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Abstract

The thesis first evaluates the forecast performance of multivariate long memory
conditional volatility models among themselves and against that of short memory
conditional volatility models, using the asset allocation framework of Engle and
Colacito (2006). While many alternative conditional volatility models have been
developed in the literature, my choice reflects the need for parsimonious models that
can be used to forecast high dimensional covariance matrices. In particular, I compare
the statistical and economic performance of four multivariate long memory volatility
models (the long memory EWMA, long memory EWMA-DCC, FIGARCH-DCC and
Component GARCH-DCC models) with that of two multivariate short memory
volatility models (the short memory EWMA and GARCH-DCC models). The research
reports two main findings. First, for longer horizon forecasts, long memory volatility
models generally produce forecasts of the covariance matrix that are statistically more
accurate and informative, and economically more useful than those produced by short
memory volatility models. Second, the two parsimonious long memory EWMA models
outperform the other models — both short memory and long memory — in a majority of
cases across all forecast horizons. These results apply to both low and high dimensional
covariance matrices with both low and high correlation assets, and are robust to the

choice of estimation window.

The multivariate conditional volatility models are then analysed further to shed light on
the benefits of allowing for long memory volatility dynamics in forecasts of the
covariance matrix for dynamic asset allocation. Specifically, the research evaluates the
economic gains accruing to long memory volatility timing strategies, using the
procedure of Fleming et al. (2001). The research consistently identifies the gains from
incorporating long memory volatility dynamics in investment decisions. Investors are
willing to pay to switch from the static to the dynamic strategies, and especially from
the short memory volatility timing to the long memory volatility timing strategies across
both short and long investment horizons. Among the long memory conditional volatility
models, the two parsimonious long memory EWMA models, again, generally produce
the most superior portfolios. When transaction costs are taken into account, the gains
from the daily rebalanced dynamic portfolios deteriorate; however, it is still worth
implementing the dynamic strategies at lower rebalancing frequencies. The results are
robust to estimation error in expected returns, the choice of risk aversion coefficients

and the use of a long-only constraint.



The long memory conditional covariance matrix is inevitably subject to estimation
error. The research then employs a factor structure to control for estimation error in
forecasts of the high dimensional covariance matrix. Specifically, the research develops
a dynamic long memory factor (the Orthogonal Factor Long Memory, or OFLM) model
by embedding the univariate long memory EWMA model of Zumbach (2006) into an
orthogonal factor structure. The new factor model follows richer processes than
normally assumed, in which both the factors and idiosyncratic shocks are modelled with
long memory behaviour in their volatilities. The factor-structured OFLM model is
evaluated against the six above multivariate conditional volatility models, especially the
fully estimated multivariate long memory EWMA model of Zumbach (2009b), in terms
of forecast performance and economic benefits. The results suggest that the OFLM
model generally produces impressive forecasts over both short and long forecast
horizons. In the volatility timing framework, portfolios constructed with the OFLM
model consistently dominate the static and other dynamic volatility timing portfolios in
all rebalancing frequencies. Particularly, the outperformance of the factor-structured
OFLM model to the fully estimated LM-EWMA model confirms the advantage of the
factor structure in reducing estimation error. The factor structure also significantly
reduces transaction costs, making the dynamic strategies more feasible in practice. The
dynamic factor long memory volatility model also consistently produces more superior
portfolios than those produced by the traditional unconditional factor and the dynamic

factor short memory volatility models.
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Chapter 1

Introduction

1.1 Background and Rationale

The variance-covariance matrix (hereinafter, the covariance matrix) plays a central role
in many areas of applied finance, especially in asset allocation and risk management. In
particular, the covariance matrix is one of the two inputs, along with expected returns,
in the mean-variance asset allocation theory of Markowitz (1952, 1959). By
incorporating risk and correlation in the asset allocation decision, Markowitz shifted the
focus of the financial industry from single asset selection towards the concept of
diversification through portfolio choice. While the expected return of a portfolio is the
weighted average of the asset components’ expected returns, its risk is always less than
the weighted average risk of its components, unless the assets are perfectly positively
correlated. Assets’ risk and their interactions in a portfolio, implied through the notion

of volatility and correlation, are hence vital in any investment decision.

The classic Markowitz’s asset allocation theory assumes expected returns and the
covariance matrix are known with certainty. However, these parameters are not
observed in practice, and hence must be estimated. The traditional approach employs
the sample covariance matrix as a proxy for the unknown true covariance matrix. The
sample covariance matrix, though being the best unbiased and efficient estimator under
the assumption of independently, identically distributed returns, is inherently subject to
estimation error, especially when returns deviate from normality, which, unfortunately,
is a prevailing feature in financial markets. Estimation error is multiplied in the high
dimensionality of the covariance matrix typically used in asset allocation. The inversion
of the covariance matrix may further aggravate the estimation error problem. Indeed,
there is ample empirical evidence that shows the poor performance of optimal portfolios
constructed with sample estimates (see, for example, Best and Grauer, 1991, Broadie,
1993, Britten-Jones, 1999). Estimation error of the sample estimates can be so serious
that Michaud (1989) even calls the mean-variance optimiser “the estimation error
maximiser.” Equally-weighted portfolios are found to dominate mean-variance sample-
based optimal portfolios in many cases (see, e.g., DeMiguel et al., 2009). Extensive

research has thus been done to improve estimates and forecasts of the covariance matrix
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for robust asset allocation. One popular approach is to impose some structure on the
covariance matrix, such as in the factor model or in the Bayesian-inspired shrinkage
model (see Chan et al., 1999, Jagannathan and Ma, 2000, Ledoit and Wolf, 2003, 2004).
Among others, Briner and Conner (2008) show in both simulation and empirical studies
that a structured, though biased covariance matrix estimate may have better explanatory
power than its unbiased, unstructured sample counterpart. Another promising direction
is to exploit the high persistence of the time-varying conditional covariance matrix to
generate better input forecasts for asset allocation. Andersen et al. (2006, p.794)
acknowledge that “even if we rule out exploitable conditional mean dynamics, the
optimal portfolio weights would still be time-varying from the second-order dynamics
alone.” Recent evidence suggests that dynamic asset allocation strategies, based on a
time-varying conditional covariance matrix, dominate static strategies, based on the
unconditional alternative (see, for example, Fleming et al., 2001, Han, 2006, Engle and
Colacito, 2006, Thorp and Milunovich, 2007). Exploiting the predictability of the

covariance matrix is now a key driver in asset allocation.

Dynamic asset allocation typically employs forecasts of the covariance matrix generated
from popular conditional volatility models such as the multivariate Riskmetrics EWMA,
multivariate GARCH, or multivariate Stochastic Volatility models, in which elements
of the conditional covariance matrix are specified as weighted averages of the squares
and cross-products of past return innovations with geometrically declining weights, so
that shocks to variances and covariances dissipate rapidly. Consequently, dynamic
strategies generally focus on short horizon investors who rebalance their portfolios
daily. While this approach may make the most use of the forecast power of these
conditional volatility models, it may not nevertheless correspond to the needs of
investors, who often rebalance their portfolios at lower frequencies. Moreover, a
mounting body of empirical evidence suggests that the autocorrelation functions of the
squares and cross-products of returns decline more slowly than the geometric decay rate
of the EWMA, GARCH and Stochastic Volatility models, and hence volatility shocks
are more persistent than these models imply (see, for example, Taylor, 1986, Ding et al.,
1993, Andersen et al., 2001). This ‘long memory’ feature is important not only for the
measurement of current volatility, but also for forecasts of future volatility, especially
over longer horizons. In particular, in the GARCH and Stochastic Volatility
frameworks, forecasts of future volatility converge to the unconditional volatility at an

exponential rate as the forecast horizon increases. In the EWMA framework, in contrast,



a volatility shock has a permanent effect on forecast volatility at all horizons, and so
forecasts of future volatility do not converge at all despite the fact that it is a short
memory model. If volatility is indeed a long memory process, as the empirical evidence
suggests, the short memory EWMA, GARCH and Stochastic Volatility models are
misspecified. Moreover, the errors in forecasting the elements of the covariance matrix

that arise from this misspecification are compounded as the forecast horizon increases.

The empirical evidence on volatility dynamics has prompted the development of long
memory models of conditional volatility, and in the univariate context a number of
approaches have been proposed. The FIGARCH model of Baillie et al. (1996)
introduces long memory through a fractional difference operator, which gives rise to a
slow hyperbolic decay for the weights on lagged squared return innovations while still
yielding a strictly stationary process. The Hyperbolic GARCH (HYGARCH) model of
Davidson (2004) is a generalisation that nests the GARCH, FIGARCH and IGARCH
(or EWMA) models, allowing for a more flexible dynamic structure than the FIGARCH
model and facilitating tests of short versus long memory in volatility dynamics. The
Stochastic Volatility framework has been extended to allow for long memory by Breidt
et al. (1998), who incorporate an ARFIMA process in the standard discrete time
Stochastic Volatility model. Long memory can also be induced using a component
structure for volatility dynamics. For example, the Component GARCH (CGARCH)
model of Engle and Lee (1999) assumes that volatility is the sum of a highly persistent
long run component and a mean-reverting short run component, each of which follows a
short memory GARCH process. Similarly, Zumbach (2006) introduces a long memory
model in which the dynamic process for volatility is defined as the logarithmically
weighted sum of standard EWMA processes at different geometric time horizons. Like
the short memory EWMA model of JP Morgan (1994) on which it is based, the long
memory EWMA model has a highly parsimonious specification, which facilitates its

implementation in practice.

In the multivariate context, long memory volatility modelling poses significant
computational challenges, especially so for the high dimensional covariance matrices
that are typically encountered in asset allocation and risk management. Indeed, so far
the literature on long memory multivariate volatility modelling has restricted itself to
the analysis of low dimensional covariance matrices, and has provided only limited
evidence on the relative benefits from allowing for long memory in the multivariate

setting. For example, Teyssiere (1998) estimates the covariance matrix for three foreign
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exchange return series using both an unrestricted multivariate FIGARCH model and a
FIGARCH model implemented with the Constant Conditional Correlation (CCC)
structure of Bollerslev (1990). Similarly, Niguez and Rubia (2006) model the
covariance matrix of five foreign exchange series using an Orthogonal HYGARCH
model, which combines the univariate HYGARCH long memory volatility model of
Davidson (2004) with the multivariate Orthogonal GARCH framework of Alexander
(2001). They show that the Orthogonal HYGARCH model outperforms the standard
Orthogonal GARCH model in terms of one-day forecasts of the covariance matrix.
Zumbach (2009b) develops a multivariate version of the univariate long memory
EWMA model, in which elements of the covariance matrix are estimated as the
averages of the squares and cross products of past returns with predetermined
logarithmically decaying weights. This model is highly parsimonious and capable of
handling large systems.

Allowing for long memory volatility dynamics in forecasts of the covariance matrix of
returns may bring potential benefits for asset allocation over both short and long
horizons. However, no studies have been done to explore the economic values of the
long memory conditional covariance matrix for asset allocation. The research aims at
filling this gap, studying the benefits of incorporating the long memory conditional
covariance matrix in the asset allocation framework. Presumably, with slowly decaying
autocorrelations, multivariate long memory volatility models are able to better capture
the high persistence feature of volatility and covariance, and consequently exploit this
feature to provide more reasonable forecasts of the covariance matrix over long
horizons, which will potentially correspond more to the needs of most practical

investors.
1.2 Research Questions and Scope

The overall aims of this research are twofold: (i) to evaluate the forecast performance of
multivariate long memory conditional volatility models, and (ii) to examine the
economic benefits that arise from allowing for long memory volatility dynamics in
forecasting the covariance matrix in the asset allocation framework. Specifically, the

research addresses the following questions:



1. Do multivariate long memory conditional volatility models produce better
forecasts of the covariance matrix of returns than multivariate short memory
conditional volatility models, especially for long horizons?

2. Are there any economic benefits when exploiting the long memory conditional
covariance matrix for asset allocation, relative to using the unconditional or the
short memory conditional alternatives?

3. How to control for estimation error in forecasts of the high dimensional long

memory conditional covariance matrix?

The research is restricted to the analysis of multivariate conditional volatility models
and their application to asset allocation. In particular, the research focuses on
multivariate EWMA and multivariate GARCH models. Stochastic Volatility, Realised
Volatility, Option Implied Volatility models are excluded from the research. Investors
construct portfolios based on Markowitz’s mean-variance asset allocation framework.
For simplicity, I concentrate primarily on the single-period portfolio choice and ignore
the hedging demands caused by time-varying investment opportunities. Portfolios
comprise highly liquid assets, whose price data can be easily obtained at daily
frequencies. These restrictions can, of course, be relaxed. However, this is beyond the

scope of the thesis and is reserved for future research.
1.3 Contribution of the Thesis

The research evaluates the forecast performance of multivariate long memory
conditional volatility models among themselves and against that of multivariate short
memory conditional volatility models. While there exist a large number of conditional
volatility models in the literature, my choice reflects the need for parsimonious models
that can be used to forecast high dimensional covariance matrices. | employ four long
memory volatility models: the multivariate long memory EWMA model of Zumbach
(2009b), and three multivariate long memory volatility models implemented using the
Dynamic Conditional Correlation (DCC) framework of Engle (2002). These are the
univariate long memory EWMA model of Zumbach (2006), the Component GARCH
model of Engle and Lee (1999) and the FIGARCH model of Baillie et al. (1996). This is
the first study to evaluate the forecast performance of a range of multivariate long
memory volatility models in high dimensional systems. The four multivariate long
memory volatility models are compared with two multivariate short memory volatility

models. These are the very widely used RiskMetrics EWMA model of JP Morgan
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(1994), and the GARCH-DCC model. The six models are evaluated on the basis of both
statistical and economic measures. While the statistical criteria examine the accuracy,
bias and information content of the models’ forecasts with measures such as the RMSE,
MAE or Mincer-Zarnowitz regression, the economic criteria employ the economic loss
function in the asset allocation framework of Engle and Colacito (2006). The research
reports two main findings. First, for longer horizon forecasts, long memory volatility
models generally produce forecasts of the covariance matrix that are statistically more
accurate and informative, and economically more useful than those produced by short
memory volatility models. Second, the two parsimonious long memory EWMA models
outperform the other models — both short memory and long memory — in a majority of
cases across all forecast horizons. These results apply to both low and high dimensional
covariance matrices and both low and high correlation assets, and are robust to the

choice of estimation window.

The multivariate conditional volatility models are then analysed further to shed light on
the benefits of allowing for long memory volatility in estimating and forecasting the
covariance matrix for dynamic asset allocation. Specifically, the research evaluates the
economic value accruing to volatility timing strategies using the procedure of Fleming
et al. (2001). The research consistently identifies the gains from incorporating long
memory volatility dynamics in investment decisions. Investors are willing to pay to
switch from the static to the dynamic volatility timing strategies, and from the short
memory volatility to the long memory volatility models at both short and long
investment horizons. Among the long memory conditional volatility models, the two
parsimonious long memory EWMA models, again, generally produce the most superior
portfolios. When transaction costs are taken into account, the gains from the daily
rebalanced dynamic portfolios deteriorate; however, it is still worth implementing the
dynamic strategies at lower rebalancing frequencies. The results are robust to estimation
error in expected returns, the choice of risk aversion coefficient and the use of a long-

only constraint.

The long memory conditional covariance matrix is inevitably subject to estimation
error. The research then employs a factor structure to control for estimation error in
forecasting the high dimensional long memory covariance matrix. In particular, the
research develops a dynamic factor long memory conditional volatility (the Orthogonal
Factor Long Memory, or OFLM) model by embedding the univariate long memory
EWMA model of Zumbach (2006) into an orthogonal factor structure. The new factor



model follows richer processes than normally assumed, in which both the factors and
idiosyncratic shocks are modelled with long memory behaviour in their volatilities. The
OFLM model is a generalisation of the Double Factor ARCH model of Engle (2009).
The empirical results suggest that the dynamic factor OFLM model generally dominates
the other multivariate conditional volatility models, both short memory and long
memory, in terms of forecast performance and economic benefits across all forecast
horizons. Especially, the outperformance of the factor-structured OFLM model to the
fully estimated LM-EWMA model confirms the advantage of the factor structure in
reducing estimation error. The factor structure also significantly reduces transaction
costs, making the dynamic strategies more feasible in practice. The dynamic factor long
memory volatility model also consistently produces more superior portfolios than those
produced by the traditional unconditional factor and the dynamic factor short memory
volatility models.

1.4 Structure of the Thesis

The thesis comprises eight chapters, beginning with this introductory chapter. Chapter 2
gives an overview of the classic asset allocation theory of Markowitz (1952, 1959). The
chapter also provides a detailed analysis of the use of the unconditional covariance

matrix for asset allocation.

Chapter 3 reviews time-varying conditional covariance matrix estimators and their
application to asset allocation. The discussion especially focuses on the multivariate
conditional volatility models that are applicable to a large number of assets. Advances

in long memory conditional volatility models are highlighted.

Chapter 4 analyses the data. The research employs four sets of assets. These comprise a
high correlation bivariate system (the S&P500 and DJIA indices), a low correlation
bivariate system (the S&P500 and 10-year Treasury bond futures), and two moderate
correlation high dimensional systems (the international stock and bond indices, and the

components of the DJIA index).

Chapter 5 evaluates the forecast performance of long memory conditional volatility
models. In particular, 1 compare the statistical and economic performance of four
multivariate long memory volatility models (the long memory EWMA, long memory
EWMA-DCC, FIGARCH-DCC and Component GARCH-DCC models) with that of
two short memory volatility models (the short memory EWMA and GARCH-DCC
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models). The analysis covers investment horizons of up to 3 months and employs

different estimation windows.

Chapter 6 examines the economic benefits of employing forecasts of the long memory
conditional covariance matrix in asset allocation, using the volatility timing framework
of Fleming et al. (2001). Portfolios constructed from the six multivariate conditional
volatility models in Chapter 5 are evaluated using popular performance measures such
as the out-of-sample Sharpe ratio, the abnormal return and the performance fee.
Transaction costs are also taken into account. The robustness analysis studies the
sensitivity of the findings to estimation error in expected returns, the choice of risk

aversion coefficient and the use of a long-only constraint.

Chapter 7 turns to estimation error in forecasts of the high dimensional long memory
conditional covariance matrix. A new Orthogonal Factor Long Memory conditional
volatility model is developed by imposing a factor structure in the long memory
volatility framework. The new factor-structured model is evaluated against the six
multivariate conditional volatility models studied in the previous chapters, and
especially against the fully estimated long memory EWMA model, in terms of both
forecasting performance and economic benefits, using the procedures employed in
Chapters 5 and 6. The performance of the Orthogonal Factor Long Memory volatility
model is also compared with that of the traditional factor and the dynamic factor short

memory volatility models.

