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ABSTRACT               

 

Over the past decades simulation techniques, and in particular finite element method, 

have been used successfully to predict the response of systems across a whole range of 

industries including aerospace, automotive, chemical processes, geotechnical 

engineering and many others. In these numerical analyses, the behaviour of the actual 

material is approximated with that of an idealised material that deforms in accordance 

with some constitutive relationships. Therefore, the choice of an appropriate 

constitutive model that adequately describes the behaviour of the material plays an 

important role in the accuracy and reliability of the numerical predictions. During the 

past decades several constitutive models have been developed for various materials. 

 

In recent years, by rapid and effective developments in computational software and 

hardware, alternative computer aided pattern recognition techniques have been 

introduced to constitutive modelling of materials. The main idea behind pattern 

recognition systems such as neural network, fuzzy logic or genetic programming is that 

they learn adaptively from experience and extract various discriminants, each 

appropriate for its purpose.  

 

In this thesis a novel approach is presented and employed to develop constitutive 

models for materials in general and soils in particular based on evolutionary polynomial 

regression (EPR). EPR is a hybrid data mining technique that searches for symbolic 

structures (representing the behaviour of a system) using genetic algorithm and 

estimates the constant values by the least squares method. Stress-strain data from 

experiments are employed to train and develop EPR-based material models. The 

developed models are compared with some of the existing conventional constitutive 

material models and its advantages are highlighted. It is also shown that the developed 

EPR-based material models can be incorporated in finite element (FE) analysis. 

Different examples are used to verify the developed EPR-based FE model. The results 

of the EPR-FEM are compared with those of a standard FEM where conventional 

constitutive models are used to model the material behaviour. These results show that 

EPR-FEM can be successfully employed to analyse different structural and geotechnical 

engineering problems. 
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Chapter Chapter Chapter Chapter 1111  
 

 

INTRODUCTION 
 

 

 

1.1 General Background 

Constitutive models are relationships between two or more physical quantities that 

represent different aspects of material behaviour and predict the response of that 

material to applied loads, displacements, etc. Constitutive models play an important role 

in modelling the behaviour of materials. In the past decades several constitutive models 

have been developed to predict the behaviour of different materials including soils. 

Among these model there are simple elastic models (Hooke, 1675); or more complex 

material models such as cam clay model (Schofield & Worth, 1968) or Lade’s single 

hardening model (Lade & Jakobsen, 2002). Most of these models involve determination 

of material parameters. Generally in conventional constitutive material modelling, the 

parameters of the model are identified from appropriate physical tests on representative 

samples.  

 

One of the most fundamental functions of a constitutive model is its application in 

numerical modelling techniques such as finite element method (FEM). Finite element 
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method is a numerical technique to find approximate solutions of partial differential 

equations (PDE). Most of the problems in engineering design and analysis can be 

modelled as a single or a set of differential equations. These differential equations 

describe the response of a system subjected to external influences. Many differential 

equations can not be solved analytically and usually numerical techniques are used to 

find their approximate solutions. Among numerical techniques the finite element 

method is known to be one of the most powerful general techniques for the numerical 

solution of variety of problems encountered in engineering. The basic idea behind finite 

element method is to divide the structure, body, or region being analysed into a large 

number of elements (Stasa, 1986). 

 

It is known that the accuracy of the finite element analyses results is mostly dependant 

on the choice of an appropriate constitutive model that represents the material 

behaviour. Therefore one of the crucial aspects of FE analysis is selecting the 

appropriate constitutive model. Despite the large number of existing conventional 

constitutive models and their complexity, none of these models can completely describe 

the real behaviour of some materials (e.g., soils, rocks, composites, etc.) under different 

loading conditions due to the erratic and complex nature of these materials. Therefore 

alternative and different methods for developing material models seem to be vital. 

 

For the first time, Ghaboussi and his co-workers (1991) proposed to use artificial neural 

network (ANN) for modelling the behaviour of concrete. After that other researchers 

continued to apply this technique to modelling the behaviour of other materials. Some 

of these works have proposed to incorporate the neural network material models in 

finite element method to analysis engineering boundary value problems. Researchers 

like Ghaboussi et al., (1998), Shin & Pande, (2000) and Hashash et al., (2006) proposed 

autoprogressive or self learning approach to train neural network material models via 

sequences of training an embeded neural network (NN) in a FEM using measured 

displacements and forces of a structural or geotechnical test. These works indicated that 

NNs can be used to model the behaviour of materials. They also showed that if the 

trained NN is used in FEM, it can provide reasonable and good predictions for 

analysing engineering problems in comparison to the conventional FEM. However NNs 

suffer from some shortcomings. One of the disadvantages of the NNCM is that the 

optimum structure of the NN (such as number of inputs, hidden layers, transfer 
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functions, etc.) must be identified a priori which is usually obtained using a time 

consuming trial and error procedure (Giustolisi & Savic, 2006). Another main drawback 

of the NN approach is the large complexity of the network structure, as it represents the 

knowledge in terms of a weight matrix together with biases which are not accessible to 

user. In other words NN models give no information on the way the inputs affect the 

output and therefore are considered as a black box class of models. The lack of 

interpretability of NN models has stopped them from achieving their full potential in 

real world problems (Lu et al., 2001 and Javadi & Rezania, 2009a). 

 

For the reasons mentioned above, an alternative data mining technique which can dispel 

the drawbacks of NN would be very benefitial. Among other data mining techniques a 

novel and recently developed technique named evolutionary polynomial regression 

(EPR) is considered here as a strong alternative for NN since it express the model being 

studied in terms of structured mathematical equations. EPR was first introduced and 

used by Giustolisi & Savic, (2006) to study the hydroinformatics and environmental 

related problems. EPR is a two-step technique where in the first step it searches for 

symbolic structures using a genetic algorithm and in the second step EPR estimates 

constant values by solving a linear least square problem. The application of EPR in 

modelling and analysing different discipilines of engineering and in particular 

geotechnical and structural engineering have also been investigated by the author of this 

thesis and his co-workers. 

