GOLD AND BASE METAL EXPLORATION STUDIES BASED ON MINERALOGICAL AND GEOCHEMICAL CHARACTERISATION OF STREAM SEDIMENTS FROM NORTH PAKISTAN

Submitted by Liaqat Ali

To the University of Exeter – Camborne School of Mines

as a thesis for the Degree of Doctor of Philosophy by Research in Earth Resources

June 2011

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all the material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other university.

Liaqat Ali
Acknowledgements

I sincerely thank my supervisors Dr Ben Williamson and Dr Charlie Moon, whose knowledge, continuous guidance and support made the project possible. I am also grateful to Prof Frances Wall and the CSM Trust for financial support in the critical last stages of my PhD, the International Office and all the staff of the CSM Laboratories: Gavyn Rollinson, Rob Fairhurst, Rob Fitzpatrick, Peter Frost, Steve Pendray, Fiona Thomas and Sharon Uren. Special thanks to Steve Pendray for his help in the preparation of intricate Au grain polished blocks and Gavyn Rollinson for valuable QEMSCAN® analysis.

The following are also thanked: the Director of the NCE in Geology and the HEC for financial support; Dr M. Tahir Shah for allowing me to carry out preliminary processing/analytical work, and all the staff of the Geochemistry Laboratory at the NCE in Geology, University of Peshawar; Dr Richard Pattrick and Paul Lythgoe for undertaking the ICP-MS analyses at the University of Manchester; Dr Rob Chapman (University of Leeds) for a helpful review of Chapter 5; Mr Ashfaq (Project Director, Waziristan Copper Exploration Project) and Mohammad Ihsan Afridi for providing all possible information and geochemical data for North Pakistan; Mr Wazir Mohammad and all the laboratory staff at the Sarhad Development Authority, Peshawar, and Dr Mohmmad Arif and Dr Kafayatullah for their assistance in the field.

Special thanks to my wife (Seema Anjum) and also my entire family, teachers and friends for their love, support, encouragement, patience and help at all stages of my PhD studies.
Abstract

North Pakistan represents a highly favourable area for a variety of mineral deposit types, including arc-related porphyry Cu, Au and Mo and arc and back-arc epithermal precious metal deposits (Sweatman et al., 1995; PMDC, 2001). However, few deposits have been discovered in the area, mainly due to its remote nature and inaccessibility, and because of a lack of exploration tools for high altitude terrains. From stream sediment sampling campaigns by local and international organizations, including a large dataset provided by the Pakistan Mineral Development Corporation (PMDC), a significant amount of geochemical data now exists for the region. This data has been incorporated into an Arc-GIS 9.2 database, along with stream catchment and geological information, and detail of all known areas of mineralisation. From this, spatial catchment maps together with multi-element geochemical associations have been studied to delineate areas showing anomalous values for Au and base metals. The two most prospective areas were found to be the Shyok Suture Zone and northern Kohistan, with the dominant control on mineralisation being structural rather than lithological. These areas were targeted for detailed stream sediment sampling and mineralogical and geochemical analysis. From studies of Au and Au pathfinder elements in different size fractions of the stream sediments and heavy mineral concentrates (HMC), the catchments of Teru, Asheriat and Pakora (in order of decreasing rank) were identified as most prospective.

Morphological and geochemical analyses of native Au grains from panned concentrates has given an indication of proximity to bedrock source (<10 km) and the possible styles of mineralisation in these catchments; porphyry Cu-type in Asheriat and Pb-Sb quartz veins in Teru and Pakora. Automated mineralogical analysis of the stream sediments (<180 μm fraction) and HMC (<180 μm), using a QEMSCAN® system, confirmed this interpretation. The effectiveness of the developed methodologies for exploration in remote and high altitude terrains of North Pakistan is discussed, and recommendations made for future exploration.
# Table of Contents