The final chapter summarises the research, emphasizing all important findings. It also
addresses the limitations of the research and suggests some implications for future

studies.



Chapter 2
The Classical Asset Allocation
Framework and Covariance Matrix

Estimators

The seminal work of Markowitz (1952, 1959) laid the foundation for modern portfolio
theory, providing a simple but powerful framework on how an optimizing investor
would behave under uncertainty. Two fundamental economic insights, i.e., the concept
of risk-return trade-off and the concept of diversification where risks are correlated, are
beautifully captured in the classical asset allocation framework of Markowitz. While the
benefits of diversification had been identified long before, Markowitz successfully
translated the risk-return trade-off and diversification into an adequate theory of
efficient portfolio investment, shifting the focus of the investment industry onto the
interactions among securities in a portfolio. The classical asset allocation theory of
Markowitz is reviewed in Section 2.1. Specifically, Section 2.1.1 introduces
Markowitz’s mean-variance portfolio optimisation theory, in which investors are
concerned only with returns and risk in their portfolio choice decisions. The economic
intuitions underlying the theory are illustrated graphically. Section 2.1.2 extends the
basis framework, allowing investors to borrow and lend unlimitedly at a risk-free rate.
In this case, investors can obtain better combinations than they can in the absence of the
risk-free asset. Given the efficient frontiers built in the first two sections, Section 2.1.3
explains how investors choose their optimal portfolios. The decision is facilitated by the
integration of utility theory into the model. Section 2.1.4 turns to the application of the
mean-variance analysis in practice, where investors have to estimate expected returns
and the covariance matrix for their investment decisions. Section 2.1.5 challenges the
prohibitively restrictive assumptions of the classical model, introducing extensions in
terms of, e.g., high-order moments of the return distribution, multiperiod investment

horizons, and frictions such as transaction costs and taxation.

The estimation of the covariance matrix for asset allocation is discussed in detail in
Section 2.2. The estimation of expected returns, which is beyond the scope of this

research, can be found in, e.g., Jorion (1986), Fama and French (1992), Pesaran and
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Timmermann (1995), Barberis (2000). In this chapter, the covariance matrix is assumed
to be constant over time. The time-varying conditional covariance matrix will be studied
in Chapter 3. Section 2.2.1 introduces the sample covariance matrix. Despite being the
best unbiased and efficient estimator of the true covariance matrix, the sample
covariance matrix is inevitably subject to estimation error, which is detrimental to the
optimal portfolios. Mounting evidence of the poor out-of-sample performance of the
optimal sample-based portfolios has prompted the development of improved covariance
matrix estimators for robust asset allocation. A popular approach is to impose some
structure on the covariance matrix. Section 2.2.2 details the factor structure. Section
2.2.2.1 sets the stage by introducing the linear factor decomposition. Single factor
models are analysed in Section 2.2.2.2, whereas multifactor models are studied in
Section 2.2.2.3. Section 2.2.2.4 investigates the practical implementation of factor
models in the asset allocation problem, especially comparing the explanatory power
among different types of factors. The Bayesian-inspired shrinkage structure is then
described in section 2.2.3. Section 2.2.4 considers another structure, imposing a
constant pairwise correlation coefficient onto the covariance matrix. Section 2.3

concludes the chapter.

The research in this chapter has indeed been well-documented. My contribution is
simply to summarise existing knowledge on how to optimally allocate wealth in a
portfolio. This chapter is, nevertheless, important for the thesis as it sets the stage for

succeeding chapters.

2.1 The Classical Asset Allocation Framework

2.1.1 Markowitz’s Mean-Variance Portfolio Optimisation Theory

Consider an investor who wants to construct an optimal portfolio at time t and hold it
for a time horizon of At. Many assumptions lie behind the classical portfolio
optimisation theory of Markowitz (1952, 1959). First, the investor is risk-averse; he
requires a higher expected return to accept a higher level of risk. Therefore, we expect a
positive relationship between expected returns and expected risk. In terms of portfolio
choice, with a target expected return, the investor will choose the portfolio with the
minimum risk from a set of all feasible portfolios. Markowitz is the first to quantify risk
as the variance of the rate of return and use this risk measure to build his portfolio
optimisation theory. Second, the investor is only concerned with returns and risk in his

investment decision and constructs the optimal portfolio that is efficient in a return-risk,



or mean-variance space. No higher-order moments of the return distribution are taken
into account. Third, his investment horizon spans a single period At. He will not care
about the gains or losses that may happen after the period At. He only updates his
decision at time t+At. This behaviour is referred to as myopic (short-sighted)
behaviour. For ease of notation, in the following I assume At =1. Fourth, the assets are

perfectly liquid; there are no transaction costs incurred when updating portfolios.

Denote R, an n-dimensional vector of risky asset returns available for investment at
time t and define p,, =E(R,,) as the vector of expected returns and

> =EIR,, -n.)R,, -n.)] as the covariance matrix of returns. Note the

convention that the time subscripts are given for the date at which the variables are

realised. Here, the investor is assumed to know p,, and 2., with certainty. His
objective is to minimise risk with a target portfolio expected return E(R,,,;)=H. He

has to choose an nxI vector of portfolio weights w, to optimally allocate wealth

among the n risky assets. Given the mean-variance optimisation framework, the investor

solves the following constrained optimisation problem:

Hvlvin var(R; ;) = W; 2 Wy (2.1
subject to
E(Ryn) = wn,., =H and Zwi =1. (2.2)
i=1

The first constraint in (2.2) fixes the expected return of the portfolio to its target, while
the second, a budget constraint, guarantees that all the wealth is invested. Short selling
is permitted, which implies W, can take negative values. Neither taxes nor transaction
costs are included. Setting up the Lagrangian and the solution to the optimisation

problem with equality constraints is easily obtained:

W: = (;j Zt_+11 (Cv-Bn,,) +(

Yo ]z; (Ap,.,— BUM, (23)

AC -B?

where 1 denotes a unit vector, A=1'>. v, B=1v'X p,,,and C=p,, > n,, . The

. . . . . . *1 *
minimised portfolio variance is equal to w, 2., W, .
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If the investor follows the global minimum variance (GMV) strategy to construct the
portfolio with the lowest possible risk regardless of the expected return, the optimal

portfolio weights in (2.3) reduce to:

. 1 _
Wo=—— 2t (2.4)
1 ZHI v
The optimisation problem described above is mathematically referred to as a quadratic
optimisation problem. In this simple optimisation problem with equality constraints,
solutions can be found analytically. However, in the more complex case when

inequality constraints, e.g., non-negative portfolio weights, are imposed, numerical

optimisation techniques may need to be applied to find the optimal solution.

We now look at a practical example. A rational investor wants to construct an efficient
portfolio from 49 average-value-weighted industry portfolios of the US.' Results of the
mean-variance efficient analysis are demonstrated in Figure 2.1. The vertical axis shows
the annualised expected returns, while the horizontal axis shows the annualised risk as
measured by returns’ standard deviations. The blue envelope curve plots the efficient
combinations of the 49 individual industry portfolios, which are marked with the purple
stars. This set of combinations, which starts from the global minimum variance (GMV)
portfolio (marked with the red circle) and going upwards, is called the mean-variance
efficient frontier. The efficient frontier represents a set of portfolios that have the

maximum expected return for a given level of risk, or the minimum level of risk for a

target expected return (7 > Ry, ). Portfolios located inside this frontier are dominated

by others on the frontier that have the same risk but with higher expected return, or the

same expected return but with lower risk, and so they are inefficient portfolios.

The mean-variance optimisation analysis implies two fundamental economic insights.
First, it suggests the intuitive and powerful concept of diversification. Markowitz (1952,
1959) is the first to quantitatively evaluate assets not on their standalone performance
basis, but on their interactions, through the notion of covariance, and contributions in a
portfolio. While the expected return of a portfolio is the weighted average of the asset
components' expected returns, its risk is always less than the weighted average risk of
its components unless the assets are perfectly positively correlated. Figure 2.1 illustrates

graphically the diversification effect. All the stars representing the individual industry

! Historical data of monthly returns of the 49 US industry portfolios are obtained from the Data Library
of Kenneth R. French at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html



portfolios lie inside the blue curve, showing that the portfolios lie on the efficient
frontier yield lower risk for a target expected return than the individual industry
portfolios. Second, the framework captures the trade-off between expected return and
risk. A portfolio is optimal if it has the highest expected return for a given level of risk
or the lowest risk for a specified expected return. Starting with the least risky GMV
portfolio at the left tip of the mean-variance efficient frontier, higher expected returns

can only be achieved with higher levels of risk.
Alternative Formulations of the Mean-Variance Portfolio Optimisation Analysis

In the above section, we examine the investor who wants to minimise risk for a target
expected return. Another perspective is to look at the decision that the investor has to
make to maximise expected return when he cannot take more risk. This is one of the
most commonly encountered problems in practice when, for example, portfolio
managers are required to optimise with respect to tracking error volatility, i.e., the
standard deviation of the difference between the portfolio's return and the benchmark

return.

The investor now pre-determines a given level of risk &~ and maximises his expected
return of the portfolio. He solves the maximum expected return problem:

max E, (Rp,t+1) = Wil (2.5)

subject to the constraints of w, Y., w, =& and > W =1. (2.6)

The mean-variance analysis can be formulated in an alternative way. Incorporating
expected return and risk in a utility function in which the investor would prefer a high
expected return with low variance portfolio, and the maximum expected utility
formulation is given by

A

, A
max E, (Ut+1) = E(Rp,t+1 ) _Egp,tﬂ =Wl _Ewt 2 W, (2.7)

subject to ZiWi =1. Here, A measures the investor's level of risk aversion. If

diversification is agreed upon as the sound principle of investment, we would reject the
objective of simply maximising expected return so that the investor would just invest all
his wealth in one asset that generates the highest return. The risk aversion factor hence

allows the investor to trade off mean and variance in a linear fashion. Any portfolio
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preferred by the investor will depend on his risk aversion. When the risk aversion
coefficient A is small, which means that the penalty for taking risk is small, the investor
will choose more risky portfolios. In the extreme case when A =0, the return term
dominates and the investor is willing to accept any level of risk in exchange for the
highest return. Conversely, when the value of A is large, risky portfolios will be highly

penalised, leading to the choice of more conservative portfolios.

The three formulations as described above are equivalent in the sense that they all
generate the same efficient frontier as they treat the trade-off between risk and return in

a similar way, though from different standpoints.

2.1.2 Portfolio Choice Problem in the Presence of a Risk-Free Asset — The

Capital Market Line

Suppose that there is a risk-free asset and the investor can borrow and lend unlimitedly

at the risk-free rate R', he then can combine the optimal risky portfolio described
above with the risk-free asset to create a superior portfolio. In the presence of the risk-

free asset, the investor allocates a fraction x, of his wealth to the n risky assets and the
remainder (1 - x'tl) to the risk-free asset. Denote r, =R, —R" the vector of excess

returns over the risk-free asset. p,,, and 2., are now defined as the expected returns

and the covariance matrix of the excess returns, respectively. The expected portfolio

return is then given by

E (Rpui ) =XE (R, )+(1-x)R" =R" +x [ E(R,,)-R" ], (2.8)

or in terms of excess returns,

E (R ) =R +X.E (1) =R +xp,,,, 01 E(r,.,)=Xn,. (2.9)

p,t+l

Given the mean-variance optimisation framework, the investor solves the following

quadratic program, in terms of excess returns:

minx, Y, X, (2.10)

subject to E, (rp’m) =XM,, =M. (2.11)



Note that no budget constraint is required. Since the investor can borrow or lend freely
at the risk-free rate, the weights invested in the risky assets do not necessarily sum to
one. The solution to this optimisation problem has a simpler form than in the case
without a risk-free asset (see (2.3)):

—N -1
X* _ :uthrl u’t+1 (212)

t ! -1 :
ut+l t+1 u’t+l
Other formulations can be represented in terms of excess returns in a similar way. For a

particular choice such that Zi X, =0, all the wealth is invested in the risk-free asset. On

the other hand, if Zi X; =1, the portfolio consists of all risky assets. Graphically, the

mean-variance efficient frontier is now the straight line from the risk-free rate on the
vertical axis and tangent to the old curved efficient frontier (Figure 2.2). The point
where the straight line touches the curved line is called the tangency portfolio, which
consists of all risky assets. This is the best mix of the risky assets that maximises the
Sharpe ratio, defined as the sample mean of the realised portfolio excess returns over
the risk-free rate divided by their sample standard deviation, and represented graphically
by the slope of straight line. As the straight line lies above the curved line, the investor
can obtain the target expected return with a lower level of risk than he can in the
absence of the risk-free asset. The investor can even move aggressively further along
the straight line past the tangency portfolio by borrowing at the risk-free rate to
construct a leveraged portfolio. The straight line is popularly referred to as the Capital
Market Line (CML). The discussion of the CML suggests that the investor optimally
combines the risk-free asset with the same portfolio of risky assets - the tangency
portfolio. Depending on his attitude towards risk, he can conservatively move down and
to the left, or aggressively move up and to the right of the Capital Market Line.
However, he should not alter the relative ratios of the risky assets in the tangency

portfolio.

2.1.3 Incorporating Utility Theory —How to Invest Optimally?

Given the mean-variance efficient frontier or the CML (in the presence of a risk-free
asset), how can the investor choose his optimal portfolio? This decision depends largely
on his tolerance for risk. Each investor has different preferences and attitudes towards

risk, thus choosing a different optimal portfolio. Utility functions can be incorporated
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into the framework to help understand how the investor allocates his funds optimally

when faced with a set of possible choices.

Utility functions can be illustrated graphically in the form of indifference curves.
Different indifference curves correspond to different levels of utility. Moving up from
one indifference curve to another shows higher utility, while moving along one
indifference curve just shows different combinations for the same level of utility. Figure
2.3 illustrates the portfolio choice decision when utilities (indifference curves) are
included. The investor will choose the optimal portfolio at point A, which is the
tangency of the indifference curve U, with the CML, or at point B, the tangency of the

indifference curve U, with the mean-variance frontier. Note that, in the absence of a

risk-free asset, the investor can only reach point B, obtaining a lower utility level than

he can with the presence of a risk-free asset.

Utility functions allow us to generalise the mean-variance framework into a much wider

class of problems, expected utility maximisation problems. Assume that an investor

with utility defined over initial wealth U (WO) wants to maximise his expected utility

with the end-period wealth W = (1+ R )W, . Also assume that there is no risk-free asset.

max EUW) = E[U ((1+R, W, ) | =W, [1+ E(U (Rp)ﬂ (2.13)
subject to ziwi =1. (2.14)

The budget constraint (2.14) is removed if there is a risk-free asset. Applying a Taylor

series expansion of U (Rp) around the mean E ( Rp) = p,, we have:

U(R,)=U(x,)+(R, —yp)u'(yp)%(Rp ~#,) U’ (1, )+ higher-order terms (2.15)

Taking expectations on the both sides yields:

E[U(R,)]=U( ,up)+%0§U (1, )+ E (higher-order terms) (2.16)
as E(R, —u,)=0 and E(R, ~,) =o.

It can be inferred from (2.16) that the expected utility maximisation is equivalent to the

mean-variance optimisation in two special cases. First, asset returns are jointly



elliptically distributed, i.e., fully described by the first two moments (Owen and
Rabinovitch, 1983). In this case, EU (W)=[1+ E(U (Rp))}WO is just a function of

portfolio mean and variance, no matter what utility function the investor may adopt.
Second, the investor has a quadratic utility function, in which case the expectation of
the higher-order terms vanishes. No distributional assumption is required on asset
returns. For other utility functions, the mean-variance optimisation can only at best be

interpreted as a second-order approximation of expected utility maximisation.

The investor's decision making process can now be divided into two separate stages.
This is known as the Separation Theorem of Tobin (1958). First, the investor uses his
knowledge about assets’ expected returns and covariance matrix to derive the efficient
frontier and the CML. This process is the same for all investors irrespective of their
preferences. If expectations are assumed to be homogenous across all investors, then
they should hold the same proportion of these risky assets. In the second stage, based on
his subjective risk-return preference, the investor will choose which point on the CML
to invest. If he is very risk averse, he will put most of his wealth in the risk-free asset
and little in the risky assets. On the contrary, an investor with higher risk tolerance will
invest more in the risky assets. In this stage, his subjective preference will not affect the

relative weights among the risky assets derived in the first stage.

2.1.4 Application of the Classical Asset Allocation Theory

Markowitz optimisation treats expected returns, variances and covariances as
deterministic. However, in practice, these moments of returns are unobservable and
must be estimated. The sample moment estimates are typically employed as proxies for

the unknown true parameters. Statistical estimates, nevertheless, are subject to

A

estimation error. Define the estimated mean i and covariance matrix . in a general
way: i=pn+&, and X=X +&;, where £ isan nx1 vector and £; is an NxN matrix,

both representing estimation error. Employing the expected sample proxies, the mean-

variance quadratic optimisation becomes:

max E(U)=xﬁ—§x'ix

(2.17)
: " A '
=XpH+XE, _E[X 2L X+XEgX].
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It can be seen from (2.17) that the portfolio optimisation may be distorted. Instead of

trading off the true portfolio expected return w'n against its true variance w'2 w, we

trade off the true expected return plus the estimation error w'é, against the true

variance plus the estimation error w'é,w. Two sources of estimation error, in the mean

vector and in the covariance matrix, both interact with the true values.

The expected optimal weights under (2.17) are:

m
—
>
N—
Il

| —
m
—_—
M
|
—_
m
—_~
i —
~
Il

%E[(Z+éz)_l}[u+ E(%,)] (2.18)

Under the i.i.d assumption, E(éz):O and E(éu)zo, and so the optimal weights

derived using the sample moments are the unbiased estimates of the true weights.
However, most financial time series are not independently and identically distributed.
As a result, non-trivial estimation error will be fed through to portfolio weights,
distorting the optimisation results. Britten-Jones (1999) derives the exact finite sample
inference procedure for hypothesis about the weights of efficient portfolios. Applying
this procedure to an international mean-variance efficient portfolio, he finds excessive
sampling error in the estimates of the optimal weights. The literature also shows that
optimisation may produce extreme and non-intuitive weights for some assets, which
contradicts the notion of diversification. Furthermore, the optimal solution may be
highly unstable. The weights calculated from the mean-variance optimisation can be
very sensitive to changes in the two input parameters, the expected return vector and the
covariance matrix. As the mean-variance analysis exploits the smallest difference, small
changes in the inputs can lead to dramatic changes in the portfolio weights (see Best and
Grauer, 1991). Michaud (1989) even calls the mean-variance optimiser “the estimation
error maximiser,” arguing that mean-variance optimisation may significantly
overweight securities with large expected returns, low correlations and low variances,

which are also the ones with the most estimation error.