1.2 Objectives 

The potential of EPR in pattern recognition and data mining as well as its capability in 

returning transparent mathematical expressions to describe systems, have been an 

inspiration to employ this technique in constitutive material modelling soils. Therefore 

the objective of this PhD thesis can be outlined in the following items: 

• Review the main and recent developments in using data mining techniques in 

material modelling and their implementation in FE. 

• Introduce and develop different approaches of material modelling using EPR. 

• Present a technique to extract additional data from a single standard test in order 

to prepare adequate data for training EPR. 
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• Develop different material models for different purposes and different materials. 

In particular develop material models for soils in order to simulate both its 

stress-strain and volumetric behaviour. 

• Develop a model to predict cyclic behaviour of soils. 

• Construct Jacobian matrix using partial derivatives of developed constitutive 

models. 

• Incorporate the developed EPR material models in FEM. 

• Verify the EPR-based FEM using a number of illustrative examples. 

1.3 Layout of the thesis      

The thesis consists of six chapters; a brief description of the contents of each chapter is 

given in the following paragraphs. 

 

Chapter two provides a literature review of the key and recent developments in the use 

of data mining techniques in material modelling. This chapter begins with the historical 

background of conventional constitutive material modelling as well as first and latest 

developments in using data mining techniques and in particular neural networks in 

material modelling and its incorporation in finite element analysis. 

 

Chapter three presents a complete explanation of the new data mining technique, 

evolutionary polynomial regression (EPR). This chapter starts with a general 

introduction on most popular data mining techniques, artificial neural network (ANN) 

and genetic programming (GP). In addition a brief description of evolutionary 

algorithms and genetic algorithms is outlined since it is the main idea behind EPR. The 

main focus of this chapter is on description of the EPR and its key features. 

 

In chapter four, EPR based modelling of materials and in particular soil is introduced. 

Two different approaches are introduced to train and develop EPR-based model. Also 

finding the optimum EPR models will be discussed in this chapter. The developed EPR-

based models are compared with other conventional constitutive material models and its 

advantages are highlighted. Moreover an EPR-based model for cyclic behaviour of 

material is developed and presented. 
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In chapter five, a procedure is presented for construction of the Jacobian matrix from 

the EPR models using their partial derivatives. Also a methodology is presented for 

incorporating of EPR-based model in FEM and in particular ABAQUS (FE software). A 

number of different examples are provided to validate the developed EPR-based FEM. 

The presented examples range from simple to complex geometry and from monotonic 

to cyclic loading conditions with both linear and nonlinear material behaviour. The 

results of the EPR-based FEM are compared to those obtained from standard FEM 

using conventional constitutive models. 

 

The final chapter 6 presents the main conclusions of the thesis and recommendations for 

further research. 
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Chapter Chapter Chapter Chapter 2222     
 

 

REVIEW OF DATA MINING BASED 
CONSTITUTIVE MODELLING 
 

 

 

2.1 Introduction 

 

During the recent decades, simulation techniques and particularly the finite element 

method (FEM) have been extensively and successfully used as a robust tool in the 

analysis of a wide range of engineering problems including aerospace, structural 

engineering, automotive, biomedical, geotechnical engineering and many others. In this 

numerical analysis, the behaviour of the actual material is approximated with that of an 

idealised material that deforms in accordance with some constitutive relationships. 

Therefore, the choice of an appropriate constitutive model that adequately describes the 

behaviour of the material plays an important role in the accuracy and reliability of the 

numerical predictions. 

 

This chapter review some of the application of the recently developed data mining 

techniques in material modelling and discuss their advantages and shortcomings.  
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2.2 Conventional Constitutive Modelling 

In the past few decades several constitutive models have been developed for various 

materials including soils. Among theses models there are simple elastic models (Hooke, 

1675); plastic models (e.g., Drucker and Prager, 1952), models based on critical state of 

soils (Schofield & Worth, 1968), single or double hardening models (Lade & Jakobsen, 

2002; Lade, 1977), etc. Most of these models involve determination of material 

parameters, many of which have little or no physical meaning (Shin & Pande, 2000).  

 

In conventional constitutive material modelling, an appropriate mathematical model is 

initially selected and the parameters of the model (material parameters) are identified 

from appropriate physical tests on representative samples to capture the material 

behaviour. When these constitutive models are used in finite element analysis, the 

accuracy with which the selected material model represents the various aspects of the 

actual material behaviour and also the accuracy of the identified material parameters 

affect the accuracy of the finite element predictions. In spite of considerable 

complexities of constitutive theories, due to the erratic and complex nature of some 

materials such as soils, rocks, composites, etc., none of the existing constitutive models 

can completely describe the real behaviour of these materials under various stress paths 

and loading conditions. 

2.3 Application of data mining techniques in constitutive 

modelling 

In recent years, by rapid and effective developments in computational software and 

hardware, alternative computer aided pattern recognition approaches have been 

introduced to constitutive modelling of materials. The main idea behind pattern 

recognition systems such as neural network, fuzzy logic or genetic programming is that 

they learn adaptively from experience and extract various discriminants, each 

appropriate for its purpose. Artificial neural networks (ANNs) are the most widely used 

pattern recognition procedures that have been employed for constitutive modelling of 

materials. Recently other data mining techniques such as evolutionary methods have 
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been utilised to modelling the behaviour of materials. In what follows a review of the 

key works and the latest development in this field is presented. 