Acknowledgements .................................................................................................................. 2  
Abstract .................................................................................................................................. 3  
LIST OF FIGURES .................................................................................................................. 8  
LIST OF TABLES .................................................................................................................... 13  
CHAPTER 1 ............................................................................................................................... 16  
1.1. Project rationale .................................................................................................................. 16  
1.2. History of mineral exploration in North Pakistan .............................................................. 19  
1.3. Choice of study area .......................................................................................................... 20  
1.4. Location and accessibility ................................................................................................. 22  
1.5. Topography, relief and climate ......................................................................................... 23  
1.6. Aims and objectives ........................................................................................................... 23  
1.7. Expected outcomes .......................................................................................................... 24  
1.8. Thesis Structure ............................................................................................................... 25  
CHAPTER 2 ............................................................................................................................... 27  
Geological setting and metallogeny of North Pakistan .............................................................. 27  
2.1. Tectonic evolution of North Pakistan ................................................................................. 27  
2.2. Regional Geology ............................................................................................................... 29  
2.2.1. Eurasian (Karakoram) terrane .................................................................................... 30  
2.2.2. Northern Shyok Suture Zone ................................................................................... 33  
2.2.3. The Kohistan Arc ...................................................................................................... 34  
2.2.4. Indus Suture Zone ..................................................................................................... 41  
2.2.5. Indian terrane rocks ................................................................................................... 42  
2.2.6. Glacial system ........................................................................................................... 42  
2.3. Known mineral prospects of North Pakistan .................................................................... 43  
2.3.1. Eurasian terrane ........................................................................................................ 45  
2.3.2. Northern Shyok Suture Zone ................................................................................... 46  
2.3.3. The Kohistan Arc ...................................................................................................... 47  
2.4. Conclusion ....................................................................................................................... 50  
Chapter 3 ................................................................................................................................... 52  
A GIS-based stream sediment geochemical model for Au and base metal exploration in North Pakistan .......................................................................................................................... 52  
Abstract: .................................................................................................................................... 52  
3.1. Introduction ....................................................................................................................... 52
3.1.1. Scope of the study ................................................................. 52
3.1.2. Stream sediment geochemistry as a guide in mineral exploration... 53
3.1.3. Background and anomalous concentrations .............................. 54
3.1.4. Stream sediment geochemical data classification ........................ 54
3.1.5. Effectiveness of statistical analysis.......................................... 55
3.2. Geological setting ....................................................................... 56
3.3. Data sources and data integration into Arc GIS 9.2 ......................... 59
  3.3.1. Existing datasets ................................................................ 59
  3.3.2. GIS data processing .............................................................. 60
3.4. Results ....................................................................................... 68
  3.4.1. Univariate statistical analysis ............................................... 68
  3.4.2. Bivariate and multivariate statistical analysis ......................... 71
  3.4.3. Comparison of the results with areas of known mineralisation ...... 91
3.5. Discussion .................................................................................. 92
  3.5.1. GIS-based spatial catchment maps ........................................ 92
  3.5.2. Possible genetic models for mineral deposit types................... 94
3.6. Conclusions ............................................................................... 98

Chapter 4 ........................................................................................ 99
Gold and multi-element distributions in heavy mineral concentrates and different
size fractions of stream sediments as a guide to mineralisation styles in high
altitude catchments along the Shyok Suture Zone and Kohistan Arc of North
Pakistan .......................................................................................... 99

Abstract .......................................................................................... 99
4.1. Introduction .............................................................................. 100
4.2. Geological setting .................................................................... 102
4.3. Methodology .......................................................................... 106
  4.3.1. Sample collection ................................................................. 106
  4.3.2. Sample processing ................................................................. 109
  4.3.3. Sample preparation and geochemical analysis ....................... 110
4.4. Results ..................................................................................... 112
  4.4.1. Au in different size fractions of the stream sediments .............. 112
  4.4.2. Base and precious metals in stream sediments and HMC from
        Asheriat, Teru and Pakora ......................................................... 116
4.5. Discussion ............................................................................... 129
  4.5.1. Ranking of the Au prospectivity of different catchments in North
         Pakistan .................................................................................. 129
  4.5.2. Interpretation of mineralisation styles from base and precious metal
         associations in stream sediments and HMC from Asheriat, Teru and
Chapter 5.......................................................................................................... 137
Physicochemical characterisation of Au grains in stream sediments from North Pakistan: an assessment of source proximity and deposit type ...................... 137
Abstract ............................................................................................................ 137

5.1. Introduction ........................................................................................... 138
5.2. Geological setting ................................................................................. 140
5.3. Methodology ......................................................................................... 144