To study the problem of estimation error in more detail, I follow Jobson and Korkie
(1981) and Broadie’s (1993) experiments. Assume an investor wants to optimally
allocate his wealth among 10 US industry portfolios.” I set the sample mean and
covariance matrix to be the true parameters and simulate independent sets of 250

hypothetical monthly return samples of different sample sizes (60 months and 120

? Monthly returns on 10 US industry portfolios (Jan 1996 — Dec 2010) are obtained from the Data Library
of Kenneth French at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html



months) from a multivariate normal distribution with the true moments. For each
hypothetical set of returns, I compute the estimated parameters to construct the
estimated frontier. The true frontier is constructed from the true parameters. Following
Broadie, I also generate the actual frontiers, which are achieved by applying the
portfolio weights derived from the estimated parameters to the true parameters.
According to Broadie, the estimated frontier is what appears to be the case based on the
data and estimated parameters, but the actual frontier is what really occurs based on the
true parameters. The true frontier and the average estimated and actual frontiers are
plotted in Figure 2.4. The results suggest that for any level of risk, the estimated frontier
overestimates the expected return, hence shifting the average estimated curve upward
and to the right relative to the true position. The distance between the two curves
widens with higher levels of risk and expected returns (see, in particular, the dislocation
of the upper right-hand point of the true frontier to the corresponding endpoint of the
average estimated frontier). The estimated frontier tends to exaggerate certain error in
the input parameters, resulting in optimistically biased estimates of portfolio
performance (Broadie, 1993). In general, the estimated frontier tends to overestimate
expected returns and underestimate risk of a portfolio. On the contrary, the actual
frontier lies below the true frontier, and farther below the estimated frontier. The actual
frontier can be interpreted as the out-of-sample frontier where the estimated parameters
are employed to derive the portfolio weights, which are then applied to the realised true
parameters to compute the realised portfolio performance. The difference in
performance between the estimated and the actual frontiers illustrates the difference in
the optimistic in-sample and the dismal out-of-sample performance of the mean-

variance optimal portfolios in practice.

Figure 2.5 sheds more light on the poor performance of the actual frontiers. The blue
solid curve is the true efficient frontier, while the red dashed curves are the 250
simulated actual frontiers. The actual frontiers are extremely volatile and consistently
inferior to the true frontier. Increasing the sample size reduces the volatility of the actual

frontiers, but cannot eliminate the problem.

Despite the simple and intuitive appeal of Markowitz’s mean-variance optimisation, its
application is often problematic. Extensive research has been done to provide
resolutions to the well-documented practical problems associated with the mean-
variance framework. Studies focus on reserving the benefits of the traditional

framework while enhancing its practical value and effectiveness. Improved estimates of
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expected returns and the covariance matrix have been suggested, ranging from factor
models to shrinkage estimators. Factor models are based on the evidence that asset
returns have common risk factors that act as main sources of common variation among
asset returns. This intuition is justified in some finance theories such as the Capital
Asset Pricing or the Arbitrage Pricing Theory models. Those asset pricing models are
useful not only in estimating asset expected returns but also in reducing the
dimensionality of the covariance matrix. The idea of shrinkage estimators is pioneered
by James and Stein (1961), who suggest an estimator that “shrinks” the sample mean
toward a common “grand” mean across all variables. By shrinking the most extreme
coefficients of the sample mean towards more central values, estimation error is
suggested to be systematically reduced when it matters most. Mean shrinkage
estimators have been applied to portfolio optimisation by Frost and Savarino (1986) and
Jorion (1986), to name a few. For example, Jorion shows theoretically and in a
simulation analysis that the James-Stein shrinkage estimator has lower estimation error
than the sample mean. Also based on the idea of James and Stein, Ledoit and Wolf
(2003, 2004) generalise the mean shrinkage estimator to the covariance matrix. Setting
in a global minimum variance portfolio framework to abstract from the problem of
estimating expected returns, they show that their shrinkage estimator produces
portfolios with significantly lower out-of-sample variances than those produced by a set

of well-established competing approaches.

Constraints on portfolio weights, such as no short sales or upper bounds, can be
imposed on portfolios. These constraints are relevant in practice, though investment
practitioners are normally faced with more constraints. Constraints are useful for
controlling portfolio structure, hence reducing estimation error. Frost and Savarino
(1988) demonstrate that portfolio constraints truncate extreme portfolio weights and
thereby improve portfolio performance. Jagannathan and Ma (2000) go further when
interpreting the constraints under certain conditions as a form of shrinkage estimation
that improves the efficiency of the optimal portfolio. Their Monte Carlo simulations and
empirical tests show that with nonnegative weight constraints in place, global minimum
variance and minimum tracking error portfolios constructed using the sample
covariance matrix perform as well as those constructed using factor and shrinkage
models. However, Green and Hollifield (1992) suggest that extreme weighting is likely
to be attributable to the dominance of a single factor in equity returns, which is equally

true for population and estimated moments of returns. Thus, imposing weight



constraints may produce specification error. Due to the trade-off between specification

and estimation error, constraints may be only useful when estimation error is excessive.

The investor can follow an alternative approach, in which he chooses the portfolio
weights that are optimal with respect to his subjective belief about the true return
distribution. Given parameter uncertainty, he builds his subjective distribution of asset
returns based on his prior belief about the true parameters and on the data he observes,
using a Bayesian procedure. He then solves an average optimisation problem over all
possible sets of parameter values derived from his subjective return distribution, where
the expected utility of any given set of parameter values is weighted by his subjective
probability of these parameter values. In this Bayesian approach, priors are of utmost
importance. Priors can be uninformative, which contain little information about the
parameters and lead to results that are comparable, but not identical in finite samples, to
sample estimates (see, for example, Barry, 1974, Klein and Bawa, 1976, Brown, 1979).
Later research specifies priors to rely on the theoretical implications of economic
models. Priors can be the risk premia implied in the mean-variance optimisation theory
and market equilibrium (Black and Litterman, 1992), the belief in market efficiency

(Kandel and Stambaugh, 1996), or the belief in an asset pricing model (Pastor, 2000).
2.1.5 Relaxation of the Assumptions

The pioneering work of Markowitz provides a convenient and practical framework for
asset allocation, based only on expected returns and the covariance matrix. The
appealing simplicity of the model is achieved, however, with a set of prohibitively
restrictive assumptions, which inherently hinders its application in practice.
Considerable effort has thus been devoted to relaxing those assumptions. One line of
research is to capture the preferences towards higher-order moments of returns and
incorporating higher-order utility preferences in investors' objective functions. Other
directions include, but are not restricted to, extensions to multiperiod investment
horizons, and analysis of the effects of frictions in the investment decision-making
process. This section provides a brief summary of some advances in the portfolio choice

problem.
Portfolio Choice with Higher Order Moments

Mounting evidence claims that the problem of maximising investors’ expected utilities

cannot always be reduced to the problem of mean-variance trade-off (see, for example,
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Samuelson, 1970, Kraus and Litzenberger, 1976). The mean-variance analysis is only a
special case of expected utility maximisation that arises when asset returns are
elliptically distributed or when investors have a quadratic utility function. However, it is
well established that financial return’s distribution generally cannot be fully
characterised by the mean and variance alone. Asset returns typically have fatter tails
than those implied in the normal distribution and are often not symmetric (see
Mandelbrot, 1963, Fama, 1965). The literature also suggests that the fat tails and
skewness of returns may affect investors' decisions in allocating wealth; investors
generally exhibit preference for positively skewed and light-tailed to negatively skewed
and heavy-tailed asset return distributions. Incorporating conditional skewness in an
asset pricing problem, Harvey and Siddique (2000) show that non-increasing absolute
risk aversion, a critical feature of risk-averse individuals, implies a preference for high
skewness. Adding an asset with negative coskewness will reduce total portfolio
skewness, leading investors to require a higher expected return than that required when
they add an asset with identical risk characteristics but with zero coskewness. Similarly,
Lai (1991) and Chunhachinda et al. (1997) solve a multi-objective portfolio choice
problem (i.e., maximising expected returns and skewness with a specified level of risk)
and suggest that investors trade expected returns for skewness. Incorporating higher-
order moment preference into the asset allocation framework may require the extension
of utility functions. Studies typically apply the Taylor series expansion to derive higher-
order approximations of expected utility functions (see, for example, Brandt et al., 2005,
Jondeau and Rockinger, 2006). Uncertainty in parameters is also taken into account.
Harvey et al. (2010) embed a multivariate skew normal model in a Bayesian framework
to address the parameter uncertainty of higher-order moments. Similarly, concerned
about the sensitivity of the conventional moments to outliers, Jurczenko et al. (2008)
advocate the use of L-moments, deriving optimal portfolios in a four-dimensional non-
convex mean-L-variance-L-skewness-L-kurtosis space and presenting various
illustrations of the first four L-moment efficient portfolios. All these studies suggest the
importance of integrating high-order moments into portfolio selection, especially when

returns show strong deviation from the elliptical distribution.

Incorporating higher-order moments, on the one hand, allows the mean-variance
framework to better reflect the characteristics of asset returns observed in practice. On
the other hand, it makes the practical implementation much more complicated.
Allowing for higher-order moments implies more parameters to be estimated. High

dimensionality, which is already a serious concern in the context of covariance matrix



estimation (more details are given on Section 2.2.1), is more problematic when
coskewness and cokurtosis parameters are involved. For example, optimising a 10-asset
portfolio requires the estimation of 55 variance-covariance, 220 skewness-coskewness,
and 715 kurtosis-cokurtosis parameters! As a result, the research on high-order
moments in asset allocation generally restricts itself to very low dimensional systems.
High dimensionality also generates excessive estimation error. To reduce estimation
error in estimating higher-order moments, Martellini and Ziemann (2010) extend to
higher-order comovement several models that have been extensively applied to reduce
dimensionality and estimation error in the covariance matrix. They find that portfolios
with improved higher-order estimates yield superior performance to those with sample
estimates. Improving estimates of the high-order moments promises an interesting
direction of research. Given the remarkable increase in dimensionality, estimation error
must be controlled; otherwise, they may be so large that they may offset all the gains

from a more correctly specified framework.
Multiperiod Investment Horizons

The Markowitz process is a single-period portfolio choice, while real-world practice
normally requires longer horizons with intermediate rebalancing. Extensive research has
been done to formulate the portfolio choice problem as an intertemporal expected utility
maximisation (see, for example, Samuelson, 1969, Merton, 1971, Merton, 1973). In
both discrete and continuous time formulation, the literature shows that dynamic
intertemporal optimal portfolio choice in a multiperiod context can be substantially
different from a sequence of myopic single-period portfolio choices in terms of asset
allocation and expected utilities (see Brandt, 2009, for a detailed analysis). The
difference is termed the hedging demands as investors try to hedge against changes in
investment opportunities when deviating from the single period portfolio choice. The
classic results of Samuelson (1969) and Merton (1971) derive two restrictive conditions
under which a long-term investor may act myopically, choosing the same portfolios as a
short-term investor: (i) the investor has constant investment opportunities so that he
does not need to hedge (an obvious case is power utility and independently, identically
distributed returns), or (ii) the investor has log utility (in this case returns are not
required to be i.i.d). However, investment opportunities are not constant as real interest
rates move over time, and even if expected excess returns on risky assets over risk-free
assets are constant, time variation in real interest rates is enough to generate large

differences between optimal portfolios for long-term and short-term investors
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(Campbell and Viceira, 2002). Short-term and long-term investors are also different in
the sense that short-term investors' wealth is assumed to consist of only tradable
financial assets, which is not realistically true for long-term individual investors. Long-
term individual investors, who are working and saving for, among others, retirement,
own tradable financial assets just as part of their total wealth. They also own a very
valuable untradable asset, their labour income. The introduction of labour income in
asset allocation has prompted numerous extensions of the theory (see, for example,
Heaton and Lucas, 2000, Viceira, 2001, Campbell et al., 2001, Letendre and Smith,
2001, Cocco et al., 2005, Angerer and Lam, 2009) .

Transaction Costs and Taxation

The classic framework can be modified to allow for frictions such as transaction costs
and taxation. Almost all portfolios require some adjustments during their lifetime, hence
incurring non-trivial transaction costs. In a continuous time setting, Davis and Norman
(1990) study a one-risky-asset portfolio where there are charges on all transactions
equal to a fixed percentage of the amount traded and derive the exact algorithm to solve
the optimal policies. In a multiple risky asset context, Leland (2000) studies a single-
period investor who minimises the sum of the proportional transaction costs and the
variance of the tracking error. He develops a numerical procedure to calculate the
optimal rebalancing rule and implements the procedure in a number of examples. Also
working with multiple risky assets but in a multiperiod problem with predictable
returns, Lynch and Tan (2003) develop methods to numerically solve investors’
decision making problem when transaction costs are accounted for. They also perform
some utility comparisons, including the assessment of the utility cost of transaction

costs.

Taxation is another friction faced by investors when making investment decisions. For
example, selling assets generates capital gains tax. Incorporating tax in portfolio choice
is extremely difficult in the context of the realisation-based feature of tax and of
complex myriads of tax codes for different types of transactions and investors. The
usual approach is to adopt the most significant features of the tax code and to assume
the other unmodelled features are of secondary importance. Recent papers on the
implications of taxation on portfolio choice include Dammon et al. (2001), DeMiguel

and Uppal (2005), Garlappi and Huang (2006), Huang (2008).



2.2 Covariance Matrix Estimators

Markowitz’s mean-variance portfolio analysis requires the estimation of expected
returns and the covariance matrix. This section presents a detailed discussion of the
estimation of the covariance matrix for asset allocation. The review is restricted to
unconditional covariance matrix estimators. Time-varying conditional covariance
matrix estimators will be investigated in Chapter 3. The estimation of expected returns,
which is beyond the scope of this research, can be found in, e.g., Jorion (1986), Fama

and French (1992), Pesaran and Timmermann (1995), Barberis (2000).

2.2.1 The Sample Covariance Matrix Estimator

Consider an nxT matrix of excess returns r on N assets over a sample of T periods.

Denote p and 2. the mean and covariance matrix of the excess returns, respectively.

The sample unconditional estimators of the mean i and covariance matrix >, are:

PR (2.19)

rr', (2.20)

where 1 is an 1xT unit vector, and ¥ is the matrix of mean-corrected returns:
f*—r—fu—r—(ln'jl—r(l—ll'lj (2.21)
T T '

with Ibeinga T xT unit matrix.

It is obvious that rank(i) = min(n,T —l). Hence, for n assets, we need at least n+1

periods if we want the sample covariance matrix to be invertible, a requirement to

estimate the weights of the efficient portfolio.

If returns are i.i.d, then the sample covariance matrix has the appealing property of
being the best unbiased estimate of the true covariance matrix. However, the sample
covariance matrix is inevitably error-prone. To get a sense of estimation error in the
covariance matrix, I repeat the experiments in Section 2.1.4. Specifically, I consider an
optimisation simulation, in which the investor knows the true expected returns but uses

the sample estimates of the covariance matrix. Figure 2.6 shows the histograms of the

41



42

Sharpe ratios of the actual tangency portfolios for 24 and 120 monthly observations.
The vertical line in each plot represents the Sharpe ratio of the true tangency portfolio.
The Sharpe ratios of the simulated portfolios are volatile and lower than the true Sharpe
ratio, especially in the case of T =24 (recall that n=10). When the sample size T

increases relatively to the number of assets (T =120), estimation error reduces as there

are more observations per parameter. The performance of the actual tangency portfolios

is then improved.

In practice, we rarely enjoy the luxury of having the number of observations
significantly larger than the number of assets T >>n. It is normal that a portfolio
consists of hundreds of assets while the sample period is bounded by a few years. When
T is not greatly larger than n, the sample covariance matrix may not be well-
conditioned, yielding huge estimation error when being inverted. Lengthening the
sample period is problematic since observations far in the distant past may have little
explanatory power relative to current observations. Dimensionality is another problem.
The number of estimated parameters increases with the square of the number of assets.

For an n-asset portfolio, we have to estimate a covariance matrix of Jn(n+1)

parameters. For instance, if we have 100 assets to choose from, we have to estimate
2025 parameters of the covariance matrix. The more parameters to be estimated, the
more estimation error is likely to arise. Estimation error may be so excessive that it

renders the optimal portfolio practically worthless and difficult to understand.

2.2.2 Factor Models

One popular approach to reduce estimation error in the covariance matrix is to impose a
factor structure on the covariations among assets. The factor structure reduces the
number of parameters to be estimated, and hence reduces estimation error. However, it
comes at a price. The structured covariance matrix with a few factors may not capture
every relationship among assets, incurring specification error. Increasing the number of
factors reduces specification error, yet with an increase in estimation error. Selecting the
‘optimal’ factors involves a trade-off between estimation error, specification error, and

also ease of use.



2.2.2.1 The Linear Factor Decomposition

In the factor model, asset returns are decomposed linearly into two parts, i.e., the part of
returns that is correlated to a set of systematic risk factors and the part of asset-specific

returns:
r=a+Bf+g (2.22)

where ris an n-dimensional vector of excess returns r = (I, r,,...,I,)", fis a vector of k
common risk factors (k <n), Bis an nxk matrix of factor loadings, and € is an n-

vector of asset-idiosyncratic returns. The vector of coefficients a is set so that E (8) =0.

The residuals € are assumed to be uncorrelated with the factors f. The covariance

matrix can thus be represented as:
X=BX,B+X, (2.23)

where 2, is the covariance matrix of the factors, and 2., is the covariance matrix of the

asset-specific returns.

In the strict factor model suggested by Sharpe (1963) and Ross (1976), the asset-

specific returns are assumed to be cross-sectional uncorrelated E(g;,&;)=0 for i= j,

and so the covariance matrix 2. is a diagonal matrix > =diag {afl} Chamberlain

(1983), however, finds the uncorrelated residual assumption unnecessarily strong and
suggests an alternative approximate factor model, in which idiosyncratic components
are allowed to be weakly correlated. The approximate factor structure is now widely

applied in dynamic factor models.

2.2.2.2 Single Factor Models

The single index model of Sharpe (1963) is an example of single factor models. Sharpe
is also the first to advocate using the factor covariance matrix to solve the mean-
variance optimisation problem. The single index model has only one systematic risk
factor that influences asset returns, i.e., the exposure to the overall movement of the

market. In this model, (2.22) is given by

r=a+pr +e (2.24)
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where 1 is the return on the market portfolio comprising all assets in the market. The

market portfolio is normally proxied by a broad market index such as the S&P500 or the
FTSE100 index. Returns are now separated into a component that is correlated with the
market (the market component) and an wuncorrelated component (the residual
component). The exposure of each asset to the market portfolio is measured by its

market beta £, estimated based on historical data of return on the market portfolio and

return on the asset:

V(s fy) (2.25)
var(r,)
The covariance matrix implied by the single factor model then becomes:
Y=0.BB +2, (2.26)

where o is the variance of returns on the market portfolio and Y, is a diagonal

residual covariance matrix with non-zero elements o, .

