390 1.469 

(-3.454***) (-4.046***) (-3.449***) (1.352) (1.304) 
LM EWMA -0.601 2.571*** 1.307 2.879*** 2.161** 

(0.438) (4.046***) (2.145**) (4.563***) (2.615***) 

LM EWMA 
DCC 

-1.254 2.582*** -1.307 1.880* 2.152** 
(-1.559) (3.449***) (-2.145**) (3.873***) (2.481**) 

CGARCH 
DCC 

-2.577*** 0.390 -2.879*** -1.880* 1.394 
(-4.103***) (-1.352) (-4.563***) (-3.873***) (0.844) 

Constant -2.036** -1.469 -2.161** -2.152** -1.394 
(-2.497**) (-1.304) (-2.615***) (-2.481**) (-0.844) 

Panel C. Joint test 
EWMA 2.671*** 0.338 1.246 3.179*** 2.598*** 

(5.166***) (-3.329***) (1.469) (6.374***) (5.222***) 
GARCH DCC -2.671*** -3.033*** -3.296*** -0.368 2.130** 

(-5.166***) (-6.004***) (-5.545***) (1.307) (3.795***) 
LM EWMA -0.338 3.033*** 1.412 3.674*** 2.769*** 

(3.329***) (6.004***) (2.813***) (7.161***) (5.455***) 

LM EWMA 
DCC 

-1.246 3.296*** -1.412 2.611*** 2.848*** 
(-1.469) (5.545***) (-2.813***) (5.939***) (5.438***) 

CGARCH 
DCC 

-3.179*** 0.368 -3.674*** -2.611*** 2.004** 
(-6.374***) (-1.307) (-7.161***) (-5.939***) (3.161***) 

Constant -2.598*** -2.130** -2.769*** -2.848*** -2.004** 
(-5.222***) (-3.795***) (-5.455***) (-5.438***) (-3.161***) 
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Table 5.7. Comparison of Volatilities: Multivariate Portfolios 

The table reports the volatilities of the global minimum variance portfolios. The lowest 
volatility in each row is normalised to 100. 

 EWMA 
GARCH 

DCC 
LM  

EWMA 

LM 
EWMA 

DCC 

CGARCH 
DCC 

Const 

Panel A. Conditional Volatilities  

International stock 
and bond portfolio 

103.972 113.069 100.000 105.886 106.256 104.363

DJIA portfolio 126.605 102.881 106.554 100.000 102.478 132.890

Panel B. Out-of-Sample Volatilities  

International stock 
and bond portfolio 

102.734 112.645 100.000 103.551 102.853 101.985

DJIA portfolio 125.268 104.119 105.393 100.000 103.663 135.269
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Table 5.8. Comparison of Conditional Volatilities: Hedging International 
Portfolios 

The table reports the average conditional volatilities of the minimum variance hedging 
portfolios subject to the target excess return of 1. Each row reports the results of the hedging 
portfolio, in which the asset of the country in the first column are hedged against all other 
assets. The lowest volatility is normalised to 100. 

EWMA 
GARCH 

DCC 
LM  

EWMA 
LM-EWMA

DCC 
CGARCH 

DCC 
Const 

Panel A. International stocks 
Australia 112.154 103.993 108.319 100.000 103.661 114.440 

Austria 113.783 104.576 109.120 100.000 104.900 125.200 

Belgium 115.758 102.190 113.077 100.000 103.572 111.761 

Canada 115.365 103.731 111.117 100.000 106.953 111.354 

Denmark 115.634 101.428 111.750 100.000 101.463 101.470 

France 118.771 100.915 115.481 100.000 101.461 109.469 

Germany 115.396 105.132 110.583 100.000 105.142 114.046 

Hongkong 116.388 102.980 110.743 100.000 103.102 109.661 

Ireland 117.213 100.795 114.009 100.359 104.388 100.000 

Italy 110.909 100.211 105.611 100.000 100.784 102.160 

Japan 115.947 100.257 111.512 100.000 102.801 115.442 

Mexico 114.938 102.112 111.307 100.000 103.330 106.627 

Netherland 113.371 103.361 109.019 100.000 105.598 124.321 
New Zealand 114.018 102.132 109.721 100.000 101.777 114.536 

Norway 111.431 101.507 107.353 100.000 102.446 120.929 

Singapore 111.810 102.789 107.644 100.000 101.854 105.794 

Spain 118.453 103.257 114.973 100.000 101.266 119.418 

Sweden 112.595 105.373 108.237 100.000 105.728 107.506 

Switzerland 111.318 102.064 108.066 100.000 101.544 111.252 

UK 111.234 104.059 107.062 100.000 101.788 114.067 

US 114.647 107.630 109.543 100.000 109.473 111.657 

Panel B. International bonds 
Austria 108.955 102.090 106.045 100.000 101.119 134.701 

Belgium 117.297 105.712 112.631 100.000 104.344 137.973 

Canada 115.487 102.466 111.641 100.000 102.217 106.356 

Denmark 117.020 103.007 113.229 100.000 102.196 111.608 

France 102.714 105.344 100.085 100.000 105.089 154.453 

Germany 111.215 103.634 110.592 100.000 105.400 128.037 
Ireland 111.222 100.582 106.525 100.000 103.367 135.702 

Japan 114.813 101.211 110.368 100.000 100.572 103.768 

Netherland 104.188 102.043 101.634 100.000 101.941 134.423 

Sweden 109.796 101.580 106.949 100.000 101.816 103.997 

Switzerland 106.535 101.430 104.057 100.000 100.249 111.290 

UK 116.032 100.398 111.825 100.000 100.413 122.074 

US 116.010 102.291 111.892 100.000 102.728 116.911 
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Table 5.9. Comparison of Conditional Volatilities: Hedging DJIA Portfolios 

The table reports the average conditional volatilities of the minimum variance hedging 
portfolios subject to the target excess return of 1. Each row reports the results of the hedging 
portfolio, in which the asset of the country in the first column are hedged against all other 
assets. The lowest volatility is normalised to 100. 

 
EWMA 

GARCH 
DCC 

LM  
EWMA 

LM-EWMA
DCC 

CGARCH 
DCC 

Const 

AA 138.806 100.865 113.661 100.000 101.612 105.519 
AXP 137.429 101.766 112.050 100.000 101.318 107.559 

BA 139.590 100.649 113.997 100.000 101.307 104.624 

BAC 141.487 102.238 115.410 100.000 102.700 121.716 

CAT 138.771 100.046 112.343 100.000 100.642 100.557 

C 138.916 100.540 112.951 100.000 100.806 118.037 

CVX 138.393 101.174 113.016 100.000 100.717 106.279 

DD 136.763 100.476 112.285 100.000 100.421 112.715 

DIS 137.711 100.000 111.968 100.169 100.482 101.953 

GE 135.492 101.470 111.270 100.000 101.662 108.809 

GM 138.716 101.470 112.822 100.000 101.663 113.654 

HD 142.124 100.650 113.701 100.000 100.790 106.277 

HPQ 141.407 101.845 114.473 101.516 102.421 100.000 

IBM 141.815 100.188 114.008 100.000 100.570 101.147 

INTC 137.506 100.366 112.643 100.000 100.664 100.114 

JNJ 138.770 101.136 113.734 100.000 101.801 125.810 

JPM 139.521 100.053 114.434 100.000 100.756 107.763 

KO 139.793 100.359 114.269 100.000 100.850 104.120 

MCD 140.553 100.287 113.798 100.287 101.194 100.000 

MMM 141.341 103.563 115.321 102.832 104.116 100.000 

MRK 140.490 101.020 114.149 100.000 101.563 110.373 

MSFT 136.807 100.590 112.364 100.000 100.838 102.976 

PFE 140.032 101.034 114.009 100.938 101.897 100.000 

PG 138.747 100.455 114.054 100.000 100.762 101.742 

T 140.041 100.496 114.605 100.000 100.903 103.782 

UTX 134.319 100.318 110.637 100.000 101.551 104.866 

VZ 137.122 100.977 112.456 100.000 100.771 108.897 

WMT 140.294 100.505 114.417 100.000 101.028 106.758 

XOM 135.238 100.462 111.311 100.000 100.409 111.073 
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Table 5.10. Diebold–Mariano Joint Tests: Hedging Multivariate Portfolios 

The table reports the t-statistics of the Diebold–Mariano joint tests for the hedging multivariate 
portfolios, using the improved test of Engle and Colacito (2006). Panel A corresponds to the 
international stock and bond portfolio, while Panel B corresponds to the DJIA portfolio. The t-
statistics for the standard test are reported in parentheses. A positive number indicates that the 
model in the row is better than the model in the column, and vice-versa. *, ** and *** denote 
rejection of the equality hypothesis of the two models at 10%, 5% and 1% significance level. 

 EWMA 
GARCH 

DCC 
LM 

EWMA 
LM-EWMA

DCC 
CGARCH 

DCC 
Constant 

Panel A. International Stock and Bond Portfolio 
EWMA  -3.44*** -3.62*** -4.63*** -3.49*** -3.04*** 
  (-7.12***) (-9.13***) (-10.64***) (-7.39***) (-2.61***)

GARCH 
DCC 

3.44***  2.44*** -2.78*** 1.28 0.59 
(7.12***)  (4.37***) (-4.88***) 0.99 (5.06***) 

LM-EWMA 3.62*** -2.44***  -3.74*** -2.58*** -1.50 
 (9.13***) (-4.37***)  (-7.51***) (-4.53***) (-0.37) 

LM-EWMA 
DCC 

4.63*** 2.78*** 3.74***  2.66*** 4.39*** 
(10.64***) (4.88***) (7.51***) (4.48***) (9.57***)  

CGARCH 
DCC 

3.49*** -1.28 2.58*** -2.66***  0.45 
(7.39***) (-0.99) (4.53***) (-4.48***)  (3.97***) 

Constant 
3.04*** -0.59 1.50 -4.39*** -0.45  

(2.61***) (-5.06***) (0.37) (-9.57***) (-3.97***)  

Panel B. DJIA Portfolio 

EWMA  -7.02*** -9.81*** -9.79*** -9.56*** -13.68***
  (-37.75***) (-40.43***) (-36.79***) (-38.16***) (-32.09***)

GARCH 
DCC 

7.02***  1.77* -1.52 -1.00 0.86 
(37.75***)  (26.10***) (-4.10***) (1.28) (11.10***)

LM-EWMA 9.81*** -1.77*  -8.79*** -7.58*** -6.57*** 
 (40.43***) (-26.10***)  (-27.93***) (-28.70***) (-12.43***)

LM-EWMA 
DCC 

9.79*** 1.52 8.79***  2.54** 7.18*** 
(36.79***) (4.10***) (27.93***)  (6.32***) (13.77***)

CGARCH 
DCC 

9.56*** 1.00 7.58*** -2.54**  3.82*** 
(38.16***) (-1.28) (28.70***) (-6.32***)  (11.92***)

Constant 13.68*** -0.86 6.57*** -7.18*** -3.82***  
 (32.09***) (-11.10***) (12.43***) (-13.77***) (-11.92***)  
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Table 5.11. RMSE for Longer Horizon Forecasts: Bivariate Systems 

The table reports the RMSE for each element of the forecast conditional covariance matrix over 
the forecast period. The benchmarks are the realised variances and covariances, proxied by the 
sum of squares and cross products of returns over the forecast horizons, respectively. 

 
EWMA 

GARCH 
DCC 

LM  
EWMA 

LM-EWMA 
DCC 

CGARCH 
DCC 

Panel A. One Week (5-Step) ahead Forecasts  
Variances      
Stock 12.675 13.207 12.668 12.668 12.330 
Bond 0.918 0.938 0.901 0.901 0.952 
S&P500 10.308 10.676 10.411 10.411 10.039 
DJIA 9.611 9.892 9.638 9.638 9.286 
Covariances      
Stock-Bond 1.814 1.892 1.788 1.811 1.880 
S&P500-DJIA 9.783 10.062 9.851 9.858 9.460 

Panel B. One Month (21-Step) ahead Forecasts 
Variances      
Stock 49.667 54.759 47.789 47.789 51.491 
Bond 2.230 2.348 2.128 2.128 2.487 
S&P500 42.384 47.684 41.015 41.015 44.696 
DJIA 38.029 40.468 36.789 36.789 38.583 
Covariances      
Stock-Bond 4.523 4.875 4.737 4.691 4.536 
S&P500-DJIA 39.655 43.093 38.330 38.350 40.755 

Panel C. One Quarter (63-Step) ahead Forecasts 
Variances      
Stock 151.499 168.737 146.514 146.514 165.768 
Bond 5.348 5.630 4.983 4.983 5.974 
S&P500 133.140 151.082 129.748 129.748 142.108 
DJIA 113.798 128.904 111.416 111.416 120.125 
Covariances      
Stock-Bond 7.729 10.210 7.893 10.470 9.377 
S&P500-DJIA 121.775 137.591 118.879 118.890 128.746 
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Table 5.12. Mincer–Zarnowitz Regressions for Longer Horizons: Bivariate Systems 

The table reports the results of the Mincer-Zarnowitz regressions for longer horizon forecasts of each element of the covariance matrix. The p-values are 

for the tests of the joint hypothesis: H0: 
0ij   and 1ij  .  

 EWMA LM-EWMA 
 Intercept Slope R2 p-value Intercept Slope R2 p-value 

Panel A. One Week (5-Step) ahead Forecasts 
Stock 1.042 0.860 0.412 0.000 0.074 0.997 0.408 0.025 
Bond 0.282 0.680 0.161 0.000 0.199 0.782 0.170 0.000 
S&P500 0.759 0.895 0.497 0.002 -0.051 1.019 0.480 0.341 
DJIA 0.839 0.870 0.437 0.000 0.049 0.999 0.426 0.021 
Stock-Bond -0.066 0.686 0.176 0.000 -0.061 0.752 0.183 0.000 
S&P500-DJIA 0.758 0.884 0.472 0.000 -0.011 1.011 0.456 0.133 

Panel B. One Month (21-Step) ahead Forecasts 
Stock 8.454 0.730 0.322 0.000 5.739 0.825 0.348 0.103 
Bond 0.931 0.764 0.350 0.003 0.615 0.871 0.389 0.148 
S&P500 6.408 0.784 0.394 0.005 3.996 0.875 0.413 0.325 
DJIA 6.708 0.748 0.346 0.001 4.459 0.836 0.365 0.129 
Stock-Bond -0.297 0.776 0.379 0.034 -0.344 0.739 0.326 0.001 
S&P500-DJIA 6.259 0.768 0.371 0.003 3.968 0.860 0.391 0.236 

Panel C. One Quarter (63-Step) ahead Forecasts 
Stock 44.494 0.536 0.172 0.005 37.168 0.623 0.167 0.104 
Bond 3.462 0.660 0.468 0.000 2.641 0.754 0.482 0.041 
S&P500 34.961 0.614 0.244 0.014 28.389 0.697 0.226 0.192 
DJIA 34.137 0.583 0.221 0.008 29.114 0.647 0.196 0.094 
Stock-Bond -0.714 0.886 0.669 0.422 -0.756 0.919 0.649 0.840 
S&P500-DJIA 33.000 0.600 0.232 0.011 27.280 0.677 0.221 0.150 
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 GARCH-DCC LM-EWMA-DCC CGARCH-DCC 
 Intercept Slope R2 p-value Intercept Slope R2 p-value Intercept Slope R2 p-value 

Panel A. One Week (5-Step) ahead Forecasts 
Stock 1.751 0.750 0.401 0.000 0.074 0.997 0.408 0.025 1.139 0.805 0.467 0.000 
Bond 0.251 0.664 0.120 0.000 0.199 0.782 0.170 0.000 0.305 0.602 0.111 0.000 
S&P500 1.239 0.806 0.480 0.000 -0.051 1.019 0.480 0.341 0.704 0.870 0.528 0.000 
DJIA 1.237 0.796 0.423 0.000 0.049 0.999 0.426 0.021 0.631 0.872 0.477 0.000 
Stock-Bond -0.184 0.610 0.122 0.000 -0.153 0.730 0.170 0.000 -0.230 0.654 0.127 0.000 
S&P500-DJIA 1.134 0.811 0.457 0.000 -0.041 1.015 0.456 0.200 0.586 0.878 0.508 0.000 

Panel B. One Month (21-Step) ahead Forecasts 
Stock 13.066 0.564 0.305 0.000 5.739 0.825 0.348 0.103 10.345 0.615 0.371 0.000 
Bond 0.819 0.747 0.274 0.008 0.615 0.871 0.389 0.148 1.254 0.624 0.236 0.000 
S&P500 11.133 0.604 0.342 0.000 3.996 0.875 0.413 0.325 8.775 0.652 0.411 0.000 
DJIA 9.431 0.629 0.330 0.000 4.459 0.836 0.365 0.129 7.609 0.667 0.383 0.000 
Stock-Bond -0.543 0.662 0.335 0.000 -0.459 0.702 0.367 0.000 -0.623 0.770 0.389 0.000 
S&P500-DJIA 9.708 0.625 0.339 0.000 3.935 0.862 0.390 0.255 7.670 0.667 0.401 0.000 

Panel C. One Quarter (63-Step) ahead Forecasts 
Stock 60.382 0.336 0.065 0.000 37.168 0.623 0.167 0.104 54.682 0.381 0.089 0.000 
Bond 2.910 0.687 0.353 0.016 2.641 0.754 0.482 0.041 2.954 0.652 0.294 0.004 
S&P500 50.654 0.414 0.098 0.000 28.389 0.697 0.226 0.192 39.468 0.525 0.152 0.007 
DJIA 49.335 0.379 0.086 0.000 29.114 0.647 0.196 0.094 38.228 0.505 0.143 0.004 
Stock-Bond -1.326 0.721 0.479 0.006 -0.975 0.672 0.487 0.000 -1.495 0.794 0.542 0.036 
S&P500-DJIA 47.863 0.401 0.091 0.000 27.294 0.678 0.210 0.155 36.757 0.524 0.148 0.008 
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Table 5.13. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios with 
Weekly Rebalancing Frequency 

The table reports the out-of-sample volatilities for the weekly rebalanced bivariate portfolios, 
constructed with the objective of minimizing variance subject to the target excess return of 1. 
Each row in the table reports the results for the pair of expected returns in the corresponding 
first two columns. The overall returns are the pair of weighted returns using the Bayesian prior 
probabilities. The lowest volatility in each row is normalised to 100. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH 

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH 
DCC 

Const 

0.00 1.00 100.472 100.590 100.000 100.000 102.243 105.903 
0.16 0.99 100.524 100.524 100.058 100.000 102.446 105.533 
0.31 0.95 100.562 100.449 100.169 100.000 102.528 105.056 
0.45 0.89 100.635 100.424 100.265 100.000 102.594 104.553 
0.59 0.81 100.730 100.389 100.292 100.000 102.530 103.990 
0.71 0.71 100.652 100.478 100.217 100.000 102.262 103.306 
0.81 0.59 100.528 100.642 100.000 100.000 101.925 102.491 
0.89 0.45 100.447 100.767 100.000 100.032 101.374 102.204 
0.95 0.31 100.376 101.207 100.000 100.107 102.468 103.165 
0.99 0.16 100.670 101.547 100.000 100.485 103.486 105.149 
1.00 0.00 100.921 101.800 100.000 100.879 102.550 105.271 

Overall 
(weighted) 

100.360 101.099 100.000 100.049 102.178 102.913 

 
Panel B. S&P500-DJIA Portfolio 

µSP500 µDJIA EWMA 
GARCH 

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH 
DCC 

Const 

0.00 1.00 100.621 100.966 100.207 100.000 100.897 101.655 
0.16 0.99 100.762 100.645 100.352 100.000 100.821 102.345 
0.31 0.95 100.941 100.141 100.612 100.000 100.612 103.388 
0.45 0.89 101.749 100.000 101.435 100.700 100.770 105.493 
0.59 0.81 100.842 100.000 100.591 100.364 100.682 105.755 
0.71 0.71 100.184 100.811 100.000 100.199 100.719 101.560 
0.81 0.59 100.431 101.940 100.000 100.367 101.574 107.827 
0.89 0.45 100.396 100.759 100.000 100.231 100.660 105.805 
0.95 0.31 100.400 101.422 100.044 100.000 101.244 102.222 
0.99 0.16 100.278 101.893 100.111 100.000 101.336 100.557 
1.00 0.00 100.331 102.118 100.199 100.132 101.390 100.000 

Overall 
(weighted) 

100.225 100.856 100.000 100.187 100.677 101.613 
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Table 5.14. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios with 
Quarterly Rebalancing Frequency 

The table reports the out-of-sample volatilities for the quarterly rebalanced bivariate portfolios, 
constructed with the objective of minimizing variance subject to the target excess return of 1. 
Each row in the table reports the results for the pair of expected returns of the corresponding 
first two columns. The overall returns are the pair of weighted returns using the Bayesian prior 
probabilities. The lowest volatility in each row is normalised to 100. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH 

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH 
DCC 

Const 

0.00 1.00 100.622 100.000 100.000 100.000 100.415 110.581 
0.16 0.99 101.031 100.000 100.412 100.000 100.412 109.691 
0.31 0.95 101.603 100.000 100.601 100.000 100.200 108.417 
0.45 0.89 101.908 100.000 100.954 100.191 100.000 107.252 
0.59 0.81 102.135 100.000 101.246 100.534 100.000 106.228 
0.71 0.71 101.789 100.650 101.138 100.813 100.000 105.528 
0.81 0.59 100.728 101.019 100.146 100.146 100.000 104.803 
0.89 0.45 100.783 102.611 100.000 100.261 101.044 106.658 
0.95 0.31 100.818 103.855 100.467 100.000 102.336 109.813 
0.99 0.16 100.526 103.891 100.315 100.000 103.260 114.826 
1.00 0.00 100.000 102.844 100.267 101.422 101.778 113.867 

Overall 
(weighted) 

100.727 103.749 100.336 100.000 102.098 109.219 

 
Panel B. S&P500-DJIA Portfolio 

µSP500 µDJIA EWMA 
GARCH 

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH 
DCC 

Const 

0.00 1.00 100.000 102.597 100.519 100.519 103.377 101.818 
0.16 0.99 100.000 102.649 100.442 100.442 103.311 101.987 
0.31 0.95 100.000 102.482 100.355 100.177 102.837 102.128 
0.45 0.89 100.000 101.713 100.000 100.000 101.976 102.635 
0.59 0.81 100.629 101.258 100.449 100.000 101.797 105.121 
0.71 0.71 101.020 100.960 100.000 101.621 106.363 102.461 
0.81 0.59 100.000 106.854 101.168 102.103 106.464 109.891 
0.89 0.45 100.000 105.181 100.361 101.084 105.301 108.434 
0.95 0.31 100.163 103.431 100.000 100.490 104.739 104.248 
0.99 0.16 100.206 102.263 100.000 100.206 103.909 102.469 
1.00 0.00 100.000 101.716 100.000 100.000 103.676 101.471 

Overall 
(weighted) 

100.707 100.865 100.000 101.623 106.049 102.937 
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Table 5.15. Comparison of Volatilities: Multivariate Portfolios with Different 
Rebalancing Frequencies 

The table reports the out-of-sample volatilities of the global minimum variance multivariate 
portfolios. Conditional volatilities are reported in parentheses. The lowest volatility in each row 
is normalised to 100. 

 EWMA 
GARCH 

DCC 
LM  

EWMA 
LM-EWMA 

DCC 
CGARCH 

DCC 

Panel A. International Stock and Bond Portfolio 

Monthly rebalancing 
102.884 123.706 100.000 104.699 110.065 

(102.502) (113.730) (100.000) (105.481) (111.344) 

Quarterly rebalancing 
106.339 128.935 100.000 105.900 113.939 

(103.374) (116.535) (100.000) (107.679) (110.481) 

Panel B. DJIA Portfolio 

Weekly rebalancing 
107.748 102.985 104.699 100.000 102.053 

(106.180) (100.444) (102.825) (100.000) (100.597) 

Monthly rebalancing 
105.261 103.892 103.612 100.000 102.227 

(107.272) (104.615) (104.311) (100.000) (104.273) 

Quarterly rebalancing 
115.392 107.737 108.621 100.000 104.939 

(114.665) (108.247) (107.377) (100.000) (103.760) 
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Table 5.16. Diebold–Mariano Joint Tests: Hedging DJIA Portfolios with Different 
Rebalancing Frequencies 

The table reports the t-statistics of the Diebold–Mariano joint tests for the hedging DJIA 
portfolios, using the improved test of Engle and Colacito (2006). The t-statistics for the standard 
test are reported in parentheses. A positive number indicates that the model in the row is better 
than the model in the column, and vice-versa. *, ** and *** denote rejection of the equality 
hypothesis of the two models at 10%, 5% and 1% significance level. 

 
EWMA 

GARCH 
DCC 

LM-EWMA
LM-EWMA 

DCC 
CGARCH 

DCC 

Panel A. Weekly Rebalancing 

EWMA 
-5.02*** -5.94*** -6.81*** -6.24*** 

(-15.88***) (-13.91***) (-16.71***) (-17.80***) 

GARCH-DCC 
5.02*** 4.15*** -2.17** 0.07 

(15.88***) (13.92***) (-2.29**) (2.80***) 

LM-EWMA 
5.94*** -4.15*** -6.28*** -5.24*** 

(13.91***) (-13.92***) (-15.15***) (-15.78***) 

LM-EWMA-DCC 
6.81*** 2.17** 6.28*** 3.20*** 

(16.71***) (2.29**) (15.15***) (5.10***) 

CGARCH-DCC 
6.24*** -0.07 5.24*** -3.20*** 

(17.80***) (-2.80***) (15.78***) (-5.10***) 

Panel B. Monthly Rebalancing 

EWMA 
-4.25*** -6.76*** -5.34*** -4.63*** 

(-11.32***) (-14.94***) (-11.69***) (-10.75***) 

GARCH-DCC 
4.25*** 3.25*** 0.13 1.58 

(11.32***) (7.73***) (-0.64) (1.28) 

LM-EWMA 
6.76*** -3.25*** -4.28*** -3.29*** 

(14.94***) (-7.73***) (-8.40***) (-7.18***) 

LM-EWMA-DCC 
5.34*** -0.13 4.28*** 1.72* 

(11.69***) (0.64) (8.40***) (2.27**) 

CGARCH-DCC 
4.63*** -1.58 3.29*** -1.72* 

(10.75***) (-1.28) (7.18***) (-2.27**) 

Panel C. Quarterly Rebalancing 

EWMA 
-1.33 -6.96*** -6.07*** -4.97*** 

(-10.27***) (-12.64***) (-10.78***) (-10.29***) 

GARCH-DCC 
1.33 -0.04 -0.92 -0.70 

(10.27***) (6.25***) (-1.16) (0.52) 

LM-EWMA 
6.96*** 0.04 -4.34*** -2.75*** 

(12.64***) (-6.25***) (-7.10***) (-6.11***) 

LM-EWMA-DCC 
6.07*** 0.92 4.34*** 0.17 

(10.78***) (1.16) (7.10***) 1.59 

CGARCH-DCC 
4.97*** 0.70 2.75*** -0.17 

(10.29***) (-0.52) (6.11***) -1.59 
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Table 5.17. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios 
with 5-Year Estimation Window 

The table reports the out-of-sample volatilities for the minimum variance bivariate portfolios, 
constructed using 5-year estimation window and subject to the excess target return of 1. Each 
row in the table reports the results for the pair of expected returns in the corresponding first two 
columns. The overall returns are the pair of weighted returns using the Bayesian prior 
probabilities. The lowest volatility in each row is normalised to 100. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH 

DCC 
LM  

EWMA 

LM 
EWMA 
DCC 

CGARCH 
DCC 

FIGARCH 
DCC Const 

0.00 1.00 100.564 102.177 100.000 102.075 103.637 106.967 105.610 
0.16 0.99 100.608 102.128 100.000 102.103 103.572 108.715 104.890 
0.31 0.95 100.588 102.009 100.000 102.058 103.552 110.828 104.140 
0.45 0.89 100.556 101.922 100.000 101.992 103.659 112.969 103.474 
0.59 0.81 100.471 101.883 100.000 101.904 103.808 114.955 102.974 
0.71 0.71 100.387 101.971 100.000 101.817 103.923 116.293 103.015 
0.81 0.59 100.290 102.170 100.000 101.811 103.861 116.761 104.032 
0.89 0.45 100.162 102.184 100.000 101.697 103.424 116.293 106.272 
0.95 0.31 100.236 101.972 100.000 101.191 103.523 114.823 109.278 
0.99 0.16 100.395 101.376 100.000 100.617 103.177 111.655 110.229 
1.00 0.00 100.427 102.484 100.000 102.902 104.224 104.115 104.567 

Overall 
(weighted) 

100.207 102.010 100.000 101.296 103.446 115.106 108.884 

Panel B. S&P500-DJIA Portfolio 

µSP500 µDJIA EWMA 
GARCH 

DCC 
LM 

EWMA 

LM 
EWMA 
DCC 

CGARCH 
DCC 

FIGARCH 
DCC Const 

0.00 1.00 100.217 101.485 100.031 100.000 101.671 158.014 101.702 
0.16 0.99 100.210 101.446 100.000 100.000 101.683 165.843 102.182 
0.31 0.95 100.254 101.458 100.021 100.000 101.733 170.716 103.042 
0.45 0.89 100.282 101.408 100.000 100.047 101.847 145.211 104.570 
0.59 0.81 100.226 101.068 100.000 100.411 100.503 139.945 107.094 
0.71 0.71 100.102 101.108 100.000 100.382 101.439 111.423 104.680 
0.81 0.59 100.098 101.238 100.000 100.543 100.285 117.528 110.305 
0.89 0.45 100.469 101.278 100.000 100.540 101.293 118.835 107.841 
0.95 0.31 100.528 101.468 100.000 100.372 101.566 129.928 104.463 
0.99 0.16 100.470 101.510 100.000 100.198 101.659 136.940 102.748 
1.00 0.00 100.413 101.535 100.000 100.118 101.712 139.327 101.860 

Overall 
(weighted) 

100.123 101.209 100.000 100.448 101.403 112.275 105.138 
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Table 5.18. Diebold–Mariano Joint Tests: Hedging DJIA Portfolios with 5-Year Estimation Window 

The table reports the t-statistics of the Diebold–Mariano tests for the hedging DJIA portfolios, using the improved test of Engle and Colacito (2006). The t-statistics 
for the standard test are reported in parentheses. A positive number indicates that the model in the row is better than the model in the column, and vice-versa. *, ** 
and *** denote rejection of the equality hypothesis of the two models at 10%, 5% and 1% significance level. 