5.3.1. Sample collection ............................................................................ 144
5.3.2. Morphological studies ..................................................................... 147
5.3.3. Elemental analysis .......................................................................... 147
5.4. Results .................................................................................................. 148

5.4.1. Size and morphological characteristics .......................................... 148
5.4.2. Geochemical characteristics ........................................................... 155
5.4.3. Mineral inclusions ........................................................................... 158
5.5. Discussion ............................................................................................ 161

5.5.1. Gold grain proximity to source ........................................................ 161
5.5.2. Deposit type .................................................................................... 162
5.6. Conclusions .......................................................................................... 165

Chapter 6.......................................................................................................... 167
Automated mineralogical analysis of stream sediments and Heavy Mineral Concentrates in the assessment of mineralisation styles in the high altitude Shyok Suture and Reshun Fault Zones of North Pakistan ...................... 167
Abstract ............................................................................................................ 167

6.1. Introduction ........................................................................................... 168
6.2 Geological setting .................................................................................. 171
6.3. Methodologies ...................................................................................... 175

6.3.1. Sample selection ............................................................................. 175
6.3.2. Sample collection ............................................................................ 176
6.3.3. Sample processing/preparation ...................................................... 177
6.3.4. Reconnaissance studies for QEMSCAN® ...................................... 180
6.3.5. QEMSCAN® analysis ..................................................................... 181
6.4. Results .................................................................................................. 184

6.4.1. Mineralogy of HMC (<180 µm fraction) ........................................... 184
6.4.2. Mineralogy of stream sediment samples (<180 µm fraction) ......... 186
6.4.3. Mineralogy of different size fractions .............................................. 190
6.4.4. Mineral associations in the HMC and stream sediments (<180 µm
fraction) ..................................................................................................... 191
6.5. Discussion ............................................................................................ 212

6.5.1. Modal mineralogy of the HMCs, stream sediment samples and
different particle size fractions ................................................................. 212
6.5.2. Assessment of mineralisation styles from mineral associations..... 214
6.6. Conclusions .......................................................................................... 218

Chapter 7 .......................................................................................................... 221
Project synthesis and discussion ................................................................. 221

7.1. Spatial analysis of multi-element geochemical data ............................ 222
7.2. Multi-element distribution in different size fractions of the stream
sediments and HMC from anomalous catchments .................................... 226
7.3. Morphological and geochemical characterisation of Au in stream
sediments: an assessment of source proximity and deposit type.............. 227
7.4. Styles of mineralisation from automated mineralogical assessment of
HMC and stream sediment samples ........................................................... 229
7.5. Mineralogical/geochemical models for North Pakistan .................... 232

Chapter 8 .......................................................................................................... 236
Conclusions ...................................................................................................... 236

8.1. Recommendations for future studies ..................................................... 240
References ....................................................................................................... 241

Appendix A ....................................................................................................... 261

A.1 Au analysis in different size fraction of the stream sediments ......... 261
A. 2 Geochemical data of different size fractions of stream sediments and
HMC from Asheriat area ............................................................................. 263
A. 3 Geochemical data of different size fractions of stream sediments and
HMC from Teru area ................................................................................ 265
A. 4 Geochemical data of different size fractions of stream sediments and
HMC from Pakora area ............................................................................ 267
A. 5 Summary of important statistical parameters from Asheriat, Teru and
Pakora areas ............................................................................................... 271
A. 6 Correlation matrix of stream sediments (< 75 µm) from Asheriat area 273
A. 7 Correlation matrix of stream sediments (< 75 µm) from Teru area .... 275
A. 8 Correlation matrix of HMC (180 µm) from Pakora area ................. 277

Appendix B ....................................................................................................... 278

B. 1 Representative morphologies of Au grains from Asheriat area .... 278
B. 2 Representative morphologies of Au grains from Teru area .......... 280
B. 3 Representative morphologies of Au grains from Pakora area ............. 282
B. 4 Morphological parameters of Au grains from Asheriat area ............... 284
B. 5 Morphological parameters of Au grains from Teru area ..................... 286
B. 6 Morphological parameters of Au grains from Pakora area .................. 288
B. 7 Geochemical composition of Au grains from Asheriat, Teru and Pakora areas ............................................................................................................ 292