The application of ANN for constitutive modelling was first proposed by Ghaboussi et 

al. (1991) for modelling concrete behaviour. The use of ANN was also continued by 

Ellis et al. (1992) and Ghaboussi et al. (1994), who applied this technique to modelling 

of geomaterials. These works indicates that neural network based constitutive models 

can capture nonlinear material behaviour. These models are versatile and have the 

ability to continuously learn as additional data become available. 

 

ANN models have the ability to operate on large quantities of data and learn complex 

model functions from examples, i.e., by training on sets of input and output data. The 

greatest advantage of ANNs over traditional material models is their ability to capture 

nonlinear and complex interaction between variables of the system without having to 

assume the form of the relationship between input and output variables. 

The role of the neural network (NN) is to assign a given set of output vectors to a given 

set of input vectors. When applied to the constitutive description, the physical nature of 

these input-output data is determined by the measured quantities like stresses, strains, 

pore pressure, temperature, etc (Javadi et al., 2009). 

A typical NN based constitutive model is shown in Figure  2.1. 

                               

Figure  2.1: A simple neural network based constitutive model (after Shin, 2001) 

 

εx εy γxy 

σx τxy σy σz 

εz 
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In this simple network, one input layer, two hidden layers, and one output layer are used 

to represent a constitutive model. Inputs are four strain components (εx, εy, εxy, and εz) 

for a two dimensional problem and a forward pass through the network results in the 

prediction of four corresponding stresses (σx, σy, σxy, and σz) at the output layer. Every 

neuron in each layer is connected to every neuron in the next layer with a “connection 

weight”. The knowledge stored in the developed network is represented by the set of 

connection weights. The neural network is trained by appropriately modifying its 

connection weights, through the set of “training cases”, until the predicted stress 

variables agree satisfactory with the correct stress variables. Sometimes the NN 

developed in this way is called back-propagation NN. The “back-propagation” term 

refers to the algorithm by which the observed error in the predicted stress variables is 

used to modify the connection weights. 

 

Ghaboussi and Sidarta (1998) introduced nested adaptive neural network (NANN) and 

applied this neural network in modelling of the constitutive behaviour of geomaterials. 

NANNs take advantage of the nested structure of the material test data, and reflect it in 

the architecture of the neural network. They applied this new type of neural network in 

modelling of the drained and un-drained behaviour of sand in triaxial tests. 

 

Penumadu & Zhao (1999) modelled the stress-strain and volume change behaviour of 

sand and gravel under drained triaxial compression test conditions using neural 

network. They used a vast number of database (around 250 triaxial test data) collected 

from literature to train the neural network. They performed a trial and error procedure to 

find the optimum architecture of the neural network. The developed neural network 

consisted of 3 hidden layers, eleven neuron in input, 15 neurons in each hidden layer 

and two outputs. The input and output parameters were as follow: 

 

Inputs: ���, ��, �� , ℎ, 	
 , �, �
, ∆�
 , �́�, ��

 , ��


  

Outputs: ��

��, ��


�� 

 

where ���, ��, �� are equivalent particle size and their distribution, ℎ is hardness of 

material, , 	
 shape factor, � is void ratio, and �́� is effective confining pressure. The 

current state units of stress and strain were represented with three inputs using deviator 

stress ��

 , axial strain �
 and volumetric strain ��


 . For a given specimen conditions and 
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current state units the objective of neural network was prediction of two outputs, 

deviator stress ��

�� and volumetric strain ��


�� of the next state of an input axial strain 

increment ∆�
. It was observed that the developed NN model has captured the 

behaviour of soil with an acceptable accuracy in terms of both non-linear stress-strain 

relationship, and volume change. Despite developing a very comprehensive ANN-based 

model for granular soils from a large database, the incorporation of this model in a finite 

element (or another simulation) model was not presented. 

 

Shin and Pande (2002) described a strategy to generate additional data from general 

homogeneous material tests in order to train NNCM. This was done by taking 

advantage of isotropy when it is applicable to the material under consideration. 

Assuming isotropy, transformation of the stress-strain pairs was carried out by rotating 

the datum axes (X-Y-Z) from the original axes (1-2-3) in which the material test has 

been done. This resulted in increasing the training data significantly. A boundary value 

problem of a circular cavity in a plane stress plate was analysed with the FE code using 

NNCM trained with the enhanced dataset. The NNCM-based FE showed comparable 

results with FE analyses using conventional constitutive models. As stated by the 

authors, this strategy has the limitation that it cannot be used for anisotropic materials. 

 

Javadi and his co-workers carried out extensive research on application of neural 

networks in constitutive modelling of complex materials in general and soils in 

particular. They have developed an intelligent finite element method (NeuroFE code) 

based on the incorporation of a back-propagation neural network (BPNN) in finite 

element analysis. The intelligent finite element model was then applied to a wide range 

of boundary value problems including several geotechnical applications (e.g., Javadi et 

al., 2002; Javadi & Zhang, 2003; Javadi et al., 2004a; Javadi & Zhang, 2004b; Javadi et 

al., 2005; Javadi et al., 2009) and has shown that NNs can be very efficient in learning 

and generalising the constitutive behaviour of complex materials such as soils, rocks 

and others. 

 

Hashash et al. (2004a) described some of the issues related to the numerical 

implementation of a NNCM in finite element analysis and derived a closed-form 

solution for material stiffness matrix for the neural network constitutive model. They 

derived a formula to compute consistent Jacobian matrix (stiffness matrix) for NN 

material models. For validation, the derived formula was implemented in ABAQUS 
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through its user defined material subroutine (UMAT) to analyse a number of numerical 

examples including analyses of a beam bending and a deep excavation problem. 