 EWMA 
GARCH 

DCC 
LM-

EWMA 

LM-
EWMA 

DCC 

CGARCH 
DCC 

FIGARC
H 

DCC
EWMA 

GARCH 
DCC 

LM-
EWMA 

LM-
EWMA 

DCC 

CGARC
H 

DCC 

FIGARCH 
DCC 

Panel A. Daily Rebalancing Panel B. Weekly Rebalancing 

EWMA 
 -8.03*** -9.50*** -8.43*** 8.73*** 1.60  -6.61*** -6.98*** -6.24*** -7.14*** 2.67*** 
 (-34.3***) (-36.9***) (-33.6***) (34.4***) (-13.3***)  (-19.9***) (-18.3***) (-19.3***) (-19.8***) (-3.91***) 

GARCH-
DCC 

9.50***  7.33*** -3.18*** -0.89 3.4*** 6.61***  5.58*** -2.33** -1.21 3.74*** 
(36.9***)  (26.6***) (-6.09***) (-0.74) (7.79***) (19.9***)  (16.35***) (-2.91***) (-0.62) (7.66***) 

LM-EWMA 
8.43*** -7.33***  -7.81*** -8.96*** 2.79*** 6.98*** -5.58***  -5.47*** -6.02*** 2.96*** 

(33.6***) (-26.6***)  (-25.8***) (-27.4***) (1.44) (18.3***) (-16.4***)  (-15.8***) (-16.2***) (-0.34) 
LM-EWMA-
DCC 

8.73*** 3.18*** 7.81***  2.12** 3.49*** 6.24*** 2.33** 5.47***  1.72* 3.92*** 
(34.4***) (6.09***) (25.8***)  (4.55***) (7.93***) (19.3***) (2.91***) (15.78***)  (2.87***) (7.64***) 

CGARCH-
DCC 

8.03*** 0.89 8.96*** -2.12**  3.56*** 7.14*** 1.21 6.02*** -1.72*  3.85*** 
(34.3***) (0.74) (27.44***) (-4.55***)  (7.79***) (19.8***) (0.62) (16.17***) (-2.87***)  (7.45***) 

FIGARCH-
DCC 

-1.60 -3.4*** -2.79*** -3.49*** -3.56***  -2.67*** -3.74*** -2.96*** -3.92*** -3.85***  
(13.3***) (-7.79***) (-1.44) (-7.93***) (-7.79***)  (3.91***) (-7.66***) (0.34) (-7.64***) (-7.45***)  

Panel C. Monthly Rebalancing Panel D. Quarterly Rebalancing 

EWMA 
 -4.12*** -7.23*** -5.17*** -7.04*** 0.29  -3.12*** -5.85*** -4.72*** -4.11*** 1.46 
 (-11.6***) (-15.9***) (-12.6***) (-13.2***) (-5.25***)  (-8.67***) (-10.7***) (-9.08***) (-8.76***) (1.17) 

GARCH-
DCC 

4.12***  3.10*** -0.44 0.76 2.55*** 3.12***  1.77 0.48 0.67 1.46 
(11.6***)  (-.69***) (-0.87) (0.86) (4.54***) (8.67***)  (5.41***) (0.59) (1.29) (1.77*) 

LM-EWMA 
7.23*** -3.10***  -4.22*** -5.83*** 1.39 5.85*** -1.77  -3.19*** -2.62*** 1.48 

(15.9***) (-7.69***)  (-8.84***) (-9.23***) (-1.49) (10.7***) (-5.41***)  (-5.93***) (-5.48***) (1.53) 
LM-EWMA-
DCC 

5.17*** 0.44 4.22***  1.33 2.68*** 4.72*** -0.48 3.19***  0.40 1.51 
(12.6***) (0.87) (8.84***)  (1.95*) (4.25***) (9.08***) (-0.59) (5.93***)  (0.94) (1.76*) 

CGARCH-
DCC 

7.04*** -0.76 5.83*** -1.33  2.30*** 4.11*** -0.67 2.62*** -0.40  1.50 
(13.2***) (-0.86) (9.23***) (-1.95*)  (3.54***) (8.76***) (-1.29) (5.48***) (-0.94)  (1.75*) 

FIGARCH-
DCC 

-0.29 -2.55*** -1.39 -2.68*** -2.30***  -1.46 -1.46 -1.48 -1.51 -1.50  
(5.25***) (-4.54***) (1.49) (-4.25***) (-3.54***)  (-1.17) (-1.77*) (-1.53) (-1.76*) (-1.75*)  
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Appendix 5.1. LM-EWMA Conditional Covariance Matrix Forecasts 

Volatility Forecast 

Zumbach (2006) derives the recursive formula to forecast long memory volatility. 

Employing the processes in (5.3) and (5.4), the j-step-ahead conditional volatility, given 

information at time t, can be derived from the system of recursive conditional equations: 

 2 2
1,

1

( ) ( )
K

t t j k t t j k
k

E w E   


   (1) 

        2 2 2
1, 2, 11t t j k k t t j k k t t jE E E             (2) 

Define  2
, ,j k t t j kE    and 2( )j t t jE   , the conditional equations are reduced to:  

 '
, 1

1

.
K

j k j k j
k

w  


  w δ  (3) 

  1, 2, 11j k k j k k j          (4) 

where 1 2( , , , ) 'Kw w w w  and ,1 ,2 ,( , , , ) '.j j j j K   δ
 
Plugging (3) into (4) produces: 

   '
1, 2, 2.1 .j k k j k k j        w δ  (5) 

In vector notation, (5) becomes: 

    ' '
1 2 2 2.j j j j          δ Mδ ι μ w δ M ι μ w δ  (6) 

where μ  is the vector of k , M is the diagonal matrix consisting of k , and ι  is the 

vector of one. (6) can be iterated (j-1) times: 

   '
1 0

j

j     δ M ι μ w δ  (7) 

where 2 2 2
0 ,1 ,2 ,( , , , ) 't t t K   δ  is the vector of EWMA volatilities at current time t. By 

combining (3) and (7), the conditional volatility at time j becomes: 

  
12 ' ' '

1 0.( ) .
j

t t j j jE  


        w δ w M ι μ w δ  (8) 

Define   ''  
j

j     w' w M ι μ w (hence 0 w w ), then 2
1 0( ) .t t j jE    w' δ . With 

serially uncorrelated returns, the optimal forecasts for the h-steps volatility (i.e., 

volatility over h steps), given information at time t, may be expressed as: 

 2 2
1: 1 0

1 1

.
h h

t t h t j j
j j

    
 

  w' δ  (9) 
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with jw  and 0δ  defined above.  

The volatility forecast can be expressed in an alternative way. The one-step-ahead 

forecast of volatility is already given by 

  2 2 2
1 ,

1 1 0

1 .
K K

i
t k t k k k k t i

k k i

w w r   


 
  

      (10) 

In practice, the sum over lags needs be cut off at some time T, and (10) becomes: 

    2 2 2 2
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1 0 0 1 0

1
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1

iK T T K T
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with 
 

1

1
( ) .

1

iK
k k

k T
k k
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 







  

Applying the same recursive substitution procedure as above leads to the forecast for 

the h-step ahead volatility:  

 2 2
1:

0

( , )
T

t t h t i
i

h h i r   


   (12) 

with the weights  ,h i  given by: 

    1

,
1 1

11
, ,

1

K h
k i

j k kT
k j k

h i w
h


 





 




   (13) 

where ,j kw  is the k element of vector jw , and ( , ) 1h i  . When 1K  , then 1w  , 

so the LM EWMA process reduces to an EWMA process with the forecast weights  

     , 1 1i T
k k kh i      , independent of forecast horizons. 

Covariance Matrix Forecast 

In a multivariate setting, the forecast of the h-steps covariance matrix, given the 

information set t  at time t, is easily obtained: 

 '
1:

0

( , )
T

t t h t i t i
i

h h i   


 H r r  (14) 

with ( , )h i  defined in (13). 
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Appendix 5.2. Bayesian Prior Probabilities 

Following Engle and Colacito (2006), I calculate the sample mean of non-overlapping 

consecutive subsamples of 63 days (3 months) from the full datasets. I discard all pairs 

of sample means that have at least one negative element. For the remaining N pairs, I 

compute 1,

2,

2 n
n

n

arctan



 

 
   

 
 , solving the system: 

 
1,

2,

sin
2
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2

n n

n n

k

k

 

 

      


      

 (1) 

with 1, ,n N   . I use these values of   to find parameters â  and b̂  that maximise 

the log-likelihood function of a Beta distribution: 

   
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1 1
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i iba
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a b
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 (2) 

Finally, using the MLE â  and b̂ , I compute the prior probability associated to each of 

the N pairs of sub sample mean: 

    
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ˆ 1ˆ 1

ˆ1 1ˆ 1
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i ba
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where Υ  is the normalization factor. 
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Appendix 5.3. Comparison of Out-of-Sample Volatilities: Hedging International 
Portfolios 

The table reports the average out-of-sample volatilities of the minimum variance hedging 
portfolios subject to the target excess return of 1. Each row reports the results of the hedging 
portfolio, in which the asset of the country in the first column are hedged against all other 
assets. The lowest volatility is normalised to 100. 

EWMA 
GARCH 

DCC 
LM  

EWMA 
LM EWMA

 DCC 
CGARCH 

DCC 
Const 

Panel A. International Stocks 
Australia 108.006 115.295 105.052 100.000 115.070 112.962 

Austria 115.576 111.396 111.840 100.000 113.274 124.707 

Belgium 120.686 101.276 117.778 100.000 103.684 111.501 

Canada 112.535 106.420 109.291 100.000 116.915 110.464 

Denmark 115.953 102.232 110.931 100.000 101.079 102.508 

France 117.043 102.417 113.347 100.000 100.764 112.267 

Germany 114.256 106.334 110.494 100.000 103.534 111.891 

Hongkong 116.476 103.445 111.655 100.000 102.728 104.460 

Ireland 125.153 105.140 125.247 103.454 111.355 100.000 

Italy 111.064 100.500 105.284 100.000 100.852 102.242 

Japan 117.539 100.950 112.753 100.000 102.605 117.311 

Mexico 110.862 100.931 108.403 100.000 101.368 103.197 

Netherland 112.997 105.749 108.559 100.000 106.228 126.765 

New Zealand 114.199 104.664 110.012 100.000 103.651 112.213 

Norway 112.849 102.394 108.409 100.000 104.159 122.970 

Singapore 110.632 103.022 107.479 100.000 102.572 109.419 

Spain 118.895 102.951 115.041 100.000 101.921 117.251 

Sweden 111.627 108.682 107.583 100.000 107.923 111.715 

Switzerland 107.679 105.526 104.179 100.795 100.000 109.504 

UK 108.451 110.802 104.644 100.000 102.814 112.954 

US 114.214 111.795 109.038 100.000 112.003 108.155 

Panel B. International Bonds 
Austria 108.093 102.731 105.513 100.405 100.000 126.353 

Belgium 112.533 103.177 110.531 100.000 102.654 114.578 

Canada 115.398 105.282 111.594 100.000 106.334 106.435 

Denmark 119.843 104.488 116.065 100.000 103.516 108.940 

France 105.879 104.355 101.960 100.000 103.538 135.220 

Germany 112.595 102.959 110.874 100.000 103.579 121.886 

Ireland 112.693 100.026 108.723 100.000 101.489 120.162 

Japan 112.614 101.036 108.469 100.000 100.318 102.660 

Netherland 105.123 101.708 102.801 100.000 100.410 123.770 

Sweden 107.576 100.374 104.929 100.000 100.144 105.054 

Switzerland 110.430 101.447 106.907 100.793 100.000 112.192 

UK 115.539 101.601 109.936 100.412 100.000 120.398 

US 117.727 102.666 114.769 100.000 101.518 117.143 
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Appendix 5.4. Comparison of Out-of-Sample Volatilities: Hedging DJIA Portfolios 

The table reports the average out-of-sample volatilities of the minimum variance hedging 
portfolios subject to the target excess return of 1. Each row reports the results of the hedging 
portfolio, in which the asset of the country in the first column are hedged against all other 
assets. The lowest volatility is normalised to 100. 

Stocks EWMA 
GARCH 

DCC 
LM  

EWMA 
LM EWMA

DCC 
CGARCH 

DCC 
Const 

AA 137.637 102.048 113.701 100.000 102.707 108.131 

AXP 137.160 101.638 113.252 100.000 101.546 106.162 

BA 139.344 100.972 114.311 100.000 101.749 104.355 

BAC 143.802 106.622 117.309 100.000 106.855 117.708 

CAT 136.629 100.163 111.761 100.000 100.774 101.229 

C 136.376 100.590 112.883 100.000 100.893 114.881 

CVX 138.110 101.697 113.226 100.000 100.408 107.513 

DD 135.070 100.897 111.231 100.000 100.459 113.425 

DIS 133.373 100.000 110.310 100.312 100.493 103.552 
GE 132.915 103.678 110.108 100.000 101.306 108.189 

GM 139.040 105.369 113.505 100.000 103.228 112.008 

HD 136.514 100.000 110.987 100.312 100.212 103.942 

HPQ 138.465 102.360 113.865 102.144 102.906 100.000 

IBM 139.064 100.403 113.156 100.000 100.550 100.805 

INTC 136.395 101.552 112.602 100.611 101.197 100.000 

JNJ 138.025 101.980 113.887 100.000 103.672 123.411 

JPM 137.035 100.059 113.795 100.000 100.801 105.725 

KO 138.825 100.217 114.373 100.000 100.607 103.023 

MCD 136.311 100.468 111.773 100.164 101.264 100.000 

MMM 136.469 102.391 113.026 102.531 103.237 100.000 

MRK 136.509 101.063 112.848 100.000 101.383 108.407 

MSFT 136.044 100.789 111.977 100.000 101.127 102.527 

PFE 137.510 103.258 115.349 104.560 103.906 100.000 

PG 140.641 101.110 115.274 100.000 101.275 101.859 

T 141.839 101.032 115.291 100.000 101.599 102.881 

UTX 132.020 100.000 109.834 100.238 102.110 103.287 

VZ 135.632 101.360 111.542 100.000 100.897 106.616 

WMT 137.245 100.414 113.353 100.000 100.677 104.799 

XOM 135.983 100.971 112.014 100.000 100.545 109.576 
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Appendix 5.5. MAE for Longer Horizon Forecasts: Bivariate Systems 

The table reports the MAE for each element of the forecast conditional covariance matrix over 
the forecast period. The benchmarks are the realised variances and covariances, proxied by the 
sum of squares and cross products of returns over the forecast horizons, respectively 

EWMA 
GARCH 

DCC 
LM  

EWMA 
LM-EWMA 

DCC 
CGARCH 

DCC 

Panel A. One Week (5-Step) ahead Forecasts  
Variances 
Stock 4.830 4.788 4.809 4.809 4.818 
Bond 0.524 0.555 0.512 0.512 0.566 
S&P500 4.188 4.202 4.230 4.230 4.174 
DJIA 3.960 3.984 3.987 3.987 3.973 
Covariances 
Stock-Bond 1.008 1.023 0.990 0.992 1.041 
S&P500-DJIA 3.974 3.971 4.023 4.026 3.971 

Panel B. One Month (21-Step) ahead Forecasts 
Variances      
Stock 18.990 18.441 18.534 18.534 19.577 
Bond 1.487 1.572 1.410 1.410 1.666 
S&P500 16.624 16.457 16.299 16.299 16.798 
DJIA 16.061 15.773 15.690 15.690 16.226 
Covariances      
Stock-Bond 2.655 2.772 2.692 2.752 2.755 
S&P500-DJIA 16.041 15.647 15.719 15.711 16.145 

Panel C. One Quarter (63-Step) ahead Forecasts 
Variances      
Stock 54.875 62.730 55.299 55.299 64.307 
Bond 3.769 3.983 3.547 3.547 4.331 
S&P500 48.644 54.134 48.789 48.789 55.191 
DJIA 46.157 50.160 46.426 46.426 49.948 
Covariances      
Stock-Bond 5.801 7.186 5.864 7.006 6.882 
S&P500-DJIA 46.498 50.509 46.615 46.462 50.777 
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Appendix 5.6. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios with 
Monthly Rebalancing Frequency 

The table reports the out-of-sample volatilities for the monthly rebalanced bivariate portfolios, 
constructed with the objective of minimizing variance subject to the target excess return of 1. 
Each row in the table reports the results for the pair of expected returns of the corresponding 
first two columns. The overall returns are the pair of weighted returns using the Bayesian prior 
probabilities. The lowest volatility in each row is normalised to 100. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH 

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH 
DCC 

Const 

0.00 1.00 100.000 100.120 100.360 100.000 100.240 103.121 
0.16 0.99 100.236 100.118 100.472 100.000 100.236 102.243 
0.31 0.95 100.455 100.114 100.682 100.000 100.341 101.477 
0.45 0.89 100.642 100.214 100.856 100.000 100.535 100.642 
0.59 0.81 100.689 100.295 100.984 100.098 100.689 100.000 
0.71 0.71 100.799 100.622 101.066 100.355 101.066 100.000 
0.81 0.59 100.078 100.312 100.312 100.000 100.703 100.156 
0.89 0.45 100.000 100.678 100.203 100.339 100.949 101.762 
0.95 0.31 100.000 100.858 100.286 100.458 101.430 102.460 
0.99 0.16 100.000 101.495 100.386 100.241 102.943 101.447 
1.00 0.00 100.000 106.548 101.592 103.183 103.183 103.229 

Overall 
(weighted) 

100.000 100.907 100.291 100.485 101.357 102.534 

 
Panel B. S&P500-DJIA Portfolio 

µSP500 µDJIA EWMA 
GARCH 

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH 
DCC 

Const 

0.00 1.00 100.704 105.352 100.986 100.141 105.070 100.000 
0.16 0.99 100.595 104.875 100.951 100.000 104.637 100.119 
0.31 0.95 100.665 104.183 101.046 100.000 104.278 100.570 
0.45 0.89 100.635 102.680 100.987 100.000 103.173 102.186 
0.59 0.81 100.476 100.000 100.571 100.143 100.905 105.619 
0.71 0.71 101.062 105.178 100.000 101.460 107.600 102.456 
0.81 0.59 100.865 100.956 100.000 100.319 102.641 107.696 
0.89 0.45 100.417 105.003 100.000 100.695 105.281 106.741 
0.95 0.31 100.094 104.143 100.000 100.847 105.367 104.049 
0.99 0.16 100.000 104.260 100.237 100.947 105.444 102.840 
1.00 0.00 100.000 104.628 100.281 100.842 105.470 102.104 

Overall 
(weighted) 

100.933 104.828 100.000 101.353 107.264 102.743 
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Appendix 5.7. Diebold–Mariano Joint Tests: Hedging International Stock and 
Bond Portfolios with Different Rebalancing Frequencies 

The table reports the t-statistics of the Diebold–Mariano joint tests for the hedging international 
stock and bond portfolios, using the improved test of Engle and Colacito (2006). The t-statistics 
for the standard test are reported in parentheses. A positive number indicates that the model in 
the row is better than the model in the column, and vice-versa. *, ** and *** denote rejection of 
the equality hypothesis of the two models at 10%, 5% and 1% significance level. 

 
EWMA 

GARCH 
DCC 

LM-EWMA
LM-EWMA 

DCC 
CGARCH 

DCC 

Panel A. Monthly Rebalancing 

EWMA  
-1.66* -2.40** -2.56** -2.91*** 

(-2.62***) (-8.03***) (-7.53***) (-6.57***) 

GARCH-DCC 
1.66* 

 
1.16 -2.68*** -2.02** 

(2.62***) (1.00) (-3.26***) (-2.22**) 

LM-EWMA 
2.40** -1.16 

 
-1.99** -2.12** 

(8.03***) (-1.00) (-5.33***) (-4.30***) 

LM-EWMA-DCC 
2.56** 2.68*** 1.99** 

 
1.60 

(7.53***) (3.26***) (5.33***) (3.05***) 

CGARCH-DCC 
2.91*** 2.02** 2.12** -1.60 

 
(6.57***) (2.22**) (4.30***) (-3.05***) 

Panel B. Quarterly Rebalancing 

EWMA  
-1.48 -2.38** -1.61 -1.73* 

(-3.01***) (-5.65***) (-4.15***) (-3.77***) 

GARCH-DCC 
1.48 

 
1.18 -1.91* -1.80* 

(3.01***) (1.64) (-3.33***) (-1.70*) 

LM-EWMA 
2.38** -1.18 

 
-1.42 -1.48 

(5.65***) (-1.64) (-3.17***) (-2.61***) 

LM-EWMA-DCC 
1.61 1.91* 1.42 

 
0.30 

(4.15***) (3.33***) (3.17***) (2.54**) 

CGARCH-DCC 
1.73* 1.80* 1.48 -0.30 

 
(3.77***) (1.70*) (2.61***) (-2.54**) 
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Appendix 5.8. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios with 
Different Estimation Windows and Rebalancing Frequencies 

The table reports the out-of-sample volatilities for the bivariate portfolios, constructed with the 
objective of minimizing variance subject to the target excess return of 1, across different 
estimation windows and rebalancing frequencies. The portfolios are constructed based on the 
overall Bayesian prior weighted returns and the conditional covariance matrices generated from 
different conditional volatility models. The FIGARCH-DCC model is excluded when the short 
2-year estimation window is applied. Conditional volatilities are reported in parentheses. The 
lowest volatility in each row is normalised to 100. 

 EWMA 
GARCH 

DCC 
LM 

EWMA 
LM EWMA 

DCC 
CGARCH 

DCC 
FIGARCH 

DCC 

Panel A. 2-Year Estimation Window 

Panel A1. Stock-Bond Portfolio 

Daily  
100.30 101.58 100.00 101.10 103.01 

 (100.10) (101.81) (100.00) (100.81) (103.27) 

Weekly  
100.18 100.00 100.07 100.25 101.17 

 (100.47) (100.00) (100.25) (100.73) (101.38) 

Monthly 
100.00 100.01 100.29 100.84 102.36 

 (100.00) (101.67) (100.20) (100.59) (103.19) 

Quarterly 
100.11 101.20 100.27 100.00 101.18 

 (100.00) (101.95) (101.14) (100.75) (102.74) 

Panel A2. S&P500-DJIA Portfolio 

Daily  
100.10 101.36 100.00 100.48 102.06 

 (100.23) (101.50) (100.00) (100.45) (102.16) 

Weekly  
100.00 102.25 100.67 100.91 102.45 

 (100.00) (102.01) (100.88) (101.04) (102.62) 

Monthly 
101.27 100.47 100.00 100.33 101.93 

 (101.21) (101.24) (100.31) (100.00) (102.49) 

Quarterly 
101.36 101.31 100.00 101.45 102.42 

 (101.87) (102.17) (100.00) (100.98) (103.61) 

Panel B. 5-Year Estimation Window 

Panel B1. Stock-Bond Portfolio 

Daily  
100.21 102.01 100.00 101.30 103.45 115.11 

(100.04) (101.95) (100.00) (100.93) (103.34) (114.07) 

Weekly  
100.93 101.91 100.00 102.15 100.08 116.19 

(101.39) (102.58) (100.00) (102.09) (101.75) (115.06) 

Monthly 
100.00 103.42 100.36 102.71 100.65 111.09 

(100.00) (102.56) (100.46) (101.41) (103.34) (105.35) 

Quarterly 
100.00 105.15 101.13 102.98 106.73 125.05 

(100.00) (107.11) (102.06) (103.16) (106.53) (124.26) 

Panel B2. S&P500-DJIA Portfolio 

Daily  
100.12 101.21 100.00 100.45 101.40 112.27 

(100.27) (101.13) (100.00) (100.22) (101.33) (108.58) 

Weekly  
100.57 100.81 101.25 100.00 102.99 109.95 

(100.52) (100.73) (100.52) (100.00) (101.94) (108.01) 
 101.45 101.61 100.00 100.33 104.32 102.71 
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 EWMA 
GARCH 

DCC 
LM 

EWMA 
LM EWMA 

DCC 
CGARCH 

DCC 
FIGARCH 

DCC 
Monthly (101.71) (102.28) (100.77) (100.00) (105.09) (103.14) 

Quarterly 
102.91 100.00 101.19 102.65 105.67 102.95 

(103.94) (100.00) (101.98) (102.29) (107.23) (101.94) 

Panel C. 10-Year Estimation Window 

Panel C1. Stock-Bond Portfolio 

Daily  
100.19 100.65 100.00 101.07 102.92 117.64 

(100.17) (101.06) (100.00) (100.77) (103.58) (116.41) 

Weekly  
100.26 100.38 100.00 101.64 100.13 115.68 

(100.00) (100.97) (100.05) (101.56) (101.50) (117.57) 

Monthly 
101.18 100.26 101.45 102.26 100.00 108.70 

(100.45) (100.08) (100.00) (100.57) (100.11) (103.67) 

Quarterly 
100.23 101.69 100.00 100.53 100.33 129.08 

(100.79) (101.53) (101.67) (100.81) (100.00) (126.37) 

Panel C2. S&P500-DJIA Portfolio 

Daily  
100.11 100.50 100.00 100.29 101.14 117.46 

(100.28) (100.47) (100.00) (100.20) (101.40) (112.55) 

Weekly  
100.98 100.00 101.60 100.21 101.67 112.04 

(100.22) (100.00) (100.50) (100.05) (100.59) (109.38) 

Monthly 
101.71 100.74 100.00 100.30 101.88 107.28 

(101.70) (101.38) (100.41) (100.14) (100.00) (106.84) 

Quarterly 
103.66 101.68 101.89 103.28 100.00 114.98 

(105.83) (102.68) (103.45) (103.96) (100.00) (110.17) 
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Appendix 5.9. Diebold–Mariano Joint Tests: Hedging DJIA Portfolios with 
Different Estimation Windows 

The table reports the t-statistics of the Diebold–Mariano joint tests for the hedging DJIA 
portfolios, using the improved test of Engle and Colacito (2006). The t-statistics for the standard 
test are reported in parentheses. A positive number indicates that the model in the row is better 
than the model in the column, and vice-versa. *, ** and *** denote rejection of the equality 
hypothesis of the two models at 10%, 5% and 1% significance level. 