Appendix C ....................................................................................................... 296
C. 1 Table of results from the univariate statistical analysis of the geochemical data for Hindu Kush terrane (HTg) ......................................................... 296
C. 2 Table of results from the univariate statistical analysis of the geochemical data for Hindu Kush metamorphic complex (HMC) .................... 297
C. 3 Table of results from the univariate statistical analysis of the geochemical data for Northern Karakoram terrane (NKT) ......................... 298
C. 4 Table of results from the univariate statistical analysis of the geochemical data for Karakoram batholith (KrB) ................................................. 299
C. 5 Table of results from the univariate statistical analysis of the geochemical data for Southern Karakoram metamorphic complex (SKMC) 300
C. 6 Table of results from the univariate statistical analysis of the geochemical data for Shyok Suture Zone and Northern Kohistan (SSZ-NK) ..................................................................................................................... 301
C. 7 Table of results from the univariate statistical analysis of the geochemical data for Kohistan batholith (KhB) ................................................. 302
C. 8 Table of results from the univariate statistical analysis of the geochemical data for Sub Kohistan Arc (SKA) ...................................................... 303

LIST OF FIGURES

Fig. 1.1 The location of the Kohistan Arc surrounded by major tectonic units (modified from Searle and Khan, 1996) ......................................................... 17
Fig. 1.2 Evolution of different deposit types in relation to tectonic and metallogenic events in South China (Zaw et al., 2007) .............................................. 18
Fig. 1.3 Geological map of part of North Pakistan (Searle and Khan, 1996) overlain with topographic maps (1:50,000 scale) to highlight stream sediment Au anomalies (180 µm fraction) ...........................................21
Fig. 1.4 Photograph showing field areas from Asheriat, Teru, Pakora and Bargrot .............................................................................................................. 22
Fig. 2.1 Cartoon showing evolution of collision between the Indian and Eurasian (Karakoram) terranes (Danishwar et al., 2001) .................................................. 28
Fig. 2.2 Map of the regional geology of part of North Pakistan (after Sweatman et al., 1995) ........................................................................................................ 30
Fig. 2.3 Geological map of the Kohistan arc (Bignold et al., 2006) ............... 35
Fig. 2.4 Map showing structural zones and known mineralisation in the North Pakistan (modified from Searle and Khan, 1996) .............................................. 44
Fig. 3.1 Geological map of part of North Pakistan (after Searle and Khan, 1996) ..................................................................................................................... 57
Fig. 3.2 Map of the Karakoram terrane, Shyok Suture Zone and Kohistan arc showing layers for geology, structure, geochemical data, and catchments in ArcGIS 9.2 ........................................................................................................... 62
Fig. 3.3 Spatial catchment maps showing distribution (percentile range) of different elements from the study area ............................................................... 67
Fig. 3.4 a Histograms for key elements in the stream sediments (<177 µm) .... 70
Fig. 3.4 b Box plots for a) Gold pc, and b) Gold, c) Arsenic, d) Copper, e) Antimony, and f) Lead from the stream sediments (<177 µm) for the major geological units ........................................................................................................ 71
Fig. 3.5 Scatter plots of a) As vs Au, b) Pb vs Sb, c) As vs Sb, d) Cu vs Au, e) Cu vs Mo, f) Co vs Ni, g) Hg vs Sb and h) Sb vs Au in the stream sediments (<177 µm) from different geological units. ....................................................... 74
Fig. 3.6 Relationship of significant factor scores to some of the known geological units and structure from Karakoram terrane, Shyok Suture and Kohistan arc (modified from Searle and Khan, 1996) ........................................... 95
Fig. 4.1 Geological map of part of North Pakistan (after Searle and Khan, 1996) ..................................................................................................................... 104
Fig. 4.2 Geological map of part of North Pakistan showing sample locations (after Searle and Khan, 1996) ........................................................................ 107
Fig. 4.3 Distribution of Au in, a) 1.68mm-400 µm, b) 400-180 µm, c) 180-75 µm, and d) <75 µm fractions of the stream sediments from Dommal Nissar (Dn), Asheriat (Ast), Kaldam Gol (Km), Shoghor (Shg), Awireth (Aw), Teru (Tr), Pakora (Pk), Sher Kila (Sk), Henzal (Hz) and Bagrot (Bg) ........................................... 115
Fig. 4.4 Box plots for Au (ppb) in different size fractions of stream sediments, a) 1.68mm-400 µm, b) 400-180 µm, c) 180-75 µm, and d) <75 µm from Dommal Nissar (Dn), Asheriat (Ast), Kaldam Gol (Km), Awireth/Shoghor (As/Shg), Teru (Tr), Pakora (Pk), Sher Kila/Henzal (Sk/Hz) and Bagrot (Bg) ........................................... 116
Fig. 4.5 Concentrations of Cu in Asheriat (Ast), Teru (Tr) and Pakora (Pk) samples .............................................................................................................. 117
Fig. 4.6 Box plots for Cu (ppm) in different size fractions of the stream
sediments, a) SS <180 µm, b) HMC <180 µm, c) SS 180-75 µm, and d) SS <75 µm from Asheriat, Teru and Pakora