The model significantly reduces the dimensionality of the covariance matrix. We only

have to estimate 2n+1 parameters: N parameters of market betas £, n parameters of

asset-specific variance o, and the market variance o

> as compared to 1n(n+1)
parameters in the fully estimated sample covariance matrix. Since more data is available
per parameter, we can expect a reduction in estimation error. However, it is likely that a
single factor does not fully capture the total covariation among asset returns, and so
single factor models may be severely biased and misspecified. The literature has shown
that asset returns may be related to factors other than the market returns (see Ross,
1976, Chen et al., 1986, Fama and French, 1992, Fama and French, 1993). For many

years, investment professionals have instead relied on multifactor models in portfolio

management and risk analysis.
2.2.2.3 Multifactor Models

With more factors incorporated, multifactor models explain asset returns better than
single factor models. Multifactor models also provide a more detailed analysis of risk.
As the number of factors is normally chosen to be much fewer than the number of
assets, multifactor models reduce the dimensionality of the covariance matrix, making

them convenient for financial application. If the factors are uncorrelated, there are only



k+n(k+2) parameters to be estimated, compared to +n(n+1) parameters in the

sample covariance matrix. For example, for a 25-asset portfolio with three factors, we
need to estimate only 78, not 325, parameters. This section presents an overview of the

three popular types of multifactor models in practice.
Statistical Factor Models

In statistical factor models, statistical techniques, such as Principal Components
Analysis (PCA) or factor analysis, are used to extract the most important uncorrelated
sources of variations in asset returns. Statistical factor models use a few linear
combinations of returns, or components/factors, which capture most of the variations

present in asset returns, to explain the structure of the covariance matrix.

The PCA technique can be applied to either the covariance matrix or the correlation
matrix. Here I illustrate the application of the PCA technique to the covariance matrix.
Note that since the correlation matrix is just the covariance matrix of the standardised
return vector r =D'r, where D is the diagonal matrix of the standard deviations of
returns, the application of the PCA to the correlation matrix is straightforward to derive.
The PCA analysis employs the eigenvector-eigenvalue decomposition for the symmetric

positive semi-definite covariance matrix 2, of returns:

> =VAV (2.27)
where A, is a diagonal matrix of eigenvalues A of ¥, ordered from the highest to the
lowest, and V is an nxn matrix of eigenvectors v of . v_=[v, ,V, ,...,V, ] is the

eigenvector corresponding to the eigenvalue A_. Define P, as the m"™-component of

the system. P, can be represented as a linear combination of returns:
n
P = Vil + Vol ot Vo b = D Vi, (2.28)
i=l

where I, is return on asset i, or in matrix terms:

P=vr. (2.29)

m m

Putting together all the components of the system, we get:

P=Vr. (2.30)
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The variances and covariances of the components are given by
PP =VrrV=(T-1)VIV=(T-1)VVAVV=(T-1)A, (2.31)

as the eigenvectors are orthogonal (VV'=I ). Since A is a diagonal matrix, the
components P are uncorrelated E(Pi, P, ) =0 (fori # j) and the variance of the m"-
component P, is the corresponding eigenvalue A . The proportion of the total

variations in the covariance matrix that is explained by the m"-component is A_ / 22 .

In the correlation matrix, as the sum of the eigenvalues is equal to the number of the
eigenvalues, the explanatory power of the m"-component on the correlation is
measured by A /n. Since the eigenvalues are ordered according to size, the first

principal component will explain the greatest amount of the total variations in the

covariance matrix.

Because the eigenvectors are orthogonal VV' =1, (2.30) can be rewritten as r = VP

Hence each asset return can be represented as a linear combination of the components:

rL=v,P+v,,P+..+Vv;P. (2.32)

Choose the first k components P* =(P,P,,..,P,) that explain the most part of the

variations of asset returns, then r=V P’ +g, where € is the vector of residuals,
accounting for the remaining small variations that are not explained by the first k
components P”. As the components are uncorrelated, the covariance matrix will then be

reproduced with fewer factors:
Y=VAV +Y, (2.33)

where A" is the diagonal matrix of the components’ variances A" = diag (A Aysen &) s

V' is the component loadings and Y, is the diagonal covariance matrix of the residuals

The PCA technique is very useful in highly correlated systems, where most of
covariations can be explained by just a few independent sources. The disadvantage of
this technique nevertheless lies in the interpretation. The factors extracted from the PCA
are statistical artifacts, and so practitioners have to interpret the economic meaning of
these statistically-derived factors. The interpretability of the factors is crucial in

determining the validity of the PCA.



Macroeconomic Factor Models

Macroeconomic factor models trace the sources of the common covariations among
assets to observable macroeconomic variables, such as inflation, interest rates and
business cycle. Unlike statistical factor models, this approach is backed economically
since asset returns are systematically affected by macroeconomic conditions.
Practitioners observe and study the magnitude and persistence of macroeconomic
variables in explaining historical stock returns and choose pervasive factors for the
models. A good factor must be able to explain the covariations of asset returns, as well
as be easy to interpret and robust over time. The factor betas of each asset are typically
estimated in time series regressions of asset returns on the given factors. Chen et al.
(1986) are among the first to explore and test macroeconomic factors that affect the
behaviour of stock returns. They establish a set of five economic variables that can
affect the discount rate and/or future dividends, which in turn influence the stock prices
in the US market. These include growth in industrial production, changes in expected
inflation, unexpected inflation, unexpected changes in risk premia, and unexpected
changes in the term structure slope. The five-factor Chen, Roll and Ross (CRR) model
has been popularly applied and extended in many researches. A notable example is the
BIRR (Burmeister, Ibbotson, Roll, and Ross) model that employs a similar list of five
macroeconomic factors in the APT framework to construct superior portfolios (see
Burmeister et al., 2003). The CRR model is nevertheless subject to criticism. For
example, Shanken and Weinsten (2006) challenge the robustness of the CRR factors.
They design an experiment that is comparable to that of the CRR model in most
respects, except only for the use of pre-ranking returns to estimate betas. Using instead
the post-ranking returns as in Fama and French’s study (1992), they claim that there is

no indication that the macroeconomic factors, except industrial production, are priced.
Fundamental Factor Models

Fundamental factor models concentrate on the explanatory power of security attributes,
such as market capitalization, industry, book-to-price ratio, dividend yield, on stock
returns. These security characteristics have been found to be surprisingly powerful in
describing the comovement of individual equities. The fundamental factor betas, unlike
those of macroeconomic factors, may not need to be estimated from time series
regressions. Fundamental factor models may use a company's observed attributes such

as firm size, industry classification as betas. In this sense, factor betas are exogenously
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determined, firm-specific attributes rather than estimated sensitivities to random factors
(Connor, 1995). For instance, the industry factor beta is a dummy variable, taking the

value of one if a firm belongs to an industry and of zero if it does not.

One of the most popular fundamental factor models is the Fama-French three-factor
model. Fama and French (1992, 1993) suggest that two security attributes, market
capitalization and book-to-price ratios, are strongly correlated with the difference in
mean returns across securities; smaller capitalization and higher book-to-price ratio
stocks are found to have higher mean returns. Arguing that these higher mean returns
are due to non-diversifiable portfolio risk, Fama and French form two combination
portfolios, i.e., the SMB (small minus big) and the HML (high minus low) portfolios
and use these two portfolios, together with the value-weighted market index as the
pervasive risk factors. Factor betas are estimated by time series regressions of the asset
returns on returns of the factor portfolios. Carhart (1997) and Jegadeesh and Titman
(2001) extend Fama and French's three-factor model, adding an additional factor-
mimicking portfolio to represent the momentum factor (proxied by high-twelve-month
returns minus low twelve-month-returns). Goyal and Santa-Clara (2003) and Ang et al.
(2006, 2009) also suggest evidence of an own-volatility-related factor that adds
explanatory power to the Fama-French model, for explaining both return comovements
and mean returns. Commercially, MSCI BARRA has developed a multifactor model
covering the world's major equity markets. For instance, for the US market, their model
consists of 12 risk indices such as volatility, size, growth, earning-to-price, book-to-
price, financial leverage and 55 industry dummies, further classified into 13 industry

categories.
2.2.2.4 Practical Implementation and Issues

Factor models have gained significant popularity in practical portfolio management.
The parsimony of the factor structure reduces the number of estimated parameters, and
hence reduces estimation error. Besides, the factor structure also avoids the ill-
conditioned problem of the inverse covariance matrix, providing a better conditioned
alternative to the fully estimated covariance matrix (Fan et al., 2008). However, to
reduce the dimensionality of the covariance matrix, the number of factors is normally

chosen to be much smaller than the number of assets (k <<n), which means factor

models could concentrate only on the strongest sources of covariations. Thus, the

models may be mispecified in the sense that they omit some important sources, or that



the chosen factors may be transitory and lose their explanatory power over the next
period. Increasing the number of factors offers more flexibility in approximating the
data generating process, but at a cost of estimation error. Besides, including too many
factors may run the risk of overfitting the data, producing poor out-of-sample forecast

performance.

Another vital concern in applying the multifactor models is to decide which types of
factors to include. Connor (1995) compares the explanatory power of the three types of
multifactor models for US equity returns. Theoretically, he shows that the three types
are not necessarily inconsistent; in the absence of estimation error and with no limits on
data availability, the three models are simply restatements or rotations of one another.
However, in practice where estimation error is common and data is restricted, the three
models may differ. Connor finds empirically that the fundamental and statistical
multifactor models outperform the macroeconomic factor models in terms of
explanatory power. He also finds that the explanatory power of a macroeconomic factor
model is marginally negligible when it is added to a fundamental factor model,
implying that fundamental factors may capture the same risk as the macroeconomic
factors. On the contrary, Burmeister et al. (2003) advocate the use of macroeconomic
factors while raising concerns about the fundamental factor models. They argue that the
fundamental factors are based on accounting data that may come from different
accounting rules, or even if they are from the same accounting rules they may be
released at different report dates that makes it difficult to obtain time-synchronised
comparison. Nevertheless, macroeconomic factor models incur the same problem.
Economic variables such as GDP, inflation are normally released at different time, and
since they are aggregate variables, their estimation error may also be very large.
Statistical factor models, though estimated by maximum explanatory power, are faced
with different problems. After extracting factors from the PCA or factor analysis,
practitioners have to interpret the economic meaning underlying those factors. To make
thing more complicated, factors change over time, which means a third factor in one
sample period may be completely different from the third factor in another sample

period.

Determining the number of factors is also a central issue, especially in statistical
models. The factors, of course, should be robust, statistically significant, and justified
by an economic intuition. Until lately, the number of factors in statistical models was

often assumed rather than determined by the data. Fortunately, recent studies have
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proposed tests to estimate the number of factors from observed data. Connor and
Korajczyk (1993) suggest a test under a sequential limit asymptotic assumption, i.e., N
converges to infinity with a fixed T and then T converges to infinity. Starting with some
certain factors, they will add an additional factor if they find an increase in explanatory
power from adding that factor. Their tests are based on the difference in the cross-
sectional averages of asset-specific variances with and without the additional factor. Bai
and Ng (2002) have a different approach. They set up the determination of factors as a
model selection problem. Working in the PCA framework, they develop two types of
information criterion, which represent the trade-off between good fit and parsimony.

Their criteria are developed under the assumption that n,T — oo, thus applicable for

many datasets. Another approach is motivated by the work on Random Matrix Theory
for stock correlations of, e.g., Plerou et al. (2002). Benghtsson and Holst (2002) suggest
choosing the number of principal components that are determined by the eigenvectors
corresponding to the eigenvalues that deviate significantly from the maximum

eigenvalue bound obtained for a random matrix.

In portfolio choice and risk management, factor models have been popularly applied to
produce better estimates of the covariance matrix. Chan et al. (1999) study the
performance of different factor models in a portfolio choice problem. Testing the
predictive power of different factor models (ranging from one factor to ten factors), they
show that factor models clearly improve the forecast performance of the covariance
matrix. However, they also find that only a few factors such as the market, size, book-
to-market value of equity are sufficient in capturing the general structure of the
covariance matrix. Extending the number of factors beyond this relatively small set does
not lead to superior forecast performance. In another study, Briner and Connor (2008)
compare performance of three covariance matrix estimators, i.e., the sample covariance
matrix, the single market factor model, and the multifactor model. Their simulation and
empirical results show that the multifactor model performs best for large investment
universes and typical sample lengths. This result is consistent with conventional
wisdom, proposing that the market model underperforms because of excessive
specification error, while the sample covariance matrix underperforms due to high

estimation error.



2.2.3 Shrinkage Models

Ledoit and Wolf (2003, 2004) extend the mean shrinkage estimator of James and Stein

(1961) to the covariance matrix. They propose a shrinkage covariance matrix estimator

A A

2., that is a convex combination of the usual sample covariance matrix > and a

shrinkage target S (or its estimate ﬁ):

A A

Y.=aS+(1-a)X (2.34)

where o is the shrinkage constant or shrinkage intensity, & €[0,1]. The underlying

idea is to shrink the sample covariance matrix to the shrinkage target so as to address
the trade-off between estimation error and specification error. The sample covariance
matrix is unbiased but full of excessive estimation error, while the shrinkage target, due

to their simple dimensionality, has less estimation error, but may be misspecified. The
new covariance matrix Y can be seen as a weighted average of the biased and

unbiased estimators with the weight o . This weight « , representing the optimal trade-
off, controls how much structure to be imposed: the heavier the weight, the stronger the

imposed structure.

As suggested by Ledoit and Wolf, the shrinkage target should fulfil two requirements:
(1) involving a small number of parameters, and (ii) reflecting important characteristics
of the true covariance matrix. Ledoit and Wolf (2003, 2004) choose the single-index
factor model of Sharpe (1963) and the constant correlation model of Elton and Gruber
(1973) as their shrinkage targets. Bengtsson and Holst (2002) extend the study of Ledoit
and Wolf to shrink the covariance matrix to a k-factor model derived from a PCA
analysis. A positive definite target also guarantees the positivity of the shrinkage
estimate, even when the sample covariance matrix itself is singular. This makes
shrinkage a particularly practical statistical tool for constructing large-scale equity

portfolios.

Ledoit and Wolf develop algorithms to estimate the shrinkage constant « by
minimising a loss function that does not involve the inverse of the covariance matrix.
This is an advance as previous shrinkage intensity estimation was normally based on
loss functions involving the inverse covariance matrix, which makes the estimators
break down when n>T . In their two articles, Ledoit and Wolf apply their shrinkage

covariance matrix estimator in a global minimum variance portfolio choice problem and
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show that their estimator produces portfolios with significantly lower out-of-sample
variance than those produced by a set of well-established competing approaches,
including the multifactor models. Interestingly enough, they find that the shrinkage
intensity with a single-factor target is remarkably stable through time with a value of
around 0.8, suggesting that there is about four times as much estimation error in the
sample covariance matrix as there is bias in the single-factor covariance matrix.
Janagathan and Ma (2000), however, challenge the complicated algorithm of Ledoit and
Wolf to estimate «. They argue that different covariance matrix estimators contain
error in different directions, hence using a portfolio of covariance matrix estimators
(e.g., a simple average of a sample covariance matrix, a single index estimate, and a
matrix consisting of the diagonal part of the sample covariance matrix) may cancel the
error out. Motivated by the study of Jagannathan and Ma, Disatnik and Benninga
(2007), while acknowledging that the shrinkage estimator of the covariance matrix is
indisputably better than the sample covariance matrix estimator, find no statistical
differences in the ex post standard deviations of the global minimum variance portfolios
constructed with the more sophisticated shrinkage estimator of Ledoit and Wolf and

those with simpler portfolios of estimators of Jagannathan and Ma.

2.2.4 The Constant Correlation Coefficient Model

Given the drawbacks of the sample covariance matrix as an input to the portfolio
optimiser, Elton and Gruber (1973) suggest the use of a constant correlation coefficient
model, where all pairwise correlation coefficients are assumed to be equal and equal to
the average pairwise correlation coefficient. In the empirical study, they show that their
estimator is both statistically significant in producing better five-year estimates of future
correlation coefficients, and economically significant in yielding superiour out-of-
sample portfolio performance, even with or without short sales constraints, than those

produced from the sample or single factor covariance matrices.

Arguing that the model of Elton and Gruber still has many parameters to estimate (all
the pairwise correlation coefficients have to be estimated to obtain their average), Aneja
et al. (1989) suggest a simplified but exact portfolio approach of estimating the average
correlation coefficient without having to estimating all the pairwise correlations. To
estimate the covariance matrix of an n-asset portfolio, their approach will only have to
estimate N+1 variances: the variances of n assets and the variance of a portfolio where

investment in each security equals to the reciprocal of its sample standard deviation.



This method greatly reduces the computational requirements for estimating the average

correlation coefficient.

2.3 Conclusion

Markowitz’s mean-variance optimisation theory provides a convenient and objective
framework to allocate wealth in a portfolio. The theory also beautifully captures the two
fundamental economic insights of risk-return trade-off and diversification. However,
despite its obvious appeal, the Markowitz paradigm is faced with several criticisms.
Theoretically, academics have consistently attacked on the prohibitively restrictive
assumptions of the Markowitz analysis, e.g., the quadratic utility, the single-period
investment horizon. In application, practitioners have traditionally resisted the use of the
classical framework, not least because of the difficulty in estimation of the inputs. The
limitations of Markowitz theory have spurred numerous extensions of the paradigm.
Many models have been suggested, ranging from small calibrations of estimation of the
moments of returns to incorporating sophisticated statistical developments into the
optimiser. Each approach has its own advantages and limitations that make no approach
emerge as a clear favourite. However, in a striking study, DeMiguel et al. (2009) show
that the naive diversified equally weighted portfolio cannot be dominated by any of the
fourteen popularly used optimal portfolio models, ranging from the classical sample
mean-variance efficient strategy to the Bayesian approach to estimation error, or to the
models that impose constraints on portfolio weights. Despite considerable progress in
the design of optimal portfolios, estimation error in expected returns and the covariance
matrix may still be so excessive that it erodes all the gains from optimal, relative to
naive diversification. The needs for more reliable estimates of the moments of asset
returns still pose significant challenges. Exploiting the predictability of the covariance
matrix in conditional volatility models suggests an interesting direction. The next
chapter will turn to the analysis of conditional covariance matrix estimators and their

implications for practical asset allocation.
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Figure 2.1. The Mean-Variance Efficient Frontier.