 

Furukawa and Hoffman (2004) proposed an approach to material modelling using 

neural networks, which can describe monotonic and cyclic plastic deformation and its 

implementation in a FEA system. They developed two neural networks, each of which 

was used separately learn the back stress and the drag stress. The back stress represents 

kinematic hardening Y, and the drag stress represents isotropic hardening R. The 

architecture of neural networks and their inputs and outputs are illustrated in the 

following figure. 

 

 

Figure  2.2: Structure of the proposed neural network material model (Furukawa & 
Hoffman, 2004) 

In this figure Y and R represent the kinematic and isotropic hardening respectively and 

pε is the plastic strain. The subscripts k, k-1 and k-2 are denoting the current and 

previous states of each variable. After training and validation stages of NNs, the NNCM 

was implemented in a commercial FEA package, MARC, using its user subroutine for 

material models. The implementation involves the determination of the D matrix, which 

describes the stress-strain relationship, 

and is given by the sum of the elastic matrix De and the plastic matrix Dp: 

 � = ��  2.1 
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The elastic matrix is derived from Young’s modulus and Poisson’s ratio and only the 

plastic matrix is updated using developed neural networks. In order to appraise the 

performance of the proposed approach, two material models similar to Figure  2.2 were 

developed using actual material data with monotonic plastic deformation. The results 

were compared to one of the conventional material models (Chaboche model) and 

experimental data. A similar process was also curried out for cyclic plastic deformation 

and a good agreement was noted. Eventually the developed models were implemented 

in FEA package (MARC) using the described approach to analyse an axisymmetric FE 

model, representing the central part of a tensile specimen under a cyclic load. The 

results are shown in Figure  2.3. 

 

 

Figure  2.3: Total equivalent stress data of experiment and FEAs with neural network 
model and best-fit Chaboche model vs. cycles (Furukawa & Hoffman, 2004) 

 

 

It can be seen in this figure that the results of the developed FE model show a better 

prediction compared to the conventional method (Chaboche model), however as the 

number of cycles increases the results of NN based FEA diverge from the actual data. 

 

 

 

 DDDD = DDDDe + DDDDp  2.2 
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Nezami et al. (2006) utilized discrete element method (DEM) to generate the stress, 

strain data to train Neural Network (NN) soil models. The trained NN models were then 

used in Real Time Simulation (RTSM) framework. Within this framework, model 

training is done on the non-real time scale (several times faster than actual). This results 

in a faster simulation run compared with the actual DEM simulation. 2D and 3D 

examples were used to verify the proposed approach. It was shown that the results of 

NN models in RTSM framework provide reasonable prediction compared to the DEM 

results. In addition the results of the NN model in RTSM framework are obtained in a 

significantly lower time. 

 

Jung and Ghaboussi (2006a) presented a rate dependent NN material model and its 

implementation in finite element software. In rate dependant materials, the material 

behaviour is dependant on both strains (stresses) and the rate of strains (rate of stresses). 

Therefore they developed a NN with the following architecture: 

where the following equations were used to define stress and strain rate. 

 

The developed NN model was then implemented in FE software ABAQUS through user 

material (UMAT). The proposed model was verified for a hypothetical material and 

structure. In addition, laboratory test data obtained by previous researchers were used as 

an example application of the rate dependent NN material model. The test structure was 

1/8th scale model of a real bridge, and the time dependent strain changes were measured 

at the mid span using three strain gauges located at the top, centre, and bottom of the 

bridge cross section as shown in Figure  2.4.  

 ��  = ��  NNNNNNNN(� , � #�, � #�, � , ��  , ��  #�, ��  #�)  2.3 

 ��  =
1

Δ'
(� − � #�)  2.4 

 �� =
1

Δ'
(� − � #�)  2.5 
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 (Unit: mm) 

Figure  2.4: Geometry of test specimen (Jung & Ghaboussi, 2006a) 

 

During the experiment, 10 cm by 20 cm cylinders were made with concrete used to 

construct the beam. These samples were loaded and the time dependant strain was 

measured. The stress and strain data extracted from these tests were used to train NN 

material model. UMAT subroutine of ABAQUS was utilized to implement the 

developed NN model and analysing the beam structure. The results of analysis and 

measured strains are shown in the following figure. 

 

 

Figure  2.5: Measured and computed strains at mid-span (Jung & Ghaboussi, 2006a) 

 



Chapter (2)                                       Review on data mining based constitutive modelling 

15 
 

The figure shows good overall agreement between FE results using the implemented 

NN model and the experiments. However a significant difference can be seen for the 

results of the bottom gauge. 

 

Kessler et al. (2007) demonstrated the implementation of a neural network (NN) 

material model in a finite element code, ABAQUS, through its user subroutine 

VUMAT. They developed a NN model for 6061 Aluminium under compression and 

different temperatures. They tried different types of inputs and different NN 

architectures and at the end the following inputs were selected to train NN. 

Inputs: 

ln(�) , ln(��) , ln(�) ,
1
+

, ',-./,0 1,', 23 3/24 5'0�55�5 ,	1 5'0,6	5 

 

where � and �� are strain and its rate respectively, � is stress, and T is temperature. 

The obtained NN model was implemented in ABAQUS via VUMAT to carry out 

analysis and the results were compared to the two other conventional build-in models of 

ABAQUS (power law model and tabular data). The results relieved that the NN-based 

finite element model can provide a better prediction in comparison to the other two. It 

was noted that some parameters need to be defined a priori for conventional models, 

while no parameter identification is required in NN model. No description is provided 

in this paper on how the NN material model has been implemented in ABAQUS. The 

way that a constitutive model is implemented in FE analysis is vital and may have 

significant effect on the output results. 