Fig. 4.7 Box plots for Pb (ppm) in different size fractions of the stream-sediments, a) SS <180 µm, b) HMC <180 µm, c) SS 180-75 µm, and d) SS <75 µm from Asheriat, Teru and Pakora catchments

Fig. 4.8 Box plots for Zn (ppm) in different size fractions of the stream-sediments, a) SS <180 µm, b) HMC <180 µm, c) SS 180-75 µm, and d) SS <75 µm from the Asheriat, Teru and Pakora catchments

Fig. 4.9 Box plots for Ni (ppm) in different size fractions of the stream sediments, a) SS <180 µm, b) HMC <180 µm, c) SS 180-75 µm, and d) SS <75 µm from the Asheriat, Teru and Pakora catchments

Fig. 4.10 Box plots for Co (ppm) in different size fractions of the stream sediments, a) SS <180 µm, b) HMC <180 µm, c) SS 180-75 µm, and d) SS <75 µm from the Asheriat, Teru and Pakora catchments

Fig. 4.11 Box plots for Cr (ppm) in different size fractions of the stream sediments a) SS <180 µm, b) HMC <180 µm, c) SS 180-75 µm, and d) SS <75 µm from the Asheriat, Teru and Pakora catchments

Fig. 4.12 Box plots for As (ppm) in different size fractions of the stream sediments, a) SS <180 µm, b) HMC <180 µm, c) SS 180-75 µm, and d) SS <75 µm from the Asheriat, Teru and Pakora catchments

Fig. 4.13 Box plots for Sb (ppm) in different size fractions of the stream sediments, a) SS <180 µm, b) HMC <180 µm, c) SS 180-75 µm, and c) SS <75 µm from the Asheriat, Teru and Pakora catchments

Fig. 4.14 Box plots for Mo (ppm) in different size fractions of the stream sediments, a) SS <180 µm, b) HMC <180 µm, c) SS 180-75 µm, and c) SS <75 µm from the Asheriat, Teru and Pakora catchments

Fig. 4.15 Box plots for Ag (ppm) in different size fractions of the stream sediments, a) SS <180 µm, b) HMC <180 µm, c) SS 180-75 µm, and c) SS <75 µm from the Asheriat, Teru and Pakora catchments

Fig. 4.16 Box plots for Tl (ppm) in different size fractions of the stream sediments, a) SS <180 µm, b) HMC <180 µm, c) SS 180-75 µm, and c) SS <75 µm from the Asheriat, Teru and Pakora catchments

Fig. 4.17 Geological map of part of North Pakistan (after Searle and Khan, 1996) highlighting the spatial relationship for Au in different size fractions of stream sediments from the Dommal Nissar, Asheriat, Kaldam Gol, Awireth/Shoghor, Teru, Pakora, Sher Kila/Henzal and Bagrot catchments