Panel A. 2-Year Estimation Window 

  EWMA 
GARCH 

DCC 
LM 

EWMA 
LM EWMA 

DCC 
CGARCH 

DCC 

Daily  

LM 
EWMA 

10.1*** -5.44*** 
 

-8.95*** -1.33 
(40.2***) (-28.2***) (-27.4***) (-26.2***) 

LM EWMA 
DCC 

9.96*** 1.86* 8.95*** 
 

1.17 
(36.4***) (3.47***) (27.4***) (2.71) 

Weekly 

LM 
EWMA 

6.60*** -6.58*** 
 

-6.03*** -7.41*** 
(18.8***) (-17.7***) (-16.7***) (-18.0***) 

LM EWMA 
DCC 

7.33*** 1.79* 6.03*** 
 

1.36 
(20.4***) (1.67*) (16.7***) (2.20**) 

Monthly 

LM 
EWMA 

7.33*** -4.03*** 
 

-5.18*** -5.00*** 
(15.88***) (-9.76***) (-9.37***) (-9.73***) 

LM EWMA 
DCC 

6.24*** -0.55 5.18*** 
 

0.34 
(13.11***) (0.36) (9.37***) (1.20) 

Quarterly 

LM 
EWMA 

6.73*** 0.39 
 

-2.62*** -3.86*** 
(12.17***) (-4.11***) (-5.47***) (-6.00***) 

LM EWMA 
DCC 

4.89*** 1.08 2.62*** 
 

-1.39 
(9.50***) (0.61) (5.47***) (-0.31) 

Panel B. 10-Year Estimation Window 

  EWMA 
GARCH 

DCC 
LM 

EWMA 

LM 
EWMA 

DCC

CGARCH 
DCC 

FIGARCH 
DCC 

Daily  

LM 
EWMA 

7.56*** -6.15***
 

-6.38*** -6.36*** 2.82** 
(27.2***) (-18.6***) (-18.3***) (-18.9***) (3.21***)

LM EWMA 
DCC 

6.89*** 2.44** 6.38*** 
 

2.04** 3.35*** 
(24.5***) (3.79***) (18.3***) (3.94***) (7.29***)

Weekly 

LM 
EWMA 

5.75*** -4.38*** 
 

-4.73*** -5.39*** 2.24** 
(15.4***) (-12.9***) (-12.9***) (-13.7***) (-0.85) 

LM EWMA 
DCC 

5.36*** 2.49** 4.73*** 
 

1.86* 3.28*** 
(15.8***) (3.28***) (12.9***) (2.83***) (6.06***) 

Monthly 

LM 
EWMA 

6.17*** -3.26*** 
 

-4.00*** -4.21*** 0.47
(13.2***) (-7.01***) (-7.55***) (-7.15***) (-2.17**) 

LM EWMA 
DCC 

4.74*** -0.23 4.00*** 
 

1.33 1.96** 
(10.6***) (1.30) (7.55***) (1.88*) (2.28**) 

Quarterly 

LM 
EWMA 

4.79*** -3.29*** 
 

-4.18*** -0.61 1.07 
(8.19***) (-5.33***) (-6.31***) (-2.92***) (1.14) 

LM EWMA 
DCC 

4.63*** -0.36 4.18*** 
 

1.93* 1.11 
(8.02***) (1.39) (6.31***) (2.29**) (1.47) 
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Appendix 5.10. Diebold–Mariano Joint Tests: Hedging International Stock and 
Bond Portfolios with 10-Year Estimation Window 

The table reports the t-statistics of the Diebold–Mariano joint tests for the hedging international 
stock and bond portfolios, using the improved test of Engle and Colacito (2006). The t-statistics 
for the standard test are reported in parentheses. A positive number indicates that the model in 
the row is better than the model in the column, and vice-versa. *, ** and *** denote rejection of 
the equality hypothesis of the two models at 10%, 5% and 1% significance level. 

 
EWMA 

GARCH 
DCC 

LM-EWMA
LM-EWMA 

DCC 
CGARCH 

DCC 
Panel A. Weekly Rebalancing 

EWMA  -3.547*** -4.461*** -3.981*** 2.949*** 
(-8.377***) (-9.362***) (-9.064***) (4.496***) 

GARCH-DCC 
3.547*** 

 
3.081*** -2.560** 2.836*** 

(8.377***) (6.257***) (-4.825***) (5.681***) 

LM-EWMA 
4.461*** -3.081*** 

 
-3.934*** 3.170*** 

(9.362***) (-6.257***) (-8.045***) (5.064***) 

LM-EWMA-DCC 
3.981*** 2.560** 3.934*** 

 
2.960*** 

(9.064***) (4.825***) (8.045***) (5.758***) 

CGARCH-DCC 
-2.949*** -2.836*** -3.170*** -2.960*** 

 
(-4.496***) (-5.681***) (-5.064***) (-5.758***) 

Panel B. Monthly Rebalancing 

EWMA  
-3.934*** -4.402*** -5.211*** 1.868* 

(-6.108***) (-8.584***) (-8.969***) (3.770***) 

GARCH-DCC 
3.934*** 

 
1.512 -2.721*** 1.929* 

(6.108***) (2.425**) (-3.686***) (4.473***) 

LM-EWMA 
4.402*** -1.512 

 
-4.049*** 2.000** 

(8.584***) (-2.425**) (-5.665***) (4.148***) 

LM-EWMA-DCC 
5.211*** 2.721*** 4.049*** 

 
2.054** 

(8.969***) (3.686***) (5.665***) (4.602***) 

CGARCH-DCC 
-1.868* -1.929* -2.000** -2.054** 

 
(-3.770***) (-4.473***) (-4.148***) (-4.602***) 

Panel C. Quarterly Rebalancing 

EWMA  
-0.010 -3.648*** -1.470 2.383** 

(-2.014**) (-7.071***) (-4.371***) (2.762***) 

GARCH-DCC 
0.010 

 
-0.640 -1.438 2.639*** 

(2.014**) (-0.264) (-2.466**) (3.238***) 

LM-EWMA 
3.648*** 0.640 

 
-0.384 2.568*** 

(7.071***) (0.264) (-1.679*) (3.208***) 

LM-EWMA-DCC 
1.470 1.438 0.384 

 
2.732*** 

(4.371***) (2.466**) (1.679*) (3.416***) 

CGARCH-DCC 
-2.383** -2.639*** -2.568*** -2.732*** 

 
(-2.762***) (-3.238***) (-3.208***) (-3.416***) 
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Chapter 6  

The Economic Value of Long 

Memory Volatility Timing 

Extensive research suggests significant economic benefits to exploiting forecasts of 

multivariate conditional volatility models relative to using the unconditional covariance 

matrix estimator. Exploiting the predictability of volatility and covariance has become a 

key driver in many applied areas of finance, including asset allocation, asset pricing and 

risk management. Fleming et al. (2001) are among the first to study the economic value 

of predicting and timing volatility for risk averse investors in an asset allocation setting. 

Specifically, they show that investors are better off in terms of utility when switching 

from a static to a dynamic volatility timing strategy. Recent studies incorporate more 

properties of volatility dynamics in application to investment decisions. Thorpe and 

Milunovich (2007) allow for asymmetries in modelling volatility and correlation, and 

show that investors are willing to pay to switch from symmetric to asymmetric 

forecasts. Similarly, Hyde et al. (2010) demonstrate the benefits of accounting for 

volatility jumps in asset allocation strategies. In these dynamic economic value studies, 

the conditional covariance matrix is typically estimated applying popular conditional 

volatility models such as the multivariate EWMA or multivariate GARCH models, 

where shocks to volatility and covariance dissipate rapidly due to their exponential 

weighting. Consequently, most of the studies on the economic value of the short 

memory conditional covariance matrix focus on short horizon day traders. While this 

approach may make the most use of the forecast power of the short memory conditional 

volatility models, it may not nevertheless correspond to the needs of most practical 

investors, who often rebalance their portfolios at lower frequencies. 

This chapter examines the economic value of allowing for long memory volatility 

dynamics in forecasting the covariance matrix for asset allocation over both short and 

long horizons. In Chapter 5, multivariate long memory conditional volatility models 

have been found to produce better forecasts of the covariance matrix than those 

produced by multivariate short memory volatility models, especially for long horizons. 

The four multivariate long memory volatility models (the LM-EWMA, LM-EWMA-

DCC, FIGARCH-DCC and CGARCH-DCC models) are now compared with the two 
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multivariate short memory volatility models (the multivariate Riskmetrics EWMA and 

GARCH-DCC models) in terms of economic performance using the volatility timing 

framework of Fleming et al. (2001). For simplicity, I concentrate primarily on the one-

period mean-variance portfolio choice and ignore the hedging demands caused by time-

varying investment opportunities. The four data systems described in Chapter 4 are 

again employed to construct the optimal portfolios. Expected returns are assumed 

constant and investors periodically update their portfolios based on forecasts of the 

covariance matrix generated from conditional volatility models, i.e., they predict and 

time volatility. Dynamic portfolios constructed with alternative conditional volatility 

models are also evaluated against static portfolios constructed with the constant 

unconditional covariance matrix estimates, and equally-weighted portfolios. Portfolio 

performance is evaluated using the out-of-sample Sharpe ratio, the abnormal return and 

the performance fee that investors are willing to pay to switch from the static to the 

dynamic strategies. The effects of transaction costs are also considered. The research 

reports three main findings. First, consistent with the literature, the dynamic volatility 

timing strategies significantly outperform the static strategies in terms of different 

performance measures and across different rebalancing frequencies. Second, 

incorporating long memory in volatility dynamics brings further economic gains. The 

long memory volatility models consistently produce portfolios that are more 

economically useful than those produced by the short memory volatility models at all 

investment horizons. Among the long memory models, the two parsimonious LM-

EWMA models generally dominate. Third, when transaction costs are taken into 

account, the gains from daily rebalanced dynamic portfolios deteriorate. However, it is 

still worth implementing the dynamic strategies at lower rebalancing frequencies. The 

results apply to all four datasets, both low and high dimensions, and are robust to 

estimation error in expected returns, the choice of risk aversion coefficient and the use 

of a long-only constraint.     

The remainder of the chapter is structured as follows. Section 6.1 introduces the 

dynamic volatility timing framework applied to evaluate the economic benefits of the 

multivariate conditional volatility models. The empirical results are presented in Section 

6.2, while Section 6.3 offers some concluding comments and suggestions for future 

research. 
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6.1 The Economic Value of Dynamic Volatility Timing Strategy 

6.1.1 The Dynamic Volatility Timing Framework 

Suppose that an investor allocates tw  fraction of his wealth to n  risky assets and the 

remainder  '1 tw ι  to a risk-free asset, where ι  is the 1n  unit vector. Given the 

mean-variance optimization framework, the investor maximises his expected utility 

1 :tU   

   2
1 , 1 , 1max

2t
t p t p tE U

   
   
 w

  (6.1) 

where , 1p t   is the portfolio’s expected returns  ' '
, 1 1 1 f

p t t t t r    w μ w ι , 2
, 1p t   is the 

portfolio’s expected variance  2 '
, 1 1p t t t t   w H w , 1tμ  is the vector of expected returns, 

1tH  is the conditional covariance matrix, fr  is the risk-free rate and   is the risk 

aversion coefficient. Following Fleming et al. (2001), I assume constant expected 

returns 1t μ μ  so as to specifically examine the economic value of volatility timing. In 

the empirical study, I assume a risk free rate of 4% and a risk aversion coefficient of 1. 

Different values of   are later considered in the robustness test. Short sales are allowed 

and no transaction costs are included. The solution to this optimization problem is: 

  * 1
1

1 f
t t r



 w H μ ι . (6.2) 

If the covariance matrix is constant, the optimal weights will be constant over time, 

which is referred to as the ‘static strategy’. However, if the investor believes that the 

covariance matrix is time-varying, he will follow a ‘dynamic strategy’ to change the 

optimal weights based on his forecasts of the conditional covariance matrix. The 

investor will employ the six multivariate conditional volatility models studied in 

Chapter 5 to generate forecasts of the covariance matrix for the dynamic strategies. By 

comparing the performance of the static and dynamic portfolios, I can evaluate the 

economic value of volatility timing. The portfolios constructed with the four 

multivariate long memory volatility models (the LM-EWMA, LM-EWMA-DCC, 

FIGARCH(1,d,1)-DCC and CGARCH(1,1)-DCC models) are also compared to those 

constructed with the two short memory volatility models (the multivariate EWMA and 
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the GARCH(1,1)-DCC models) to specifically evaluate the gains of exploiting long 

memory vs. short memory properties of volatility. 

6.1.2 Performance Measures of the Dynamic Strategies 

The performance of the optimal portfolios is evaluated using three common 

performance measures. First, the out of sample Sharpe ratio of each portfolio is 

calculated as the sample mean of the realised portfolio excess returns over the risk free 

rate divided by their sample standard deviation,  p f pSR r   . Though the Sharpe 

ratio is the most common portfolio performance measure, Han (2006) argues that the ex 

post Sharpe ratio may be misleading in the sense that it does not take into account the 

time-varying conditional volatility. Using the realised sample standard deviation, the ex 

post Sharpe ratio may overestimate the conditional risk that an investor faces in a 

dynamic strategy, hence underestimating the performance of this strategy. Therefore, I 

additionally consider a Sharpe-related measure that compares the two portfolio 

performance on the same risk footing. In particular, I consider the abnormal return 

measure M2 of Modigliani and Modigliani (1997) that the dynamic strategy would earn 

if it had the same risk as the static benchmark. 

    2 s
d f s f

d

M r r
  


     (6.3) 

where ,s s   and ,d d   are the out-of-sample means and standard deviations of the 

static and dynamic portfolios, respectively. Note that this measure is directly related to 

the Sharpe ratios of the two strategies as  2 s d sM SR SR  .   

The third measure is the performance fee, suggested in Fleming et al. (2001) and now 

the most widely used performance measure in the volatility timing literature. Consider 

an investor with the quadratic utility function: 

   2
1 1 12t t t

a
U W W W    , (6.4) 

where  is the investor’s expected wealth. Assume that each day the investor fixes 

the amount of the initial wealth . Fleming et al. (2001) also fix the coefficient of 

relative risk aversion 1
t

t

aW
t aW   constant, and examine the average utility function: 

1tW 

0W
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    
1

2
0 , 1 1

0 2 1

T

p t t
t

U W R R





 


 
     

 . (6.5) 

By fixing  constant, the investor implicitly follows the approximation of a second 

order Taylor expansion of a non-quadratic utility. Constant relative risk aversion also 

implies that expected utility is linearly homogenous in wealth. The performance fee  

is defined as the maximum fee that the investor would be willing to pay to switch from 

a static strategy to a dynamic strategy, without being worse off in terms of utility. To 

estimate this fee, I find the value of  that equates the realised average utilities for two 

alternative portfolios: 

    
1 1

2 2
, 1 , 1 , 1 , 1

0 02(1 ) 2(1 )

T T

d t d t s t s t
t t

R R R R
 
 

 

   
 

      
   , (6.6) 

where  and  are the gross realised returns of the dynamic and static 

strategies, respectively. In the empirical analysis, I report the annualised performance 

fees in basis points for two different values of constant relative risk aversion 

coefficients , 1 and 5. 

6.1.3 Transaction Costs 

Volatility timing requires regular updates of portfolios, thus incurring non-trivial 

transaction costs. Transaction costs may be high enough to offset all the gains from the 

dynamic strategies. Transaction costs are hence examined to see if it is still worth 

following the dynamic strategies. Following Han (2006), I estimate the breakeven 

transaction cost τbe, defined as the transaction cost that make investors indifferent 

between the dynamic and the static strategies in terms of utility. If an investor has a 

transaction cost lower than the breakeven transaction cost, he will be better off with the 

dynamic strategy; otherwise he should follow the static benchmark. Han sets the 

transaction costs equal to a fixed percentage  of the value traded for all stocks. The 

costs for the static and dynamic strategies are given by 
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and  
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, respectively. (6.8) 

The breakeven transaction cost is computed by equating the utilities of the static and 

dynamic strategies after taking into account the trading costs. The higher the breakeven 

transaction cost, the more easily the dynamic trading strategies can be implemented. 

Since the breakeven transaction is a proportional cost paid every time the portfolios are 

rebalanced, I report this cost in basis points at the rebalancing frequency, e.g., for a 

daily rebalanced portfolio, I report the cost in daily basis points. Breakeven transaction 

costs are only estimated when the performance fees in (6.6) are positive. 

6.2 Empirical Results 

6.2.1 Low Dimensional Systems: The Stock-Bond and S&P500-DJIA 

Portfolios 

For each portfolio, the whole sample is divided into an estimation period (1 January 

1988 to 31 December 1993, 1517 daily observations) and a forecast period (1 January 

1994 to 31 December 2009, 4031 observations). Expected returns are assumed to be 

constant and set to the sample mean of the estimation period. The investor actively 

rebalances his portfolios periodically, based on changes in forecasts of the conditional 

covariance matrix. The estimation period is used to initiate the estimation of the 

conditional volatility models and generate one-step-ahead forecasts of the covariance 

matrix. The forecasts are then used, along with the constant expected returns, to 

compute the optimal portfolio weights. Realised portfolio returns at the next step are 

calculated. Then the estimation window is rolled forward one step, models re-estimated, 

forecasts made, portfolios rebalanced and realised returns calculated, and so on until the 

end of the sample is reached. The realised performance of the dynamic portfolios will 

be compared with that of the ex ante optimal static portfolio, constructed based on the 

sample mean and covariance matrix of the estimation period. Another benchmark is the 

equally weighted portfolio. 

Table 6.1 reports the out of sample performance of the daily rebalanced static and 

dynamic strategies. To estimate the FIGARCH model, I follow standard practice to use 

a truncation lag of 1000. It is clearly demonstrated that nearly all of the dynamic 

portfolios, except those constructed with the FIGARCH-DCC model, outperform the 

static and the equally weighted portfolios. Conditional volatility models consistently 
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produce portfolios with higher Sharpe ratios and positive abnormal returns. The passive 

investor is also willing to pay annualised performance fees of 9 to 41 bps for the Stock-

Bond portfolio and of 3 to 8 bps for the S&P500-DJIA portfolio to switch from the 

static to the dynamic strategies. These seemingly small fees are equal to 30% up to 

150% of the realised average returns of the static strategies. These findings are 

consistent with the literature (see, for example, Fleming et al., 2001, 2003, Han, 2006), 

confirming the value of volatility timing in asset allocation. Note that an investor with a 

low relative risk aversion coefficient   is more inclined to take risk, and vice versa. As 

a result, he is willing to pay more to switch to the more risky portfolios. For example, in 

the Stock-Bond system, where the static portfolio has lower risk than the dynamic 

portfolios, the performance fees that an investor with 1   is willing to pay are higher 

than those for an investor with 5  . Conversely, if the static portfolio has higher risk 

(as in the S&P500-DJIA portfolio), the more risk averse investor with high   is more 

willing to pay to switch to the dynamic strategies. Incorporating long memory in 

volatility dynamics brings further economic gains. The long memory LM-EWMA, LM-

EWMA-DCC and CGARCH-DCC models generally produce portfolios with higher 

Sharpe ratios, abnormal returns and performance fees than the short memory GARCH-

DCC model. The heavy parameterisation and computational burden evidently hinder the 

performance of the FIGARCH model, which systematically generates the least desirable 

portfolios. While the LM-EMWA-DCC model is the most economically useful model 

among the DCC models, embedding long memory volatility in the EWMA structure 

does not bring material benefits. The parsimony of the EWMA model offsets the 

possible gains from the more correctly specified, yet more complex LM-EWMA model. 

The EWMA model even outperforms the LM-EWMA model in terms of performance 

fees.  

Practical portfolio management often requires longer investment horizons. Thus I 

evaluate the benefits of the dynamic volatility timing strategies for horizons of up to one 

month. Tables 6.2 and 6.3 compare the out of sample performance of the weekly and 

monthly rebalanced portfolios, respectively. As previously, the equally weighted 

portfolios perform worse than the mean-variance efficient portfolios. Despite longer 

horizons, the performance of the dynamic strategies remains strong, with even higher 

Sharpe ratios and higher performance fees in most cases. For example, the Sharpe ratios 

of the LM-EWMA and LM-EWMA-DCC portfolios nearly double those of the static 

portfolios. Consistent with the previous findings, the long memory volatility models 
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significantly outperform the short memory GARCH-DCC model in most scenarios, 

again with the exception of the FIGARCH-DCC model. Among the long memory 

models, the LM-EWMA and LM-EWMA-DCC models generally dominate the 

CGARCH-DCC and FIGARCH-DCC models. The EWMA model still proves itself a 

simple, yet economically useful model. It is interesting to see the DCC models perform 

better in the high correlated S&P500-DJIA portfolio than in the low correlated Stock-

Bond portfolio. Experiments with a quarterly investment horizon, though not reported 

here, yield similar results.  

I now have a closer look on the gains of switching from the short memory GARCH-

DCC model to the long memory volatility alternatives. Table 6.4 suggests that the 

investor benefits from better covariance matrix estimators in his investment decisions. 

He is willing to pay to switch not only from the static to the dynamic portfolios, but also 

from the short memory GARCH to the long memory volatility timing strategies. For 

example, the investor readily pays around 26 bps to switch from the daily rebalanced 

Stock-Bond GARCH-DCC portfolio to the corresponding LM-EWMA portfolio 

without being worse off in terms of utility. The advantage of a simple model is also 

clearly demonstrated when the two parsimonious LM-EWMA models dominate the 

more complicated CGARCH-DCC model. The FIGARCH-DCC model, again, produces 

poor results. Though the FIGARCH-DCC portfolio unexpectedly generates the highest 

performance fees in the monthly rebalanced Stock-Bond portfolio, this is more likely to 

be a result of luck than as proof of a robust model. However, experiments with the short 

memory EWMA model produce contradictory results (Table 6.5). Though the EWMA 

portfolio underperforms the long memory portfolios in some cases in terms of the 

Sharpe ratio and the abnormal fee, it dominates in terms of the performance fee. The 

investor now is willing to pay to switch from the long memory portfolios back to the 

short memory EWMA portfolio. The long memory models, though correctly specified, 

may have high estimation error, which makes them underperform the misspecified short 

memory EWMA yet with less estimation error. This demonstrates the trade-off between 

estimation error and specification error.    

Dynamic strategies requires more trading than static strategies. In some cases, 

transaction costs may be high enough to offset all the gains from the dynamic strategies. 

To get a sense of the amount of trading required with each strategy, the breakeven 

transaction costs are calculated and reported in Table 6.6. Note that the higher the 

breakeven transaction costs, the easier the dynamic portfolios to be implemented. The 
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breakeven transaction costs of the daily rebalanced dynamic portfolios are quite low, 

especially for the S&P500-DJIA portfolio, suggesting that volatility timing may not be 

desirable for a day trader. For example, the breakeven transaction costs of the LM-

EWMA portfolio are around 9 bps for the Stock-Bond portfolio and only 2 bps for the 

S&P500-DJIA portfolio. With less frequent trading, the weekly and monthly rebalanced 

portfolios yield much higher breakeven transaction costs, making the dynamic strategies 

more feasible. The breakeven costs of the weekly and monthly rebalanced Stock-Bond 

portfolios constructed with the LM-EWMA model increase to 19 and 73 bps, 

respectively. Among the conditional volatility models, the EWMA, LM-EWMA and 

LM-EWMA-DCC models consistently produce portfolios that are not only the most 

superior in terms of Sharpe ratios, abnormal returns and performance fees, but also the 

most feasible in terms of transaction costs. The breakeven transaction costs of the LM-

EWMA portfolio, for example, are much higher than those of the GARCH-DCC, 

CGARCH-DCC and FIGARCH-DCC portfolios in both datasets and across all 

rebalancing frequencies.  

Estimation Error in Expected Returns 

Constructing optimal portfolios requires estimation of expected returns. The results so 

far are based on the constant sample returns of the estimation period. Fleming et al. 

(2001) suggest that using one vector of expected returns may be inappropriate. In this 

section, I consider a range of expected returns to control for their estimation error. 

Again, I follow Engle and Colacito (2006) to use all possible pairs of relative expected 

returns in the form of 20 20sin ,cosj j      , for  0, ,10j  . In the bivariate asset 

allocation framework, using the relative returns is sufficient to calculate the out of 

sample Sharpe ratio, which depends on the relative, not the absolute returns. Different 

absolute returns with the same proportion just move the optimal portfolio along the 

efficient frontier. This changes the portfolio’s expected return and volatility, but not its 

Sharpe ratio. Also following Engle and Colacito (2006), I estimate a weighted vector of 

expected returns using the Bayesian prior probabilities.10 The weighted vector of 

expected returns is higher than the sample mean since by construction, it does not 

include negative returns.  

                                                 
10 Details of Engle and Colacito’s (2006) weighted vector of expected returns have been described in 
Chapter 5. 
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Table 6.7 reports the out of sample Sharpe ratios of the optimal portfolios constructed 

using different covariance matrix estimators with all pairs of expected returns. It is 

clearly demonstrated that portfolios constructed with the pairs of expected returns that 

are close to the true vector of expected returns, such as the weighted returns, 

   , 0.95,0.31Stock Bond    and  0.99,0.16 , and    & 500 , 0.59,0.81S P DJIA    and 

 0.71,0.71 , generally yield the highest Sharpe ratios. Portfolio performance is similar 

to that with the ex ante sample mean. The static portfolios are generally dominated by 

the dynamic portfolios, among which the long memory portfolios are consistently the 

most desirable. As previously, the long memory LM-EWMA and LM-EWMA-DCC 

models outperform the short memory GARCH-DCC model and other long memory 

CGARCH-DCC and FIGARCH-DCC models in most vectors of expected returns. In 

particular, the LM-EWMA model performs best in the Stock-Bond portfolio with the 

Sharpe ratio, for example, equal to 0.5625 using the weighted returns, while the LM-

EWMA-DCC model dominates in the S&P500-DJIA portfolio, with a corresponding 

Sharpe ratio of 0.3227. The EWMA model, again, produces quite impressive portfolio 

performance. 

I then estimate the performance fee that the investor is willing to pay to switch from the 

static to the dynamic strategies. Note that the Sharpe ratio does not depend on the 

absolute returns, but the performance fee does. The magnitude of the performance fee is 

affected by the magnitude of the vector of expected returns. So when comparing the 

performance fees of alternative portfolios, I am concerned not with the absolute gains, 

but with the relative gains of the dynamic strategies. Table 6.8 reports the relative 

performance fees with 1  . For each vector of expected return, the highest positive 

performance fee is normalised to 100. A positive number means that the investor is 

willing to pay to switch from the static to the dynamic strategies. A “” sign indicates a 

negative performance fee, and so the investor will stay with the static strategy. A 

number of 95 means that the performance fee of the strategy in the corresponding 

column is equal to 95% of the highest performance fee. It is interesting to see that the 

simple EWMA model generally yields the highest performance fees. The two long 

memory LM-EWMA and LM-EWMA DCC models, though inferior to the EWMA 

model, consistently outperform the remaining models. The heavy parameterisation and 

computational burden evidently hinder the performance of the other two long memory 

models, especially the FIGARCH-DCC model. While the investor is still slightly better 

off with the CGARCH-DCC portfolio than with the short memory GARCH-DCC 
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portfolio, he will not under any circumstances switch to the FIGARCH-DCC portfolio, 

even from the static one. Again, the DCC models perform better in the high correlated 

S&P500-DJIA portfolio. An experiment with  gives similar results and is hence 

not reported. 

Estimation error in expected returns is also accounted for with longer investment 

horizons. Results of the weekly and monthly rebalanced portfolios are consistent and 

reported in Table 6.9 and Table 6.10, respectively. It is obvious that the long memory 

volatility models produce portfolios that are more economically beneficial than the 

static and the short memory volatility models. Though the CGARCH-DCC and 

FIGARCH-DCC models generate the best results in some cases, their outperformance is 

not consistent and robust, especially that of the FIGARCH-DCC model. On the 

contrary, the performance of the LM-EWMA and LM-EWMA models is quite steady 

and reliable across different vectors of expected returns for the two datasets and across 

different investment horizons.  

6.2.2 High Dimensional Systems: The International Stock and Bond and the 

DJIA Portfolios 

As with the low dimensional systems, the whole sample of the high dimensional 

systems is divided into an estimation period and a forecast period. For the international 

stock and bond portfolio, the estimation period is from 1 Jan 1988 to 31 Dec 1993 (312 

weekly observations) and the forecast period from 1 Jan 1994 to 31 Dec 2009 (835 

observations). The estimation period of the DJIA portfolio ranges from 1 Mar 1990 to 

29 Feb 1996 (1518 daily observations) and the forecast period from 1 Mar 1996 to 31 

Dec 2009 (3483 observations). I, again, construct the optimal dynamic portfolios using 

the ex ante mean of the estimation period and rebalance the portfolios periodically 

based on changes in forecasts of the conditional covariance matrix.  

