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Abstract 

 

Over evolutionary time coral reefs have been exposed to the influence of diverse environmental 

forces which have determined their structure and function. However, the climate of the earth is 

changing, affecting many biological systems, including coral reefs. Through this thesis the static 

and dynamic environment of the Caribbean basin was characterized using remote sensing and in 

situ data sources. This information was used to understand how present environmental 

conditions have shaped reef ecosystems and how the changing climate might jeopardize them. 

Focusing on physical constraints that drive many aspects of coastal ecology, a region-wide 

categorisation of the Physical Environments of the Caribbean Sea (PECS) was developed. The 

classification approach is hierarchical; including a first level of 16 physicochemical provinces 

based on sea surface temperature, turbidity and salinity data; and a second level considering 

mechanical disturbance from wave exposure and hurricanes. The PECS categorisation will 

facilitate comparative analyses and inform the stratification of studies across environmental 

provinces in the region.  

Montastraea spp. forereef habitats have the highest biodiversity and support the largest number 

of ecosystem processes and services in the Caribbean. One of the aspects of the physical 

environment, wave exposure, was used to predict the distribution of these habitats in the 

Caribbean basin with high accuracy (79%). The distribution of the habitat is constrained in 

environments of high exposure, a pattern likely to be driven by high rates of chronic sediment 

scour that constrain recruitment. This approach constitutes a fast and inexpensive alternative to 

traditional habitat mapping and complements global efforts to map reef extent. 

Recent changes in temperature have impacted ecosystem function across the globe. However, 

the nature of the responses has depended upon the rate of change of temperature and the season 

when the changes occur, which are spatially variable. In the Caribbean Sea, temperature trends 

are highly variable in space (ranging from -0.20 to 0.54°C decade
-1

) and most of the warming 
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has been due to increases in summer temperatures. The highly detailed spatial and temporal 

patterns assessed can be used to elucidate observed ecological responses to climatic change in 

the region. 

In the face of increased temperatures it has been suggested that reefs may become increasingly 

restricted to locations of naturally low thermal stress, such as upwelling areas. However, when 

analysing the degree to which seasonal upwelling reduces the local thermal stress experienced 

by corals, it is clear that upwelling areas do not always offer meaningful protection. 

Hypothesised areas need to be assessed individually in order to evaluate their capacity as a 

refuge against climate change. 

In this thesis large progress has been made in assessing the ocean climate of the Caribbean basin 

by quantifying spatial patterns and their rate of change. Although some insight into the 

consequences of these seascape patterns to the function and distribution of marine systems has 

been provided, more can be done to fully exploit the datasets produced. 
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