Fig. 4.18 Scatter plots for a) Cu vs Au, b) Mo vs Cu, c) Pb vs Sb and, d) Ni vs Cr and in different size fractions of the stream sediments from the Asheriat (Ast), Teru (Tr) and Pakora catchments
Fig. 4.19 Scatter plot for a) Sb vs Au, b) Pb vs Au and, c) Sb vs As in the <75 µm fraction of the stream sediments from Teru, Asheriat and Pakora .......... 134
Fig. 4.20 Scatter plot for a) Sb vs Pb, b) Sb vs As, c) Cr vs Ni, and d) Pb vs As in HMC from Pakora, Teru and Asheriat ...................................................... 135
Fig. 5.1 Geological map of part of North Pakistan (after Searle and Khan, 1996) ................................................................................................................. 141
Fig. 5.2 Mineral localities in the Chitral-Partsan area, North Pakistan (from Calkins et al., 1981) .......................................................................................... 143
Fig. 5.3 Maps showing the geology, rivers, streams and stream sediment sampling points for the catchments of: a) Shoghor, b) Asheriat, c) Pakora, d) Teru, and e) Bagrot .............................................................................................................. 146
Fig. 5.4a Typical morphological features of Au particles from Shoghor .......... 149
Fig. 5.4b Typical morphological features of Au particles from Bagrot .......... 149
Fig. 5.4c Typical morphologies of Au grains from Asheriat .......................... 150
Fig. 5.4d Typical morphologies of Au grains from Teru .............................. 150
Fig. 5.4e Typical morphologies of Au particles from Pakora ....................... 151
Fig. 5.4f Representative Au grains from, a) Asheriat, b) Teru and, c) Pakora ............................................................ ................................. 152
Fig. 5.5a Box plot for Au grain size for the Asheriat, Pakora, Teru, Bagrot and Shoghor catchments ......................................................................................... 153
Fig. 5.5b Minor axis length vs major axis length for Au grains from Asheriat, Pakora, Teru, Bagrot and Shoghor catchments ........................................ 153
Fig. 5.6 Box plot for flatness index for Au grains from the Asheriat, Pakora, Teru, Bagrot and Shoghor catchments .................................................................... 154
Fig. 5.7 Box plot of fineness for Au grains from the Asheriat, Pakora, Teru, Bagrot and Shoghor catchments ........................................................................ 156
Fig. 5.8 Triangular plots for Au verses Agx10 verses Cux100 for a) Asheriat; b) Pakora and c) Teru, showing the fields for different mineralisation styles from Townley et al. (2003) ........................................................................................................ 163
Fig. 5.9 Graphs showing fineness versus a) logCu; b) logHg; c) logTe for Au grains from the Asheriat, Pakora, Teru, Bagrot and Shoghor catchments ...... 164
Fig. 6.1 Geological map of part of North Pakistan (after Searle and Khan, 1996) ................................................................................................................. 172
Fig. 6.2 Anomaly map from multi-element geochemical associations for North Pakistan (from Chapter 3) ........................................................................ 176
Fig. 6.3a Photograph of the dry splitting apparatus ...................................... 178
Fig. 6.3b Photograph of the sieving apparatus ............................................ 178
Fig. 6.4 Heavy mineral separation using SPT in a flask ................................ 179
Fig. 6.5a Photograph of the QEMSCAN® system at the Camborne School of
Mines, UK.......................................................................................................................... 182
Fig. 6.5b Example output from QEMSCAN® PMA programme (Pirrie et al., 2004) ................................................................................................................................. 182
Fig. 6.6a Relative abundance (by weight) of ore minerals in HMCs from the different catchments studied (<180 µm fraction) ................................................................. 186
Fig. 6.6b Relative abundance (by weight) of rock forming minerals in HMCs from the different catchments studied (<180 µm fraction) ............................................. 186
Fig. 6.7a Relative abundance (by weight) of ore minerals in stream sediments in the <180 µm fraction ........................................................................................................... 189