Table 6.11 evaluates the out of sample performance of the weekly and monthly 

rebalanced international stock and bond portfolios. The FIGARCH-DCC model is 

excluded as it requires a prohibitively high upper lag cut-off. Similar results to the 

bivariate portfolios are identified. The dynamic strategies consistently outperform the 

static and the equally weighted strategies with all performance measures and 

rebalancing frequencies. The dynamic portfolios are generally more risky than the static 

portfolios, but they generate much higher returns, hence yielding very high Sharpe 

5 
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ratios. For example, the Sharpe ratios of the LM-EWMA portfolio are around 9 times as 

much as those of the static portfolio. Consequently, the annualised abnormal returns 

generated by the dynamic portfolios are relatively high, e.g., up to 3% with the LM-

EWMA portfolio. The dynamic strategies also yield large performance fees due to their 

high realised returns. A week trader would be willing to pay 805 to 1242 bps to switch 

from the static to the dynamic LM-EWMA strategy. Moving from weekly to monthly 

rebalancing frequencies improves the Sharpe ratio, abnormal return and breakeven 

transaction cost. Since the weekly rebalanced dynamic portfolios are more risky, 

relatively to the static portfolio, than the monthly rebalanced dynamic portfolios, the 

passive investor with high risk tolerance  1   is willing to pay more to switch at 

weekly rebalancing than at monthly rebalancing frequency. Conversely, the more risk-

averse investor  5  readily pays more when he rebalances monthly. Among the 

conditional volatility models, the LM-EWMA, LM-EWMA-DCC and EWMA models 

outperform significantly. While incorporating the long memory volatility dynamics in 

the DCC models significantly enhances portfolio performance, it is not so in the case of 

the non-DCC models. The trade-off is balanced between parsimony and correct 

specification; the difference between EWMA and LM-EWMA models is negligible in 

terms of Sharpe ratios and abnormal returns. Although it generally pays more to switch 

to the EWMA than to the LM-EWMA portfolios, it costs more in terms of transaction 

costs to implement the EWMA portfolio. 

Performance of the DJIA portfolio is reported in Table 6.12. Consistent with the 

previous results, the investor is better off with the dynamic strategies than he is with the 

static and the equally-weighted strategies. When transaction costs are taken into 

consideration, however, the dynamic strategies are only attractive for lower rebalancing 

frequencies. Allowing for long memory volatility dynamics in forecasting the 

covariance matrix brings substantial gains, again with the exception of the FIGARCH-

DCC model. The long memory LM-EWMA model generally produces superior 

portfolios to the short memory EWMA model, while the LM-EWMA-DCC and the 

CGARCH-DCC models systematically dominate the GARCH-DCC model. It is 

interesting to see the DCC structure performs remarkably well in this moderate 

correlation, high dimensional portfolio. In particular, the DCC models consistently 

outperform the simple cross product non-DCC models (EWMA and LM-EWMA 

models), which have so far been the best performing models. Also, owing to its 

parsimony, the LM-EWMA-DCC model consistently produces portfolios with the 
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highest Sharpe ratios, abnormal returns and performance fees at all horizons among the 

DCC models. The LM-EWMA-DCC portfolio is also the most feasible portfolio in 

terms of transaction costs. Note that in Chapter 5, the DCC models produce forecasts of 

the covariance matrix that are more statistically accurate and economically useful than 

the non-DCC models in high dimensional systems. The results here confirm the benefits 

of the DCC models for high dimensional systems in the volatility timing framework. 

The findings also identify the good performance of the DCC models in high correlation 

systems. The greater flexibility that arises from separately estimating volatility and 

correlation is again beneficial in the high dimensional and/or high correlation systems. 

It would be of interest to examine this issue further in future research.  

Estimation Error in Expected Returns 

To account for estimation error in expected returns, I follow Fleming et al.’s (2001) 

recommendation to consider a range of expected returns that are generated via a 

bootstrap procedure. An artificial sample of 4000 observations is created by randomly 

picking up blocks, with replacement, of 15 observations from the series of actual 

returns. I then estimate the unconditional mean and covariance matrix of this artificial 

return series. Dynamic portfolios are constructed using the constant unconditional 

expected returns from the bootstrap and forecasts of the conditional covariance matrix. 

To ensure the static and the dynamic portfolios are based on the same ex ante 

information, the static benchmark portfolio is formed using the bootstrap constant 

expected returns and covariance matrix. I repeat this procedure with 1000 trials, 

studying the economic gains of volatility timing across a wide range of plausible vectors 

of expected returns. 

Table 6.13 summarises the average results across the 1000 bootstrap vectors of expected 

returns for the international stock and bond portfolio. As with the previous results, it is 

obvious that the investor is willing to pay to switch from the static to the dynamic 

strategies, and from the short memory to the long memory volatility timing portfolios. 

The LM-EWMA model consistently produces the best portfolios in terms of all 

performance measures and across all investment horizons. Meanwhile, the LM-EWMA-

DCC model is also the best among the DCC models. The LM-EWMA portfolio 

outperforms the static portfolio in terms of the Sharpe ratio in more than 70% of all 

bootstrap vectors of returns. The investor is also better off by at least 300 bps and up to 

900 bps, on average, when switching to the LM-EWMA model. Evidence is similar for 
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the DJIA portfolios, in which the LM-EWMA-DCC model yields the most superior 

results (Table 6.14). Note that the performance of the LM-EWMA model improves 

significantly when estimation error in expected returns is accounted for. Unlike the 

previous dismal results, the LM-EWMA portfolio is now the second best portfolio at 

both daily and weekly rebalancing frequencies. The other non-DCC short memory 

EWMA model, however, still produces poor portfolios which are even dominated by 

the static portfolios. The economic gains of the dynamic strategies are also evaluated for 

a quarterly investment horizon and the findings are similar.  

The benefits of exploiting long memory vs. short memory volatility are now examined 

in greater detail. In particular, I evaluate the performance of the two best performing 

long memory and short memory volatility models in each dataset. Figure 6.1 shows the 

gains of employing the long memory LM-EWMA model relative to using the short 

memory EWMA model in the international stock and bond portfolio. The figure plots 

the realised Sharpe ratios for 1,000 trials of the bootstrap experiment. Each dot 

represents a separate trial, plotting the realised Sharpe ratios for both the short memory 

and the long memory volatility timing portfolios. The Sharpe ratio’s distributions are 

clearly above the 45-degree line, suggesting the outperformance of the long memory 

volatility timing strategy in both rebalancing frequencies. An experiment with the DJIA 

portfolio produces similar results, where portfolios constructed with the long memory 

LM-EWMA-DCC model yield higher Sharpe ratios than portfolios constructed with the 

short memory GARCH-DCC model in nearly 84% of total trials (Figure 6.2).   

Sensitivity to Risk Aversion Coefficient 

In this section, I evaluate the performance of the dynamic strategies, controlling for 

different risk aversion coefficients  . So far all reported results are based on 1  . For 

each value of the risk aversion coefficients  , I again generate 1,000 bootstrap vectors 

of expected returns and use them, along with the conditional covariance matrix 

estimates, to construct the optimal portfolios. Table 6.15 and Table 6.16 evaluate the 

performance of the dynamic long memory and short memory volatility timing strategies 

against the static strategies for the two datasets. In particular, I evaluate the LM-EWMA 

model against the EWMA model in the international stock and bond portfolio, and the 

LM-EWMA-DCC model against the GARCH-DCC model in the DJIA portfolio. Not 

surprisingly, when the investor is more risk averse, he will choose portfolios with lower 

risk, accepting lower expected returns, and paying lower performance fees. The Sharpe 
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ratios are approximately the same for all risk aversion coefficients, with the slight 

difference due to the bootstrap procedure. Again, the dynamic strategies – both long 

memory and short memory- consistently dominate the static strategies in both datasets 

with all rebalancing frequencies and risk aversion coefficients. In the international stock 

and bond portfolio, the long memory volatility timing portfolios yield higher Sharpe 

ratios than the static portfolios in over 70% of total trials. Though the long memory 

LM-EWMA portfolios also generally yield higher Sharpe ratios than the short memory 

EWMA portfolios, they underperform their short memory counterparts in terms of 

performance fees due to lower realised returns. In the DJIA portfolio, the long memory 

strategies, however, dominate the static and the short memory strategies by all 

performance measures with all risk aversion coefficients and across all investment 

horizons. 

6.2.3 Sub-period Performance 

Sub-period performance is of interest as the dynamic strategies can be evaluated 

through boom and bust periods. I study the sub-period performance of all four datasets, 

comparing the out of sample performance of the static strategy and the dynamic short 

memory and long memory strategies over the years. Following Han (2006), I calculate 

the yearly performance over the period from the beginning of the testing period 

(January 2, 1994) to the end of the target year. Some interesting observations emerge. 

First, our optimal portfolios, both static and dynamic, closely track the health of the 

economy. For example, the US portfolio returns decreased significantly after the 

dotcom crash in 2000 with a substantial increase in volatility, leading to a big drop in 

the Sharpe ratios. Then returns slowly increased, and so did the Sharpe ratios, but not 

back to the high level of the 1990s, before dropping again in 2008 when the recent 

recession started (Figure 6.3). Second, the dynamic strategies, especially the long 

memory volatility timing strategy, generally produce superior portfolios to the static 

strategy, especially in recession periods. The Sharpe ratios of both strategies evidently 

decreased when the market declined, yet the Sharpe ratio of the long memory volatility 

timing strategy dropped less markedly. The investor is also willing to pay more to 

switch to the dynamic strategies in recession periods than in normal periods. It may be 

inferred that the conditional volatility models better estimate high volatility in recession 

periods, helping the investor successfully control for the negative market changes by 

timing volatility in his investment decision. The results are consistent, even when 

accounting for estimation error in expected returns. To save space, only the average 
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year-on-year performance of the static and the long memory LM-EWMA strategies 

(with bootstrap vectors of expected returns) for the international stock and bond 

portfolio is reported (Table 6.17).  

6.2.4 An Additional Benchmark 

An additional benchmark is employed to evaluate the performance of the long memory 

volatility timing portfolios. A naive dynamic strategy is constructed using the rolling 

window equally weighted covariance matrix estimator. The rolling window equally 

weighted covariance matrix accounts for time-varying volatility across different rolling 

windows; however it places equal weights on recent and distant observations in the 

same window. The dynamic strategy based on the rolling window covariance matrix is 

found to outperform the static strategy. However, the long memory volatility models 

still time volatility better in this experiment. Table 6.18 compares the performance of 

the rolling window and the long memory LM-EWMA portfolios. At all investment 

horizons, the long memory strategy generally yields higher Sharpe ratios than the 

rolling window strategy, especially in the low correlation Stock-Bond and the moderate 

correlation international stock and bond portfolios. For example, the investor is willing 

to pay an annualised performance fee 1  of up to 686 bps to switch from the rolling 

weekly rebalanced international stock and bond portfolio to the corresponding long 

memory portfolio. Though the domination of the long memory strategy is not as clearly 

marked in the high correlation portfolios, it is still beneficial to switch to the LM-

EWMA model. Note that the gains from the long memory volatility timing strategy 

increase substantially in the higher correlation portfolios, especially in the high 

dimensional DJIA portfolio, when the LM-EWMA-DCC model is employed instead. 

6.2.5 Long-Only Constraints 

Short selling is generally not a common practice for most investors, and so in this 

section I evaluate the performance of the optimal portfolios under a long-only 

constraint. Besides, constraints are argued to be useful for controlling portfolio weights, 

hence reducing estimation error (see Frost and Savarino, 1988, Jagannathan and Ma, 

2003). The findings are summarised in Table 6.19. To save space, I only report the 

results of the static portfolio, the short memory GARCH-DCC portfolio and the two 

long memory LM-EWMA and LM-EWMA-DCC portfolios. Compared to the previous 

results when no nonnegative weight constraint is applied, the performance of the two 

bivariate portfolios under the constraint is the same. The optimiser may mostly choose 
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non-negative weights for the two bivariate portfolios even when no constraint is 

imposed. However, the results of the high dimensional portfolios are markedly 

different. Under the long-only constraint, portfolio performance, especially of the 

dynamic strategies, deteriorates significantly. For example, the Sharpe ratio of the 

weekly rebalanced LM-EWMA international and bond portfolio under the weight 

constraint is merely 0.3, as compared to that of 0.9 without the constraint. However, the 

long memory portfolios still dominate the static and the short memory portfolios in most 

cases. Again, the LM-EWMA model performs quite poorly, especially in the DJIA 

portfolio, where it is even dominated by the static unconditional alternative. The LM-

EWMA-DCC model, on the contrary, produces consistently favourable results and so 

does the CGARCH-DCC model (results are not reported here). Although the use of a 

long-only constraint makes the dynamic strategies less attractive, it reduces the turnover 

of the dynamic portfolios, making them easier to be implemented in practice. 

6.3 Conclusion 

This chapter examines the economic value of allowing for long memory volatility in 

forecasting the conditional covariance matrix for dynamic asset allocation. Consistent 

with the literature, the results clearly demonstrate that investors are willing to pay to 

switch from the static unconditional strategy to the dynamic volatility timing 

alternatives. The findings also suggest that better volatility forecasts lead to better 

investment decisions. The long memory volatility timing portfolios consistently 

dominate the short memory volatility timing portfolios with all performance measures 

and across all investment horizons, with the exception of the FIGARCH-DCC portfolio. 

The high degree of parameterisation and computational burden may generate such high 

estimation error that it is detrimental to the performance of the FIGARCH-DCC model. 

The advantage of a parsimonious model is also proved by the consistent dominance of 

the LM-EWMA and LM-EWMA-DCC models among the long memory models. When 

transaction costs are considered, however, the dynamic volatility timing strategies are 

only attractive at lower rebalancing frequencies. The results apply to all four datasets 

and are robust to estimation error in expected returns, the choice of risk aversion 

coefficient, sub-period performance, benchmark strategies and the use of a long-only 

constraint. 

The economic value of the conditional covariance matrix can be evaluated in some 

other directions. First, it would be of interest to extend the analysis in the context of 
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time-varying expected returns. Here, expected returns are simply and unrealistically 

assumed constant. However, time-varying volatility affects returns and it is hence not 

justifiable to separate the movement of expected returns with those of volatility and 

correlation. Second, it may be useful to study the economic value of dynamic strategies 

in an intertemporal asset allocation framework. Dynamic strategies may behave 

differently in the presence of hedging demands. Third, the study is limited to evaluating 

the economic value of the long memory conditional covariance matrix from the 

perspective of a risk-averse investor. One may want to examine the implications of the 

long memory conditional covariance matrix in other practical problems, e.g., in risk 

management.  

The poor performance of the non-DCC conditional covariance matrix estimators in the 

multivariate portfolios may point to another direction for future research. In Chapter 5, 

the non-DCC models have been found to produce poorer forecasts than the DCC models 

in high dimensional systems, and their underperformance in forecast power, in turn, 

leads to poorer volatility timing performance in asset allocation. It would be interesting 

to investigate this issue in greater detail. 
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Table 6.1. The Economic Values of Dynamic Strategies: Daily Rebalanced 
Bivariate Portfolios 

The table compares the out-of-sample performance of the daily rebalanced bivariate portfolios.  
Panel A reports results for the Stock-Bond portfolio, and panel B for the S&P500-DJIA 
portfolio. 1/N is the equally weighted portfolio. The static portfolio is constructed using the 
constant mean and covariance matrix of the estimation period. For each dynamic strategy, the 
table reports the average annualised realised return (μ), the annualised realised volatility (σ), the 
Sharpe ratio (SR), the annualised abnormal return to the static portfolio (M2), the average 
annualised performance fee (in basis points) ∆γ that an investor with a constant relative risk 
coefficient of γ is willing to pay to switch from the static portfolio to the dynamic portfolio.  

 (%)   (%) SR M2 (%) ∆1 ∆5 

Panel A. Stock-Bond Portfolio 

1/N 3.127 10.314 0.303 
Static 0.267 0.869 0.308 

Volatility Timing Portfolios 
EWMA 0.684 1.229 0.557 0.216 41 40 
GARCH-DCC 0.357 0.921 0.387 0.069 9 9 
LM-EWMA 0.622 1.072 0.580 0.236 35 34 
LM-EWMA-DCC 0.512 0.959 0.534 0.197 24 24 
CGARCH-DCC 0.421 0.916 0.460 0.132 15 15 
FIGARCH-DCC 0.101 2.642 0.038 -0.234 -20 -32 

Panel B. S&P500-DJIA Portfolio 

1/N 2.395 19.180 0.125    
Static 0.078 0.516 0.152    

Volatility Timing Portfolios 
EWMA 0.155 0.530 0.292 0.072 8 8 
GARCH-DCC 0.110 0.454 0.243 0.047 3 3 
LM-EWMA 0.135 0.466 0.291 0.072 6 6 
LM-EWMA-DCC 0.146 0.465 0.313 0.083 7 7 
CGARCH-DCC 0.115 0.476 0.241 0.046 4 4 
FIGARCH-DCC -0.363 2.808 -0.129 -0.145 -48 -63 
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Table 6.2. The Economic Values of Dynamic Strategies: Weekly Rebalanced 
Bivariate Portfolios 

The table compares the out-of-sample performance of the weekly rebalanced bivariate 
portfolios.  Panel A reports results for the Stock-Bond portfolio, and panel B for the S&P500-
DJIA portfolio. 1/N is the equally weighted portfolio. The static portfolio is constructed using 
the constant mean and covariance matrix of the estimation period. For each dynamic strategy, 
the table reports the average annualised realised return (μ), the annualised realised volatility (σ), 
the Sharpe ratio (SR), the annualised abnormal return to the static portfolio (M2), the average 
annualised performance fee (in basis points) ∆γ that an investor with a constant relative risk 
coefficient of γ is willing to pay to switch from the static portfolio to the dynamic portfolio.  

 (%)   (%) SR M2 (%) ∆1 ∆5 

Panel A. Stock-Bond Portfolio 

1/N 3.170 9.415 0.337 
Static 0.267 0.794 0.337 

Volatility Timing Portfolios 
EWMA 0.680 1.207 0.563 0.180 41 39 
GARCH-DCC 0.396 0.850 0.466 0.102 13 13 
LM-EWMA 0.579 1.016 0.570 0.185 31 30 
LM-EWMA-DCC 0.515 0.908 0.567 0.183 25 24 
CGARCH-DCC 0.486 0.846 0.574 0.188 22 22 
FIGARCH-DCC 0.357 1.586 0.225 -0.089 8 4 

Panel B. S&P500-DJIA Portfolio 

1/N 2.463 17.637 0.140    
Static 0.078 0.471 0.166    

Volatility Timing Portfolios 
EWMA 0.162 0.543 0.297 0.062 8 8 
GARCH-DCC 0.122 0.442 0.277 0.052 4 4 
LM-EWMA 0.145 0.465 0.311 0.068 7 7 
LM-EWMA-DCC 0.156 0.464 0.336 0.080 8 8 
CGARCH-DCC 0.121 0.464 0.261 0.045 4 4 
FIGARCH-DCC 0.096 1.460 0.065 -0.048 1 -3 
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Table 6.3. The Economic Values of Dynamic Strategies: Monthly Rebalanced 
Bivariate Portfolios 

The table compares the out-of-sample performance of the monthly rebalanced bivariate 
portfolios.  Panel A reports results for the Stock-Bond portfolio, and panel B for the S&P500-
DJIA portfolio. 1/N is the equally weighted portfolio. The static portfolio is constructed using 
the constant mean and covariance matrix of the estimation period. For each dynamic strategy, 
the table reports the average annualised realised return (μ), the annualised realised volatility (σ), 
the Sharpe ratio (SR), the annualised abnormal return to the static portfolio (M2), the average 
annualised performance fee (in basis points) ∆γ that an investor with a constant relative risk 
coefficient of γ is willing to pay to switch from the static portfolio to the dynamic portfolio.  

 (%)   (%) SR M2 (%) ∆1 ∆5 

Panel A. Stock-Bond Portfolio 

1/N 3.219 8.900 0.362 
Static 0.273 0.742 0.367 

Volatility Timing Portfolios 
EWMA 0.726 1.091 0.666 0.221 45 44 
GARCH-DCC 0.449 0.803 0.559 0.142 18 17 
LM-EWMA 0.659 0.987 0.667 0.222 38 38 
LM-EWMA-DCC 0.588 0.862 0.683 0.234 31 31 
CGARCH-DCC 0.519 0.814 0.638 0.201 25 24 
FIGARCH-DCC 0.827 1.244 0.665 0.221 55 53 

Panel B. S&P500-DJIA Portfolio 

1/N 2.398 16.623 0.144    
Static 0.078 0.457 0.170    

Volatility Timing Portfolios 
EWMA 0.192 0.518 0.370 0.092 11 11 
GARCH-DCC 0.150 0.452 0.331 0.074 7 7 
LM-EWMA 0.165 0.465 0.355 0.085 9 9 
LM-EWMA-DCC 0.172 0.468 0.367 0.090 9 9 
CGARCH-DCC 0.161 0.468 0.343 0.079 8 8 
FIGARCH-DCC 0.165 0.947 0.174 0.002 8 7 
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Table 6.4. Performance Fees to Switch from the Short Memory GARCH Volatility 
Timing Strategy to the Long Memory Volatility Timing Strategy 

The table measures the average annualised performance fees (in basis points) ∆γ that an investor 
with a constant relative risk coefficient of γ is willing to pay to switch from the portfolio 
constructed with the short memory GARCH model to the portfolios constructed with the long 
memory volatility models in the first column.  

Stock-Bond Portfolio S&P500-DJIA Portfolio 

∆1 ∆5 ∆1 ∆5 

Panel A. Daily Rebalancing 

LM-EWMA 26 26 3 2 
LM-EWMA-DCC 16 15 4 4 
CGARCH-DCC 6 6 0 0 
FIGARCH-DCC -29 -41 -51 -67 
Panel B. Weekly Rebalancing 

LM-EWMA 18 18 2 2 
LM-EWMA-DCC 12 12 3 3 
CGARCH-DCC 9 9 0 0 
FIGARCH-DCC -5 -8 -4 -8 
Panel C. Monthly Rebalancing 

LM-EWMA 21 20 2 2 
LM-EWMA-DCC 14 14 2 2 
CGARCH-DCC 7 7 1 1 
FIGARCH-DCC 37 36 1 0 
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Table 6.5. Performance Fees to Switch from the Short Memory EWMA Volatility 
Timing Strategy to the Long Memory Volatility Timing Strategy 

The table measures the average annualised performance fees (in basis points) ∆γ that an investor 
with a constant relative risk coefficient of γ is willing to pay to switch from the portfolio 
constructed with the short memory EWMA model to the portfolios constructed with the long 
memory volatility models in the first column.  

Stock-Bond Portfolio S&P500-DJIA Portfolio 

∆1 ∆5 ∆1 ∆5 

Panel A. Daily Rebalancing 

LM-EWMA -6 -5 -2 -2 
LM-EWMA-DCC -17 -16 -1 -1 
CGARCH-DCC -26 -25 -4 -4 
FIGARCH-DCC -61 -72 -56 -71 
Panel B. Weekly Rebalancing 

LM-EWMA -10 -9 -2 -1 
LM-EWMA-DCC -16 -15 -1 0 
CGARCH-DCC -19 -18 -4 -4 
FIGARCH-DCC -33 -35 -8 -11 
Panel C. Monthly Rebalancing 

LM-EWMA -7 -6 -3 -3 
LM-EWMA-DCC -14 -13 -2 -2 
CGARCH-DCC -20 -19 -3 -3 
FIGARCH-DCC 10 9 -3 -4 
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Table 6.6. Breakeven Transaction Costs of the Bivariate Portfolios 

The table reports the breakeven transaction costs τγ (in basis points) for daily, weekly and 
monthly rebalanced portfolios. Panel A reports results for the Stock-Bond portfolio, and panel B 
for the S&P500-DJIA portfolio. For each dynamic strategy, if an investor with a relative risk 
coefficient γ has a transaction cost lower than the breakeven transaction cost τγ, he will be better 
off with the dynamic strategy; otherwise he should follow the static strategy. The breakeven 
transaction costs are only estimated when the performance fees are positive. 

Daily rebalancing Weekly rebalancing Monthly rebalancing
τ1 τ5 τ1 τ5 τ1 τ5 

Panel A. Stock-Bond Portfolio 
EWMA 11 10 20 19 79 77 
GARCH-DCC 2 2 11 11 40 40 
LM-EWMA 9 9 19 19 75 73 
LM-EWMA DCC 5 5 17 17 70 70 
CGARCH-DCC 3 3 18 17 57 57 

FIGARCH-DCC   1 1 40 38 

Panel B. S&P500-DJIA portfolio 
EWMA 3 3 6 6 34 34 
GARCH-DCC 1 1 5 5 19 19 
LM-EWMA 2 2 6 6 28 28 
LM-EWMA DCC 2 2 7 7 27 27 
CGARCH-DCC 1 1 3 3 18 18 

FIGARCH-DCC   0  4 3 
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Table 6.7. Estimation Error in Expected Returns: The Sharpe Ratios of the Daily 
Rebalanced Bivariate Portfolios 

The table reports the out-of-sample Sharpe ratios of the daily rebalanced bivariate portfolios 
constructed with all possible pairs of expected returns. Panel A reports the Sharpe ratios for the 
Stock-Bond portfolio, and panel B for the S&P500-DJIA portfolio. Each row in the table reports 
the results for the pair of expected returns of the corresponding first two columns. The weighted 
returns are estimated using the Bayesian prior probabilities.  