 

Haj-Ali and Kim (2007) presented a neural network constitutive model for fibre 

reinforced polymeric (FRP) composites. Four different combinations of NN models 

were considered in this study. Data for training the NN models were gathered from off-

axis compression and tension tests performed with coupons cut from a monolithic 

composite plate manufactured by pultrusion process. Inputs for NN models were 

���,  �77, 8�7 and outputs were scalar or vector of inelastic or total strains; which 

created the four different combinations. The results of NN models were compared to the 

experimental data and good agreement was observed. Furthermore a notched composite 

plate with an open hole was tested and the results were used to examine its FE model 

using the developed NNs model.  For this purpose the developed NNs were 

implemented in ABAQUS material user subroutine. The results of finite element model 
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were compared to the experimental results in an unknown point where the response of 

structure was linear. It was shown that the model was capable of predicting the general 

linear behaviour of the composite at this point but showed a little diversion as strain 

increased. No comparison was made between the results of the FE model with NN 

constitutive model and the experimental data around the hole, where the behaviour was 

more nonlinear.  

 

Najjar and Huang (2007) used a recurrent neural network to develop a model to 

simulate clay behaviour under plane strain loading conditions. They used this model to 

investigate the effects of loading rate and stress history on clay response. They showed 

that developed model was able to assess the effect of strain rate and stress history on 

clay behaviour. However, as indicated by authors, the model cannot be directly used in 

the solution of boundary value problems. 

 

Yun et al. (2008a) and Yun et al. (2006a) proposed an approach for NN-based 

modelling of the cyclic behaviour of materials. In the hysteric behaviour of material, 

one strain value may correspond to multiple stresses and this can be a major reason that 

stops NNs from learning hysteretic and cyclic behaviour. To overcome this issue, they 

introduced two new internal variables in addition to the other ordinary inputs of NN-

based constitutive material models to help the learning of the hysteretic and cyclic 

behaviour of materials. The following two parameters 9:, , Δ;:,  are used as the 

additional inputs of the NN material model: 

where � , is current strain; � #�, is previous state of strain, � #�, is previous state of 

stress and �  is current stress. 9:, , and Δ;:,  are the internal variables and are defined 

in the following equations: 

The above constitutive model was implemented in a general purpose FE code ABAQUS 

using its user defined subroutine for materials. The following equations were used to 

construct the material tangent stiffness matrix 

 � = �>??(� , � #�, � #�, 9:, , Δ;:, )  2.6 

 9:, = � #�� #�  and  Δ;:, =  � #�Δ�   2.7 
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where Δ� = �� Δ� − Δ�  ��  and Δ� = �� Δ� − Δ�  �� . Two actual and one 

simulated experimental data were used to verify the proposed NN-based material 

models. In the first example, data from a cyclic test on plain concrete were employed to 

train a NN-based material model (equation  2.6). The results of training the NN model 

together with experimental data and an analytical model are presented in the following 

figure. 

 

 

Figure  2.6: Results of training the proposed models and its comparison with an 
analytical model (Yun et al., 2008a) 

 

The trained NN was used to predict a new series of data in order to explore its 

generalization capability. The results of this prediction are presented in Figure  2.7. 

 

Figure  2.7: Trained neural network tested on different test data (Yun et al., 2008a) 

 

 �CD =
E( Δ�) ��

E( Δ�) ��   2.8 
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In the second example two experimental data from two different steel beam-column 

connections were used to train and verify another NN-based cyclic material model. 

None of the NN-based material models in examples 1 and 2 were implemented in the 

finite element code. However in the third numerical example a three-floor building was 

modelled in ABAQUS using Lemaitre-Chaboche as material model and then simulated 

data were extracted to train NN model. The architecture of the NN is presented in the 

following equation. 

where F:, = 9 + Δ;G,H is a combination of the two previously introduced internal 

variables. The trained NN model was incorporated in a non-linear FE code and used to 

predict the cyclic behaviour of the beam sections. The results showed a good agreement 

between the simulated data and predictions; however minor differences can be seen in 

some of the results. One of the key issues that have not been discussed in this paper is 

the effect of strain increment (i.e. ∆� = � �� − � ) on the results of the NN model. The 

developed NN models should be examined for different strain increment. Moreover it 

was not discussed that what range of strain increment was used for training the NN 

models. 

 

Yun et al. (2008 b) extended the NN-based cyclic material model developed by Yun et 

al. (2008a) and Yun et al. (2006a) for beam-column connections by adding the 

mechanical and design parameters. The architecture of new NN model can be presented 

in the following equation: 

where n indicates the nth load (or time) step, θ and M indicate the rotational 

displacement and moment, 9I, =J #�*K #� and Δ;I, = J #� × Δθ  are the two 

internal variables for accelerating learning capability of hysteretic behaviour and 

N(DV1, ...,DVj) is the ith mechanical parameter as a function of design variables. 

 

For the purpose of validation of the proposed NN model, two different types of 

connections, extended-end-plate (EEP) and top-and-seat-angle with double web-angle 

 
O ���

 �� ;  �77
 �� ;  ��7

 �� Q = �>??( ���; ��  �77; ��  ��7; ��   

���;  �77;  ��7; ���;  �77;  ��7;  F:,��; ��  F:,77; ��   F:,�7) ��  
 2.9 

 J = JR??(K , K #�, J #�, 9I, , Δ;I, , N
(�S�, … , �SU  ))  2.10 
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(TSADWA) connection, under cyclic and earthquake loading condition were 

considered. Synthetic data were utilized to develop a NN for the EEP connection. Depth 

of beam (1V), thickness of end plate ('D) and diameter of bolt (3V) were chosen as 

design variables. Therefore the following equation can describe the NN model. 