Fig. 6.7b Relative abundance (by weight) of rock forming minerals in stream sediments in the <180 µm fraction .................................................................................. 189
Fig. 6.8a Mineral maps for pyrite distribution with examples of grains where pyrite was detected during QEMSCAN® analysis ................................................................. 193
Fig. 6.8b Mineral maps for chalcopyrite distribution with examples of grains where chalcopyrite was detected during QEMSCAN® analysis ........................................ 193
Fig. 6.8c Mineral maps for arsenopyrite distribution with examples of grains where arsenopyrite was detected during QEMSCAN® analysis ........................................ 194
Fig. 6.8d Mineral maps for galena distribution with examples of grains where galena was detected during QEMSCAN® analysis ......................................................... 195
Fig. 6.8e Mineral maps for stibnite distribution with examples of grains where stibnite was detected during QEMSCAN® analysis ......................................................... 195
Fig. 6.8f Mineral maps for SbO distribution with examples of grains where SbO was detected during QEMSCAN® analysis ................................................................. 196
Fig. 6.8g Mineral maps for PbSbO distribution with examples of grains where PbSbO was detected during QEMSCAN® analysis ......................................................... 196
Fig. 6.8h Mineral maps for silver distribution with examples of grains where silver was detected during QEMSCAN® analysis ......................................................... 197
Fig. 6.9a Mineral maps for pyrite-chalcopyrite distribution with examples of grains where pyrite-chalcopyrite were detected during QEMSCAN® analysis 199
Fig. 6.9b Mineral maps for arsenopyrite distribution with examples of grains where arsenopyrite was detected during QEMSCAN® analysis ........................................ 199
Fig. 6.9c Mineral maps for cobaltite distribution with examples of grains where cobaltite was detected during QEMSCAN® analysis .................................................. 200
Fig. 6.9d Mineral maps for galena distribution with examples of grains where galena was detected during QEMSCAN® analysis ......................................................... 200
Fig. 6.10a Mineral maps for pyrite distribution with examples of grains where pyrite was detected during QEMSCAN® analysis ......................................................... 202
Fig. 6.10b Mineral maps for sulphide and other minerals distribution with examples of grains where sulphide phases was detected during QEMSCAN®
Fig. 6.11a Mineral maps for pyrite and other minerals distribution with examples of grains where pyrite and other mineral phases were detected during QEMSAN® analysis .................................................................203
Fig. 6.11b Mineral maps for chalcopyrite distribution with examples of grains where chalcopyrite was detected during QEMSAN® analysis .......................205
Fig. 6.11c Mineral maps for pentlandite distribution with examples of grains where pentlandite was detected during QEMSAN® analysis .......................206
Fig. 6.11d Mineral maps for galena distribution with examples of grains where galena was detected during QEMSAN® analysis ........................................207
Fig. 6.12a Mineral maps for pyrite and other mineral distribution with examples of grains where pyrite and other minerals were detected during QEMSAN® analysis ..............................................................................209
Fig. 6.12b Mineral maps for chalcopyrite distribution with examples of grains where chalcopyrite was detected during QEMSAN® analysis ......................210
Fig. 6.12c Mineral maps for cobaltite distribution with examples of grains where cobaltite was detected during QEMSAN® analysis ...............................210
Fig. 6.12d Mineral maps for arsenopyrite distribution with examples of grains where arsenopyrite was detected during QEMSAN® analysis ..................211
Fig. 6.12e Mineral maps for pentlandite distribution with examples of grains where pentlandite was detected during QEMSAN® analysis ..........................211
Fig. 6.12f Mineral maps for galena distribution with examples of grains where galena was detected during QEMSAN® analysis ........................................212
Fig. 7.1 Spatial relationship for predicted mineralisation from geochemical associations with known geological units and structures ..............................................224
Fig. 8.1 Prospective areas for different styles of mineralisation in North Pakistan ..............................................................................................................239