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH
DCC 

FIGARCH
DCC Static 

0.00 1.00 0.227 -0.057 0.166 0.093 -0.022 0.243 0.016 
0.16 0.99 0.261 -0.026 0.204 0.127 0.012 0.239 0.035 
0.31 0.95 0.296 0.008 0.243 0.163 0.049 0.229 0.058 
0.45 0.89 0.333 0.046 0.285 0.204 0.090 0.213 0.085 
0.59 0.81 0.373 0.090 0.331 0.250 0.139 0.190 0.121 
0.71 0.71 0.417 0.143 0.383 0.304 0.197 0.161 0.168 
0.81 0.59 0.465 0.208 0.443 0.370 0.269 0.126 0.230 
0.89 0.45 0.515 0.286 0.508 0.446 0.355 0.088 0.294 
0.95 0.31 0.553 0.371 0.570 0.522 0.444 0.047 0.313 
0.99 0.16 0.551 0.437 0.599 0.556 0.500 0.006 0.271 
1.00 0.00 0.479 0.451 0.556 0.507 0.490 -0.034 0.217 
Weighted 0.549 0.360 0.563 0.513 0.433 0.052 0.314 

Panel B. S&P500-DJIA Portfolio 

µS&P500 µDJIA EWMA 
GARCH

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH
DCC 

FIGARCH
DCC Static 

0.00 1.00 -0.002 0.076 -0.011 0.056 0.030 0.243 0.164 
0.16 0.99 0.017 0.089 0.008 0.074 0.043 0.239 0.172 
0.31 0.95 0.045 0.109 0.036 0.101 0.063 0.229 0.184 
0.45 0.89 0.093 0.140 0.084 0.146 0.098 0.213 0.204 
0.59 0.81 0.186 0.196 0.180 0.230 0.165 0.190 0.232 
0.71 0.71 0.318 0.244 0.317 0.323 0.255 0.161 0.092 
0.81 0.59 0.272 0.156 0.273 0.228 0.188 0.126 -0.043 
0.89 0.45 0.195 0.080 0.198 0.139 0.118 0.088 -0.085 
0.95 0.31 0.151 0.041 0.156 0.092 0.082 0.047 -0.104 
0.99 0.16 0.124 0.019 0.130 0.065 0.061 0.006 -0.115 
1.00 0.00 0.105 0.004 0.112 0.046 0.047 -0.034 -0.123 
Weighted 0.316 0.245 0.314 0.323 0.254 0.052 0.099 
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Table 6.8. Estimation Error in Expected Returns: Relative Performance Fees of 
the Daily Rebalanced Bivariate Portfolios 

The table reports the relative performance fees that a day trader with a constant relatively risk 
aversion of 1 is willing to pay to switch from the static strategy to the dynamic trading 
strategies. Panel A reports the fees for the Stock-Bond portfolio, and panel B for the S&P500-
DJIA portfolio. Each row in the table reports the fees for the pair of expected returns of the 
corresponding first two columns. For each vector of expected return, the highest positive 
performance fee is normalised to 100. A number of 95 indicates that the performance fee is 
equal to 95% of the highest performance fee. A “” sign implies a negative performance fee and 
the investor will stay with the static strategy. The weighted returns are estimated using the 
Bayesian prior probabilities. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH

DCC 
LM 

EWMA 
LM-EWMA

DCC 
CGARCH

DCC 
FIGARCH 

DCC 
0.00 1.00 100 13 93 55 19 91 
0.16 0.99 100 4 92 52 14 68 
0.31 0.95 100  89 50 8 36 
0.45 0.89 100  87 47 5  
0.59 0.81 100  85 46 3  
0.71 0.71 100  84 48 5  
0.81 0.59 100  84 51 12  
0.89 0.45 100 2 87 57 24  
0.95 0.31 100 20 92 66 40  
0.99 0.16 100 43 100 78 60  
1.00 0.00 89 65 100 83 78  
Weighted 100 18 84 58 34  

Panel B. S&P500-DJIA Portfolio 

µS&P500 µDJIA EWMA 
GARCH

DCC 
LM 

EWMA 
LM-EWMA

DCC 
CGARCH

DCC 
FIGARCH 

DCC 
0.00 1.00 25 100 55 79 49  
0.16 0.99  100 36 74 29  
0.31 0.95  100  61   
0.45 0.89       
0.59 0.81       
0.71 0.71 100 64 92 94 70  
0.81 0.59 100 79 99 91 84  
0.89 0.45 97 86 100 91 87  
0.95 0.31 95 89 100 92 88  
0.99 0.16 93 91 100 92 88  
1.00 0.00 92 93 100 92 88  
Weighted 100 51 83 86 59  
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Table 6.9. Estimation Error in Expected Returns: The Sharpe Ratios of the 
Weekly Rebalanced Bivariate Portfolios 

The table reports the out-of-sample Sharpe ratios of the weekly rebalanced bivariate portfolios 
with all possible pairs of expected returns. Panel A reports the Sharpe ratios for the Stock-Bond 
portfolio, and panel B for the S&P500-DJIA portfolio. Each row in the table reports the results 
for the pair of expected returns of the corresponding first two columns. The weighted returns are 
estimated using the Bayesian prior probabilities. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH
DCC 

FIGARCH
DCC Static 

0.00 1.00 0.139 -0.038 0.060 0.078 0.000 0.081 0.017 
0.16 0.99 0.173 -0.004 0.099 0.113 0.039 0.101 0.036 
0.31 0.95 0.209 0.034 0.140 0.149 0.082 0.121 0.059 
0.45 0.89 0.248 0.076 0.184 0.190 0.129 0.142 0.087 
0.59 0.81 0.291 0.124 0.234 0.237 0.184 0.163 0.121 
0.71 0.71 0.341 0.182 0.292 0.293 0.251 0.183 0.168 
0.81 0.59 0.402 0.254 0.363 0.363 0.334 0.203 0.230 
0.89 0.45 0.473 0.344 0.450 0.450 0.438 0.218 0.301 
0.95 0.31 0.550 0.446 0.550 0.549 0.553 0.225 0.338 
0.99 0.16 0.599 0.530 0.633 0.615 0.634 0.220 0.305 
1.00 0.00 0.564 0.544 0.637 0.579 0.621 0.200 0.244 
Weighted 0.539 0.432 0.536 0.536 0.537 0.225 0.338 

Panel B. S&P500-DJIA Portfolio 

µS&P500 µDJIA EWMA 
GARCH

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH
DCC 

FIGARCH
DCC Static 

0.00 1.00 -0.001 0.068 0.000 0.044 0.007 0.149 0.158 
0.16 0.99 0.017 0.083 0.019 0.063 0.025 0.153 0.165 
0.31 0.95 0.044 0.104 0.046 0.090 0.051 0.158 0.175 
0.45 0.89 0.089 0.139 0.094 0.136 0.098 0.159 0.193 
0.59 0.81 0.180 0.206 0.189 0.227 0.197 0.132 0.223 
0.71 0.71 0.333 0.290 0.346 0.361 0.390 0.038 0.103 
0.81 0.59 0.292 0.196 0.293 0.266 0.304 -0.039 -0.045 
0.89 0.45 0.200 0.105 0.201 0.162 0.194 -0.076 -0.087 
0.95 0.31 0.151 0.061 0.152 0.110 0.143 -0.094 -0.105 
0.99 0.16 0.123 0.035 0.123 0.080 0.113 -0.105 -0.115 
1.00 0.00 0.104 0.018 0.104 0.061 0.094 -0.113 -0.122 
Weighted 0.330 0.289 0.342 0.359 0.385 0.042 0.111 
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Table 6.10. Estimation Error in Expected Returns: The Sharpe Ratios of the 
Monthly Rebalanced Bivariate Portfolios 

The table reports the out-of-sample Sharpe ratios of the monthly rebalanced bivariate portfolios 
with all possible pairs of expected returns. Panel A reports the Sharpe ratios for the Stock-Bond 
portfolio, and panel B for the S&P500-DJIA portfolio. Each row in the table reports the results 
for the pair of expected returns of the corresponding first two columns. The weighted returns are 
estimated using the Bayesian priors probability. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH
DCC 

FIGARCH
DCC Static 

0.00 1.00 0.120 0.001 0.108 0.139 0.095 0.006 0.044 
0.16 0.99 0.159 0.039 0.148 0.174 0.128 0.066 0.065 
0.31 0.95 0.199 0.080 0.191 0.211 0.163 0.129 0.089 
0.45 0.89 0.242 0.125 0.236 0.253 0.203 0.197 0.118 
0.59 0.81 0.292 0.178 0.288 0.301 0.250 0.273 0.154 
0.71 0.71 0.351 0.241 0.350 0.361 0.308 0.359 0.203 
0.81 0.59 0.424 0.320 0.426 0.437 0.384 0.456 0.268 
0.89 0.45 0.519 0.420 0.523 0.537 0.487 0.557 0.341 
0.95 0.31 0.639 0.536 0.642 0.659 0.613 0.650 0.372 
0.99 0.16 0.760 0.628 0.754 0.742 0.698 0.705 0.321 
1.00 0.00 0.773 0.626 0.763 0.663 0.620 0.699 0.245 
Weighted 0.622 0.520 0.624 0.642 0.596 0.639 0.373 

Panel B. S&P500-DJIA Portfolio 

µS&P500 µDJIA EWMA 
GARCH

DCC 
LM 

EWMA 

LM 
EWMA 

DCC 

CGARCH
DCC 

FIGARCH
DCC Static 

0.00 1.00 0.086 0.110 0.056 0.062 -0.018 -0.120 0.173 
0.16 0.99 0.104 0.125 0.074 0.079 -0.003 -0.107 0.179 
0.31 0.95 0.129 0.148 0.100 0.105 0.020 -0.085 0.189 
0.45 0.89 0.172 0.185 0.144 0.150 0.059 -0.039 0.205 
0.59 0.81 0.257 0.255 0.233 0.241 0.143 0.072 0.229 
0.71 0.71 0.403 0.343 0.391 0.402 0.299 0.191 0.103 
0.81 0.59 0.272 0.208 0.282 0.273 0.259 0.200 -0.057 
0.89 0.45 0.135 0.090 0.157 0.148 0.181 0.189 -0.102 
0.95 0.31 0.074 0.035 0.100 0.092 0.141 0.180 -0.120 
0.99 0.16 0.041 0.005 0.068 0.061 0.118 0.173 -0.130 
1.00 0.00 0.020 -0.014 0.048 0.041 0.102 0.167 -0.137 
Weighted 0.400 0.343 0.388 0.399 0.295 0.190 0.112 
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Table 6.11. Portfolio Performance of the International Stock and Bond Portfolio 

The table compares the out-of-sample performance of the optimal international stock and bond 
portfolio. Panels A and B report the results of the weekly and monthly rebalanced portfolios, 
respectively. The static portfolio is constructed using the constant mean and covariance matrix 
of the estimation period. For each dynamic strategy, the table reports the average annualised 
realised return (μ), the annualised realised volatility (σ), the Sharpe ratio (SR), the annualised 
abnormal return to the static portfolio (M2), the annualised performance fee (in basis points) ∆γ 
that an investor with a constant relative risk coefficient of γ is willing to pay to switch from the 
static portfolio to the dynamic portfolio, and the breakeven transaction cost τγ (in basis points) 
that he will be better off with the dynamic strategy. 

 
 (%)   (%) SR M2 (%) ∆1 ∆5 τ1 τ5 

Panel A. Weekly rebalancing 

1/N 3.911 12.996 -0.007   
Static 4.393 3.836 0.103   
Volatility timing strategies 
EWMA 48.263 46.839 0.945 3.232 3297 -1230 3  
GARCH-DCC 12.446 20.077 0.421 1.221 611 -173 1  
LM-EWMA 17.897 15.220 0.913 3.109 1242 805 7 4 
LM-EWMA-DCC 13.382 17.319 0.542 1.685 756 181 1 0 
CGARCH-DCC 12.067 16.521 0.488 1.480 638 118 2 0 

Panel B. Monthly rebalancing 

1/N 4.071 14.064 0.005      
Static 4.354 3.874 0.092      
Volatility timing strategies 
EWMA 20.060 14.468 1.110 3.947 1474 1074 11 8 
GARCH-DCC 9.954 12.512 0.476 1.489 489 199 3 1 
LM-EWMA 15.938 11.537 1.035 3.655 1099 858 12 9 
LM-EWMA-DCC 11.925 11.093 0.714 2.414 703 482 4 3 
CGARCH-DCC 9.660 12.662 0.447 1.378 458 160 5 2 
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Table 6.12. Portfolio Performance of the DJIA Portfolio 

The table compares the out-of-sample performance of the optimal DJIA portfolio. Panels A, B 
and C report the results of the daily, weekly, and monthly rebalanced portfolios, respectively. 
The static portfolio is constructed using the constant mean and covariance matrix of the 
estimation period. For each dynamic strategy, the table reports the average annualised realised 
return (μ), the annualised realised volatility (σ), the Sharpe ratio (SR), the annualised abnormal 
return to the static portfolio (M2), the annualised performance fee (in basis points) ∆γ that an 
investor with a constant relative risk coefficient of γ is willing to pay to switch from the static 
portfolio to the dynamic portfolio, and the breakeven transaction cost τγ (in basis points) that he 
will be better off with the dynamic strategy. 

 (%)   (%) SR M2 (%) ∆1 ∆5 τ1 τ5 

Panel A. Daily rebalancing 
1/N 5.428 21.191 0.067   
Static 4.166 1.796 0.092   
Volatility timing strategies 
EWMA 4.965 14.690 0.066 -0.048 -26 -452 0  
GARCH-DCC 4.620 3.294 0.188 0.172 42 26 3 2 
LM-EWMA 4.981 5.807 0.169 0.137 66 5 2 0 
LM-EWMA-DCC 5.014 3.352 0.303 0.378 81 65 6 4 
CGARCH-DCC 4.488 3.536 0.138 0.082 28 9 1 0 
FIGARCH-DCC 3.363 8.823 -0.072 -0.296 -118 -267   

Panel B. Weekly rebalancing 

1/N 5.509 19.265 0.078      
Static 4.170 1.660 0.102      
Volatility timing strategies 
EWMA 5.856 15.393 0.121 0.030 52 -420 1  
GARCH-DCC 4.587 3.394 0.173 0.117 37 20 7 4 
LM-EWMA 4.715 5.404 0.132 0.050 41 -12 2  
LM-EWMA-DCC 4.688 3.470 0.198 0.159 47 28 8 5 
CGARCH-DCC 4.560 3.536 0.158 0.093 34 15 7 4 
FIGARCH-DCC -1.712 18.124 -0.315 -0.693 -751 -1408   

Panel C. Monthly rebalancing 

1/N 5.427 19.835 0.072      
Static 4.182 1.649 0.111      
Volatility timing strategies 
EWMA 4.518 6.277 0.082 -0.046 15 -59 2  
GARCH-DCC 4.879 3.002 0.293 0.301 67 54 39 32 
LM-EWMA 4.481 4.565 0.105 -0.009 21 -16 4  
LM-EWMA-DCC 5.183 3.212 0.368 0.425 96 81 56 47 
CGARCH-DCC 4.978 3.271 0.299 0.311 76 59 43 34 
FIGARCH-DCC 3.227 6.275 -0.123 -0.386 -114 -188   
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Table 6.13. Average Portfolio Performance of the International Stock and Bond 
Portfolio with Bootstrap Experiments 

The table reports the average out-of-sample performance of the international stock and bond 
portfolio across a wide range of bootstrap-generated expected returns. An artificial sample of 
4000 observations is generated by randomly picking up blocks, with replacement, of 15 
observations from the series of actual returns. The procedure is repeated with 1,000 trials. 
Panels A and B report the results of the weekly and monthly rebalanced portfolios, respectively. 
The static portfolios are constructed using the bootstrap expected returns and covariance 
matrices. For each dynamic strategy, the table reports the average annualised realised return (μ), 
the average annualised realised volatility (σ), the average Sharpe ratio (SR), the p-value 
(proportion) that the dynamic strategy outperforms the static alternative in terms of the Sharpe 
ratio, the average annualised abnormal return to the static portfolio (M2), the average annualised 
performance fee (in basis points) ∆γ that an investor a constant relative risk coefficient of γ is 
willing to pay to switch from the static portfolio to the dynamic portfolio, and the average 
breakeven transaction cost τγ (in basis points) that he will be better off with the dynamic 
strategy. 

 
 (%)   (%) SR 

p-
value

M2 
(%) 

∆1 ∆5 τ1 τ5 

Panel A. Weekly rebalancing 

Static 5.557 3.408 0.458   
Volatility timing strategies 
EWMA 17.116 18.636 0.704 0.680 0.852 972 226 4 1 
GARCH 
DCC 

11.124 18.407 0.405 0.490 -0.176 374 -369 1  

LM-EWMA 15.629 15.399 0.744 0.713 0.988 883 382 5 2 
LM-EWMA 
DCC 

11.715 16.207 0.489 0.562 0.113 476 -91 1  

CGARCH 
DCC 

9.995 14.588 0.426 0.508 -0.102 331 -125 1  

Panel B. Monthly rebalancing 

Static 5.507 3.557 0.426       
Volatility timing strategies 
EWMA 16.987 17.064 0.764 0.712 1.225 993 343 7 3 
GARCH-
DCC 

10.063 14.954 0.434 0.557 0.039 334 -178 2  

LM-EWMA 14.606 12.713 0.832 0.740 1.463 827 486 8 5 
LM-EWMA 
DCC 

11.720 16.479 0.489 0.606 0.237 465 -200 2  

CGARCH 
DCC 

9.510 12.156 0.505 0.574 0.291 322 -2 3  
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Table 6.14. Average Portfolio Performance of the DJIA Portfolio with Bootstrap 
Experiments 

The table reports the average out-of-sample performance of the international stock and bond 
portfolio across a wide range of bootstrap-generated expected returns. An artificial sample of 
4000 observations is generated by randomly picking up blocks, with replacement, of 15 
observations from the series of actual returns. The procedure is repeated with 1,000 trials. 
Panels A, B and C report results for the daily, weekly and monthly rebalanced portfolios, 
respectively. The static portfolios are constructed using the bootstrap expected returns and 
covariance matrices. For each dynamic strategy, the table reports the average annualised 
realised return (μ), the average annualised realised volatility (σ), the average Sharpe ratio (SR), 
the p-value (proportion) that the dynamic strategy outperforms the static alternative in terms of 
the Sharpe ratio, the average annualised abnormal return to the static portfolio (M2), the average 
annualised performance fee (in basis points) ∆γ that an investor with a constant relative risk 
coefficient of γ is willing to pay to switch from the static portfolio to the dynamic portfolio, and 
the average breakeven transaction cost τγ (in basis points) that he will be better off with the 
dynamic strategy. 

 
 (%)  (%) SR p-value M2 (%) ∆1 ∆5 τ1 τ5 

Panel A. Daily rebalancing 

Static 4.620 3.197 0.201   
Volatility timing strategies 
EWMA 6.268 12.539 0.180 0.460 -0.045 90 -211 1  
GARCH-DCC 4.752 2.824 0.264 0.706 0.217 15 20 1 1 
LM-EWMA 5.489 5.080 0.290 0.726 0.307 79 48 2 1 
LM-EWMA-DCC 4.981 2.900 0.336 0.824 0.453 37 42 3 3 
CGARCH-DCC 4.802 2.948 0.269 0.697 0.230 19 23 1 1 
FIGARCH-DCC 4.295 8.474 0.051 0.184 -0.497 -66 -199   

Panel B. Weekly rebalancing 

Static 4.634 2.856 0.230   
Volatility timing strategies 
EWMA 5.248 5.748 0.215 0.466 -0.024 49 -2 3  
GARCH-DCC 4.702 2.766 0.252 0.576 0.080 7 9 1 2 
LM-EWMA 5.270 4.739 0.265 0.592 0.118 56 28 3 2 
LM-EWMA-DCC 4.772 2.969 0.260 0.590 0.111 14 13 2 2 
CGARCH-DCC 4.788 2.846 0.276 0.622 0.143 16 16 3 3 
FIGARCH-DCC 2.386 10.994 -0.129 0.023 -1.025 -288 -543   

Panel C. Monthly rebalancing 

Static 4.629 2.815 0.234       
Volatility timing strategies 
EWMA 5.145 5.457 0.211 0.442 -0.031 41 -5 5  
GARCH-DCC 4.750 2.453 0.306 0.693 0.229 13 18 8 11 
LM-EWMA 5.140 3.772 0.302 0.664 0.219 48 35 10 7 
LM-EWMA-DCC 4.967 2.516 0.387 0.830 0.467 35 39 21 24 
CGARCH-DCC 4.851 2.639 0.322 0.736 0.276 23 25 14 15 
FIGARCH-DCC 4.324 5.225 0.067 0.107 -0.459 -40 -81   
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Table 6.15. Comparison of the Static and the Dynamic Volatility Timing Strategies Using Different Risk Aversion Coefficients: International 
Stock and Bond Portfolio 

The table compares the average out-of-sample performance of the static and dynamic strategies with different risk aversion coefficients  . A bootstrap procedure is 
applied to account for estimation error in expected returns. An artificial sample of 4000 observations is generated by randomly picking up blocks, with replacement, 
of 15 observations from the series of actual returns. The procedure is repeated with 1,000 trials. Panels A and B report the results of the weekly and monthly 
rebalanced portfolios, respectively. The static portfolios are constructed using the bootstrap expected returns and covariance matrices. The short memory portfolios 
are constructed with the EWMA model, while the long memory model portfolios are constructed with the LM-EWMA model. For each dynamic strategy, the table 
reports the average annualised realised return (μ), the average annualised realised volatility (σ), the average Sharpe ratio (SR), the p-value (proportion) that the 
dynamic strategy outperforms the static alternative in terms of the Sharpe ratio, and the average annualised performance fee (in basis points) ∆γ that an investor with 
a constant relative risk coefficient of γ is willing to pay to switch from the static portfolio to the dynamic portfolio. 

Static Short memory  Short memory vs. Static Long memory Long memory vs. Static 

  μ (%) σ (%) SR μ (%) σ (%) SR p-value ∆1 ∆5 μ (%) σ (%) SR p-value ∆1 ∆5 

Panel A. Weekly rebalancing 

1 5.557 3.408 0.458 17.116 18.636 0.704 0.680 972 226 15.629 15.399 0.744 0.713 883 382 

2 4.783 1.714 0.458 10.825 9.336 0.728 0.697 558 369 10.033 7.715 0.766 0.729 493 367 

3 4.522 1.144 0.458 8.501 6.190 0.724 0.688 378 296 7.998 5.156 0.760 0.730 334 277 

4 4.391 0.853 0.460 7.306 4.709 0.707 0.698 280 232 6.909 3.887 0.742 0.725 244 212 

5 4.313 0.685 0.458 6.718 3.759 0.731 0.703 233 203 6.406 3.110 0.770 0.741 204 184 

Panel B. Monthly rebalancing 

1 5.507 3.557 0.426 16.987 17.064 0.764 0.712 993 343 14.606 12.713 0.832 0.740 827 486 

2 4.758 1.790 0.425 10.760 8.514 0.797 0.730 561 402 9.505 6.321 0.865 0.758 454 370 

3 4.506 1.194 0.425 8.458 5.637 0.795 0.723 378 309 7.644 4.219 0.860 0.755 305 268 

4 4.379 0.890 0.428 7.269 4.305 0.770 0.727 279 239 6.650 3.206 0.831 0.750 222 200 

5 4.303 0.714 0.425 6.692 3.451 0.791 0.735 233 207 6.196 2.571 0.858 0.764 186 172 
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Table 6.16. Comparison of the Static and the Dynamic Volatility Timing Strategies Using Different Risk Aversion Coefficients: DJIA Portfolio 
The table compares the average out-of-sample performance of the static and dynamic strategies using different risk aversion coefficients  . A bootstrap procedure is 
applied to control for estimation error in expected returns. The static portfolios are constructed using the bootstrap expected returns and covariance matrices. The 
short memory portfolios are constructed with the GARCH-DCC model, while the long memory portfolios are constructed with the LM-EWMA-DCC model. For 
each dynamic strategy, the table reports the average annualised realised return (μ), the annualised realised volatility (σ), the Sharpe ratio (SR), the p-value 
(proportion) that the dynamic strategy outperforms the static alternative in terms of the Sharpe ratio, and the annualised performance fee (in basis points) ∆γ that an 
investor with a relative risk coefficient of γ is willing to pay to switch from the static portfolio to the dynamic portfolio. 

Static Short memory  Short memory vs. Static Long memory Long memory vs. Static 

  μ (%) σ (%) SR μ (%) σ (%) SR p-value ∆1 ∆5 μ (%) σ (%) SR p-value ∆1 ∆5 

Panel A. Daily rebalancing 

1 4.620 3.197 0.201 4.752 2.824 0.264 0.706 15 20 4.981 2.900 0.336 0.824 37 42 

2 4.312 1.613 0.199 4.375 1.417 0.263 0.694 7 8 4.492 1.454 0.335 0.830 18 19 

3 4.204 1.060 0.200 4.250 0.937 0.265 0.719 5 5 4.328 0.962 0.337 0.848 12 13 

4 4.153 0.794 0.200 4.185 0.705 0.260 0.688 3 4 4.244 0.724 0.334 0.827 9 9 

5 4.123 0.636 0.200 4.149 0.560 0.264 0.704 3 3 0.704 2.6 2.9 0.816 7 7 

Panel B. Weekly rebalancing 

1 4.634 2.856 0.230 4.702 2.766 0.252 0.576 7 9 4.772 2.969 0.260 0.590 14 13 

2 4.320 1.442 0.228 4.350 1.386 0.250 0.579 3 4 4.380 1.494 0.255 0.573 6 6 

3 4.209 0.947 0.229 4.233 0.916 0.253 0.592 2 3 4.257 0.985 0.261 0.596 5 5 

4 4.157 0.709 0.230 4.174 0.690 0.250 0.560 2 2 4.191 0.743 0.258 0.553 3 3 

5 4.126 0.568 0.230 4.139 0.549 0.251 0.580 1 1 4.151 0.591 0.256 0.584 2 2 

Panel C. Monthly rebalancing 

1 4.629 2.815 0.234 4.750 2.453 0.306 0.693 13 18 4.967 2.516 0.387 0.830 35 39 

2 4.317 1.421 0.232 4.377 1.232 0.305 0.690 6 7 4.487 1.262 0.387 0.832 17 18 

3 4.207 0.933 0.233 4.252 0.812 0.310 0.704 5 5 4.325 0.832 0.392 0.852 12 12 

4 4.155 0.699 0.233 4.191 0.615 0.308 0.689 4 4 4.245 0.629 0.390 0.835 9 9 

5 4.125 0.559 0.233 4.152 0.489 0.310 0.706 3 3 4.194 0.500 0.389 0.826 7 7 
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Table 6.17. Yearly Performance of the International Stock and Bond Portfolio 

The table reports the average yearly performance of the international stock and bond portfolio. A 
bootstrap procedure is applied to control for estimation error in expected returns. The static portfolios 
are constructed using the bootstrap expected returns and covariance matrices, while the long memory 
volatility timing portfolios are constructed based on the bootstrap expected returns and forecasts of 
the conditional covariance matrix from the LM-EWMA model. The yearly performance is calculated 
over the period from the beginning of the testing period (January 2, 1994) to the end of the target year. 
The table reports the average annualised realised returns (μ), the annualised realised volatilities (σ), 
the Sharpe ratios (SR), the p-values (proportion) that the dynamic strategies outperform the static 
strategies in terms of the Sharpe ratio, and the average annualised performance fees ∆γ (in basis 
points) that an investor with a constant relative risk coefficient of γ is willing to pay to switch from 
the static portfolios to the dynamic portfolios. 

Static Long memory Long memory vs. Static 

Year μ (%) σ (%)  SR μ (%) σ (%) SR p-value ∆1 ∆5 
1994 5.874 2.054 0.921 9.968 5.108 1.173 0.680 398 353 
1995 4.396 2.259 0.185 7.948 5.175 0.760 0.888 344 299 
1996 5.958 2.100 0.944 9.170 5.205 0.997 0.593 310 263 
1997 6.680 2.383 1.131 9.706 5.482 1.051 0.462 290 240 
1998 6.012 2.717 0.743 9.121 5.772 0.896 0.644 298 244 
1999 7.310 2.762 1.202 9.586 6.131 0.925 0.301 212 150 
2000 7.062 2.873 1.068 9.741 6.369 0.913 0.409 251 184 
2001 6.718 3.105 0.877 9.754 6.463 0.901 0.542 287 219 
2002 5.718 3.256 0.529 9.983 6.761 0.886 0.715 408 334 
2003 5.542 3.400 0.455 10.454 7.203 0.880 0.757 470 384 
2004 5.492 3.351 0.447 10.507 7.566 0.843 0.767 477 378 
2005 5.973 3.284 0.602 10.955 8.125 0.838 0.684 469 349 
2006 6.060 3.220 0.641 13.439 9.301 0.973 0.698 697 530 
2007 5.926 3.205 0.603 13.041 11.101 0.804 0.661 650 400 
2008 5.321 3.389 0.391 14.957 15.036 0.716 0.714 846 369 
2009 5.557 3.408 0.458 15.629 15.399 0.744 0.713 883 382 
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Table 6.18. Comparison of Rolling Window and Long Memory Volatility Timing 

The table compares the out-of-sample performance of the rolling window and long memory volatility 
timing strategies. Expected returns are assumed constant and set to the unconditional mean of the 
estimation period. The rolling portfolio is constructed with rolling window unconditional covariance 
matrix estimator. The long memory volatility timing portfolio is constructed with the LM-EWMA 
model. The table reports the average annualised realised returns (μ), the annualised realised volatilities 
(σ), the Sharpe ratios (SR), the average annualised performance fees ∆γ (in basis points) that an 
investor with a constant relative risk coefficient of γ is willing to pay to switch from the rolling 

portfolio to the long memory portfolio, and the corresponding breakeven transaction costs   (in basis 

points). 

Rolling Long memory  Long memory  vs. Rolling 
Rebalancing μ (%) σ (%) SR μ (%) σ (%) SR ∆1 ∆5 τ1 τ5 
Panel A. Stock-Bond Portfolio 
Daily 0.367 0.959 0.383 0.622 1.072 0.580 25 25 7 7 
Weekly 0.364 0.890 0.409 0.579 1.016 0.570 21 21 13 13 
Monthly 0.383 0.851 0.451 0.659 0.987 0.667 27 27 56 55 

Panel B. S&P500-DJIA Portfolio 
Daily 0.133 0.438 0.303 0.135 0.466 0.291 0 0 0 0 
Weekly 0.133 0.403 0.330 0.145 0.465 0.311 1 1 1 1 
Monthly 0.137 0.404 0.339 0.165 0.465 0.355 3 3 9 9 

Panel C. International Stock and Bond Portfolio 
Weekly 10.220 8.278 0.751 17.897 15.220 0.913 686 356 5 2 
Monthly 9.870 7.031 0.835 15.938 11.537 1.035 565 390 7 5 

Panel D. DJIA Portfolio 
Daily 4.195 2.297 0.085 4.981 5.807 0.169 64 7 2 0 
Weekly 4.171 2.187 0.078 4.715 5.404 0.132 42 -7 2 
Monthly 4.251 2.085 0.121 4.481 4.565 0.105 15 -19 3 
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Table 6.19. Portfolio Performance under the Long-Only Constraint 

The table compares the out-of-sample performance of different optimal portfolios under the long-only constraint. Expected returns are assumed constant and 
set to the unconditional mean of the estimation period. For each strategy, the table reports the annualised average return μ (in percentage), the annualised 
volatility σ  (in percentage), the Sharpe ratio (SR), the annualised performance fee ∆1 (in basis points) that an investor with a constant relative risk coefficient 

of 1 is willing to pay to switch from the rolling portfolio to the long memory portfolio, and the corresponding breakeven transaction cost 1  (in basis points). 