For the TRADWA connection, real experimental data were employed to train and test 

the NN material model. In both cases good agreement between the NN material models 

prediction and actual data can be seen; however some discrepancies in results can also 

be noticed.   

 

Kim et al. (2010) compared two different approaches for modelling of steel beam-to-

column connections. The first approach is a component-based model where all 

components of connection are idealized by using one-dimensional springs. Constitutive 

relationships for every deformable component (spring) were defined in order to 

represent the actual comprehensive response of a joint. The idealized component-based 

model is shown in Figure  2.8. 

 

 

Figure  2.8: A top-and-seat angle connection with double web angles (Kim et al., 2010) 

 

The component-based model approach was verified using two experimental data from 

literature, Calado et al. (2000) and Kukreti and Abolmali (1999). The experimental and 

component-based model results for two examples are presented in Figure  2.9 and Figure 

 2.10. 

 J = JR??(K , K #�, J #�, 9I, , Δ;I, , N(1V , 'D, 3V))  2.11 
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Figure  2.9: Experimental and analytical hysteretic responses for Calado et al. 2000 
(Kim et al., 2010) 

 

 

Figure  2.10: Comparisons between experimental and analytical results (Kim et al., 
2010) 

 

From these figures it can be seen that the component-based model has been able to 

predict the general behaviour of connection, however it is not able to capture every 

detail of connection behaviour. 

 

In the second approach, the nonlinear hysteretic neural network model, proposed by 

Yun et al. (2008a), was employed to model stress-strain relationship of connections. 

The NN-based model was first verified by synthetic data (generated by Ramberg-

Osgood relationship). The applicability of the NN approach was further appraised by 

applying to the two experimental data (used to verify component-based model). The 

architecture, inputs and output of the NN is presented in the following equation. 
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In this equation 9I, = J #�K #� and Δ;I, = J #�ΔK  are the two internal variables, 

J=moment, K=rotation, JR?? and KW??: Y�→Y are the functional mapping to be 

established through NNs and n indicates nth time (or load) step. An additional input 

variable of Z #� is introduced in this paper to represent the complex hysteric behaviour 

that includes pinching and degradation. The results of the NN-based model were 

compared to the experimental data. The comparison showed that the neural network 

model is capable to predict the overall pinched hysteric loops better than the 

component-based model presented in this study. The neural network model of the 

connections is limited only to prediction of the global response of the joint. It can not 

represent the contribution of individual components and therefore does not give the user 

an insight into the underlying components mechanics. 

 

At the end, the authors proposed a third approach for future investigation that will be a 

mixture of the two approaches proposed in this study. The suggested approach would 

involve the most effective mechanical and informational aspects of the complex 

behaviour of connections. 

2.3.1 Autoprogressive and Self-Learning training of NNCM 

After the pioneering work by Ghaboussi and his co-workers (Ghaboussi et al., 1991) on 

application of ANN for constitutive modelling of materials, Ghaboussi et al. (1998) 

presented an entirely different approach, termed autoprogressive approach, for training 

neural network material models. In this approach the information measured from a 

global load-deflection response of a structural test is employed to enrich the data for 

training the NN. In general, neural networks require a large amount of data for 

modelling material behaviour which usually can not be collected from a single test on a 

sample of material. The proposed approach overcomes this issue and utilizes the fact 

that a structural test contains a huge and diverse amount of data (e.g., different patterns 

of stresses and strains) that can be used for training. In this method the material model is 

extracted from an iterative non-linear finite element analysis of the test specimen and 

gradually improves stress-strain information with which to train the neural network. 

Two simple examples were presented in this paper; structural response data from a 

 J = JR??(K , K #�, J #�, 9 , Δ; , Z #�)  2.12 
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simple truss and a laminated structural plate containing an open hole. In this paper, the 

minimum number of measured structural responses, and their type and locations is an 

important issue that has not been addressed. This approach requires data from structural 

tests in priori which may not be available in some practical applications. 

 

Sidarta and Ghaboussi (1998) developed a neural network based constitutive model for 

geomaterials using autoprogressive training. They used a non-uniform material test (a 

triaxial test with end friction) which had a non-uniform distribution of stresses and 

strains. Then the measured boundary forces and displacements were applied in a finite 

element model of the test to generate the input and output data for training the neural 

network material model. Using the data generated in that way, the autoprogressive 

method was used to train the neural network material model. 

 

Shin and Pande (2000) presented a self-learning finite element code with a neural 

network based constitutive model (NNCM) instead of a conventional material model. 

The methodology presented in this paper is in fact similar to what Ghaboussi and his co-

workers presented as “autoprogressive training” in 1998. Two boundary value problems 

were used in this paper to validate the methodology. The first was a two-bar structure in 

which one of the bars is made of an ideally plastic or a strain softening material whilst 

the second bar is linear elastic. Artificially generated load-deformation data of the 

structure was used for training of the neural network based constitutive model (NNCM) 

for the non-linear bar. The second problem simulates a plane stress panel of linear 

elastic material subjected to a concentrated vertical load at the top. The displacements at 

a number of monitoring points were used to train a NNCM. It was shown that the choice 

of the position of monitoring points affects the training programme and consequently 

the convergence of the NNCM predictions to standard solutions. The position of the 

load was then changed to demonstrate that the NNCM has been adequately trained to be 

able to perform analysis of any boundary value problem in which the material law 

corresponds to the trained NNCM. 