The figure plots the mean-variance efficient frontier of 49 average-value-weighted industry
portfolios of the US, using data of monthly returns. Expected returns and volatilities are
annualised.
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Figure 2.2. The Mean-Variance Efficient Frontier and The Capital Market Line.

The figure plots the mean-variance efficient frontier and the Capital Market Line, constructed
from 49 average-value-weighted industry portfolios of the US, using data of monthly returns.
The risk-free rate is assumed 4%. Expected returns and volatilities are annualised.
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Figure 2.3. Utilities and Optimal Portfolios.

The figure shows how an investor chooses his optimal portfolios based on the efficient frontiers
and his utility indifference curves. The risk-free rate is assumed 4%. Expected returns and
volatilities are annualised.
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Figure 2.4. The True, Estimated and Actual Mean-Variance Efficient Frontiers.

The figure plots the mean-variance frontiers generated using real and simulated data of 10 US
industry portfolios (T = 120 observations for the simulated data). The true and the estimated
frontiers are constructed using the true and the estimated parameters, respectively. The actual
frontiers are obtained by applying portfolio weights derived from the estimated parameters to
the true parameters to calculate portfolios’ expected returns and risk. Expected returns and
volatilities are annualised.
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Figure 2.5. The True and Actual Mean-Variance Efficient Frontiers.

The figure illustrates the estimation error problem in using the sample estimates of expected
returns and the covariance matrix to construct the mean-variance efficient frontiers. The blue
solid curve is the true efficient frontier, while the red dashed curves are the 250 simulated actual
frontiers. The frontiers are constructed using real and simulated data of 10 US industry

portfolios for two sample sizes of 60 and 120 monthly observations. Expected returns and
volatilities are annualised.
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Figure 2.6. The Sharpe Ratios of the Tangency Portfolios.

The figure shows the histograms of the Sharpe ratios of the 250 actual tangency portfolios. The
portfolios are constructed using real and simulated data of 10 US industry portfolios with two
sample sizes of 24 and 120 monthly observations. The investor is assumed to know the true
expected returns but uses the sample estimates of the covariance matrix. The vertical red line in
each plot represents the Sharpe ratio of the true tangency portfolio.

59



60

Chapter 3
The Time-Varying Conditional

Variance-Covariance Matrix

Applications of the classical mean-variance portfolio optimisation typically assume a
constant return distribution, in which expected returns and risk do not change over time.
However, it is now well established that the covariance matrix of short horizon financial
asset returns is both time-varying and highly persistent. Starting from the seminal work
of Engle (1982), a number of conditional volatility models such as the multivariate
Exponentially Weighted Moving Average (EWMA), multivariate Generalised
Autoregressive Conditional Heteroskedasticity (GARCH) and multivariate Stochastic
Volatility (SV) models have been developed to capture these features of the covariance
matrix. These models are now routinely used in many areas of applied finance,
including asset allocation, risk management and asset pricing. Mounting evidence now
suggests that multivariate conditional volatility models produce better forecasts of the
covariance matrix than those produced by the unconditional covariance matrix estimator
(see, for example, Engle and Colacito, 2006). Practical problems, such as asset
allocation, consequently benefit from better forecasts of the covariance matrix. Indeed,
ample evidence clearly demonstrates that dynamic asset allocation strategies, based on
time-varying conditional covariance matrices, dominate static strategies, based on
constant unconditional alternatives (see, for example, Fleming et al., 2001, Han, 2006,
Thorp and Milunovich, 2007).

Estimation of the time-varying conditional covariance matrix has been the subject of
extensive research. This chapter provides a summary of some popular conditional
volatility models and their application to asset allocation. The chapter will primarily
focus on the Moving Average and the GARCH models, highlighting their similarities
and differences. Stochastic Volatility, Realised Volatility, Option Implied Volatility
models are out of the research scope of this chapter and of the thesis. Due to space
limits, the chapter will not provide an exhaustive list of all Moving Averages and
GARCH models, nor cover all details of each model. Particularly, 1 will not cover some
areas, such as the testing and estimation procedure, or the forecast evaluation. The

purpose here is to help readers get a glimpse of the developments of conditional



volatility models in both univariate and multivariate context, before guiding them
through the multivariate long memory conditional volatility models studied in the next
chapters. More details of the conditional volatility models can be found in excellent
reviews of, among others, Poon (2005), Andersen et al. (2006), Xiao and Aydemir
(2007).

Section 3.1 begins with some well-known properties of asset return volatility. Extensive
research that captures these properties to produces better estimates and forecasts of the
covariance matrix is then summarised in the following sections. My focus is especially
on the multivariate conditional volatility models that are applicable to a large number of
assets. Section 3.2 presents the Moving Average models, with due attention paid to the
widely-used Riskmetrics Exponentially Weighted Moving Average (EWMA) of JP
Morgan (1994). Section 3.3 is devoted to the GARCH family. Alternative univariate
GARCH models are discussed in Section 3.3.1, while their multivariate generalisations
are detailed in Section 3.3.2. Owing to their importance in the research, long memory
conditional volatility models are studied in a separate section (Section 3.4). Finally,
Section 3.5 briefs some applications of the conditional volatility models in the asset

allocation framework.
3.1 Properties of Asset Return Volatility

This section introduces some of the well-established properties of asset return volatility.
The recognition of those properties has sparked off the development of numerous

conditional volatility models in the last 30 years.
Fat tails

The unconditional distribution of asset returns is known to exhibit fatter tails than those
exhibited in the normal distribution. An ample body of evidence suggests that although
the normal distribution may closely explain financial asset returns in the middle of the
curve where most gains and losses occur, it fails to do so in the extreme edges. There
are more days of spectacular price increases or falls than it is expected under the normal
distribution assumption. For example, we typically observe financial returns of four
standard deviations many days in a year, which is inconsistent with the normal
distribution. This non-normality feature of the asset return distribution should be taken

into account in the construction of any volatility model.
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Volatility persistence

It is generally agreed that volatility is time-varying and persistent. While returns
themselves contain little autocorrelation, which is consistent with the efficient market
hypothesis, absolute returns and squared returns (proxies of volatility) are found to be
highly correlated and persistent. This property holds for returns of equities, bonds,
exchange rates, interest rates in different markets and different countries at daily or even

weekly frequencies, and is even more pronounced at high frequency intra-day returns.

Volatility persistence is among the first features of volatility to be recognised.
Mandelbrot (1963) observes that “large changes tend to be followed by large changes -
of either sign- and small changes tend to be followed by small changes.” However,
Mandelbrot then emphasises the unconditional non-normality of returns, rather than
volatility clustering. The first formal study of volatility persistence is credited to Engle
(1982), who exploits this feature to develop the Autoregressive Conditional
Heteroskedasticity (ARCH) model. Volatility persistence implies that information in the
past can be exploited to generate future forecasts of volatility. The seminal work of
Engle has served as the foundation for extensive and ongoing research on time-varying
conditional volatility.

Mean reversion

Volatility persistence implies that when volatility is high, it is likely to remain high, and
vice versa. However, this effect is time bounded so that a period of high volatility will
eventually give way to a period of normal volatility and conversely, volatility will rise
after a period of low volatility. This ‘mean reversion’ feature implies volatility will
eventually revert to a long-run normal level. Consequently, long-run forecasts of

volatility will converge to this normal level, no matter when they are made.
Asymmetric volatility

Volatility asymmetry has been noticed in equity markets. It has been observed that
volatility is higher in bear markets than it is in bull markets. A negative return shock
(unexpected price drop) will lead to a higher subsequent volatility than a positive return
shock (unexpected price increase) of the same magnitude. Black (1976), among others,
attributes this phenomenon to the ‘leverage effect’, in which a fall in stock price

increases financial leverage and hence financial risk of the firm, leading to changes in



volatility. Pindyck (1984) and French et al. (1987), however, have a different
explanation. They argue that the asymmetric nature of volatility response to shocks
could simply reflect the time-varying risk premium — the ‘volatility feedback’. An
anticipated increase in volatility raises the required returns, hence provoking an
immediate decline in stock price. Though addressing the same behaviour of volatility,
the two approaches have different causality. While the leverage effect treats the return
shock as the cause to the conditional volatility, the volatility feedback mechanism treats
it as the effect. Which direction dominates has not got a clear-cut answer and still

remains an open question for academic researchers.
Long memory behaviour of volatility

A mounting body of empirical evidence now suggests that the autocorrelation function
of squared return innovations declines more slowly than the exponential decay implied
in the EWMA and GARCH models, and hence volatility shocks are more persistent
than these models imply. Ding et al. (1993) are the first to identify the so-called long
memory behaviour in volatility. They investigate the volatility of the daily S&P500
index returns and find that the sample autocorrelation function of volatility decreases
slowly and remains significantly positive after very long lags; yet, the volatility process
is still essentially stationary. This feature is important not only for the measurement of
current volatility, but also for forecasts of future volatility, especially over longer

horizons.

These properties of financial asset return volatility have spurred the development of
numerous volatility models to provide accurate estimates and reliable forecasts of future
volatility. In the following sections, various approaches to model the conditional

covariance matrix will be investigated.
3.2 Moving Average Models

Moving average models are a simple, yet practically powerful approach to estimate and
forecast the time-varying covariance matrix. The simplest specification of this class is
the Equally Weighted Moving Average model, in which elements of the covariance
matrix are estimated as sample squares and cross products of returns over rolling
windows. This is sometimes referred to as ‘the historical volatility’. It offers the
simplest way of incorporating actual data in the estimation of the time-varying
covariance matrix. Another specification is the widely used RiskMetrics Exponentially
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Weighted Moving Average (EWMA) model of JP Morgan (1994). This section

provides a brief overview of these two models.

3.2.1 The Equally Weighted Moving Average Model

11 Int

Consider an n-dimensional vector of returns r, =(r,,r,,,...,, T, )" with conditional mean

zero and conditional covariance matrix H,:
%
rt = Ht Z'[ , (31)

where z, is i.i.d with E(z,)=0 and var(z,)=1I,. The ‘historical” covariance matrix is

calculated on a T-day window that is rolled through time, each day adding the new

return and taking off the oldest return:

13 .
H, :?zrt—irt—i' (3.2)
i=1
The sophistication of this model lies in the choice of the window length T. If the length

is short, the estimate may be noisy since the sampling error is proportional to Y. The

longer the window, the less noisy the estimate, but the more biased it is when far more
distant observations, which may not be relevant today, are included in the calculation.
Hence, the length of the window T directly determines the trade-off between the

sampling error and the unbiasedness of the estimate.

The model captures the time-varying property of volatility and covariance in a
simplistic way, through a rolling window. However, by putting equal weights on both
recent and distant observations, the model fails to capture the persistence of volatility
and covariance. Empirical studies, consequently, suggest that the historical method is
not very effective for short-term horizons. Long-term volatility could be estimated with
this method, but only when we assume that the past is an accurate reflection of the

future.
3.2.2 The Exponentially Weighted Moving Average Model

Unlike the Equally Weighted Moving Average model, the Exponentially Weighted
Moving Average (EWMA) model puts more weight on the recent observations and less
on the distant past, hence capturing the volatility persistence and enabling volatility to



react faster to shocks. The impact of the shocks also dies out exponentially instead of
remaining the same until they are excluded out of the equally weighted model. The

EWMA covariance matrix has the following specification:
H, =(1-2)r_r_, +AH_, (3.3)

where A is the decay factor (0< A <1). The first term of the right hand side of (3.3),
(1-2)r_r_ ", denotes the response of volatility to one-period news, while the second

term, AH, ,, determines the persistence in volatility. The higher the value of 1, the

more persistent the process and the slower the response to new shocks. However, in the
EWMA model, the reaction and persistence parameters are not independent because

they sum to one.

By backward substitution, the covariance matrix can be written as:

H =(1-2)> A"r ;. (3.4)

i=1
The model derives its name from this formulation, in which the elements of the
covariance matrix are the exponentially weighted moving averages of past squares and
cross products of returns. In practice, the process is often estimated with a cut-off time

T, scaling the infinite sum in (3.4) by

Zﬂ’irt—irt'—i - (3.5)

Under the RiskMetrics (1994), A takes the values of 0.94 and 0.97 for daily and weekly
forecasts, respectively. The EWMA process is hence easily estimated in a spreadsheet
for any dimensional system. The one-step ahead forecast is readily given in the model:

H,, =(1-2)rr, + AH,. (3.6)
By recursive substitution, the h-step forecast is equal to the one-step ahead forecast:

Ht+h = Ht+h—1 == Ht+2 =H (37)

t+1*

Assuming returns are serially uncorrelated, the expected covariance matrix over k

cumulative steps is given by H, ..., =kxH,,,. The multiple-period forecast is a simple

t+1°
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product of the one-day forecast with the forecast horizon, k. This is also known as the
‘square root of time’ rule for volatility forecasts. The EWMA model can thus be thought
of as a random walk model, where a shock will have a permanent effect on the
expectation of future variance and covariance. The volatility process in the EWMA
model is not mean-reverting, which is quite counterfactual since financial return

volatility tends to eventually converge to its long-run average.

The multivariate Riskmetrics EWMA model of JP Morgan (1994), though being non-
mean-reverting and very restrictive when imposing the same degree of smoothness on
all elements of the estimated covariance matrix, enjoys the most popular practical

application among multivariate conditional volatility models due to its high parsimony.
3.3 GARCH Models

Observing that squared residuals are often autocorrelated even though residuals
themselves are not, Engle (1982) sets the stage for the new class of time-varying
conditional volatility models with the Autoregressive Conditional Heteroskedasticity
(ARCH) model. The new model has inspired a huge amount of related research on its
development, generalisation and application, and deserved Engle a Nobel Prize in
Economics in 2003.2 This section introduces the ARCH model and some of its popular

generalisations in both univariate and multivariate context.
3.3.1 Univariate GARCH Models
3.3.1.1 The Basic ARCH Model

The ARCH model of Engle (1982) parallels the Wold representation for the conditional
mean to modelling the conditional variance. Engle is the first to treat the unconditional
mean and variance as constant, while letting both the conditional mean and variance be
time-varying. Allowing for the time-varying conditional variance (conditional
heteroskedasticity), the ARCH model successfully captures the persistent volatility
feature of financial time series, providing a natural and powerfully simple framework

for estimating and forecasting volatility.

® Engle shared the 2003 Nobel Prize in Economics with Granger. Engle’s contribution was recognised
“for methods of analyzing economic time series with time-varying volatility (ARCH),” whereas
Granger’s was “for methods of analyzing economic time series with common trends (cointegration).”



Let r, be the log return of an asset at time t. The return is decomposed into an expected
conditional mean 4 =E (1|7 ) based on the information set 7, available at time

t—-1 and an innovation ¢,. The return series has no serial autocorrelation or minor

autocorrelation, if any.”

=4 +& (3.8)

& =Nz, (3.9)

where z, is a white noise process with zero mean and unit variance and h, is the
conditional variance at time t. In practice, z, is often assumed to follow the standard

Gaussian or the standardised Student-t distributions. In the ARCH model, the residuals

g, are serially uncorrelated while their squares are autocorrelated over time. In the

following, to facilitate the presentation, the conditional mean is assumed constant and
equal to zero, a common assumption in risk management at least when a short horizon
is considered. Under the ARCH(p) model, the conditional variance is estimated by

taking the weighted average of past squared errors:
p
h =+ ae, (3.10)
i=1

with @>0 and «; >0 to ensure the strict positivity of &2. Under this structure, large

past changes (large &) imply that the current conditional variance h, is also large, and

vice versa. The ARCH model is thus able to capture the volatility clustering observed in

asset returns. One advantage of the ARCH model is that the weight ¢; can be estimated

from historical data, based on, e.g., the Maximum Likelihood procedure, even though

the ‘true’ volatility is never observed. The unconditional variance of r, is
o’ =a)/(1—Zai), a constant even though the conditional variance is time-varying.

The ARCH(p) model is covariance stationary if Zai <1.

* The conditional mean equation can be of any form. However, as the ARCH family concentrates on
modelling the conditional variance, they usually have a simple conditional mean equation to extract all
serial autocorrelations in the residuals. Many of the ARCH models in practice just let the simple
conditional mean to follow a stationary ARMA process or even assume that g, is equal to zero.
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A good volatility model must produce good forecasts. As o/ is serially correlated, this
dependence can be exploited to produce accurate volatility forecasts. From (3.10), h, is

known at time (t—l), so the one-step forecast is readily available. The multi-step

forecast can be formulated by assuming that E (&7, )=h,,.

Another remarkable feature of the ARCH model is that the implied unconditional

distribution of even a conditionally Gaussian ARCH process is leptokurtic. It is shown
that for an ARCH(1) process, if a® <% so that a finite fourth moment exists, then the

kurtosis is greater than 3 for a positive « , and so the ARCH model yields observations
with heavier tails than those generated by a normal distribution. Therefore, the ARCH
model captures the two most common features of real high frequency financial asset

returns, i.e., volatility clustering and heavy-tailed unconditional distributions.

In the ARCH(p) model, past shocks of more than p periods ago have no effect on the
current volatility, hence the order p determines how long a shock is persistent to
volatility. For financial time series, it typically requires a very high order p to capture
the dependence. Bollerslev (1986) proposes a parsimonious way to handle with this
problem, introducing the Generalised Autoregressive Conditional Heteroskedasticity
(GARCH) model.

3.3.1.2 The GARCH Model

Applying the principles of the ARMA model, Bollerslev suggests a parallel proposal to
the ARCH process.” In the GARCH(p,q) model, the conditional variance is modelled as

h = a’+_zp:ai5t2-i +Zq:ﬂihr-1 (3.11)

with @>0. The GARCH process is covariance stationary if » a +> B <1. In

practice, the GARCH(1,1) model is the most popular specification for estimating and
forecasting volatility. The GARCH(1,1) process has just one lag of past squared error

and one autoregressive term:

h =0+ agil +ph ;. (3.12)

> Taylor (1986) also proposes a similar model in an independent study.



Here a and g are non-negative to ensure the strict positivity of h, . Note that for the
GARCH (p,q) model, the positivity constraints are much more complex.® The
conditional variance is a weighted average of three different variables: a constant @, a
forecast that was made in the previous period h,_, and new information unavailable last
period &’,. The GARCH(1,1) process can capture a very high order of lags p of the
ARCH(p) model. Indeed, by recursive substitution, the GARCH(1,1) model can be

alternatively represented in the form of an ARCH (oo) process:

w O il 2
=—+ - 3.13
h= 2 rad sl (3.13)

It obviously follows that the GARCH model is also an exponentially weighted moving
average process. However, there are two major differences between the GARCH and
the EWMA models. First, while the parameter 4 of the EWMA process is often set ad
hoc, the parameters of the GARCH process have to be estimated by rigorously
statistical methods, normally using the Maximum Likelihood procedure. Second, the
GARCH model allows the volatility process to eventually revert to its long-run level.