 Static GARCH-DCC vs. Static LM-EWMA vs. Static LM-EWMA-DCC vs. Static 
 μ  σ SR μ σ SR ∆1 τ1 μ σ SR ∆1 τ1 μ σ SR ∆1 τ1 

Panel A. Stock-Bond Portfolio 

Daily 0.27 0.87 0.31 0.36 0.92 0.39 9 2 0.59 1.06 0.56 32 9 0.51 0.96 0.53 24 5 
Weekly 0.27 0.79 0.34 0.40 0.85 0.47 13 11 0.55 1.01 0.55 28 19 0.51 0.91 0.56 24 17 
Monthly 0.27 0.74 0.37 0.45 0.80 0.56 17 40 0.64 0.99 0.65 36 75 0.58 0.86 0.67 31 71 

Panel B. S&P500-DJIA Portfolio 

Daily 0.08 0.52 0.15 0.10 0.43 0.24 2 3 0.14 0.44 0.30 6 5 0.14 0.44 0.31 6 6 
Weekly 0.08 0.47 0.17 0.11 0.41 0.27 3 11 0.14 0.43 0.32 6 15 0.15 0.43 0.34 7 16 
Monthly 0.08 0.46 0.17 0.12 0.42 0.29 4 30 0.14 0.43 0.34 7 45 0.15 0.42 0.35 7 47 

Panel C. International Stock and Bond Portfolio 

Weekly 4.09 2.39 0.04 4.27 2.04 0.13 19 20 4.53 2.11 0.25 45 35 4.48 1.83 0.26 41 72  
Monthly 4.10 2.58 0.04 4.14 2.40 0.06 5 15 4.34 2.47 0.14 25 39 4.28 2.22 0.12 19 84 

Panel D. DJIA Portfolio 

Daily 4.20 1.72 0.12 4.23 2.14 0.11 1 0 4.01 2.44 0.01 -21  4.38 2.16 0.17 16 4 
Weekly 4.21 1.59 0.13 4.35 2.13 0.16 13 9 4.09 2.36 0.04 -13  4.41 2.16 0.19 19 12 
Monthly 4.21 1.54 0.14 4.42 1.93 0.22 20 46 4.31 2.03 0.15 10 15 4.55 1.97 0.28 33 75 
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Figure 6.1. International Stock and Bond Portfolio: The Sharpe Ratios of the Short Memory and Long Memory Volatility Timing Strategies.  

The figure plots the realised Sharpe ratios for 1,000 trials of the bootstrap experiment for the international stock and bond portfolio. Each dot represents a separate 
trial, plotting the realised Sharpe ratios for both the short memory and the long memory volatility timing portfolios. 
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Figure 6.2. DJIA Portfolio: The Sharpe Ratios of the Short Memory and Long Memory Volatility Timing Strategies.  

The figure plots the realised Sharpe ratios for 1,000 trials of the bootstrap experiment for the DJIA portfolio. Each dot represents a separate trial, plotting the realised 
Sharpe ratios for both the short memory and the long memory volatility timing portfolios. 
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Figure 6.3. Year-on-Year Sharpe Ratios of the Static and Long Memory Volatility Timing Portfolios.  

The figure plots the year-on-year performance of the static and long memory volatility timing portfolios, calculated over the period from the beginning of the testing 
period (January 2, 1994) to the end of the target year. 
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Chapter 7  

Dynamic Factor Long Memory 

Conditional Volatility  

Covariance matrix estimates are inevitably subject to estimation error. Estimation error 

may be excessive in the time-varying covariance matrix, not just because of the 

complexity in the estimation procedure of multivariate conditional volatility models, but 

also because of the shortened effective sample size due to exponential weighting of the 

volatility process. The high dimensionality and the use of the inverse covariance matrix 

typically encountered in asset allocation may further aggravate the estimation error 

problem. One popular approach to deal with estimation error is to impose a factor 

structure on the covariance matrix. Thanks to the ability of using some common factors 

to capture cross-sectional risk, factor models significantly reduce the number of 

parameters to be estimated, and hence reduce estimation error. Factor models also 

provide a better solution in the estimation of the inverse of the covariance matrix (see, 

for example, Fan et al., 2008 for a theoretical proof). The advantages of factor models 

relative to fully estimated covariance matrix estimators have been well documented in 

the literature and empirically confirmed in practice. Chan et al. (1999) study the 

performance of different fundamental factor models in a portfolio optimisation problem 

and show that factor models clearly improve forecasts of the covariance matrix. 

Similarly, Burmeister et al. (2003) consider a set of macroeconomic factors to construct 

superior portfolios. Commercially, MSCI BARRA has developed multifactor models 

covering the world’s major equity markets. Recent studies incorporate the factor 

structure in the time-varying conditional volatility framework and suggest significant 

economic benefits. For example, Briner and Connor (2008) allow for the dynamic 

variations of returns’ volatility and covariance by embedding an exponential weighting 

in the factor covariance matrix and prove that the conditional factor EWMA model 

outperforms the fully estimated EWMA model in terms of forecasts. Han (2006) 

develops a dynamic factor multivariate stochastic volatility model, which utilises 

unobserved factors to capture the dynamic  behaviour of volatility (and also of returns). 

He shows that in the asset allocation framework, investors are better off in terms of 

utility when employing a dynamic factor model relative to using an unconditional 

covariance matrix estimator.  
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This chapter studies the benefits of imposing a factor structure in the long memory 

volatility dynamics to reduce estimation error in forecasts of the covariance matrix. In 

so doing, I first develop a dynamic factor long memory conditional volatility model that 

can be implemented in the context of the high dimensional covariance matrices typically 

encountered in risk management and asset allocation. Given the parsimony and 

outperformance of the long memory LM-EWMA and LM-EWMA-DCC models in the 

previous chapters, I employ the LM-EWMA model to capture the high persistence of 

financial asset volatility. The Orthogonal Factor Long Memory conditional volatility 

(OFLM) model is achieved by embedding the univariate long memory EWMA model 

of Zumbach (2006) into an orthogonal factor structure. I allow the new factor model to 

adopt richer specifications than normally assumed, in which both the factors and the 

idiosyncratic shocks are modelled with long memory behaviour in their volatilities. The 

OFLM model is a generalisation of the Factor Double ARCH model of Engle (2009). 

The factor-structured OFLM model is initially evaluated in terms of forecast 

performance against the fully estimated Long Memory Exponentially Weighted Moving 

Average model of Zumbach (2009b), using the procedure of Engle and Colacito 

(2006).11 The performance of the OFLM model is also compared with that of a wide 

range of other multivariate conditional volatility models, both long memory and short 

memory, studied in the previous chapters. They include the three other long memory 

LM-EWMA-DCC, CGARCH-DCC and FIGARCH-DCC models and the two short 

memory Riskmetrics EWMA and GARCH-DCC models. The research then further 

evaluates the economic gains of employing the factor-structured long memory 

covariance matrix in the volatility timing framework of Fleming et al. (2001).12 

Portfolios constructed with the OFLM model are compared against those constructed 

with the other multivariate conditional volatility models, both short memory and long 

memory. All dynamic strategies are also evaluated against the static and the equally-

weighted strategies. Other benchmarks include the traditional unconditional factor 

model, and the dynamic factor short memory EWMA and GARCH models. 

As factor models are typically employed to improve estimates of the high dimensional 

covariance matrix, I employ the two multivariate portfolios for the empirical analysis, 

i.e., the international portfolio of 21 international stock indices and 13 international 

bond indices, and the US portfolio of the Dow Jones Industrial Index (DJIA) 

components. The analysis is conducted using data over the period 1 January 1988 to 31 

                                                 
11 Details of the Engle and Colacito’s (2006) framework  have been given in Chapter 5.  
12 The volatility timing framework of Fleming et al. (2001) has been described in Chapter 6. 
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December 2009. Expected returns are assumed constant and investors periodically 

update their portfolios based on forecasts of the conditional covariance matrix. The 

results consistently show that the factor-structured OFLM model dominates the fully 

estimated LM-EWMA model at all forecast horizons, confirming the advantage of the 

factor structure to reduce estimation error. The OFLM model also generates impressive 

forecasts of the covariance matrix as compared to other multivariate conditional 

volatility benchmarks. Portfolios constructed with the dynamic factor long memory 

OFLM model also consistently dominate other static and dynamic portfolios. The factor 

structure also significantly reduces transaction costs, making the dynamic strategies 

more feasible in practice. The results apply to the two datasets, and are robust to 

estimation error in expected returns, the choice of risk aversion coefficient and the 

choice of estimation window. The dynamic factor long memory volatility models are 

also found to generally outperform the unconditional factor and the dynamic factor short 

memory volatility models. 

The remainder of this chapter is organised as follows. Section 7.1 describes the 

Orthogonal Factor Long Memory conditional volatility model. Section 7.2 discusses the 

data and estimates the number of common factors. Section 7.3 evaluates the forecast 

performance of the new model, while Section 7.4 studies its economic usefulness in the 

volatility timing framework. The conclusion is given in Section 7.5.   

7.1 The Orthogonal Factor Long Memory Conditional Volatility 

Model 

Consider an n-dimensional vector of asset returns  1 2, , , , 't t t ntr r r r . In the factor 

framework, asset returns are decomposed linearly into two parts, i.e., the part of returns 

that is correlated to a set of risk factors and the part of remaining asset-specific returns: 

 t t t  r α Bf ε  (7.1) 

where tf  is a vector of q common risk factors  1 2, , , 't t t qtf f f f   q n , B is an 

n q  matrix of factor loadings, and tε  is a vector of asset-idiosyncratic returns. The 

vector of coefficients α  is set so that   0tE ε . The idiosyncratic shocks are assumed 

to be uncorrelated with the factors and uncorrelated with each other. The conditional 

covariance matrix tH  can thus be represented as:  
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 ,'t t t H BΩ B H  (7.2) 

where tΩ  is the covariance matrix of the common factors tf , and ,tH  is the covariance 

matrix of the residuals tε . The Orthogonal Factor Long Memory conditional volatility 

model assumes that the common factors are latent and orthogonal. The factor 

covariance matrix is then a diagonal matrix with the variance of ,i tf  on the ith diagonal  

 ,

2

i tt fdiag Ω . Since the residuals are uncorrelated, ,tH
 
is also a diagonal matrix 

 ,

2
, j tt diag H . For simplicity, I assume that the number of factors and the factor 

loadings are constant. Principal Components Analysis is applied to estimate the factor 

loadings B and to obtain the factors tf  and the residuals tε . 

In the OFLM model, both of the factors and the idiosyncratic shocks are time varying 

and exhibit long memory behaviour in volatility. The long memory volatilities of the 

factors and residuals are modelled using the univariate long memory EWMA model of 

Zumbach (2006). Remember that in the LM-EWMA model, long memory conditional 

volatility is defined as the weighted average of K standard (short memory) EWMA 

processes over increasing time horizons.  

 

2 2
1 ,

1

K

t k k t
k

w 


 , (7.3) 

where  

  2 2 2
, , 1 1k t k k t k tr      . (7.4) 

The EWMA process in (7.4) is characterised by its decay factor  1exp
kk    with the 

geometric characteristic time   1

1

k

k    . Zumbach (2006) sets   to the value of 2.

The long memory of the volatility process is embedded in the weights kw , which are 

assumed to decay logarithmically  
0

ln1
ln1 k

k Cw 
  , with the normalization factor C such 

that 1kk
w  . The long memory volatility can also be expressed in the form of the 

weighted average of past squared returns:   

 2 2

0
1 ( ) t i

i
t i r 




   (7.5) 
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with the logarithmically decaying weights  ( ) 1 k
i

k kk
i w    . Applying the LM-

EWMA model to the volatilities of the factors and of the residuals, I obtain: 

 

2
, 1

0

2 ( ) t i
i

f t i f 


 


  , (7.6) 

and  2
, 1

0

2 ( ) t i
i

t i  


 


  , (7.7) 

with ( )i  defined above. Following Zumbach (2006), I set the optimal time parameter 

values at 0   1560 days = 6 years, 1   4 days and K   512 days, which is equivalent 

to 15K  .   

The covariance matrices of the factors  ,

2

i tt fdiag Ω  and of the residuals 

 ,

2
, j tt diag H  are easily computed. Note that while the unconditional factors and 

residuals are uncorrelated, it does not necessarily imply that the conditional factors and 

residuals are uncorrelated. However, I assume no autocorrelation among the conditional 

factors and the conditional residuals so as to keep the parsimonious advantage of the 

model.  tΩ  and ,tH  are then combined to estimate the conditional covariance matrix 

tH . Under the assumption of serially uncorrelated factors and residuals, the forecast of 

the conditional covariance matrix over h steps is given by 

 1: 1: , 1:'t t h t t h t t h      H BΩ B H . (7.8) 

Since the long memory volatility is the sum of different EWMA processes over 

increasing time horizons, the volatility forecasts are straightforward to obtain using a 

recursive procedure (see Chapter 5 for more details). 

7.2 Data Analysis 

To evaluate the economic benefits of incorporating a factor structure in the long 

memory volatility framework to estimate the high dimensional covariance matrix, I 

employ the two high dimensional portfolios, i.e., the international stock and bond 

portfolio and the DJIA portfolio. The descriptive summary of the two datasets has been 

given in Chapter 4. Again, the whole sample is divided into an estimation period and a 

forecast period. As previously, for the international stock and bond portfolio, the 
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estimation period is from 1 Jan 1988 to 31 Dec 1993 (312 weekly observations) and the 

forecast period from 1 Jan 1994 to 31 Dec 2009 (835 observations). The estimation 

period of the DJIA portfolio ranges from 1 Mar 1990 to 29 Feb 1996 (1518 daily 

observations) and the forecast period from 1 Mar 1996 to 31 Dec 2009 (3483 

observations). Expected returns are assumed constant and so the investor actively 

rebalances his dynamic portfolios periodically, based on changes in forecasts of the 

conditional covariance matrix. The estimation period is used to initiate the estimation of 

the conditional volatility models to generate out-of-sample forecasts of the covariance 

matrix. The forecasts are then used to compute optimal portfolio weights. Realised 

portfolio returns at the next step are calculated. Then the estimation window is rolled 

forward one step, models re-estimated, forecasts made, portfolios rebalanced and 

realised portfolio returns calculated, and so on until the end of the sample is reached. I 

estimate the conditional covariance matrix, using all seven multivariate volatility 

models for the DJIA portfolio. They include the factor long memory OFLM model, the 

four long memory LM-EWMA, LM-EWMA-DCC, CGARCH(1,1)-DCC and 

FIGARCH(1,d,1)-DCC models, and the two short memory Riskmetrics EWMA and 

GARCH(1,1)-DCC models.  The FIGARCH-DCC model is, nevertheless, excluded in 

the international stock and bond portfolio owing to the prohibitively short estimation 

window. 

I assume the number of factors constant and determine it by applying the test of Alessi 

et al. (2007). This is the generalisation of the information criterion (IC) of Bai and Ng 

(2002) to choose the number of factors in dynamic factor models. Bai and Ng’s 

information criterion aims at minimizing the variances explained by the idiosyncratic 

components while penalizing the criterion to avoid over-parameterisation. Alessi et al. 

(2007) modify the penalty function in Bai and Ng’s criterion so that the criterion is 

evaluated against a whole family of penalty functions rather than only one specific 

function as in Bai and Ng. I apply the Alessi et al. test to the estimation period. Figure 

7.1 plots their modified Bai and Ng information criterion.13 Visually, the number of 

factors corresponds to the second stable region, i.e., the plateau of the solid line 

associated with the second flat zero-level dashed line. The criterion identifies four 

common factors for the international stock and bond portfolio and three factors for the 

DJIA portfolio. However, to evaluate the sensitivity of the choice of the number of 

factors, I employ two, three, and four common factors in the empirical study.  

                                                 
13 Figures are drawn employing the Matlab code provided by Barigozzi on his website at 
http://www.barigozzi.eu/research.html#codes. 
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7.3 Forecast Performance Evaluation 

The dynamic factor long memory conditional volatility model is evaluated in terms of 

forecast performance against the other multivariate conditional volatility models 

employed in the previous chapters, using the asset allocation framework of Engle and 

Colacito (2006). These are the four long memory LM-EWMA, LM-EWMA-DCC, 

CGARCH(1,1)-DCC and FIGARCH(1,d,1)-DCC models and the two short memory 

Riskmetrics EWMA and GARCH(1,1)-DCC models. Remember that in the mean-

variance optimisation framework, Engle and Colacito suggest the investor choose 

among competing covariance matrix forecasts based on the volatility of resulting 

portfolios. The best covariance matrix estimator produces the optimal portfolio with the 

lowest volatility, irrespective of both the expected returns and the target return. As with 

the previous experiments (see Section 5.3.2), I study the performance of the covariance 

matrix forecasts in two restricted cases, i.e., the global minimum variance portfolios 

where all expected returns are assumed to be equal, and the hedging portfolios where 

one asset is hedged against all other assets in the portfolio. In the hedging portfolios, 

expected returns are selected such that one entry is equal to one and all others are set to 

zero. The target excess return of the optimal portfolio is 1.14 

Table 7.1 reports the out-of-sample volatilities of the global minimum variance strategy 

across different investment horizons. The ‘Const’ portfolio is the fixed weight portfolio 

constructed with the unconditional covariance matrix of the estimation period. The 

‘OFLMα’ portfolio is constructed with the Orthogonal Factor Long Memory volatility 

model of α factors. Note that the FIGARCH-DCC model is excluded in the international 

stock and bond portfolio since its estimation requires a prohibitively high upper lag cut-

off. Following standard practice in the literature, I use a truncation lag for the 

FIGARCH model of 1000. The lowest volatility is, again, normalised to 100. Consistent 

with the previous findings, the dynamic portfolios systematically dominate the constant 

portfolios in terms of low volatility at all rebalancing frequencies. Among the dynamic 

portfolios, the long memory volatility portfolios, especially those constructed with the 

two LM-EWMA models, consistently outperform the short memory volatility 

portfolios. The FIGARCH-DCC model, however, yields quite dismal results, probably 

owing to its complexity in estimation. Imposing a factor structure in the long memory 

covariance matrix brings further benefits. The factor-structured OFLM model generally 

                                                 
14 Note, again, that the choice of the target return is immaterial in the sense that it does not affect the 
relative volatilities of portfolios. 
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gives superior forecasting results. In particular, the OFLM4 model produces the lowest 

portfolio volatility in three out of five experiments, and is among the top three models 

in the remaining two experiments. The results also suggest the importance of choosing 

the appropriate number of factors. Too few factors may not fully explain the 

comovement among assets, leading to the poor forecast performance of the OFLM2 

model. Note also that though the information criterion identifies three common factors 

for the DJIA portfolio, the OFLM3 model underperforms the OFLM4 model, 

suggesting that the number of factors may change in the forecasting period. 

The hedging portfolios bring mixed results. As the forecast performance of other 

multivariate conditional volatility models have been evaluated against each other in 

Chapter 5, in this section, I focus on the performance of the OFLM model. Table 7.2 

reports results of the Diebold-Mariano joint tests for the equality of different models 

with all hedging vectors of expected returns. Each cell in the table corresponds to the 

test of the hypothesis that the OFLMα model in the row and the benchmark model in 

the column are equal in terms of volatility forecasting against the alternative that the 

OFLMα model is better or worse than the benchmark. A positive sign of the t-statistics 

means that the OFLM model is better than the benchmark and vice-versa. It is clearly 

demonstrated that the factor-structured OFLM model dominates the fully estimated long 

memory LM-EWMA and the short memory EWMA models in both versions of the 

Diebold-Mariano test. However, the OFLM model fails to dominate the DCC models in 

other experiments. The LM-EWMA-DCC model consistently generates better forecasts 

of the covariance matrix than the OFLM model, especially in the standard Diebold-

Mariano tests. Though the equality hypothesis in terms of forecast performance cannot 

be rejected between the LM-EWMA-DCC and the OFLM models in the improved 

Diebold-Mariano tests, the sign of the t-statistics generally favours the LM-EWMA-

DCC model. The comparison results between the OFLM model and the other two DCC 

models, the short memory GARCH-DCC and the long memory CGARCH-DCC 

models, are mixed. For example, while the improved Diebold-Mariano tests generally 

yield favourable results for the OFLM model, their standard version supports the 

GARCH-DCC model. Similarly, the OFLM model performs better at short forecast 

horizons, while the CGARCH-DCC model dominates at longer horizons. 



 
194 

7.4 The Economic Value of the Dynamic Factor Long Memory 

Volatility Timing Strategy 

The economic value of the dynamic factor long memory volatility OFLM model is now 

analysed in greater depth, using the volatility timing framework of Fleming et al. 

(2001). Expected returns are, again, assumed constant and the investor periodically 

updates his portfolios based on forecasts of the conditional covariance matrix. Portfolio 

performance is evaluated using the out-of-sample Sharpe ratio, the abnormal return and 

the performance fee that the investor is willing to pay to switch from the static to the 

dynamic strategies. Transaction costs are also taken into consideration. To specifically 

evaluate the economic gains of imposing a factor structure in the long memory volatility 

framework, I initially compare the factor-structured OFLM model with the fully 

estimated long memory covariance matrix estimator, the LM-EWMA model. In Section 

7.4.5, I extend the analysis to other benchmarks, considering all the other multivariate 

conditional volatility models studied so far. I also compare the factor long memory 

OFLM model with the traditional unconditional factor and the dynamic factor short 

memory conditional volatility models in Section 7.4.6.   

7.4.1 Performance Analysis of the Dynamic Factor Long Memory Volatility 

Timing Strategy 

Table 7.3 reports the out of sample performance of the international stock and bond 

portfolio with weekly and monthly rebalancing frequencies. The performance of the 

dynamic portfolios is compared with that of the ex ante static portfolio, constructed 

based on the sample mean and covariance matrix of the estimation period. Another 

benchmark is the equally weighted portfolio. It is, again, obvious that all dynamic 

portfolios outperform the static and the equally weighted portfolios. The long memory 

volatility models consistently produce portfolios with higher Sharpe ratios and positive 

abnormal returns. The passive investor is also willing to pay annualised performance 

fees of 338 up to 1242 bps to switch from the static to the dynamic long memory 

volatility timing strategies. Imposing the factor structure in the long memory covariance 

matrix brings further gains. The OFLM model with the recommended number of factors 

(four factors) generally produces portfolios with higher Sharpe ratios than those 

produced by the LM-EWMA model. Note that incorporating too few factors (two 

factors) may not explain enough movement in the covariance matrix, leading to poor 

results. Due to lower realised portfolio returns, the OFLM portfolio nevertheless 
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generates lower performance fees than the LM-EWMA portfolio. With the relative risk 

aversion 1  , the performance fee of the OFLM4 portfolio is just around 420 bps 

compared to that of around 1100 bps of the LM-EWMA portfolio. However, the OFLM 

model yields much higher breakeven transaction costs, which make it much easier to be 

implemented in practice. For example, a week trader with 1   is only better off with 

the LM-EWMA portfolio if his realised transaction cost is lower than 7 bps, compared 

to that of 34 bps if he employs the corresponding OFLM4 portfolio. As expected, less 

frequent trading yields higher transaction costs. The breakeven transaction costs for a 

month trader are much higher than those for a week trader, making dynamic trading 

more feasible. The breakeven transaction costs  , by construction, can be interpreted 

as the performance fees after taking transactions into account, i.e., the transaction-

adjusted performance fees. Note that unlike the unadjusted performance fees, which are 

the absolute fees and reported in annualised basis points, the transaction-adjusted 

performance fees are the relative percentage of the value traded and reported in basis 

points at the rebalancing frequency. In this sense, when trading costs are allowed for, 

the investor is willing to pay more to switch from the static portfolios to the OFLM 

portfolio than to the LM-EWMA portfolio.  

Similar results are identified with the DJIA portfolio (Table 7.4). The dynamic OFLM 

strategy, especially the recommended one with three factors, consistently dominates 

other strategies, including the static, equally weighted and dynamic LM-EWMA 

portfolios in all performance measures and rebalancing frequencies. For example, the 

investor who rebalances his portfolio monthly is willing to pay performance fees from 

55 bps to 75 bps, or from 35 bps to 50 bps of the value traded when adjusted for trading, 

to switch from the static strategy to the dynamic OFLM strategy. The outperformance 

of the OFLM model relative to the LM-EWMA model is more clearly marked with this 

dataset. The Sharpe ratios of the OFLM portfolios with three and four factors are 

generally twice as much as those of the LM-EWMA portfolio. The OFLM portfolios 

also dominate in terms of abnormal returns, performance fees and breakeven transaction 

costs. Especially, the low breakeven transaction costs of the LM-EWMA portfolio make 

them undesirable for traders, who are, on the contrary, willing to adopt the OFLM 

portfolios. Again, it is of extreme importance to include the appropriate number of 

factors in estimating the covariance matrix (see the poor performance of the OFLM2 

model). The results also suggest that incorporating not enough factors is more 

detrimental to portfolio performance than incorporating more factors.   
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7.4.2 Estimation Error in Expected Returns 

Again, I follow Fleming et al.’s (2001) recommendation to consider a range of expected 

returns generated via a block bootstrap procedure. An artificial sample of 4000 

observations is created by randomly picking up blocks, with replacement, of 15 

observations from the series of actual returns. I then estimate the unconditional mean 

and covariance matrix of these artificial return series. Dynamic portfolios are 

constructed from the bootstrap unconditional expected returns and forecasts of the 

conditional covariance matrix, while static portfolios employ both bootstrap mean and 

covariance matrix estimates. I repeat this procedure 1000 times, studying the economic 

gains of volatility timing across a wide range of plausible vectors of expected returns. 

Table 7.5 reports the average results across the 1000 bootstrap vectors of expected 

returns for the international stock and bond portfolio. Again, it is clear that the investor 

is better off switching from the static to the dynamic, and from the fully estimated LM-

EWMA to the factor-structured OFLM volatility timing strategies. The OFLM model 

generates portfolios with positive abnormal returns and performance fees, and higher 

Sharpe ratios than those produced by the static unconditional covariance matrix 

estimator in all trials. The OFLM portfolio also dominates the LM-EWMA portfolio in 

terms of Sharpe ratios, abnormal returns and breakeven transaction costs (or trading-

adjusted performance fees), though the LM-EWMA portfolio outperforms in terms of 

unadjusted performance fees due to their higher realised portfolio returns. Among the 

factor models, the OFLM4 model performs best. For example, the OFLM4 model 

produces weekly rebalanced portfolios with the average Sharpe ratio of 1.537, as 

compared to that of just 0.744 generated by the LM-EWMA model. Figure 7.2 

illustrates the outperformance of the OFLM4 relative to the LM-EWMA portfolios in 

terms of Sharpe ratios and adjusted-performance fees (for 1  ). Similar results are 

reported for the DJIA portfolio, where the OFLM model generates the best performing 

portfolios in terms of all performance measures and across all investment horizons 

(Table 7.6). 

7.4.3 Sensitivity to Risk Aversion Coefficient 

Different risk aversion coefficients   are now employed to check the robustness of the 

dynamic portfolio performance. So far all reported results are based on 1  . For each 

value of risk aversion coefficients  , I repeat the experiment with 1,000 bootstrap 



 
197

vectors of expected returns. Table 7.7 compares the static and dynamic long memory 

strategies across different risk aversion coefficients for the international stock and bond 

portfolio. To save space, I only report the results of the factor-structured OFLM4 model 

and the unstructured LM-EWMA model. Expectedly, when the investor is more risk 

averse (higher values of  ), he will choose more conservative portfolios with lower risk 

and lower expected returns. The Sharpe ratios are approximately the same across all risk 

aversion levels, with the slight difference due to the bootstrap procedure. Consistent 

with the previous results, the dynamic portfolios, especially the factor portfolios, 

generate higher Sharpe ratios than the static portfolios in most bootstrap trials. The 

average Sharpe ratios of the factor portfolios are even three times as much as those of 

the static portfolios. Investors are also willing to pay to switch from the static portfolios 

to the dynamic portfolios. For example, the investor is willing to pay annualised 

performance fees of around 50 to 270 bps to switch from the static portfolios to the 

OFLM4 portfolios. Compared to the fully estimated LM-EWMA model, the factor 

OFLM model produces portfolios with higher Sharpe ratios, lower performance fees 

due to lower realised portfolio returns, but higher transaction-adjusted performance fees 

due to less trading. The OFLM model is hence more applicable and easier to be 

implemented in practice. Similar results apply to the DJIA portfolio where the OFLM 

portfolio dominates across all risk aversion coefficients and investment horizons (Table 

7.8). 