 

Shin and Pande (2001) presented an approach to compute the tangential stiffness matrix 

of the material using partial derivatives of the NNCM (trained with total stress and 

strain data). They incorporated the computed stiffness matrix in their self learning finite 

element code. The potentials of the developed intelligent FE code were examined by 

analysing a rock specimen under uniaxial cylindrical compression with fixed ends.  
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Shin and Pande (2003) used the self learning FE code (the finite element code with 

embedded NNCM) to identify elastic constants for orthotropic materials from a 

structural test. They proposed a two-step methodology in which, in the first step, the 

monitored data of a structure are used to train a NN based constitutive model 

implemented in a finite element code. In the second step, the trained NNCM is used to 

form the constitutive matrix using the following equation to compute material elastic 

parameters. 

 

The input and output of the NN together with its optimal architecture are presented in 

the following figure. Strain and stress vectors were the input and output of the NN 

respectively. 

 

 

Figure  2.11: Architecture of the NNCM presented in Shin and Pande (2003) 

 

The methodology was then applied to a plane stress panel with a circular hole at its 

centre under a compressive pressure. A finite element model of the panel with assumed 

values of the nine independent orthotropic elastic constants was created as a synthetic 

structural test. Displacements of 66 nodes at 5 load levels, obtained from the FE 

analysis, were assumed as measured data from the structural test. The material 

behaviour was linear elastic and after 3rd cycle of self learning approach a good 

agreement was noted with target results. The orthotropic elastic constants were also 

 �?? = �[[
\(�
, �\) =
E�\

E�

  2.13 



Chapter (2)                                       Review on data mining based constitutive modelling 

24 
 

compared and a good prediction was observed. The nine elastic constants were as 

follow: 

Z], Z^, Z_ , `]^, `^_ , `]_ , a]^, a^_, a]_ 

Although it should be noted that the NN based constitutive matrices were not symmetric 

and therefore 36 elastic constants was achieved. They were symmetrised by averaging 

the off diagonal terms. A relatively large number of nodes are used to monitor the 

displacements of a structure with a relatively simple geometry and simple behaviour 

(linear elastic). This could pose a limitation to this method in more complex and 

nonlinear problems. 

 

Hashash et al. (2003) extended autoprogressive training methodology to extract soil 

constitutive behaviour using measurements of lateral wall deflection and surface 

settlements from a sequence of construction stages of a braced excavation. The input 

and output for training the neural network model were obtained from a simulated 

excavation problem using a synthetically generated data. For this simulated FE model, 

modified cam clay was used as the material model. To start the autoprogressive 

procedure, two FE model of the problem were created; one used to simulate soil 

removal and bracing installation of nth excavation stage and the second one to apply 

monitored deformations of the same excavation stage. From the first FE model stresses 

were extracted and from the second one the strains. The stress-strain pairs gathered from 

the two FE model were used to train a NN soil model. It should be mentioned that at the 

beginning of the procedure the material behaviour is unknown and therefore the two FE 

model were initialised with a NN model representing linear elastic behaviour. The 

procedure was repeated until the entire excavation stages are simulated. At the end of 

the process, a NN material model which has been trained with a rich set of data, will be 

created through this iterative process. The results showed that the methodology 

proposed in this paper is capable of extracting relevant material behaviour from a series 

of finite element analyses of the excavation and incrementally learn from field 

observation. 

 

Hashash et al. (2004b) presented a systematic and general procedure for probing 

constitutive models. The following general strain probe equation was utilized to explore 

constitutive model behaviour. 
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Two special cases of probing, true triaxial strain probe (TTSP) and plane-strain strain 

probe (PSSP) are considered to investigate the application of the above equation in 

studying material behaviour. Three different models, Von Mises, Modified Cam Clay, 

and MIT-E3 were used to demonstrate the true triaxial probing procedure. But for the 

plane-strain probing case an artificial neural network (ANN) model was considered. The 

NN model was trained with the autoprogressive algorithm, in a braced excavation 

problem using MIT-E3 constitutive model. The NN model showed a good performance 

in predicting the surface settlement and lateral displacement of excavation problem. 

However when the probing procedure was performed to find the yield loci of NN 

model, it was discovered that NN model has not captured the correct shape of the loci 

but the overall size of response surface was similar to MIT-E3 model. A possible reason 

for this, as stated by authors, can be the lack of training data for NN model. However as 

the data were generated synthetically using the results of FE analysis, it is not clear why 

the model was not verified using additional data.   

 

Hashash et al. (2006a) introduced SelfSim (self-learning simulations) which they called 

a software analysis framework to implement and extend the autoprogressive algorithm. 

The procedure and steps of SelfSim are in fact identical to those introduced in 

Ghaboussi et al. (1998) and (Hashash et al., 2003) as autoprogressive method. The 

SelfSim performance was validated using a simulated excavation case history. Synthetic 

data including lateral wall deflections and surface settlements were generated using a 

FE model employing the MIT-E3 as soil model. Three numerical examples and two 

actual case histories were used to examine the capability and performance of SelfSim in 

prediction of deep excavation projects. The results showed that the proposed approach 

extracts sufficient information on soil behaviour to accurately capture observed field 

behaviour. 

 

Hashash et al. (2006 b), used the SelfSim method to characterize the constitutive 

behaviour of granular material and in particular extra-terrestrial soils using load-

displacement measurements.  The steps of SelfSim presented in this paper are exactly 

the same as (Hashash et al., 2006a). It was assumed that an in-situ test will be 

performed on an extra-terrestrial soil in which the applied load and resultant 

 b(Δ���)7 + (Δ�77)7 + (Δ���)7 + (Δ��7)7 + (Δ�7�)7 + (Δ���)7 = 0c:  2.14 
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deformation are recorded. Two FE models of the domain under consideration will be 

created and measured loads and displacements will be applied incrementally to each of 

these two models. Stresses will be obtained from the 1st model where measured load are 

applied, and measured displacements and compatibility will be used to obtain the strains 

in the second FE model. Since all the measurements can be taken in the place, the costly 

process of acquiring and transferring the extra-terrestrial soils can be avoided. Also 

because in the SelfSim method no priori assumption is considered for constitutive 

relationship of material, this method is a strong candidate to investigate the behaviour of 

unknown and new materials, such as extra-terrestrial soils. 