Assume that ao+ <1 so that the long-run, or unconditional variance exists
o’ =a)(1—a— ﬁ)fl, the h-step ahead forecast, by recursive substitution, is then given

by
h,, =0’ +(0[+ﬂ)hil(h[+1 —(72) (3.14)

It is inferred from (3.14) that when o+ <1, a+ /£ dies out quickly at an exponential
rate as the horizon h increases, hence h,, will revert to its long-run mean o*. Note that

while a determines how fast the conditional variance responds to new information,

a+ [ governs how fast it reverts to its long-run average. In the alternative case when
a+ =1, the volatility dynamics will not converge and have to be modelled by

different models.

With serially uncorrelated returns, the optimal variance forecast over the k cumulative

steps is then given by

® See Nelson and Cao (1992) for more details.
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1-(a+pB)

—— (3.15)

ZhHi = kaz +(hl+l _02)

3.3.1.3 Other GARCH Models

The dynamics of the GARCH(1,1) model allow for intuitive interpretations as they
capture some of the most important features of volatility, e.g., high persistence, fat tails
and mean reversion. Moreover, it may be readily extended to richer specifications to
account for other volatility features. This section gives some generalisations of the
GARCH model.

The Integrated GARCH Model

The GARCH(1,1) model assumes « + £ <1 so that forecasts of the conditional variance
will revert to the long-run volatility level. However, it is commonly found in empirical
research that volatility is so highly persistent that the sum of the estimated GARCH
parameters is very close to one. Taylor (1986) estimates the GARCH(1,1) model for 40
different time series and finds that for all but six of the 40 series, the sum of the
estimated parameters is equal or greater than 0.97. Engle and Bollerslev (1986) then

propose the Integrated GARCH (IGARCH) to model this long-run volatility persistence.

The IGARCH(1,1) model is constructed similarly to the ARIMA model for the
conditional mean, thus being considered a non-stationary GARCH(1,1) version where
a+ B =1.Putting f=A1, hence a=1-1, the IGARCH(1,1) process is specified by

h, =a)+(l—/1)gt271+/1h[71 (3.16)

When a+ =1, ¢° :a)(l—a—ﬂ)fl — o0, and so the IGARCH process has no finite

unconditional variance. Note that the Riskmetrics EWMA model is a special case of the
IGARCH(1,1) model without the drift term @. The IGARCH(1,1) model can also be

expressed as an exponentially weighted moving average process:
h=w+(1-2)) A7, . (3.17)
i=1
As with the EWMA model, while a shock to volatility in the IGARCH process will

eventually die out at an exponential rate, it nevertheless has a permanent effect on

forecast volatility at all horizons. The h-step ahead variance forecast is given by



ht+h =h o+ ht+l' (318)

Although the IGARCH model is considered a non-stationary version of the GARCH
model for the conditional variance as the ARIMA model is a non-stationary version of
the ARMA model for the conditional mean, there are some interesting twists in the case
of the conditional variance. Nelson (1990) shows that the IGARCH(1,1) model with
drift is strictly stationary, ergodic and the IGARCH(1,1) model without drift goes to

zero almost surely even though it is not covariance stationary. Though the model is

called Integrated GARCH, it does not follow that &> behaves like an integrated process;

on the contrary, it is still a martingale difference process. Also, while the effect of a
shock is the same to both the expectation and the true process for a random walk in
mean, a shock in the IGARCH process may permanently affect the expectation of a
future conditional variance process, but it does not permanently affect the ‘true’

conditional variance process itself.

Though the IGARCH (EWMA) model may be counterfactually non-stationary, it
generates better volatility forecasts than those produced by the stationary GARCH
model in many empirical studies. This may be owing to the fact that IGARCH processes
are not constrained by a mean level of volatility and hence can be readily adjusted to
changes in unconditional volatility.

Asymmetric GARCH Models

The GARCH model suggests a symmetric volatility response to market news. The

unexpected return ¢, enters the conditional variance as a square, making no difference

between a positive or negative shock. However, empirical evidence suggests that in
equity markets, negative shocks normally have larger effects on volatility than positive
shocks of the same magnitude. Research has thus been extended to accommodate the
asymmetric volatility response to market shocks, including the Exponential GARCH
(EGARCH) model of Nelson (1991), the GIR-GARCH model of Glosten et al.(1993),
and the Threshold GARCH (TGARCH) model of Zakoian (1994).

The Exponential GARCH (EGARCH) model

The EGARCH model of Nelson (1991) is the first asymmetric GARCH model. Instead
of using the squared residuals, Nelson develops his model around the logarithmic

conditional variance. The EGARCH(1,1) model also takes a different functional form:
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logh = w+ag(z._,)+Blogh_, (3.19)

where the logarithm of h, is a function of the past zts(\/ﬁ)_lgt, g() is an

asymmetric response function g(z,)=6z +y||z|-E|z|], where 6 and y are real

constants. This specification enables the conditional variance to response

asymmetrically to rises and falls in &, since for z, >0 and z, <0, g(z) will have

different slopes, 8+ and @—y, respectively. The EGARCH model can capture the

magnitude, as well as the sign of past shocks to volatility. Besides, by formulating
conditional variance in the logarithmic form, the EGARCH model ensures that the
conditional variance is positive, hence ruling out the necessity of imposing non-negative

constrains on the parameters as in the GARCH model.

The conditional volatility forecast of the EGARCH process is readily available in
logarithmic form. However, interests normally focus on the conditional volatility, not

on the logarithmically conditional volatility. The transformation from logh, , to h

+h
nevertheless, requires the entire h-step ahead forecast distribution of the return series.
As a result, the solution is not generally available in closed form and normally derived
based on rigorous procedures, such as the Monte Carlo simulation. Other models have
thus been suggested to provide more straightforward specifications to forecast
asymmetric conditional volatility.

The GJR-GARCH and Threshold GARCH Models

The GJR-GARCH model of Glosten et al. (1993) extends the GARCH model by still
allowing quadratic response of volatility to news, but adding another ARCH term to
account for asymmetric response to good and bad news. The conditional variance under
the GJR-GARCH(1,1) process is specified as:

h =wo+as’, +6D &, + ., (3.20)
D, =1if & <0

where ) (3.21)
D, ,=0ifg 20



To ensure the positivity of the conditional variance, @ is positive, while «, g and

a+0 are non-negative. It immediately follows that when 6 >0, negative shocks will

have a higher impact on volatility than positive shocks.

The Threshold GARCH (TGARCH) model of Zakoian (1994) is constructed similarly
to the GJR model, but it is formulated with the conditional standard deviation instead of
the conditional variance. The TGARCH(1,1) model is given by

Jn =o+ag, +D e+ ph . (3.22)

Forecasts of the GJR-GARCH and TGARCH models are straightforward to estimate.

Assume further that P(z, <0)=P(z >0)=0.5, the h-step ahead variance forecast of

the GJR process is given by
h.,=o"+(a+055+5)" (h,-o°) (3.23)

-1

with the unconditional volatility o = w(1-a —0.55 - B)

The GARCH model is also generalised to account for long memory behaviour in
volatility. Details of the long memory volatility models are summarised in Section 3.4.
Other developments of the GARCH model include, but are not restricted to, the ARCH-
in-Mean model of Engle et al. (1987), the Asymmetric GARCH model of Engle and Ng
(1993) and the Quadratic GARCH model of Sentana (1995).

3.3.2 Multivariate GARCH Models

As with univariate GARCH models, multivariate GARCH processes have attracted a
huge interest. This section investigates some multivariate GARCH specifications,
especially those that can be applied in vast dimensions. Assuming zero conditional
mean, the expressions in (3.8) and (3.9) can be generalised as:

r =Hlz, (3.24)

where H, is the conditional covariance matrix and z, is a vector of white noise process
with E(z,)=0 and var(z,)=I,. Estimating the conditional covariance matrix is,

inherently, challenging. The conditional covariance matrix has 1n(n+1) distinct

parameters and structure has to be imposed to guarantee the positivity of all these
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parameters. Great efforts have been devoted to modelling multivariate GARCH
processes, e.g. the full parameterisation VEC model of Engle and Kroner (1995), the
positive definite parameterisation BEKK model (named after Baba, Engle, Kraft and
Kroner), the Constant Conditional Correlation (CCC) model of Bollerslev (1990), and
the Dynamic Conditional Correlation (DCC) model of Engle (2002). Section 3.3.2.1
introduces some of the common multivariate GARCH models. Due to its popular use,

the DCC model is separately presented in Section 3.3.2.2.

3.3.2.1 Multivariate GARCH Models

The full parameterisation VEC representation

The full parameterisation, or VEC, representation, introduced in Engle and Kroner
(1995), is the most general formulation of the multivariate GARCH models. The model
converts the conditional covariance matrix into vectors of conditional variances and
covariances. Under the VEC approach, the multivariate generalisation of the
GARCH(1,1) model in (3.12) is defined by

vech(H,)=Q-+ Avech(g, , , )+ Bvech(H,,) (3.25)

where g, = H?zt, vech denotes the operator that converts the unique upper triangular
elements of a symmetric matrix into a £n(n+1)x1column vector, Q is a +n(n+1)x1
column vector, and A and B are $n(n+1)x4n(n+1) matrices. In a similar approach, we

can generalise the VEC representation to the integrated or asymmetric GARCH models.
Forecasts of the conditional covariance matrix can also be estimated using a recursive

procedure as with the univariate models.

However, notice the number of parameters to be estimated in the full model of (3.25),

which is equal to %n4+n3+n2+%n:0(n4). For a 25-asset conditional covariance

matrix, the full model has 211,575 parameters! This is infeasible to estimate in practice.
Moreover, without any additional structure imposed on the model, there is little chance
that all conditional variances are positive. Therefore, several simplifications have been
developed to guarantee the semi-definite positivity of the covariance matrix and to

reduce the number of parameters to a manageable level.



The BEKK representation

The BEKK representation, discussed in Engle and Kroner (1995), provides a convenient

way to impose restrictions on the VEC representation. The BEKK(1,1) model is given

by

H =Q+A(g. & ,)A +BH B (3.26)

where Q, A and B are symmetric positive definite nxn matrix. It is clear that the

conditional covariance matrix H, in (3.26) is positive definite under very weak

assumptions. (3.26) is also sufficiently general when it allows all the variances and
covariances to influence one another. More restrictions can be imposed in the BEKK
model. In the diagonal BEKK model, A and B matrices are assumed to be diagonal, in

which each element of the conditional covariance matrix H, only depends on its own

lagged values. The dynamics of variance depends only on its past variances, and the
dynamics of covariance depends only on its past covariances. The BEKK representation
is simplified further in the scalar BEKK model, where A and B matrices reduce to

single values of « and £
H =Q+ag g _,+pH, . (3.27)

The Orthogonal GARCH model

Another way to reduce the number of estimated parameters is to impose a factor
structure on the covariance matrix. Arguing that in a highly correlated system, only a
few factors are required to accurately represent the system variations, Alexander (2001)
proposes the Orthogonal GARCH model that combines conditional GARCH volatilities
in an orthogonal Principal Component structure.

Using a Principal Components Analysis, the covariance matrix with k factors can be

represented as
H=VAV +H, (3.28)

where V is an nxk matrix of factor weights, A is a diagonal matrix of the variances of
the k factors/principal components, and H, is the covariance matrix of the error terms.

Ignoring H_ gives the approximation:

H=VAV. (3.29)
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As the principal components are orthogonal, the estimation of the covariance matrix
reduces to the estimation of the orthogonal principal components’ variances, which
significantly enhances the computational efficiency. Alexander suggests that different
conditional volatility EWMA or GARCH models can be employed to estimate the
variances of the components. Note that the covariance matrix in (3.29) is positive semi-
definite, but not strictly positive definite as there is no guarantee that VAV is strictly

positive definite when the number of factors is less than the number of assets.

3.3.2.2 The Dynamic Conditional Correlation Model

An alternative way to model multivariate GARCH processes in large systems is to
model volatilities and correlations separately. Note that the conditional covariance

matrix can be decomposed as:
H, =DRD, (3.30)

where R, is the conditional correlation matrix, D, is a diagonal matrix with the
standard deviations \/h. on the i" diagonal, i.e., D, :diag{ hi}. In the Constant
Conditional Correlation (CCC) model of Bollerslev (1990), the conditional correlation
matrix R, is assumed constant R, =R and the variations in the covariance matrix are

only driven by the variations in the conditional variances. The assumptions reduce the
estimation of the covariance matrix into two steps. First, a univariate GARCH model is
estimated to each return series, and estimates are combined to form the diagonal matrix

D, . Second, returns are divided by their conditional volatility to obtain the standardised,
zero-mean residuals e, = D;'r,. The constant correlation matrix R is then given by the
sample analogue R :T’lztete;. The model is simple to estimate, and more

importantly, it follows that the conditional covariance matrix H, will be positive

definite as long as each of the n conditional variances is well defined and the correlation

matrix is positive definite.

Bollerslev suggests a convenient framework to estimate and forecast the conditional
covariance matrix in large systems. However, the assumption of constant conditional
correlation may be too restrictive and not suitable in many practical applications.

Generalising the CCC model, Engle (2002) develops the Dynamic Conditional



Correlation (DCC) model with time-varying correlations. In the DCC model, the

conditional correlation matrix is given by

1
2

R, =diag {Qt }_E Q.diag {Qt} (3.31)

Q, =Q+ aet—lell—l + Q. (3.32)

where Q, is the approximation of the conditional correlation matrix R,. In this DCC

model, Q, converges to the unconditional average correlation R=%Y"e ;e ,, and

Q=(1-a-B)R. This model is an analogy to the scalar multivariate GARCH(1,1)
model (see (3.27)) but in terms of volatility-adjusted returns. The positive semi-definite

feature of Q, is guaranteed if « and g are positive with o+ £ <1 and the initial

matrix Q, is positive definite.

Again, each conditional volatility in D, can be estimated employing any univariate
conditional volatility model. Returns are then divided by their conditional volatility, and
the standardised, zero-mean residuals e, =D;'r, are used to compute the quasi-
conditional correlation matrix Q,. As the diagonal elements of Q, are equal to unity

only on average, Q, is rescaled to obtain the conditional correlation matrix

*. The conditional volatility D, and conditional

R, =diag{Q,} * Q.diag{Q,}

correlations R, are then combined to estimate the conditional covariance matrix H, .

The h-step-ahead conditional covariance matrix is given by

Ht+h = D Rt+th+h (333)

t+h

D,., is, again, estimated using the forecast procedure of the univariate volatility
models. Since R, is a non-linear process, the h-step forecast of R, is not
straightforward and cannot be computed using a recursive procedure. Assuming for

simplicity that E, (eme'm) ~Q,,,, Engle and Shephard (2001) show that the forecasts of

Q,,, and R, are given by

h-2

Q. => (1-a-p)Q(a+B) +(a+p) " Q. (3.34)

j=0
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1

Rt+h = dlag {Qt+h }_E Qt+hdiag {Qt+h }_E ) (335)

The DCC model is the most widely used multivariate GARCH model, especially in
large systems, owing to its simple estimation. Specifically, we only need to estimate n
univariate GARCH processes plus two additional parameters in (3.32). Different
GARCH processes may be applied to different return series. The DCC structure is also
readily flexible to allow for richer specifications. For example, in the Asymmetric DCC
of Cappiello et al. (2003), an additional term is added in (3.32) so that the model allows

correlation to rise more when both returns are falling than when they are both rising.
3.4 Long Memory Volatility Models

In all the conditional volatility models described above, elements of the conditional
covariance matrix are typically estimated as exponentially weighted moving averages
of the squares and cross products of returns. However, ample empirical evidence now
suggests that although volatility is almost certainly stationary, the autocorrelation
functions of the squares and cross-products of returns decline more slowly than the
geometric decay rate of the EWMA and GARCH models, and hence volatility shocks
are more persistent than these models imply (see, for example, Taylor, 1986, Ding et
al., 1993, Andersen et al., 2001). Baillie (1996) suggests the volatility process is in a
halfway house between 1(0) and 1(1). This empirical evidence has prompted the
development of volatility models that incorporate long memory in volatility dynamics,
either explicitly or implicitly. The explicit approach is to develop a model that produces
hyperbolic decay in volatility’s autocorrelation functions, such as the Fractionally
Integrated GARCH (FIGARCH) model of Baillie et al. (1996) and the Hyperbolic
GARCH (HYGARCH) model of Davidson (2004). Long memory volatility can be
modelled in an implicit way, in which a combination of short memory volatility
processes can generate spurious long memory behaviour, such as in the structural
break, regime switching or component volatility models. As with the GARCH family,
the Moving Average framework has been extended to allow for long memory volatility
dynamics by Zumbach (2006), who develops a long memory EWMA model in which
the dynamic process for volatility is defined as the logarithmically weighted sum of
standard EWMA processes at different geometric time horizons. Like the short memory
EWMA model of JP Morgan (1994) on which it is based, the long memory EWMA



model has a highly parsimonious specification, which facilitates its implementation in

practice.

This section presents some popular long memory GARCH models. The long memory
EWMA model will be discussed in Chapter 5. Section 3.4.1 introduces the FIGARCH
model, the most commonly used and tested long memory volatility model in the
literature. Section 3.4.2 describes the Hyperbolic GARCH model that nests the
GARCH, FIGARCH and IGARCH models. It allows for a more flexible dynamic
structure than the FIGARCH model and facilitates tests of short versus long memory in
volatility dynamics. Implicit long memory volatility models are analysed in Section
3.4.3. Section 3.4.4 gives some comments on the multivariate long memory volatility

models.
3.4.1 The Fractionally Integrated GARCH Model

Baillie et al. (1996) propose the Fractionally Integrated GARCH, or FIGARCH, model,
a direct conditional volatility analogy to the conditional mean ARFIMA model. In the
FIGARCH model, long memory is introduced through a fractional difference operator,
d. This model incorporates a slow hyperbolic decay for lagged squared innovations in
the conditional variance while still letting the cumulative impulse response weights tend
to zero, thus yielding a strictly stationary process. The conditional volatility of a
FIGARCH(1,d,1) is given by

h=w+[l-pL—(1-gL)(1-L)"]&? + Sh,,. (3.36)

When d =0, the FIGARCH process reduces to the GARCH process. The FIGARCH
model also encompasses the IGARCH model with d =1. Baillie et al. (1996) show that
for 0<d <1, the FIGARCH process has no finite unconditional variance, and is not
weakly stationary, the same feature with the IGARCH process. However, they show
that the FIGARCH process is still strictly stationary and ergodic by a direct extension of
the proof for the IGARCH case.