7.4.4 Sensitivity to Estimation Window 

As the factor loadings may be sensitive to the estimation window, different estimation 

windows are used for another robustness check. Experiments are, again, conducted with 

the bootstrap vectors of expected returns. Figure 7.3 shows the average Sharpe ratios of 

the dynamic strategies for different estimation windows. The OFLM model generally 

dominates the LM-EWMA model for all different estimation windows (4, 6, 8 and 10 

years of weekly and daily data). It is worth noticing that the Sharpe ratios of the factor 

model tend to decline with long windows (10 years of data), suggesting that estimating 

the factor loadings with too distant information may be inaccurate. 
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7.4.5 Performance Analysis with Other Multivariate Conditional Volatility 

Benchmarks 

The OFLM model is now evaluated against other multivariate conditional volatility 

models, including the two short memory Riskmetrics EWMA and GARCH(1,1)-DCC 

models and the three other long memory LM-EWMA-DCC, FIGARCH(1,d,1)-DCC 

and CGARCH(1,1)-DCC models. Table 7.9 compares the out-of-sample performance of 

the OFLM strategy with that of other volatility timing strategies for the DJIA portfolio. 

Results of the international stock and bond portfolio are similar and are reported in 

Table 7.10. It is clearly shown that the portfolios constructed using the OFLM model 

generally outperform those constructed using other conditional volatility models with 

all performance measures and across all investment horizons. The OFLM model 

produces portfolios with higher Sharpe ratios than those produced by any other 

conditional volatility model in around 72%  99% of all trials. Also, as the dynamic 

factor portfolios require less trading than other conditional volatility portfolios, the 

investor is always better off in terms of transaction costs when implementing the 

dynamic factor model. The breakeven transaction cost of Han (2006) is not applicable 

here as the dynamic factor portfolios typically have fewer transactions than the 

benchmarks. To get a sense of the amount of trading required to implement each 

strategy, I report the portfolio turnover instead. Turnover is defined as the average value 

traded for all stocks in each period, and equal to  
 

, 1

, 1
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1 1

t p t
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w 





   
 . As expected, 

the dynamic factor model consistently has the lowest turnover. Note again that among 

the conditional volatility models, the long memory LM-EWMA-DCC and CGARCH-

DCC models perform better than the two short memory EWMA and GARCH-DCC 

models, suggesting the benefits of allowing for long memory in volatility modelling. 

Though the FIGARCH model is also designed to capture long memory volatility, its 

high degree of parameterisation evidently hinders its performance, making it the worst 

model. 

7.4.6 Performance Analysis with Other Factor Models 

Other benchmarks are used to evaluate the performance of the dynamic factor long 

memory model. Previously, I examine the gains from embedding a factor structure in 

the long memory volatility framework. I now approach from the opposite direction, 

evaluating the benefits of allowing for long memory volatility dynamics in the factor 
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structure. In so doing, I compare the performance of the long memory factor model with 

the traditional statistical factor model. The OFLMα portfolio is hence evaluated against 

the corresponding traditional α-factor portfolio, where α is the number of factors. Again, 

the bootstrap procedure is employed to account for estimation error in expected returns. 

Results are reported in Table 7.11. The long memory factor model generally dominates 

the traditional factor model. In particular, in the international stock and bond dataset, the 

OFLM portfolios consistently yield higher Sharpe ratios in most of the trials. The 

investor is hence willing to pay up to 40 bps to switch from the traditional α-factor 

strategy to the long memory α-factor strategy. The OFLM portfolios perform a bit 

worse with the DJIA dataset, however the OFLM3 and OFLM4 portfolios still generate 

higher Sharpe ratios, higher performance fees and higher breakeven transaction costs 

than the corresponding traditional factor portfolios. The performance of the OFLM 

model is also compared with that of the orthogonal factor short memory volatility 

models, in which the volatilities of the factors and the residuals follow the EWMA and 

GARCH processes. The results are similar. The short memory factor models are found 

to consistently outperform the unconditional factor models, but they are generally 

dominated by the long memory factor models (see Appendices 7.1 and 7.2).   

7.5 Conclusion 

The chapter develops a dynamic factor long memory conditional volatility (OFLM) 

model that combines the long memory behaviour of volatility with the factor structure. 

The new model can capture the highly persistent property of financial volatilities 

observed in practice, while reducing estimation error in modelling high dimensional 

covariance matrices. The factor-structured OFLM model generally produces forecasts of 

the covariance matrix that are more economically useful than those produced by other 

multivariate conditional volatility models, both short memory and long memory. In the 

volatility timing framework, portfolios constructed with the OFLM model also 

dominate the static and other dynamic volatility timing portfolios for all rebalancing 

frequencies of up to one month. Employing the factor structure significantly reduces 

transaction costs, making dynamic trading more feasible. The findings also suggest that 

combining long memory volatility dynamics and a factor structure yields better results 

than employing long memory volatility or a factor structure alone. The results apply to 

both high dimensional datasets and are robust to estimation error in expected returns, 

the choice of risk aversion coefficient, and the length of estimation window. 
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Factor loadings are assumed constant in the OFLM model. It would be of interest to 

relax this assumption, developing a dynamic factor model with conditional betas. Also, 

expected returns may be time-varying and another promising line of research is to 

construct dynamic autoregressive factor models that are able to estimate both expected 

returns and the covariance matrix for asset allocation.  

(Zumbach, 2009a) 
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Table 7.1. Comparison of Out-of-Sample Volatilities 

The table reports the out-of-sample volatilities of the global minimum variance portfolios across 
different investment horizons. The ‘OFLMα’ portfolio is constructed with the Orthogonal 
Factor Long Memory volatility model with α factors.  The FIGARCH-DCC model is excluded 
in the international stock and bond portfolio owing to short estimation window. Daily, weekly, 
monthly are the rebalancing frequencies. The lowest volatility in each column is normalised to 
100. 

 
International Stock and 

Bond Portfolio 
DJIA Portfolio 

 Weekly Monthly Daily Weekly Monthly 
Const 109.661 107.906 126.391 114.250 123.192 
EWMA 135.112 105.112 126.670 129.893 111.162 
GARCH-DCC 121.861 118.310 103.958 105.993 108.153 
LM-EWMA 109.333 100.000 104.921 107.466 104.375 
LM-EWMA-DCC 113.021 103.162 100.000 103.825 103.336 
CGARCH-DCC 112.924 111.517 101.066 102.086 104.115 
FIGARCH-DCC െ െ 125.296 117.817 122.747 
OFLM2 102.241 106.403 104.943 107.021 105.204 
OFLM3 101.162 107.183 104.123 103.427 103.895 
OFLM4 100.000 103.248 100.887 100.000 100.000 
 

 

 

 



 

 

202 

Table 7.2. Diebold–Mariano Tests of the Hedging Portfolios 

The table reports the t-statistics of the Diebold–Mariano joint tests for the hedging multivariate portfolios, using the improved test of Engle and Colacito (2006). 
Panel A corresponds to the international stock and bond portfolio, while Panel B corresponds to the DJIA portfolio. The t-statistics for the standard test are reported 
in parentheses. The ‘OFLMα’ portfolio is constructed with the Orthogonal Factor Long Memory volatility model with α factors. The FIGARCH-DCC model is 
excluded in the international stock and bond portfolio owing to short estimation window. A positive number indicates that the model in the row is better than the 
model in the column, and vice-versa. *, ** and *** denote rejection of the equality hypothesis of the two models at 10%, 5% and 1% significance level. 

Panel A. International Stock and Bond Portfolio 

 EWMA GARCH DCC LM-EWMA 
LM-EWMA 

 DCC 
CGARCH 

DCC 
OFLM2 OFLM3 OFLM4 

A1. Weekly Rebalancing 

OFLM2 
2.84*** 1.07 2.06** -0.57 0.98 

െ 
(-3.17***) -2.08** 

(5.70***) (-0.41) (3.19***) (-4.28***) (0.14) (-5.91***) (-6.51***) 

OFLM3 
3.20*** 1.57 2.47** 0.04 1.55 (3.17***) 

െ 
-0.59 

(6.98***) (-0.94) (4.50***) (-2.80***) (1.42) (5.91***) (-3.81***) 

OFLM4 
3.56*** 1.75* 2.80*** 0.23 1.73* 2.08** 0.59 

െ 
(7.60***) (1.69*) 5.16***) (-1.78*) (2.12**) (6.51***) (3.81***) 

A2. Monthly Rebalancing 

OFLM2 
1.33 -0.15 0.71 -1.73* -1.04 

െ 
-1.45 -1.90* 

2.85*** (-0.75) (0.38) (-3.45***) (-2.13**) (-2.25**) (-3.42***) 

OFLM3 
1.62 0.18 0.95 -1.62 -0.85 1.45 

െ 
-1.72* 

(3.74***) (-0.25) (1.10) (-2.97***) (-1.61) (2.25**) (-3.05***) 

OFLM4 
1.95* 0.66 1.25 -1.39 -0.56 1.90* 1.72* 

െ 
(5.11***) (0.53) (2.30**) (-2.32**) (-0.75) (3.42***) (3.05***) 
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Panel B. DJIA Portfolio 

 EWMA 
GARCH 

DCC 
LM 

EWMA 
LM-EWMA 

DCC 
CGARCH 

DCC 
FIGARCH 

DCC 
OFLM2 OFLM3 OFLM4 

B1. Daily Rebalancing 

OFLM2 
9.03*** -1.4248 7.04*** -2.75*** -1.83* 3.13*** 

െ 
-4.65*** -3.71*** 

(30.26***) (-11.51***) (15.37***) (-12.41***) (-11.22***) (5.98***) (-9.88***) (-9.68***) 

OFLM3 
9.22*** -0.8475 7.95*** -2.28** -1.24 3.11*** 4.65*** 

െ 
-2.87*** 

(30.74***) (-9.18***) (17.39***) (-10.35***) (-8.89***) (6.56***) (9.88***) (-6.45***) 

OFLM4 
9.06*** 0.8621 8.07*** -1.0816 0.67 3.49*** 3.71*** 2.87*** 

െ 
(30.55***) (-7.69***) (19.77***) (-10.42***) (-7.36***) (6.95***) (9.68***) (6.45***) 

B2. Weekly Rebalancing 

OFLM2 
5.42*** -0.10 4.48*** -1.61 -0.13 1.37 

െ 
-3.33*** -2.37** 

(11.35***) (-8.48***) (7.97***) (-9.51***) (-6.35***) (2.19**) (-6.22***) (-7.32***) 

OFLM3 
5.46*** 0.78 4.67*** -0.93 0.43 1.38 3.33*** 

െ 
-1.36 

(12.06***) (-6.27***) (9.00***) (-7.77***) (-4.20***) (2.35**) (6.22***) (-4.95***) 

OFLM4 
6.09*** 1.22 5.07*** -0.18 1.13 1.45 2.37** 1.36 

െ 
(12.95***) (-3.63***) (10.02***) (-5.45***) (-2.42**) (2.47**) (7.32***) (4.95***) 

B3. Monthly Rebalancing 

OFLM2 
4.96*** -0.21 2.48** -2.43** -3.19*** 1.42 

െ 
-2.36** -2.36** 

(7.67***) (-5.36***) (2.87***) (-8.36***) (-6.62***) (1.66*) (-3.19***) (-4.34***) 

OFLM3 
5.48*** 0.12 3.14*** -1.45 -2.34** 1.41 2.36** 

െ 
-1.42 

(8.48***) (-3.85***) (3.88***) (-7.08***) (-5.46***) (1.80*) (3.19***) (-3.02***) 

OFLM4 
(5.90***) 0.24 3.92*** -0.79 -1.83* 1.48 2.36** 1.42 

െ 
(9.31***) (-2.41**) (5.02***) (-4.90***) (-4.25***) (1.94*) (4.34***) (3.02***) 
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Table 7.3. Portfolio Performance of the International Stock and Bond Portfolio 

The table compares the out-of-sample performance of the optimal international stock and bond 
portfolio. Panels A and B report results for the weekly and monthly rebalanced portfolios, 
respectively. 1/N is the equally weighted portfolio. The static portfolio is constructed using the 
constant mean and covariance matrix of the estimation period. The ‘OFLMα’ portfolio is constructed 
with the Orthogonal Factor Long Memory volatility model with α factors. For each dynamic volatility 
timing strategy, the table reports the annualised average return (μ), the annualised volatility (σ), the 
Sharpe ratio (SR), the annualised abnormal return (M2) to the static portfolio, the annualised 
performance fee (in basis points) ∆γ that an investor with a constant relative risk coefficient of γ is 
willing to pay to switch from the static portfolio to the dynamic portfolio, and the breakeven 
transaction cost τγ (in basis points at the rebalancing frequency) that he is better off with the dynamic 
strategy. 

 
 (%)   (%) SR M2 (%) ∆1 ∆5 τ1 τ5 

Panel A. Weekly rebalancing 

1/N 3.911 12.996 -0.007   
Static 4.393 3.836 0.103   
Volatility timing strategies 
LM-EWMA 17.897 15.220 0.913 3.109 1242 805 7 4 
OFLM2 7.853 4.217 0.914 3.112 344 338 33 31 
OFLM3 7.932 4.088 0.962 3.296 353 349 30 30 
OFLM4 8.622 4.410 1.048 3.628 421 411 34 32 

Panel B. Monthly rebalancing 

1/N 4.071 14.064 0.005      
Static 4.354 3.874 0.092      
Volatility timing strategies 
LM-EWMA 15.938 11.537 1.035 3.655 1099 858 12 9 
OFLM2 7.903 4.435 0.880 3.055 353 343 64 61 
OFLM3 8.026 4.141 0.972 3.412 366 362 60 59 
OFLM4 8.701 4.504 1.044 3.690 432 421 67 64 
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Table 7.4. Portfolio Performance of the DJIA Portfolio 

The table compares the out-of-sample performance of the optimal DJIA portfolios. Panels A, B and C 
report results for the daily, weekly and monthly rebalanced portfolios, respectively. 1/N is the equally 
weighted portfolio. The static portfolio is constructed using the constant mean and covariance matrix 
of the estimation period. The ‘OFLMα’ portfolio is constructed with the Orthogonal Factor Long 
Memory volatility model with α factors. For each dynamic volatility timing strategy, the table reports 
the annualised average return (μ), the annualised volatility (σ), the Sharpe ratio (SR), the annualised 
abnormal return (M2) to the static portfolio, the annualised performance fee (in basis points) ∆γ that 
an investor with a constant relative risk coefficient of γ is willing to pay to switch from the static 
portfolio to the dynamic portfolio, and the breakeven transaction cost τγ (in basis points at the 
rebalancing frequency) that he is better off with the dynamic strategy. 

 (%)   (%) SR M2 (%) ∆1 ∆5 τ1 τ5 

Panel A. Daily rebalancing 
1/N 5.428 21.191 0.067   
Static 4.166 1.796 0.092   
Volatility timing strategies 
LM-EWMA 4.981 5.807 0.169 0.137 66 5 2 0 
OFLM2 4.328 3.721 0.088 -0.008 11 -10 1 
OFLM3 4.974 3.408 0.286 0.347 77 60 7 6 
OFLM4 5.011 3.435 0.294 0.363 80 63 8 6 

Panel B. Weekly rebalancing 

1/N 5.509 19.265 0.078      
Static 4.170 1.660 0.102      
Volatility timing strategies 
LM-EWMA 4.715 5.404 0.132 0.050 41 -12 2 
OFLM2 4.112 3.823 0.029 -0.121 -12 -36  
OFLM3 4.753 3.484 0.216 0.189 54 35 11 7 
OFLM4 4.625 3.371 0.185 0.138 41 24 8 5 

Panel C. Monthly rebalancing 

1/N 5.427 19.835 0.072      
Static 4.182 1.649 0.111      
Volatility timing strategies 
LM-EWMA 4.481 4.565 0.105 -0.009 21 -16 4 
OFLM2 4.439 3.909 0.112 0.003 19 -6 12 
OFLM3 5.000 3.431 0.291 0.298 77 59 49 38 
OFLM4 4.998 3.616 0.276 0.273 76 55 48 35 
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Table 7.5. Average Portfolio Performance of the International Stock and Bond Portfolio 
with Bootstrap Experiments 

The table compares the average out-of-sample performance of the optimal international stock and 
bond portfolio across a wide range of expected returns. A bootstrap procedure is applied to control for 
estimation error in expected returns. I generate an artificial sample of 4000 observations by randomly 
picking up blocks, with replacement, of 15 observations from the series of actual returns. The 
procedure is repeated with 1,000 trials. Panels A and B report results for the weekly and monthly 
rebalanced portfolios, respectively. The static portfolios are constructed using the bootstrap 
unconditional means and covariance matrices. The ‘OFLMα’ portfolio is constructed with the 
Orthogonal Factor Long Memory volatility model with α factors. For each dynamic strategy, the table 
reports the annualised average return (μ), the annualised average volatility (σ), the average Sharpe 
ratio (SR), the p-value (proportion) that the dynamic strategy outperforms the static alternative in 
terms of the Sharpe ratio, the average abnormal return to the static portfolio (M2), the average 
annualised performance fee (in basis points) ∆γ that an investor with a constant relative risk 
coefficient of γ is willing to pay to switch from the static portfolio to the dynamic portfolio, and the 
average breakeven transaction cost τγ (in basis points at the rebalancing frequency) that he is better off 
with the dynamic strategy. 

 
 (%)   (%) SR p-value M2 (%) ∆1 ∆5 τ1 τ5 

Panel A. Weekly rebalancing 

Static 5.557 3.408 0.458   
Volatility timing strategies 
LM-EWMA 15.629 15.399 0.744 0.713 0.988 883 382 4.7 2.3 
OFLM2 7.247 2.522 1.291 1.000 2.855 172 182 17.9 19.0 
OFLM3 7.486 2.611 1.338 1.000 3.015 195 205 18.4 19.4 
OFLM4 8.096 2.670 1.537 1.000 3.697 256 265 22.9 23.7 

Panel B. Monthly rebalancing 

Static 5.507 3.557 0.426       
Volatility timing strategies 
LM-EWMA 14.606 12.713 0.832 0.740 1.463 827 486 8.4 5.2 
OFLM2 7.214 2.515 1.285 1.000 3.069 174 187 36.6 39.4 
OFLM3 7.478 2.542 1.374 1.000 3.388 200 213 37.7 40.1 
OFLM4 8.069 2.577 1.584 1.000 4.137 259 272 46.7 49.0 
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Table 7.6. Average Portfolio Performance of the DJIA Portfolio with Bootstrap 
Experiments 

The table compares the average out-of-sample performance of the optimal DJIA portfolio across a 
wide range of expected returns. A bootstrap procedure is applied to control for estimation error in 
expected returns. I generate an artificial sample of 4000 observations by randomly picking up blocks, 
with replacement, of 15 observations from the series of actual returns. The procedure is repeated with 
1,000 trials. Panels A, B and C report results for the daily, weekly and monthly rebalanced portfolios, 
respectively. The static portfolios are constructed using the bootstrap unconditional means and 
covariance matrices. The ‘OFLMα’ portfolio is constructed with the Orthogonal Factor Long Memory 
volatility model with α factors. For each dynamic strategy, the table reports the annualised average 
return (μ), the annualised average volatility (σ), the average Sharpe ratio (SR), the p-value 
(proportion) that the dynamic strategy outperforms the static alternative in terms of Sharpe ratios, the 
average abnormal return to the static portfolio (M2), the average annualised performance fees (in 
basis points) ∆γ that an investor with a constant relative risk coefficient of γ is willing to pay to switch 
from the static portfolio to the dynamic portfolio, and the average breakeven transaction costs τγ (in 
basis points at the rebalancing frequency) that he is better off with the dynamic strategy. 

 
 (%)   (%) SR 

p-
value 

M2 
(%) 

∆1 ∆5 τ1 τ5 

Panel A. Daily rebalancing 

Static 4.620 3.197 0.201 
 

  

Volatility timing strategies 
LM-EWMA 5.489 5.080 0.290 0.726 0.307 79 48 2.1 1.3 
OFLM2 4.864 2.774 0.307 0.788 0.356 26 32 2.6 3.3 
OFLM3 5.193 2.840 0.414 0.914 0.697 59 64 5.6 6.2 
OFLM4 5.318 2.984 0.434 0.930 0.762 71 74 6.3 6.6 

Panel B. Weekly rebalancing 

Static 4.634 2.856 0.230   

Volatility timing strategies 
LM-EWMA 5.270 4.739 0.265 0.592 0.118 56 28 3.4 1.7 
OFLM2 4.787 2.786 0.280 0.647 0.158 16 17 3.3 3.7 
OFLM3 5.132 2.822 0.396 0.873 0.488 50 51 10.4 10.7 
OFLM4 5.155 2.926 0.389 0.856 0.465 52 52 10.1 10.1 

Panel C. Monthly rebalancing 

Static 4.629 2.815 0.234       

Volatility timing strategies 

LM-EWMA 5.140 3.772 0.302 0.664 0.219 48 35 9.6 7.2 
OFLM2 4.870 2.617 0.333 0.758 0.303 25 27 16.6 19.1 
OFLM3 5.171 2.648 0.439 0.904 0.599 55 57 35.4 37.5 
OFLM4 5.251 2.799 0.442 0.906 0.606 62 63 37.7 38.7 
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Table 7.7. Comparison of the Volatility Timing and Static Strategies Using Different Risk Aversion Coefficients: International Stock 
and Bond Portfolio 

The table compares the average out-of-sample performance of the static and dynamic strategies for the international stock and bond portfolio using different 

risk aversion coefficients  . A bootstrap procedure is applied to control for estimation error in expected returns. I generate an artificial sample of 4000 
observations by randomly picking up blocks, with replacement, of 15 observations from the series of actual returns. The procedure is repeated with 1,000 
trials. Panels A and B report results for the weekly and monthly rebalanced portfolios, respectively. The static portfolios are constructed using the bootstrap 
unconditional means and covariance matrices. The table reports the annualised average returns μ (in percentage), the annualised volatilities σ (in percentage), 
the Sharpe ratios (SR), the p-values (proportions) that the dynamic strategies outperform the static alternatives in terms of Sharpe ratios, the average 
annualised performance fees ∆γ  (in basis points) that an investor with a constant relative risk coefficient of γ is willing to pay to switch from the static 
portfolio to the dynamic portfolios, and the average breakeven transaction costs τγ (in basis points at the rebalancing frequency) that he is better off with the 
dynamic strategies. 

Static Long memory Long memory vs. Static OFLM4 OFLM4 vs. Static 

  μ σ SR μ σ SR p-value ∆1 ∆5 τ1 τ5 μ σ SR p-value ∆1 ∆5 τ1 τ5 

Panel A. Weekly rebalancing 
1 5.56 3.41 0.46 15.63 15.40 0.74 0.71 883 382 4.7 2.3 8.10 2.67 1.54 1.00 256 265 22.9 23.7 
2 4.78 1.71 0.46 10.03 7.71 0.77 0.73 493 367 5.4 4.1 6.07 1.34 1.55 1.00 129 132 23.1 23.5 
3 4.52 1.14 0.46 8.00 5.16 0.76 0.73 334 277 5.6 4.7 5.37 0.89 1.55 1.00 85 86 22.8 23.1 
4 4.39 0.85 0.46 6.91 3.89 0.74 0.73 244 212 5.5 4.8 5.03 0.67 1.54 1.00 64 65 22.7 22.9 
5 4.31 0.68 0.46 6.41 3.11 0.77 0.74 204 184 5.8 5.2 4.82 0.53 1.55 1.00 51 52 22.9 23.1 

Panel B. Monthly rebalancing 
1 5.51 3.56 0.43 16.99 12.71 0.83 0.74 827 486 8.4 5.2 8.07 2.58 1.58 1.00 259 272 46.7 49.0 
2 4.76 1.79 0.43 10.76 6.32 0.86 0.76 454 370 9.4 7.7 6.06 1.29 1.61 1.00 131 134 47.0 48.2 
3 4.51 1.19 0.43 8.46 4.22 0.86 0.76 305 268 9.5 8.4 5.36 0.86 1.60 1.00 86 88 46.6 47.3 
4 4.38 0.89 0.43 7.27 3.21 0.83 0.75 222 200 9.3 8.5 5.02 0.64 1.59 1.00 65 65 46.3 46.9 
5 4.30 0.71 0.43 6.69 2.57 0.86 0.76 186 172 9.9 9.2 4.82 0.51 1.60 1.00 52 52 46.7 47.2 
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Table 7.8. Comparison of the Volatility Timing and Static Strategies Using Different Risk Aversion Coefficients: DJIA Portfolio 
The table compares the average out-of-sample performance of the static and dynamic strategies for the DJIA portfolio using different risk aversion 
coefficients  . A bootstrap procedure is applied to control for estimation error in expected returns. Panels A, B and C report results for the daily, weekly and 
monthly rebalanced portfolios, respectively. The static portfolios are constructed using the bootstrap unconditional means and covariance matrices. The table 
reports the annualised average returns (μ), the annualised average volatilities (σ), the average Sharpe ratios (SR), the p-values (proportions) that the dynamic 
strategies outperform the static alternatives in terms of Sharpe ratios, the average annualised performance fees ∆γ  (in basis points) that an investor with a 
constant relative risk coefficient of γ is willing to pay to switch from the static portfolio to the dynamic portfolios, and the average breakeven transaction costs 
τγ (in basis points at the rebalancing frequency) that he is better off with the dynamic strategies. 

Static Long memory Long memory vs. Static OFLM3 OFLM3 vs. Static 

  μ (%) σ (%) SR μ (%) σ (%) SR p-value ∆1 ∆5 τ1 τ5 μ (%) σ (%) SR p-value ∆1 ∆5 τ1 τ5 

Panel A. Daily rebalancing 
1 4.62 3.20 0.20 5.49 5.08 0.29 0.73 79 48 2.1 1.3 5.19 2.84 0.41 0.91 59 64 5.6 6.2 
2 4.31 1.61 0.20 4.76 2.55 0.29 0.77 43 35 2.3 1.9 4.59 1.42 0.41 0.92 28 29 5.3 5.6 
3 4.20 1.06 0.20 4.51 1.69 0.30 0.77 30 27 2.4 2.1 4.39 0.94 0.41 0.91 19 19 5.4 5.6 
4 4.15 0.79 0.20 4.38 1.27 0.30 0.75 22 20 2.4 2.2 4.29 0.71 0.41 0.91 14 14 5.4 5.5 
5 4.12 0.64 0.20 4.31 1.01 0.30 0.77 18 17 2.4 2.2 4.24 0.56 0.42 0.92 11 12 5.5 5.6 

Panel B. Weekly rebalancing 
1 4.63 2.86 0.23 5.27 4.74 0.26 0.59 56 28 3.4 1.7 5.13 2.82 0.40 0.87 50 51 10.4 10.7 
2 4.32 1.44 0.23 4.64 2.38 0.27 0.61 30 23 3.6 2.8 4.56 1.41 0.39 0.86 24 24 9.8 10.0 
3 4.21 0.95 0.23 4.44 1.57 0.27 0.62 22 19 4.0 3.4 4.37 0.93 0.39 0.86 16 16 9.9 10.0 
4 4.16 0.71 0.23 4.32 1.18 0.27 0.60 16 14 3.9 3.4 4.28 0.70 0.39 0.85 12 12 10.0 10.1 
5 4.13 0.57 0.23 4.26 0.94 0.27 0.63 13 12 3.9 3.6 4.22 0.56 0.40 0.87 10 10 10.2 10.3 

Panel C. Monthly rebalancing 
1 4.63 2.81 0.23 5.14 3.77 0.30 0.66 48 35 9.6 7.2 5.17 2.65 0.44 0.90 55 57 35.4 37.5 
2 4.32 1.42 0.23 4.58 1.89 0.31 0.68 26 23 10.3 9.1 4.58 1.32 0.44 0.91 27 27 34.1 35.3 
3 4.21 0.93 0.23 4.39 1.25 0.31 0.69 18 16 10.7 9.9 4.38 0.87 0.43 0.91 18 18 34.5 35.2 
4 4.16 0.70 0.23 4.29 0.95 0.30 0.67 13 12 10.5 9.9 4.29 0.66 0.43 0.91 13 14 34.7 35.2 
5 4.13 0.56 0.23 4.23 0.75 0.31 0.70 11 10 10.6 10.1 4.23 0.53 0.44 0.91 11 11 35.5 35.9 
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Table 7.9. Comparison with Other Conditional Volatility Models: DJIA Portfolio 

The table compares the out-of-sample performance of the OFLM3 portfolio with that of other 
benchmark portfolios constructed using different conditional volatility models for the DJIA dataset. A 
bootstrap procedure is applied to control for estimation error in expected returns. I generate an 
artificial sample of 4000 observations by randomly picking up blocks, with replacement, of 15 
observations from the series of actual returns. The procedure is repeated with 1,000 trials. For each 
benchmark, the table reports the average annualised realised return (μ), the annualised realised 
volatility (σ), the average Sharpe ratio (SR), the p-value (proportion) out of 1000 trials that the 
OFLM3 portfolio outperforms the benchmark portfolio in terms of Sharpe ratios, the average 
abnormal return (M2) of the OFLM3 portfolio relative to the benchmark, and the average annualised 
performance fee ∆γ (in basis points) that an investor with a constant relative risk coefficients of γ is 

willing to pay to switch from the benchmark to the factor volatility strategy. Turnover is the average 
value traded for all stocks in each period. 