LIST OF TABLES

Table 2.1 Summary of geological units in part of northern Kohistan (Pettersson and Treloar, 2004) ........................................................................................................35
Table 2.2 Lithological units near Drosh town (Pudsey et al., 1985) ..................38
Table 2.3 Summary of PGE and Au in layered mafic-ultramafic rocks (Jijal complex) of the Kohistan Arc (Data from Miller et al., 1991) ....................50
Table 3.1 Summary of important associations from Factor Analysis and Pearson Correlations for prospect areas .........................................................72
Table 3.2a Correlation Matrix for the Hindu Kush terrane ............................75
Table 3.2b Results of the Factor Analysis for the Hindu Kush terrane ......76
Table 3.3a Correlation Matrix for the Hindu Kush Metamorphic Complex .......77
Table 3.3b Results of the Factor Analysis for the Hindu Kush Metamorphic Complex ........................................................................................................................................................................78
Table 3.4a Correlation matrix for the Northern Karakoram terrane ............79
Table 3.4b Results of the Factor Analysis for the Northern Karakoram terrane 80
Table 3.5a Correlation matrix for Karakoram Batholith..................................81
Table 3.5b Results of the Factor Analysis for the Karakoram Batholith ..........82
Table 3.6a Correlation matrix for the Southern Karakoram Metamorphic Complex .............................................................................................................83
Table 3.6b Results of the Factor Analysis for the Southern Karakoram Metamorphic Complex .......................................................................................84
Table 3.7a Correlation matrix for the Shyok Suture Zone and northern Kohistan ............................................................................................................................85
Table 3.7b Results of the Factor Analysis for the Shyok Suture and northern Kohistan............................................................................................................................86
Table 3.8a Correlation matrix for the Kohistan Batholith ................................87
Table 3.8b Results of the Factor Analysis for the Kohistan Batholith ..........88
Table 3.9a Correlation matrix for the Sub-Kohistan Arc ..............................89
Table 3.9b Results of the Factor Analysis for the Sub-Kohistan Arc ..........90
Table 3.10a Known areas of mineralisation in North Pakistan ....................91
Table 3.10b Geochemical associations identified from the factor analyses in the current study............................................................................................................................92
Table 4.1 Summary of analytical techniques used for the geochemical analysis of different size fractions of stream sediment samples and HMC from the study area .............................................................................................................................................................................108
Table 4.2 Summary statistics for Au (ppb) in different size fractions of the stream sediment samples ............................................................................................................................113
Table 5.1 Summary table of Au grain compositions from the Asheriat, Pakora, Teru, Bagrot, and Shoghor catchments ..............................................................................................................................................................................155
Table 5.2 Mineral inclusions in Au grains from the Asheriat, Pakora and Teru catchments, with host Au grain compositions ..............................................................................................................................................................................160
Table 6.1a Minerals identified in stream sediments from the Shoghor and Bagrot catchments using SEM-EDS (Khaliq, 1991) ..............................................................................................................................................................................180
Table 6.1b Mineralogy of stream sediment samples from the Asheriat, Teru and Pakora catchments, as determined from qualitative SEM-EDS studies (this study) ..............................................................................................................................................................................181
Table 6.2 Wt. % of minerals in HMC (<180 µm) determined using QEMSCAN® ..............................................................................................................................................................................185
Table 6.3 Wt. % of key minerals in stream sediment samples (<180 µm fraction)
Table 6.4 Mineralogy of HMC from different catchments (180-75 µm and <75 µm fractions) determined using QEMSCAN® .................................................. 190
Table 6.5 Mineralogy of key minerals from stream sediments (180-75 µm and <75 µm fractions) determined using QEMSCAN® .............................. 191
Table 6.6 Mineral associations in samples from the Shoghor catchment determined using QEMSCAN® ................................................................. 192
Table 6.7 Mineral associations in samples from the Bagrot catchment determined using QEMSCAN® ................................................................. 198
Table 6.8 Mineral associations in samples from the Asheriat catchment determined using QEMSCAN® ................................................................. 201
Table 6.9 Mineral associations in samples from the Teru catchment determined using QEMSCAN® ................................................................. 204
Table 6.10 Mineral associations for grains from the Pakora catchment determined using QEMSCAN® ................................................................. 209
Table 6.11 Number of analytical points identified as ore-forming minerals in the HMC (<180 µm) and stream sediments (<180 µm) from QEMSCAN® analysis ................................................................. 214
Table 6.12 Diagnostic mineralogy of different styles of mineralisation (BCMEMPR, 1995 and USGS, 1986, and references therein) ...................... 215
Table 7.1 Summary of important metal associations in relation to lithology, as defined from the regional stream sediment geochemical database .............. 225
Table 7.2 Comparison of important elemental associations in Asheriat, Teru and Pakora from the <75 µm dataset, HMC (Chapter 4) and regional dataset (Chapter 3) with geological units ...................................................... 227
Table 7.3 Summary table of Au grain morphological and geochemical characteristics .................................................................................................. 228
Table 7.4 Deposit model on the basis of mineral associations (derived from QEMSCAN® analysis) in HMC and stream sediments ........................................ 232
Table 7.5 Data comparison table for Au chemistry and geochemical and mineralogical associations (QEMSCAN®) ...................................................... 233