The one-step ahead forecast is given by
h,=o(l-8)" +[1-(1-AL) " (1-gL)(1-L)"1e?, (3.37)

and the h-step ahead volatility forecast by
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h.y=o(1-8)" +[L-(1- pL) (1-gL)(1-L) 1%, - (3.38)

Asymmetries are also introduced into the FIGARCH by parameterising the logarithmic
conditional variance as the fractionally integrated distributed lag of past values (the
Fractionally Integrated Exponential - FIEGARCH model of Bollerslev and Mikkelsen,
1996, corresponding to the EGARCH model of Nelsen, 1991), or by allowing separate

influences of past positive and negative innovations as in the GJR or TGARCH model.
3.4.2 The Hyperbolic GARCH Model

Davidson (2004) notes that the FIGARCH model has non-summable autocovariances,
which contradicts what we know about the actual characteristics of the volatility
process. In particular, FIGARCH processes are characterised through theoretical
autocorrelations decaying toward zero at a polynomial rate. This decay is so slow that
the autocorrelations are not absolutely summable and, therefore, the unconditional
variance is not well-defined. He then suggests the Hyperbolic GARCH (HYGARCH)
model as a generalisation of the FIGARCH model (and also of the GARCH and
IGARCH models). The model allows for covariance stationarity while still exhibiting
hyperbolic memory. The conditional volatility of the HYGARCH model is given by

h = a)J{l—%[lJra((l— L)’ —1)Hgf. (3.39)
The FIGARCH and GARCH models correspond to =1 and a =0, respectively.
Also, when d =1, the parameter « reduces to an autogressive root, and the process in
(3.39) becomes a GARCH or an IGARCH process, depending on whether « <lor
a =1. Consequently, one can test for short versus long memory in volatility dynamics
by testing the hypothesis d =1. When « >1, (3.39) is inherently non-stationary. On the
contrary, when 0<a <1, (3.39) is covariance stationary and their cumulative impulse
response weights decay towards zero at a higher rate than that implied in the FIGARCH

model.
3.4.3 Component, Break and Regime Switching Volatility Models

Granger (1980) shows that the aggregation of stationary short memory AR(1) processes
may result in an integrated, or a long memory process. A parallel approach applies to

volatility. Long memory volatility can be modelled as a combination of different short



memory volatility processes as in, for example, volatility component, structural break

and regime switching models.
3.4.3.1 The Component GARCH Model

Engle and Lee (1999) introduce the Component GARCH (CGARCH) model, in which

the long memory volatility process h, is modelled as the sum of a long-run (trend) g,
and a short run (transitory) s, volatility component, each following a GARCH-type

process. The GARCH(1,1) model can be rewritten as:
h-c’=a(sl,—o*)+Bh,—0o?). (3.40)

The CGARCH(1,1) model allows the long-run volatility o =g, to be time-varying and

follow an autoregressive process. The CGARCH(1,1) model has the following
specification:

h—¢ = a(gtz—l_qt—l)—i_ﬁ(ht—l —01) (3.41)

g =0w+pq_+ ¢(‘9t2—1 -h.), (3.42)

where s, =h —q, is the transitory volatility component. The volatility innovation
g’,—h_, drives both the permanent and the transitory components. The long run
component evolves over time following an AR process with p close to 1, while the
short run component mean reverts to zero at a geometric rate o+ £. It is assumed that
O<a+ f < p<1 so that the long run component is more persistent than the short run

component.

The Component GARCH model is able to capture the high persistence of volatility
dynamics and is simpler to estimate than the FIGARCH model. However, it is still
computationally intensive owing to its relatively high degree of parameterisation. Engle
and Lee (1999) show that the component GARCH model is in fact a constrained
version of the stationary GARCH(2,2) model.

The one-step ahead forecast is given by

iy =G +a(5t2 - qt)+ﬂ(ht —0,) (3.43)

81



82

Q... =@+ pq +¢(gt2 - ht) ) (3.44)

and the h-step ahead volatility forecast by

hep = G +(a+ B) (- q,) (3.45)

w _ w
Oy.h =1—+p“ 1(% ——j- (3.46)
-p 1-p

3.4.3.2 Structural Break Models

Lamoureux and Lastrapes (1990) argue that the high persistence of volatility dynamics
may be attributed to time-varying GARCH parameters. In particular, they allow for
structural breaks in the unconditional variance of the process. They then develop a more

general GARCH(1,1) model with deterministic structural breaks:

h=w+8D,+... +6,D, +a &, + Bh_,, (3.47)

where Dit(i :1,...,k)are dummy variables that correspond to periods over which the

GARCH process is stationary. Note that there are k+1 such periods in (3.47). The
difficulty here lies in the determination of the timing of the breaks in the unconditional
variance. The one-step ahead forecast is given by

h,=0+5D,+...+5D, +a,&’+ ph, (3.48)
and the h-step ahead volatility forecast by

h,y=0+6D,+ ... +0,D + (o, + BNy - (3.49)
3.4.3.3 Regime Switching Models

An alternative to modelling long memory volatility is to use regime switching models.
Hamilton and Susmel (1994) note that financial markets react to large and small shocks
differently and the rate of mean reversion is faster for large shocks. They originate a
new class of regime switching models, where the GARCH volatility process can take
different parameter values, depending on whether it is in a high or a low volatility
regime. The most general regime switching model takes the form suggested in Gray
(1996):



2 2 2
Ois, =Ws  TO5 &, + ﬂSHO-t—l,SH (3.50)

where S, defines the regime at time t. Numerous regime switching models have been,

since then, developed to allow different switching probability.
3.4.4 Multivariate Long Memory Volatility Models

Though correctly specified to capture the high persistence property of volatility
dynamics, long memory volatility models are often problematic to implement in
practice, not least because of their complexity in estimation. For example, the
FIGARCH model requires very long periods of historical data in order to calibrate the
hyperbolic decay functions on which it is based. Consequently, their use is limited in
many practical situations, especially where volatility forecasts are required in real time
(such as on an options trading desk) or where the model must be estimated a large
number of times over a rolling window (such in the back testing of risk management
systems). In the multivariate context, long memory volatility modelling poses even
more significant computational challenges, especially so for the high dimensional
covariance matrices that are typically encountered in asset allocation and risk
management. As with the GARCH models, the univariate long memory conditional
volatility models can be generalised to the multivariate case using the VEC, BEKK or
DCC models. However, the complexity and computational intensity have limited the
use of multivariate long memory volatility models to very low dimensional systems,
even though many applications in finance require forecasts of high dimensional
covariance matrices. For example, Teyssiere (1998) estimates the covariance matrix for
three foreign exchange return series using both an unrestricted multivariate FIGARCH
model and a FIGARCH model implemented with the Constant Conditional Correlation
(CCC) structure of Bollerslev (1990). Similarly, Niguez and Rubia (2006) model the
covariance matrix of five foreign exchange series using an Orthogonal HYGARCH
model, which combines the univariate HYGARCH long memory volatility model of
Davidson (2004) with the multivariate Orthogonal GARCH framework of Alexander
(2001). Zumbach (2009) develops a multivariate version of the univariate long memory
EWMA model, in which elements of the covariance matrix are estimated as the
averages of the squares and cross products of past returns with predetermined
logarithmically decaying weights. The parsimony of the long memory EWMA model

promises potentially beneficial application in high dimensional systems
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3.5 Conditional Volatility Models and Asset Allocation

The literature suggests that there are significant economic benefits to exploiting the
forecasts of multivariate conditional volatility models relative to using the unconditional
covariance matrix in the asset allocation framework. Fleming et al. (2001, 2003) are
among the first to study the economic value of exploiting conditional covariance
matrices for investors. In a volatility timing asset allocation framework where investors
assume constant expected returns and rebalance their portfolios based on forecasts of
the covariance matrix, they show that investors are better off in terms of utility when
switching from a static to a dynamic asset allocation strategy. Recent studies
incorporate more properties of volatility dynamics in application to investment
decisions. Thorpe and Milunovich (2007) allow for asymmetries in modelling
volatilities and correlations, and show that investors are willing to pay to switch from
symmetric to asymmetric forecasts. Similarly, Hyde et al. (2010) demonstrate the
benefits of accounting for volatility jumps in asset allocation strategies. Conditional
volatility models have also been embedded with a factor structure to reduce estimation
error. For example, Briner and Connor (2008) allow for the dynamic variations of
returns’ volatility and covariance in a traditional factor model by imposing an
exponential weighting on the factor covariance matrix. Han (2006) develops a dynamic
factor multivariate stochastic volatility model, which utilises unobserved factors to
capture the dynamic behaviour of volatility (and also returns) in an asset allocation
problem. The research generally favours the use of the dynamic factor-structured
covariance matrix to the unstructured alternatives. Owing to the complexity in
estimation, long memory conditional volatility models have rarely been used in the asset
allocation framework where forecasts of the high dimensional covariance matrix are
normally required. The next chapters will fill in this gap, studying the benefits of
allowing for long memory volatility dynamics in forecasts of the covariance matrix for

asset allocation.



Chapter 4
Data Analysis

4.1 Data Description

The research first evaluates the forecast performance of a range of multivariate long
memory conditional volatility models using the asset allocation framework of Engle and
Colacito (2006). Details of these multivariate long memory volatility models will be
provided in Chapter 5. The empirical research hence employs the same three sets of
assets as in Engle and Colacito (2006). These comprise a high correlation bivariate
system (the S&P500 and DJIA indices), a low correlation bivariate system (the S&P500
and 10-year Treasury bond futures), and a moderate correlation high dimensional
system (21 stock international stock indices and 13 international bond indices). |
additionally consider another high dimensional system, comprising the components of
the DJIA index. The four datasets are also used to study the economic benefits of
allowing for long memory volatility dynamics in estimating and forecasting the

covariance matrix for dynamic asset allocation in Chapter 6.

The two bivariate systems are now described in detail. The low correlation Stock-Bond
system uses daily data for the S&P500 index and 10-year Treasury bond futures, while
the high correlation S&P500-DJIA system uses daily data for the S&P500 and Dow
Jones Industrial Average indices. All data are from Datastream and cover the period 01
January 1988 to 31 December 2009. The futures prices are continuous series of futures
settlement prices, starting at the nearest contract month, which forms the first values for
the continuous series until either the contract reaches its expiration date or until the first
business day of the notional contract month, whichever is sooner. At this point prices
from the next trading contract month are taken. There may be a non-synchronicity issue
in the Stock-Bond futures as the Bond and Stock futures contracts close at 2:00 CST
and 3:15 CST, respectively. Returns are calculated as the log price difference over
consecutive days. | exclude from the sample all days on which any of the markets was
closed, yielding 5548 observations for each dataset. As the futures contracts require no
initial investment, the futures returns are approximately equivalent to excess spot

returns. The returns of the S&P500 and DJIA indices are converted to excess returns by
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subtracting the daily 1-month T-Bill rate.” Table 4.1 reports some descriptive statistics
of the four return series. The annualised average return on Stock is nearly five times as
much as the return on Bond. Expectedly, the higher return on Stock is accompanied by a
higher level of risk, 19.06% as compared to that of 6.53% of Bond. The sample
correlation of the stock index futures and the bond futures is very close to zero, while
for the S&P500 and DJIA indices, it is close to one. As a result, the return and risk
properties of the S&P500 and DJIA indices are similar, though the DJIA index performs
slightly better with a higher return and lower risk. For all series, returns are negatively

skewed and leptokurtic.

Following Engle and Colacito (2006), I also consider a moderate correlation high
dimensional system. An international stock and bond portfolio is constructed from 34
assets, comprising 21 stock indices from the FTSE All-World indices and 13 five-year
average maturity bond indices. The 21 stock indices and 13 bond indices include all of
the major world stock and government bond markets. All data are taken from
Datastream and converted to US dollar denominated prices. Following Engle and
Colacito (2006), I use weekly returns to avoid the problem of non-synchronous trading.
Weekly returns are calculated as the log price difference using Friday to Friday closing
prices. The dataset comprises 22 years of weekly returns, yielding a total of 1147
observations from 01 January 1988 to 31 December 2009. Descriptive statistics for the
international dataset are given in Table 4.2. For all countries for which both stock and
bond indices are present, the stock index has a higher return and higher risk than the
corresponding bond index. The US is the least risky market for both stocks and bonds.
Smaller countries, such as Austria, Hong Kong, Ireland and Mexico generally have
higher risk, although this is not always accompanied by higher returns. Japan and New
Zealand have negative annualised average stock returns over the sample considered.
Returns are, again, leptokurtic and, in most cases, negatively skewed. The international
stock markets are relatively highly correlated, as are the international bond markets. The
average correlation coefficient among the 21 stock market return series is 0.54, while
among the bond market return series it is 0.61. However, the stock and bond markets as

a whole have an average correlation coefficient of only 0.20.

" This is the simple daily rate that, over the number of trading days in the month, compounds to 1-month
T-Bill rate from Ibbotson and Associates, Inc.



| additionally consider a higher frequency high dimensional system, comprising the
components of the Dow Jones Industrial Average (DJIA) index as of 31 December
2009. Daily data are collected from the Centre for Research in Security Prices from 01
March 1990 to 31 December 2009. I exclude Kraft, which was listed only in June 2001.
Returns are calculated as the log price difference over consecutive days. All days on
which the market was closed are excluded from the sample, yielding 5001 observations.
Table 4.3 provides the summary analysis of the 29 DJIA stocks. Annualised average
returns are positive for all 29 stocks, with Bank of America (BAC) being the lowest
(1.51%) and Cisco (C) being the highest (28.74%). The return series are again highly
non-normal, with very high leptokurtosis. The average correlation coefficient of the

DJIA components is 0.34.
4.2 Evidence of Long Memory in Volatility

Figure 4.1 plots the sample autocorrelations of returns, absolute returns and squared
returns for the four return series of Stock, Bond, S&P500 and DJIA. While the
autocorrelations of normal returns are not significantly different from zero, the
autocorrelations of absolute returns and squared returns are highly persistent and still
positively significant up to lag 100. The autocorrelations of absolute returns are also
consistently higher than those of squared returns, a feature first identified by Taylor
(1986). The slowly decaying autocorrelation functions of absolute returns and squared

returns suggest the presence of long memory in volatility.

Formal tests are conducted to confirm the visual evidence of long memory in volatility,
the results of which are reported in Table 4.4.2 The parametric FIGARCH model is

estimated for the whole sample, and the estimated fractional difference orders 1(d)

range from 0.35 to 0.49. Semi-parametric long memory tests such as the narrow band
log periodogram (GPH) estimator of Geweke and Porter-Hudak (1983) and the broad
band log periodogram (MS) estimator of Moulines and Soulier (1999) are also applied.
To estimate the GPH and MS operators, | use the recommended bandwidth m equal to

the square root of the sample size (m=77) and the Fourier term p equal to the log of
the sample size (p=4), respectively. The table reports the results for both squared

returns and absolute returns. All the tests suggest long memory in volatility for all four
series and that stock return volatility has longer memory than bond return volatility.

® The tests are conducted using the Time Series Modelling software of James Davidson.
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Consistent with the graphical results of the autocorrelations, absolute returns
demonstrate a higher level of persistence than squared returns. The one-sided tests for
the hypothesis d =0.5 are conducted against the alternative d <0.5. Rejecting the
hypothesis, | confirm that the volatility processes of all four series are characterised by

long memory, but are nevertheless stationary.

The presence of long memory volatility is now examined in the multivariate systems.
Table 4.5 reports the sum of the first 100 autocorrelation coefficients of squared returns
and of absolute returns for some return series and their average values for the 21
international stock indices, the 13 international bond indices, and the 29 stocks of the
DJIA index. The table also reports the fractional difference operators estimated using
the FIGARCH, the GPH and the MS tests. To conduct the GPH and MS tests, | use the

recommended bandwidths m=33 and the Fourier terms p =3 for the international
stock and bond portfolio, and the corresponding values of m=71, and p=4 for the

DJIA portfolio. All return series show long memory behaviour in volatility. Again, the
level of persistence of absolute returns is consistently higher than that of squared
returns, which is clearly demonstrated in both the sum of autocorrelation coefficients
and the fractional difference operators. For all countries for which both stock and bond
indices are present, stock index volatility is also more persistent than the corresponding
bond index volatility. The average fractional difference operator of squared returns on
the stock indices is 0.44 with the parametric FIGARCH test, and 0.32 with the semi-
parametric GPH tests, while for the international bond indices, the corresponding results
are 0.30 and 0.25. Long memory volatility is also clearly evident in the individual DJIA
stocks, with the average fractional difference orders of 0.37 with the FIGARCH test,
and of 0.42 with GPH test. Based on the standard errors, not reported here, all the
fractional difference operators estimated using both the GPH and MS tests are
significantly greater than zero.



Table 4.1. Summary Statistics for the Two Bivariate Systems

The table reports descriptive statistics for the daily returns on Stock and Bond futures, and the
daily excess returns on the S&P500 and DJIA indices. Means and standard deviations are
annualised. The sample period is from 01 January 1988 to 31 December 2009. The table also
reports the statistics for the Jarque-Bera tests of the null hypothesis that the series follows
normal distribution. All the statistics confirm the rejection of the normality hypothesis at 1%
significance level.

Retl_Jrn Mean Std. Dev. Skewness KUrtosis Min Max Normality Corr.
series (%) (%) (%) (%) test
Stock 6.83 19.06 -0.19 1418 -10.40 13.20 28936 -0.04
Bond 1.48 6.53 -0.28 6.63 -2.86  3.57 3123
S&P500 2.80 18.34 -0.25 12.32 -9.47 10.95 20117 0.96

DJIA 3.59 17.72 -0.20 1162 -820 1051 17194
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Table 4.2. Summary Statistics for the International Stock and Bond Returns

The table reports summary statistics for the weekly returns on 21 international stock indices and
13 government bond indices. Means and standard deviations are annualised. The sample period
is from 01 January 1988 to 31 December 2009. The table also reports the statistics for the
Jarque-Bera tests of the null hypothesis that the series follows normal distribution. All the
statistics, except for those with *, confirm the rejection of the normality hypothesis at 1%
significance level. * denotes rejection of the normality hypothesis at 5% significance level.