 
μ (%) σ (%) SR p-value M2 (%) ∆1 ∆5 Turnover 

Panel A. Daily rebalancing 

OFLM3 5.193 2.840 0.414 0.044 
Benchmarks 
EWMA 6.268 12.539 0.180 0.932 2.970 -31 274 0.508 
GARCH-DCC 4.752 2.824 0.264 0.909 0.426 44 44 0.057 
LM-EWMA-DCC 4.981 2.900 0.336 0.788 0.228 21 22 0.058 
FIGARCH-DCC 4.295 8.474 0.051 0.953 3.214 124 263 0.705 
CGARCH-DCC 4.802 2.948 0.269 0.889 0.426 39 41 0.071 

Panel B. Weekly rebalancing 

OFLM3 5.132 2.822 0.396 0.097 
Benchmarks 

EWMA 5.248 5.748 0.215 0.907 1.051 1 53 0.345 
GARCH-DCC 4.702 2.766 0.252 0.900 0.403 43 42 0.102 
LM-EWMA-DCC 4.772 2.969 0.260 0.890 0.417 36 38 0.114 
FIGARCH-DCC 2.386 10.994 -0.129 0.992 6.015 338 591 0.634 
CGARCH-DCC 4.788 2.846 0.276 0.875 0.345 34 35 0.100 

Panel C. Monthly rebalancing 

OFLM3 5.171 2.648 0.439 0.130 
Benchmarks 

EWMA 5.145 5.457 0.211 0.948 1.254 14 62 0.685 
GARCH-DCC 4.750 2.453 0.306 0.862 0.332 42 39 0.136 
LM-EWMA-DCC 4.967 2.516 0.387 0.723 0.140 20 19 0.140 
FIGARCH-DCC 4.324 5.225 0.067 0.979 1.970 95 138 0.573 
CGARCH-DCC 4.851 2.639 0.322 0.856 0.313 32 32 0.138 
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Table 7.10. Comparison with Other Conditional Volatility Models: International Stock 
and Bond Portfolio 

The table compares the out-of-sample performance of the OFLM4 portfolio with that of other 
benchmark portfolios constructed using different conditional volatility models for the international 
stock and bond dataset. A bootstrap procedure is applied to control for estimation error in expected 
returns. I generate an artificial sample of 4000 observations by randomly picking up blocks, with 
replacement, of 15 observations from the series of actual returns. The procedure is repeated with 
1,000 trials. For each benchmark, the table reports the average annualised realised return (μ), the 
annualised realised volatility (σ), the average Sharpe ratio (SR), the p-value (proportion) out of 1000 
trials that the OFLM4 portfolio outperforms the benchmark portfolio in terms of Sharpe ratios, the 
average abnormal return (M2) of the OFLM4 portfolio relative to the benchmark, and the average 
annualised performance fee ∆γ (in basis points) that an investor with a constant relative risk 
coefficients of γ is willing to pay to switch from the benchmark to the factor volatility strategy. 

Turnover is the average value traded for all stocks in each period. 

 
μ (%) σ (%) SR p-value M2 (%) ∆1 ∆5 Turnover 

Panel A. Weekly rebalancing 

OFLM4 8.096 2.670 1.537 0.23 
Benchmarks 
EWMA 17.116 18.636 0.704 0.986 15.632 -715 40 4.98 
GARCH-DCC 11.124 18.407 0.405 1.000 21.243 -117 628 14.90 
LM-EWMA-DCC 11.715 16.207 0.489 1.000 17.280 -219 355 13.24 
CGARCH-DCC 9.995 14.588 0.426 1.000 16.511 -75 388 7.49 

Panel B. Monthly rebalancing 

OFLM4 7.924 2.502 1.573 0.45 
Benchmarks 

EWMA 16.987 17.064 0.764 0.966 14.206 -733 -63 11.12 
GARCH-DCC 10.063 14.954 0.434 1.000 17.758 -74 437 12.94 
LM-EWMA-DCC 11.720 16.479 0.489 0.997 18.645 -205 450 17.43 
CGARCH-DCC 9.510 12.156 0.505 0.999 13.795 -63 269 8.23 
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Table 7.11. Comparison of the Factor Models  

The table compares the out-of-sample performance of portfolios constructed from different factor 
models. A bootstrap procedure is applied to control for estimation error in expected returns. I generate 
an artificial sample of 4000 observations by randomly picking up blocks, with replacement, of 15 
observations from the series of actual returns. The procedure is repeated with 1,000 trials. The Factorα 
portfolio is constructed using the unconditional factor model with α factors. For each Factorα 
portfolio, the table reports the average annualised average return (μ), annualised average volatility (σ) 
and average Sharpe ratio (SR). For each pair of the Factor and OFLM portfolios, the table also reports 
the p-value (proportion) that the OFLMα portfolio outperforms the benchmark Factorα portfolio in the 
first column in terms of Sharpe ratios, the annualised average abnormal return (M2) of the OFLMα 
portfolio over the benchmark, the average performance fee ∆γ (in basis points) that an investor with a 
constant relative risk coefficient of γ is willing to pay to switch from benchmark portfolio to the 
corresponding OFLM portfolio, and the average breakeven transaction cost τγ (in basis points at the 
rebalancing frequency) that he is better off with the dynamic OFLM strategy. 

Vs. OFLMα 

μ (%) σ (%) SR p-value M2 (%) ∆1 ∆5 τ1 τ5 

Panel A. International stock and bond portfolio   

Weekly rebalancing   

Factor2 6.812 2.477 1.139 0.978 0.377 43.4 43.0 5.4 5.3 
Factor3 7.145 2.596 1.215 0.942 0.320 34.1 34.0 3.9 3.9 
Factor4 7.691 2.624 1.411 0.949 0.333 40.3 39.9 4.5 4.5 
Monthly rebalancing   

Factor2 6.805 2.329 1.210 0.865 0.175 40.4 38.6 10.0 9.5 

Factor3 7.144 2.403 1.314 0.774 0.147 33.0 31.6 7.4 7.1 

Factor4 7.661 2.425 1.513 0.797 0.174 40.4 38.9 9.0 8.7 

Panel B. DJIA portfolio   

Daily rebalancing   

Factor2 4.927 2.544 0.357 0.355 -0.127 -6.9 -9.3   
Factor3 5.084 2.666 0.398 0.556 0.045 10.5 8.6 1.1 0.9 
Factor4 5.041 2.688 0.381 0.643 0.146 26.8 23.4 2.7 2.3 
Weekly rebalancing   

Factor2 4.918 2.467 0.366 0.246 -0.217 -14.0 -17.4   
Factor3 5.058 2.572 0.405 0.481 -0.020 6.7 4.0 1.4 0.8 
Factor4 4.996 2.585 0.381 0.524 0.024 14.9 11.1 3.1 2.3 
Monthly rebalancing   

Factor2 4.918 2.303 0.394 0.290 -0.146 -5.6 -8.9   
Factor3 5.055 2.387 0.435 0.512 0.008 11.0 8.3 7.8 5.8 
Factor4 5.044 2.470 0.418 0.563 0.061 19.8 16.2 13.8 11.3 
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Figure 7.1. Determining the Number of Common Factors.  

The number of factors is determined using the modified Bai and Ng’s (2002) information criterion of 
Alessi et al. (2007). The number of factors corresponds to the second stable region, i.e., the plateau of 
the solid line associated with the second flat zero-level dashed line. 
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Figure 7.2. The Sharpe Ratios and Adjusted Performance Fees of the Bootstrap LM-EWMA and OFLM4 Portfolios
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Figure 7.3. Sensitivity to Estimation Window: The Sharpe Ratios of the Dynamic Portfolios.  

The figure plots the average Sharpe ratios of the optimal portfolios constructed from the LM-EWMA and OFLM models with different estimation 
windows. A wide range of bootstrap vectors of expected returns is employed to account for estimation error in expected returns. The estimation 
windows correspond to 4, 6, 8 and 10 years of weekly and daily data. 
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Figure 7.4. Average Sharpe Ratios of the Static and Dynamic Factor Long Memory Portfolios over Years.  

The figure plots the average Sharpe ratios of the static and the dynamic factor long memory portfolios over years. A wide range of bootstrap vectors of 
expected returns is employed to account for estimation error in expected returns.  
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Appendix 7.1. Comparison of the Orthogonal Factor Long Memory EWMA and 
the Orthogonal Factor EWMA Models 

Similar to the OFLM model, the Orthogonal Factor EWMA, the OF-EWMA model is 

developed by embedding the short memory EWMA model in an orthogonal factor 

structure. Unlike the Orthogonal EWMA model of Alexander (2001), the Orthogonal 

Factor EWMA model assumes both the volatilities of the factors and the residuals 

follow EWMA processes. The appendix compares the out-of-sample performance of the 

OF-EWMA and OFLM portfolios to evaluate the benefits of allowing for long memory 

vs. short memory volatility in the factor structure. 

A bootstrap procedure is applied to control for estimation error in expected returns. I 

generate an artificial sample of 4000 observations by randomly picking up blocks, with 

replacement, of 15 observations from the series of actual returns. The procedure is 

repeated with 1,000 trials. For each OF-EWMA portfolio, the table below reports the 

average annualised average return (μ), annualised average volatility (σ) and Sharpe ratio 

(SR). For each pair of the OF-EWMAα and OFLMα portfolios, where α is the number 

of factors, the table also reports the p-value (proportion) that the OFLMα portfolio 

outperforms the benchmark OF-EWMAα portfolio in the first column in terms of 

Sharpe ratio, the annualised average abnormal return M2 of the OFLMα portfolio over 

the benchmark, and the average performance fee ∆γ (in basis points) that an investor 

with the constant relative risk coefficient of γ is willing to pay to switch from 

benchmark portfolio to the corresponding OFLM portfolio. The table also reports the 

average turnovers of the OF-EWMA and the OFLM strategies. 

The results suggest the outperformance of the long memory factor OFLM model 

relative to the short memory factor OF-EWMA model, especially in the DJIA portfolio. 

With the DJIA dataset, the OFLM model consistently produces portfolios with higher 

Sharpe ratios than those produced by the OF-EWMA models in more than 85% of the 

trials. The OFLM model performs less remarkably in the international stock and bond 

portfolio. However, the OFLM4 portfolio still dominates the OF-EWMA4 portfolio in 

terms of the Sharpe ratio.  



 
 

 
218 

Vs. OFLMα Turnover 

 
μ (%) σ (%) SR p-value M2 (%) ∆1 ∆5 

OF 
EWMA 

OFLM

Panel A. International stock and bond portfolio   

Weekly rebalancing   

OF-EWMA2 7.354 2.618 1.284 0.615 0.018 -10 -9 9.9 20.0 
OF-EWMA3 7.630 2.703 1.346 0.388 -0.021 -14 -13 11.0 22.0 
OF-EWMA4 8.204 2.765 1.524 0.695 0.038 -11 -9 12.1 23.1 
Monthly rebalancing   

OF-EWMA2 7.378 2.626 1.295 0.307 -0.023 -16 -15 22.6 38.5 

OF-EWMA3 7.665 2.654 1.387 0.296 -0.034 -18 -17 25.4 42.9 

OF-EWMA4 8.224 2.698 1.572 0.685 0.036 -15 -14 27.1 44.7 

Panel B. DJIA portfolio   

Daily rebalancing   

OF-EWMA2 4.859 3.161 0.268 0.884 0.125 2 6 4.3 4.2 
OF-EWMA3 5.247 3.206 0.383 0.867 0.099 -4 0 4.5 4.4 
OF-EWMA4 5.358 3.346 0.399 0.879 0.118 -3 2 4.8 4.7 
Weekly rebalancing   
OF-EWMA2 4.700 2.935 0.237 0.941 0.130 9 11 5.9 9.2 
OFEWMA3 5.051 2.977 0.349 0.945 0.143 9 10 6.2 9.7 
OFEWMA4 5.091 3.076 0.349 0.905 0.123 7 9 6.6 10.3 
Monthly rebalancing   
OF-EWMA2 4.822 2.829 0.291 0.861 0.118 5 8 13.5 12.4 
OF-EWMA3 5.150 2.860 0.399 0.862 0.112 3 5 14.0 13.0 
OF-EWMA4 5.263 3.010 0.415 0.776 0.082 -1 2 14.9 13.9 
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Appendix 7.2. Comparison of the Orthogonal Factor Long Memory EWMA and 
the Orthogonal Factor GARCH Models 

Similar to the OF-EWMA model described above, the Orthogonal Factor GARCH, the 

OF-GARCH model is achieved by embedding the short memory GARCH model in an 

orthogonal factor structure. Unlike the Orthogonal GARCH model of Alexander (2001), 

the Orthogonal Factor GARCH model assumes both the volatilities of the factors and of 

the residuals follow GARCH processes. This appendix uses OF-GARCH model as 

another benchmark to evaluate the benefits of allowing for long memory vs. short 

memory volatility in the factor structure. 

A bootstrap procedure is applied to control for estimation error in expected returns. I 

generate an artificial sample of 4000 observations by randomly picking up blocks, with 

replacement, of 15 observations from the series of actual returns. The procedure is 

repeated with 1,000 trials. Again, for each OF-GARCH portfolio, the table below 

reports the average annualised average return (μ), annualised average volatility (σ) and 

Sharpe ratio (SR). For each pair of the OF-GARCHα and OFLMα portfolios, where α is 

the number of factors, the table also reports the p-value (proportion) that the OFLMα 

portfolio outperforms the benchmark OF-GARCHα portfolio in the first column in 

terms of Sharpe ratio, the annualised average abnormal return M2 of the OFLMα 

portfolio over the benchmark, and the average performance fee ∆γ (in basis points) that 

an investor with the constant relative risk coefficient of γ is willing to pay to switch 

from benchmark portfolio to the corresponding OFLM portfolio. The table also reports 

the average turnovers of the OF-EWMA and the OFLM strategies. 

While the long memory factor OFLM model produces better portfolios in terms of 

Sharpe ratios and performance fees than the short memory factor OF-GARCH model in 

the international stock and bond portfolio, it underperforms in the DJIA portfolio. With 

the DJIA dataset, though the OFLM portfolios with 3 and 4 factors still generate higher 

performance fees, they have lower Sharpe ratios and slightly higher turnover. 
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Vs. OFLMα Turnover 

 
μ (%) σ (%) SR p-value M2 (%) ∆1 ∆5  

OF 
EWMA 

OFLM

Panel A. International stock and bond portfolio   

Weekly rebalancing   

OF-GARCH2 7.071 2.482 1.241 0.855 0.126 18 17 26.7 20.0 
OF-GARCH3 7.335 2.622 1.274 0.908 0.166 15 15 28.7 22.0 
OF-GARCH4 7.951 2.645 1.497 0.810 0.107 14 14 30.5 23.1 
Monthly rebalancing   

OF-GARCH2 7.036 2.423 1.260 0.695 0.062 18 17 32.9 38.5 

OF-GARCH3 7.303 2.518 1.317 0.894 0.144 17 17 36.2 42.9 

OF-GARCH4 7.924 2.502 1.573 0.604 0.029 14 14 37.8 44.7 

Panel B. DJIA portfolio   

Daily rebalancing   

OF-GARCH2 4.874 2.581 0.335 0.323 -0.070 -2 -4 4.3 4.2 
OF-GARCH3 5.117 2.660 0.415 0.487 0.001 7 5 4.3 4.4 
OF-GARCH4 5.242 2.785 0.439 0.465 -0.012 7 5 4.4 4.7 
Weekly rebalancing   
OF-GARCH2 4.815 2.559 0.317 0.248 -0.093 -3 -6 7.4 9.2 
OF-GARCH3 5.051 2.625 0.396 0.495 0.002 8 5 7.5 9.7 
OF-GARCH4 5.117 2.718 0.406 0.367 -0.045 3 1 7.8 10.3 
Monthly rebalancing   
OF-GARCH2 4.890 2.315 0.385 0.200 -0.121 -3 -6 9.6 12.4 
OF-GARCH3 5.092 2.392 0.453 0.393 -0.034 7 5 9.9 13.0 
OF-GARCH4 5.222 2.543 0.475 0.223 -0.082 2 -1 10.7 13.9 
  

  



 
221

Chapter 8  

Conclusions  

8.1 Conclusions 

It is well established that the covariance matrix of short horizon financial asset returns is 

both time varying and highly persistent. A number of multivariate conditional volatility 

models, including the multivariate RiskMetrics EWMA model and multivariate 

GARCH models have been developed to capture these features. Conditional volatility 

models have been found to produce impressive estimates and forecasts of the covariance 

matrix, which are now routinely used in many areas of applied finance, including asset 

allocation. The literature suggests that dynamic asset allocation strategy benefits from 

exploiting the forecasts of multivariate conditional volatility models relative to using the 

unconditional covariance matrix (see, for example, Fleming et al., 2001, Fleming et al., 

2003, Engle and Colacito, 2006, Thorp and Milunovich, 2007). Recent evidence also 

suggests that volatility has longer memory than that implied in the EWMA and GARCH 

models (see, for example, Taylor, 1986, Ding et al., 1993, Andersen et al., 2001) and 

long memory volatility models generally outperform short memory volatility models in 

terms of forecast performance in both univariate and multivariate context (Vilasuso, 

2002, Zumbach, 2006, Niguez and Rubia, 2006). Multivariate long memory volatility 

models, with slow decaying autocorrelations, are designed to capture the high 

persistence feature of volatility and covariance and exploit this feature to provide more 

reasonable forecasts of the covariance matrix over long horizons. Allowing for long 

memory volatility dynamics in forecasts of the covariance matrix, therefore, may bring 

potential benefits for asset allocation. However, owing to the complexity in estimation 

of long memory volatility models, the literature on multivariate long memory volatility 

modelling has restricted itself to the analysis of low dimensional covariance matrices, 

and has provided limited evidence on the benefits from allowing for long memory 

dynamics in the multivariate setting. So far multivariate long memory conditional 

volatility models have not been used in the asset allocation framework, where forecasts 

of the high dimensional covariance matrix over long horizons are normally required.  

The thesis undertakes a detailed analysis of multivariate long memory conditional 

volatility models and their application in dynamic asset allocation. The analysis is 
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conducted in a systematic approach, starting from the evaluation of the forecast 

performance of long memory conditional volatility models, to the study of their benefits 

in the dynamic asset allocation framework, and finally to the use of a factor structure to 

reduce estimation error in estimating the high dimensional long memory covariance 

matrix. While many alternative volatility models have been developed in the literature, 

the thesis purposely chooses to employ parsimonious models that can be used to 

forecast high dimensional covariance matrices. In particular, the four multivariate long 

memory volatility models (the long memory EWMA, long memory EWMA-DCC, 

FIGARCH-DCC and Component GARCH-DCC models) are evaluated against one 

another and against the two multivariate short memory volatility models (the short 

memory EWMA and GARCH-DCC models). The thesis employs four datasets, both 

low and high dimensional covariance matrices with both low and high correlation assets 

and in both the US and the international markets. The analysis is original and distinctive 

as this is the first study to evaluate a wide range of multivariate long memory volatility 

models in high dimensional systems for asset allocation. 

The findings consistently show that it is beneficial to allow for long memory volatility 

dynamics in estimating the covariance matrix of returns for asset allocation over both 

short and long horizons. First, multivariate long memory volatility models generally 

produce forecasts of the covariance matrix that are statistically more accurate and 

informative, and economically more useful than those produced by short memory 

volatility models. Second, investors are better off constructing portfolios with the long 

memory volatility models than with the static unconditional and the short memory 

volatility alternatives. Third, embedding a factor structure in the long memory volatility 

framework to reduce estimation error in forecasts of the covariance matrix brings 

substantial benefits. The dynamic factor long memory volatility timing strategy 

systematically dominates the static and other dynamic volatility timing strategies that 

employ both short memory and long memory volatility models. The long memory factor 

model also outperforms the traditional unconditional factor and the short memory factor 

models. More details of the findings are given as follows. 

First, the forecast performance of multivariate long memory conditional volatility 

models are evaluated among themselves and against that of short memory conditional 

volatility models. Popular statistical measures are applied to measure the accuracy, bias 

and information content of forecasts of alternative volatility models. Given the well-

documented drawbacks of the statistical criteria, the analysis also employs forecast 
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performance measures based on economic loss criteria. Specifically, the research studies 

the usefulness of forecasts of the conditional covariance matrix in the asset allocation 

framework of Engle and Colacito (2006). The results consistently show that 

multivariate long memory conditional volatility models generally produce better 

forecasts of the covariance matrix, in terms of both statistical and economic measures 

than short memory volatility models. Also, among the long memory volatility models, 

the two parsimonious long memory EWMA models dominate in a majority of cases 

across all forecast horizons of up to 3 months. Although the Component GARCH and 

FIGARCH models are also designed to capture long memory volatility, their 

performance is less impressive, which may be attributable to their high degree of 

parameterisation and complex estimation procedure. The results are robust to different 

investment horizons and estimation windows. The findings of the analysis are consistent 

with those in the univariate volatility literature. 

Long memory conditional covariance matrices have been found to produce optimal 

portfolios with lower realised volatilities than static unconditional and short memory 

covariance matrices. However, it does not follow that the portfolio with the lowest 

volatility is necessarily the best portfolio in terms of portfolio performance measures 

such as the Sharpe ratio. Consequently, the research continues to further explore the 

value of long memory conditional volatility models, studying the economic benefits 

accruing to volatility timing strategies using the framework of Fleming et al. (2001). 

Portfolios constructed from the six multivariate conditional volatility models, both long 

memory and short memory, are evaluated using popular performance measures such as 

the out-of-sample Sharpe ratio, the abnormal return and the performance fee. The 

research consistently identifies the gains of incorporating long memory volatility 

dynamics in forecasts of the covariance matrix for asset allocation. The long memory 

conditional volatility models, especially the parsimonious long memory EWMA 

models, generally produce better portfolios than the static unconditional and the short 

memory volatility models at all investment horizons. The research also studies the 

effects of transaction costs in conducting the dynamic volatility timing strategies. With 

the presence of transaction costs, the gains from the daily rebalanced portfolios 

deteriorate, however, it is still worth implementing the dynamic strategies at lower 

rebalancing frequencies. Again, the two long memory EWMA models are consistently 

the most favourable models in terms of low transaction costs. The results apply to the 
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four low and high dimension datasets and are robust to estimation error in expected 

returns, the choice of risk aversion coefficient and the use of a long-only constraint. 

Finally, the research deals with the estimation error inherent in estimating the 

covariance matrix. Estimation error in the long memory volatility covariance matrix 

may be more excessive than in the unconditional covariance matrix, not least because of 

the high degree of parameterisation. The estimation error problem gets even worse 

when the high dimensional covariance matrix typically encountered in asset allocation 

are inversed. The thesis, therefore, imposes a factor structure to the long memory 

volatility framework to control for estimation error in estimating the high dimensional 

covariance matrix. In so doing, the research develops a dynamic factor long memory 

conditional volatility, the Orthogonal Factor Long Memory or OFLM, model by 

combining the univariate long memory EWMA model of Zumbach (2006) with an 

orthogonal factor structure. The new factor model follows richer processes than 

normally assumed, in which both the factors and idiosyncratic shocks are modelled with 

long memory behaviour in their volatilities. The factor-structured OFLM model is 

evaluated against the six other multivariate conditional volatility models, especially the 

fully estimated multivariate long memory EWMA model of Zumbach (2009b), in terms 

of forecast performance and economic benefits. The results suggest that the OFLM 

model generally produces impressive forecasts over both short and long forecast 

horizons. In the volatility timing framework, portfolios constructed with the OFLM 

model consistently dominate the static and other dynamic volatility timing portfolios at 

all rebalancing frequencies. In particular, the outperformance of the factor OFLM model 

to the fully estimated LM-EWMA model evidently confirms the advantage of the factor 

structure in reducing estimation error. Employing the factor structure also significantly 

reduces transaction costs, making dynamic trading more feasible. The findings also 

suggest that the long memory factor model generally produces better portfolios than the 

traditional unconditional factor and the short memory factor models. The results are, 

again, robust to estimation error in expected returns, the choice of risk aversion 

coefficient, and the length of estimation window. 

8.2 Limitations of the Research 

To evaluate the forecast performance of the long memory conditional volatility models, 

the research employs both statistical and economic criteria. The statistical measures 
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such as the RMSE, MAE or Mincer- Zarnowitz regression use the squares and cross-

products of daily returns as proxies for the actual variances and covariances being 

forecast. The use of low frequency daily volatility as a proxy for true volatility 

introduces considerable noise that inflates the forecast errors of the conditional volatility 

forecasts, substantially reducing their explanatory power. Given this problem with the 

daily volatility proxy, it would be more appropriate if the research could employ other 

higher frequency volatilities, e.g., realised volatility or range-based volatility, as proxies 

for the true volatility. Also, it would be interesting to compare the economic forecast 

performance of the long memory volatility models with that of the recently popular high 

frequency volatility models. 

Though the analysis covers four datasets, both low and high dimensional portfolios with 

both low and high correlation assets, the assets consists of only stocks and bonds. It may 

be of interest to study the performance of long memory volatility models with other 

assets, e.g., foreign exchange rates or commodity futures. 

The economic value of the multivariate conditional volatility models are evaluated in a 

rather restrictive volatility timing framework, in which expected returns are assumed 

constant and investors myopically update their portfolios based on forecasts of the 

covariance matrix in every period. This may not correspond to the real-world practice 

where expected returns are also time varying and investors may be more concerned with 

long term investments. Besides, apart from asset allocation, the use of multivariate 

conditional volatility models may bring potential benefits to other practical problems, 

e.g., risk management. The analysis of conditional volatility models, therefore, can be 

extended to other contexts.  

The dynamic factor model assumes constant factor loadings over time. However, betas 

are affected by the covariances between the factors and asset returns and the volatilities 

of the factors, which are both time-varying. It would thus be of interest to relax the 

constant beta assumption, developing a dynamic factor model with time-varying 

conditional betas. Also, expected returns may be time-varying and dynamic 

autoregressive factor models may be developed to estimate both expected returns and 

covariance matrix.  
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8.3 Suggestions for Future Research 

The methodology and findings of the thesis suggest some implications for future 

research. First, the non-DCC conditional covariance matrix estimators (such as the 

EWMA model with exponential weights and the LM-EWMA model with logarithmic 

weights) impose the same dynamic structure on all elements of the covariance matrix, 

which facilitates their implementation in high dimensional systems, but it comes at a 

cost in terms of estimation error. A potentially less correctly specified but more flexible 

DCC structure is generally found to perform better in high dimension and high 

correlation systems. It would be interesting to investigate this issue in greater detail. 

Second, the long memory DCC framework models the dynamic processes of volatility 

and correlation separately, using long memory volatility models for individual 

volatility. However, the DCC models assume a short memory process for correlation. A 

more appropriate approach would be to apply long memory dynamics for both volatility 

and correlation, embedding the long memory volatility models in a long memory 

correlation framework such as, e.g., the DCC-MIDAS model of Colacito et al. (2011).  

Third, the analysis of the benefits of allowing for conditional covariance matrix 

estimators in asset allocation can be extended in several ways. The assumption of 

constant expected returns can be relaxed. Time-varying volatility affects returns and it is 

hence not justifiable to separate the movement of expected returns with those of 

volatility and correlation. However, research then has to differentiate between the 

effects of better estimates of expected returns and better estimates of the covariance 

matrix in the improvement of the optimal portfolios. Also, it may be useful to study the 

economic value of dynamic strategies in an intertemporal asset allocation framework. 

Dynamic strategies may behave differently in the presence of hedging demands. 

Fourth, estimates of the covariance matrix are inherently subject to estimation error. 

Moreover, some of the eigenvalues of the high dimensional covariance matrix are 

inevitably very small, and so the inverse of the covariance matrix used in the asset 

allocation is likely to be ill-conditioned. The research employs a statistical factor 

structure to reduce estimation error in estimating the long memory conditional 

covariance matrix. Long memory volatility models can also be embedded in other 

macroeconomic and fundamental factor models with time-varying betas. Besides, other 



 
227

structures, such as the Bayesian shrinkage models, can also be applied to produce a 

robust estimate of the long memory conditional covariance matrix. 

Finally, the analysis of the limitations of the thesis also reveals some other promising 

directions for further research. They include, for example, the use of high frequency 

volatility models as the benchmarks, the coverage of other assets and the extension of 

the analysis to other practical problems. 

(Zumbach, 2009a) 
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