Retl_Jrn Mean Std. Dev. Skewness  KUrtosis Min Max Normality

series (%) (%) (%) (%) test
Panel A. International Stocks
Australia 7.30 21.64 -1.77 21.33  -34.86 14.52 16657
Austria 6.03 25.81 -1.52 18.70  -38.22 20.94 12223
Belgium 5.45 20.98 -1.21 12.68 -26.88 12.53 4757
Canada 7.58 20.68 -1.13 1391 -25.92 17.61 5930
Denmark 9.89 21.00 -1.31 13.35 -26.39 13.66 5446
France 7.44 21.25 -0.90 1094 -27.16 13.76 3167
Germany 6.69 23.49 -0.80 8.93 -26.11 15.00 1800
Hongkong 9.22 25.37 -0.62 6.57 -21.08 13.85 682
Ireland 3.44 25.49 -1.72 19.88 -39.31 16.18 14184
Italy 2.91 24.82 -0.60 8.85 -26.71 19.04 1705
Japan -1.29 22.56 0.07 4.67 -16.02 11.75 134
Mexico 19.21 3381 -0.33 7.66 -30.20 23.23 1060
Netherland 6.88 20.89 -1.44 17.48  -31.48 14.85 10416
New Zealand -0.08 22.04 -0.63 7.44 -23.06 12.07 1017
Norway 8.93 26.82 -0.84 10.37 -2854 19.82 2733
Singapore 6.99 26.29 -0.69 13.21  -33.13 23.02 5071
Spain 6.92 22.28 -0.90 10.21  -26.22 13.76 2641
Sweden 9.79 26.88 -0.52 7.73 -25.12 19.05 1123
Switzerland 8.44 19.42 -0.70 11.14  -2401 13.96 3263
UK 4.44 19.13 -1.05 16.81  -27.73 16.30 9324
us 7.03 16.81 -0.81 1054  -20.19 11.45 2845
Panel B. International Bonds
Austria 0.92 10.58 -0.03 3.64 -585 5.72 20
Belgium 0.95 10.68 -0.02 3.47 -5.16  5.55 11
Canada 2.36 8.71 -0.51 6.53 -8.38 5.34 647
Denmark 1.60 10.92 0.00 3.84 -5.82 5.67 33
France 1.81 10.54 -0.02 3.47 -488 5.79 11
Germany 0.73 10.62 0.01 3.37 -452 577 7*
Ireland 1.83 10.89 -0.25 4.19 -7.52 594 79
Japan 1.67 12.11 0.89 8.33 -6.05 14.30 1509
Netherland 0.55 10.64 -0.02 3.36 -4.82 5.45 6*
Sweden 0.06 12.06 -0.18 3.84 -7.85 5.93 40
Switzerland 0.95 12.05 0.11 3.72 -6.28  6.89 27
UK 0.13 10.60 -0.24 4.93 -7.12  6.48 188
us 1.23 4.43 -0.19 3.82 -2.61  2.06 39




Table 4.3. Summary Statistics for the DJIA Components

The table reports summary statistics for the daily returns on the 29 components of the DJIA
index. Means and standard deviations are annualised. The sample period is from 01 March 1990
to 31 December 2009. The table also reports the statistics for the Jarque-Bera tests of the null
hypothesis that the series follows normal distribution. All the statistics confirm the rejection of
the normality hypothesis at 1% significant level.

Ret_urn Mean  Std. Dev. Skewness  Kurtosis Min Max  Normality
series (%) (%) (%) (%) test
AA 3.47 39.12 -0.02 11.23 -17.50 20.87 14102
AXP 7.22 38.76 0.03 9.94 -19.35 18.77 10043
BA 4.61 31.89 -0.33 9.73 -19.39 14.38 9525
BAC 1.51 45.21 -0.29 30.90 -34.21 30.21 162245
CAT 10.19 33.62 -0.08 7.18 -15.69 13.74 3652
C 28.74 46.95 0.00 7.48 -22.10 21.82 4175
CvX 7.62 25.60 0.13 12.63 -13.34 18.94 19331
DD 2.76 29.39 -0.09 7.10 -12.03 10.86 3513
DIS 6.43 32.11 0.00 10.40 -20.29 14.82 11410
GE 5.44 29.93 0.01 11.17 -13.68 17.98 13916
GM 13.54 35.10 -0.67 16.81 -33.88 13.16 40119
HD 11.51 40.37 -0.08 9.21 -20.70 18.99 8044
HPQ 8.14 30.53 0.04 9.76 -16.89 12.37 9537
IBM 13.99 42.72 -0.38 8.26 -24.89 18.33 5884
INTC  11.37 23.70 -0.19 9.75 -17.25 11.54 9510
JNJ 8.01 42.10 0.26 13.11 -23.23 22.39 21336
JPM 9.39 24.79 0.08 8.01 -11.07 13.00 5230
KO 10.43 26.89 -0.04 6.98 -13.72 10.31 3305
MCD 7.12 24.25 0.01 7.50 -10.08 10.50 4214
MMM  5.82 29.95 -1.09 22.53 -31.17 12.25 80485
MRK  19.06 35.23 0.01 7.94 -16.96 17.87 5087
MSFT  10.01 29.62 -0.18 6.07 -11.82 9.69 1997
PFE 10.26 25.33 -2.78 68.38 -37.66 9.73 897033
PG 3.50 28.68 0.08 7.39 -13.54 15.08 4027
T 6.01 30.34 0.34 16.22 -20.07 22.76 36490
UTX 11.97 28.77 -1.13 28.55 -33.20 12.79 137065
\YV4 1.90 27.61 0.17 7.64 -12.61 13.66 4503
WMT  11.39 29.21 0.13 5.83 -10.26 10.50 1681
XOM 8.91 24.83 0.09 11.92 -15.03 15.86 16591
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Table 4.4. Fractional Difference Operators for the Two Bivariate Systems

The table reports the fractional difference operators, d, estimated using the FIGARCH, Geweke-
Porter-Hudak (GPH) and Moulines-Soulier (MS) tests. The GPH and MS estimators are applied
for both squared returns and absolute returns. The standard errors are reported in parentheses.

Return - Squared returns Absolute returns
SerieS dFIGARCH dGPH dMS dGPH dMS
Stock 0.403 0.357 0.373 0.553 0.406
(0.080) (0.032) (0.080) (0.032)
Bond 0.355 0.410 0.190 0.456 0.209
(0.080) (0.032) (0.080) (0.032)
S&P500 0.492 0.441 0.461 0.607 0.443
(0.080) (0.032) (0.080) (0.032)
DJIA 0.487 0.396 0.417 0.584 0.427
(0.080) (0.032) (0.080) (0.032)




Table 4.5. Autocorrelations and Fractional Difference Operators for the
Multivariate Systems

The table reports the sum of the first 100 autocorrelation coefficients of squared returns
Zp(rz) and of absolute returns )" p(|r|) for some return series and their average values for
the 21 international stock indices, the 13 international bond indices, and the 29 stocks of the
DJIA index. The fractional difference operators, d, are estimated using the FIGARCH, the

Geweke-Porter-Hudak (GPH) and the Moulines-Soulier (MS) tests. The GPH and MS
estimators are applied for both squared and absolute returns.

Ret No. of Squared Absolute

eturn 0.0 2 ~

SerieS ObS zp(r ) zp(|r|) dFIGARCH ~ return§ ~ return§
dGPH dMS dGPH dMS

Panel A. International Stock and Bond Portfolio

Stock Market Indices

France 1147 3.47 6.03 0.41 0.30 0.36 0.40 0.37

Germany 1147 3.41 5.53 0.45 0.26 0.48 0.36 0.45

Japan 1147 1.44 1.74 0.16 0.29 0.20 0.32 0.26

UK 1147 3.52 7.00 0.38 0.27 0.54 0.46 0.45

us 1147 4.02 8.92 0.42 0.37 0.34 0.55 0.37

Averagesof21stock 547 o4 044 032 033 044 036

indices
Bond Indices
France 1147 1.84 3.15 0.26 0.30 0.24 0.38 0.19
Germany 1147 1.42 2.93 0.28 0.15 0.18 0.27 0.19
Japan 1147 1.00 1.86 0.30 0.29 0.13 0.36 0.19
UK 1147 2.96 3.41 0.19 0.43 0.23 0.37 0.26
us 1147 1.69 1.42 0.32 0.17 0.15 0.06 0.13

Averages of 13 bond

A 1.89 2.79 0.30 0.25 0.22 0.29 0.20
indices

Panel B. DJIA Portfolio

AA 5001 16.56 19.21 0.33 0.43 0.35 054 034
BAC 5001 18.12 31.34 0.45 0.78 0.33 0.77 042
C 5001 7.52 13.11 0.42 0.59 0.21 0.67  0.30
DIS 5001 5.64 12.03 0.28 0.47 0.31 0.56  0.33
MSFT 5001 5.76 9.39 0.33 044 021 047  0.26
T 5001 8.81 15.42 0.37 0.49 0.35 0.63 0.38

Averages of 29 stocks 7.80 13.22 0.37 042 025 055 0.30
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Figure 4.1. Autocorrelation of Returns (Black Line), Absolute Returns (Blue Line), and Squared Returns (Red Line)



Chapter 5
Long Memory Conditional

Volatility and Asset Allocation

In this chapter, I evaluate the forecast performance of the long memory covariance
matrix over both short and long horizons, using the asset allocation framework of Engle
and Colacito (2006). In so doing, I compare the performance of a number of long
memory and short memory multivariate volatility models. While many alternative
volatility models have been developed in the literature, my choice reflects the need for
parsimonious models that can be used to forecast high dimensional covariance matrices.
I employ four long memory volatility models: the multivariate long memory EWMA
model of Zumbach (2009b), and three multivariate long memory implemented using the
Dynamic Conditional Correlation (DCC) framework of Engle (2002). These are the
univariate long memory univariate EWMA model of Zumbach (2006), the component
GARCH model of Engle and Lee (1999) and the FIGARCH model of Baillie et al.
(1996). I compare the four multivariate long memory models with two multivariate
short memory models. These are the very widely used RiskMetrics EWMA model of JP
Morgan (1994), and the DCC model implemented with the univariate GARCH model.

I use the six multivariate volatility models to forecast the covariance matrices for the
four datasets described in Chapter 4. These comprise low/high dimensional, low/high
correlation systems. In particular, the two bivariate systems include a low correlation
S&P500 and 10-year Treasury bond futures (Stock-Bond) portfolio and a high
correlation S&P500 and DJIA index (S&P500-DJIA) portfolio, while the two moderate
correlation, high dimensional systems consist of an international stock and bond
portfolio and a US all-stock portfolio. The analysis is conducted using data over the
period from 1 January 1988 to 31 December 2009, and considers forecast horizons of up
to three months. For the two bivariate systems, I first evaluate the forecast performance
of the models using a range of statistical criteria that measure the accuracy, bias and
informational content of the models’ forecasts over varying time horizons. For all four
systems, I then employ Engle and Colacito’s (2006) approach to assess the economic
value of the forecast covariance matrices in an asset allocation setting. I report two main

findings. The first is that for longer horizon forecasts, multivariate long memory
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volatility models generally produce forecasts of the covariance matrix that are both
statistically more accurate and informative, and economically more useful than those
produced by short memory volatility models. The second is that the two long memory
models that are based on the Zumbach (2006) univariate model outperform the other
models — both short memory and long memory — in a majority of cases across all
forecast horizons. These results apply to all four datasets and are robust to the choice of

estimation window.

The remainder of this chapter is organised as follows. Section 5.1 provides details of the
multivariate conditional volatility models used in the empirical analysis. Section 5.2
describes the methods applied to evaluate forecast performance for the six models. In
Section 5.3, I report the empirical results of the analysis, while Section 5.4 offers some

concluding comments and some suggestions for future research.
5.1 Multivariate Long Memory Conditional Volatility Models

Motivated by the need for parsimonious models that can be used to forecast high
dimensional covariance matrices, I first consider two simple multivariate long memory
conditional volatility models based on the univariate long memory volatility model of
Zumbach (2006). The first is the multivariate long memory EWMA (LM-EWMA)
model of Zumbach (2009b), which is a simple multivariate extension of the univariate
long memory EWMA model in which both the variances and covariances are governed
by the same long memory process, and is thus the long memory analogue of the short
memory multivariate RiskMetrics EWMA model of JP Morgan (1994). In the second, I
employ the Dynamic Conditional Correlation framework of Engle (2002) to model the
dynamic processes of the correlations directly, using the univariate long memory
EWMA model for the individual variances. This is the long memory EWMA-DCC
(LM-EWMA-DCC) model. I compare the two long memory EWMA models with the
multivariate FIGARCH(1,d,1) and Component GARCH(1,1) (CGARCH) long memory
models, both implemented using the DCC framework. To evaluate the relative benefits
of allowing for long memory in forecasting the covariance matrix, I compare the four
multivariate long memory volatility models with two multivariate short memory
volatility models. These are the multivariate RiskMetrics EWMA model of JP Morgan
(1994) and the GARCH(1,1) model implemented using the DCC framework. In this

section, I give details of each of these six models.



5.1.1 The Multivariate LM-EWMA Model

Consider an n-dimensional vector of returns #, =(f,,Ty,...,,I, )’ with conditional mean

zero and conditional covariance matrix H, :
%
r,=Hz,, (5.1)

where z, is i.i.d with E(z,)=0 and var(z,)=1,. Zumbach (2009b) considers the class

of conditional covariance matrices that are the weighted sum of the cross products of

past returns:
H, = zﬂ’(i)rt—irt'—i > (5.2)
i=0

with Z/i(i) =1. In the RiskMetrics EWMA model of JP Morgan (1994), the weights

A(1) decay geometrically, yielding a short memory process for the elements of the

covariance matrix. The long memory conditional covariance matrix is defined as the

weighted average of K standard (short memory) multivariate EWMA processes:

H, = ZWka,t (5.3)
where

H , =uH, +(1_ﬂk)”t”t'- (5.4)

The decay factor g, of the k™ EWMA process is defined by a characteristic time 7,
such that g4 =exp(%k), with geometric time structure 7, = 7,0 for k=(l,...,K).

Zumbach (2006) sets p to the value of V2. The memory of the volatility process is

determined by the weights W, , which are assumed to decay logarithmically:

WKZL(I_MJ 539

C In(z,)

with the normalization constant C = K —zk ::EZ; such that zk w, =1. The conditional

covariance matrix is therefore parsimoniously defined as a process with just three
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parameters: 7, (the shortest time scale at which volatility is measured, i.e. the lower cut-
off), r, (the upper cut-off, which increases exponentially with the number of
components K), and 7, (the logarithmic decay factor). For the univariate case, Zumbach
(2006) sets the optimal parameter values at 7, = 1560 days = 6 years, 7, = 4 days, and

7, = 512 days, which is equivalent to K =15.

The EWMA process in (5.4) can also be expressed as

H,, :(l_luk)z/’lli(rt—irt'—i' (5.6)
i=0

Hence the LM-EWMA model can be written in the form of (5.2):

t+] ZZ /uk /ukrt |n[ i Zj’(l)rt |rt —i

i=0 k=1 i=0 (57)

with  A()=> W (1-z4 )z and Y A(i)=1 (which is satisfied by > w, =1)

When K =1, the LM-EWMA process reduces to the short memory RiskMetrics

EWMA process. Note that since H,, is a positive definite matrix (see Riskmetrics,

1994), H,,,, which is a linear combination of H,, with positive weights, will also be

t+1 2
positive definite. Since the LM-EWMA covariance matrix is the sum of EWMA
processes over increasing time horizons, forecasts of the covariance matrix are
straightforward to obtain using a recursive procedure, which is detailed in Appendix
5.1. The one-step-ahead forecast of the covariance matrix is already given by (5.7).
Under the assumption of serially uncorrelated returns, the h-step cumulative forecast of

the covariance matrix given the information set , at time t is equal to:

T
Ht+1:t+h = hz/l(ha i)n(—irt—i (58)
i=0

with the weights A(h,i) given by

hI:ZK:IhIW ) Ly (5.9

=
l
>~—



where T is the cut-off time, w;, is the k element of vector w, =w '[M +(1—p) w']J ,
is the vector of x, , M is the diagonal matrix consisting of 4, , and z is the unit vector.
Since szk =1, we obtain Z/i(h,i) =1. Also note that when K =1, then w=1, and
so the LM-EWMA process reduces to a standard short memory EWMA process with

forecast weights l(h,i) = (1 - yk) o / (1 — iy ) , independent of the forecast horizon. As

the weights /I(h, i) can be estimated a priori, without reference to the data, the forecast

in (5.8) is straightforward to compute. As with the standard EWMA model, the LM-
EWMA model circumvents the computational burden of other multivariate long

memory models, and indeed can easily be implemented in a spreadsheet.

5.1.2 The Multivariate LM-EWMA-DCC Model

In the Dynamic Conditional Correlation (DCC) model of Engle (2002), the conditional

covariance matrix is decomposed as follows:

H, =D RD, (5.10)
R, =diag {Q,} > Qiag {Q,} > (5.11)
Q =Q+ aaHs;fl + Q. (5.12)

where R, is the conditional correlation matrix, D, is a diagonal matrix with the time

varying standard deviations \/h;; on the i™ diagonal, i.e., D, = diag {1/ h } ,and Q, is
the approximation of the conditional correlation matrix R,. In the DCC model, Q,

converges to the unconditional average correlation R=+>g¢ g ,, and

Q=(1-a-p)R. The positive semi-definiteness of Q, is guaranteed if & and S are

positive with o+ <1 and the initial matrix Q, is positive definite.

Here, I estimate the conditional volatility D, employing the univariate long memory

volatility model of Zumbach (2006). I divide returns by their conditional volatility and

use the standardized, zero-mean residuals €, =D, 'r, to compute the quasi-conditional
correlation matrix Q,. As the diagonal elements of Q, are equal to unity only on

average, Q, 1is rescaled to obtain the conditional correlation matrix
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R, = diag {Qt}_% Q,diag {Qt}_%. The conditional volatility D, and conditional

correlations R, are then combined to estimate the conditional covariance matrix H, .

The h-step-ahead conditional covariance matrix is given by

H. =D, R, D (5.13)

teh = Pih R eh Pesh

The forecast of each volatility in D, is estimated using the forecast procedure derived
by Zumbach (2006) (see Appendix 5.1 for the details). Since R, is a non-linear process,

the h-step forecast of R, cannot be computed using a recursive procedure. However,
assuming for simplicity that E, (smst'ﬂ) = Q,,,, Engle and Shephard (2001) show that

the forecasts of Q,,,, and R,,, are given by

h-2

Q..=> (1-a-)Q(a+p) +(a+5)" Q.. (5.14)

j=0

and

1 . L
Rt+h = dlag {Qt+h} 2 Qt+hd|a‘g {Qt+h} 2. (515)
5.1.3 The FIGARCH(1,d,1)-DCC Model

In the FIGARCH(1,d,1) model of Baillie et al. (1996), the conditional volatility is

modelled as:

h=w+[1-BL—(1-gL)(1-L)"1s? + ph,_,. (5.16)

Baillie et al. (1996) show that for 0 <d <1, the FIGARCH process does not have finite
unconditional variance, and is not weakly stationary, a feature shared with the IGARCH
model. However, they show that the FIGARCH model i