 

Jung and Ghaboussi (2006b) extended autoprogressive algorithm to include rate 

dependant material models. Same NN architecture as Jung and Ghaboussi (2006a) was 

used to create the NN model. In the autoprogressive algorithm, rate of stresses and 

strains were added to the values measured from simulated FE models. 

A hypothetical cylinder with viscoelastic material and variable diameter as shown in the 

Figure  2.12 was considered to verify the proposed method. 

 

Figure  2.12: The structure and the creep function used in the simulated experiment 
(Jung & Ghaboussi, 2006 b) 

 

A NN-based rate dependant material model was developed using the global response of 

the structural test shown in Figure  2.12. The trained NN material model was then 

employed to solve a new boundary value problem. An important aspect of the NN 

model was its learning of the time step effects. It was observed by the authors of the 

paper that if the NN model be trained using only one time step, its prediction for other 

time steps will be poor. Therefore it was suggested by the authors that the model should 
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be trained using different time steps. The methodology was applied to the results of 

actual experiments to capture the non-linear creep behaviour of a superalloy. 

 

Aquino and Brigham (2006) used autoprogressive or self-learning finite element 

method to develop a NN thermal constitutive model. Like other applications of 

autoprogressive method, this one also included the following steps. Pre-training or 

initialising of NN model, two simulated finite element models, and finally training the 

NN material model. 

To verify the methodology a simulated experiment was utilized. The simulated test was 

a steel plate with a heat flux on one side and 100˚C temperature as boundary condition 

on the other three sides as shown in Figure  2.13. 

 

 

Figure  2.13: Simulated experiment (Aquino & Brigham, 2006) 

Synthetic data were generated using the above simulated experiment. Three cases were 

considered and in order to study the stability of the self-learning FE methodology, a 

random noise was introduced in the simulated data. Then the self-learning algorithm 

was started with pre-training of a NN model by generating random temperature, 

temperature gradient, and their corresponding heat flux using Fourier law. Two finite 

element models were created. The temperature and temperature gradient as inputs were 

extracted from the second finite element model, and heat flux vectors from the first FE 

analysis as output. The NN was trained with the above data set. The inputs and output 

of the NN model were as following: 

Inputs: 
de
d]

, de
d^

, ,	1  + 

Outputs: f] ,   f̂  

where: 
de
d]

, de
d^

 are gradients in x and y directions respectively and T is temperature. 

f],  and  f̂  are heat flux vectors in x and y directions. 
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It was shown that self-learning method is capable of developing a NN thermal 

constitutive model even in the presence of noisy data.  

 

Jung et al. (2007) used SelfSim to predict the time-dependant behaviour of concrete 

during the construction of a segmental bridge. They used SelfSim to predict the 

remaining or future stages of construction using a NN developed with stresses, strains, 

and their corresponding rates from early stages of construction. The proposed 

methodology was applied to Pipiral Bridge, a concrete segmental bridge, built by the 

balanced cantilever method in Colombia. The NN model used in this study had 2 hidden 

layers 7 inputs and 1 output. Each hidden layer had 14 nodes as shown in Figure  2.14. 

 

 

 

Figure  2.14: Rate-dependent neural network material model used in Jung et al. 2007 

  

The inputs and output of NN were: 

where 5/g = �/g − h/g�i/3, �/g = �/g − h/g�i/3, �i = �ll, �i = �ll, (/, g, l = 1, 2, 3). 

The superscripts n and n-1 represent the current and the previous time steps 

respectively. The proposed constitutive equation was solved iteratively using the 

following equation. 

 5�no
 = 5�no

 [[(�no
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The current strain and previous steps of other parameters were obtained from the results 

of finite element analyses. The rate-dependent NN model represents the creep of 

concrete in this paper. 

The method proposed in this paper was used in two different ways to predict the 

deflection of a segmental bridge (Figure  2.15). In the first case, when a construction 

case had a repetition of many cantilevers, the NN model was calibrated using the first 

couple of cantilevers and the remaining ones were predicted using this NN model. In the 

second case the NN model learned from earlier segments and predicted the deflections 

of the remaining segments in one cantilever. However it is known that NN models are 

not reliable when they are used to predict data beyond what they have experienced 

during training. The authors of the paper have suggested adding previously obtained 

data from other sources (e.g. data from lab test, field data, and synthetic data generated 

by conventional models) to the current database in order to improve prediction 

capability of SelfSim and predict the deflections of remaining segments. 

Literally this indicates that the SelfSim method in its current way can not be used to 

predict unseen range of strains and stresses based only on learning from early stages of 

construction, and additional data is required. It is therefore can be argued that SelfSim 

should not claim to be a fully self-simulation technique that can predict future stages of 

a construction like segmental bridge. 

 

 

Figure  2.15: Improvement of the camber using SelfSim: (a) learn from the current 
cantilever and predict deflections of the remaining cantilevers (b) learn from the earlier 

segments and predict the deflections of the remaining segments (Jung et al., 2007) 
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Fu et al. (2007) and Hashash et al. (2006 c) continued the use of SelfSim for linking soil 

laboratory testing and constitutive model development. They applied the methodology 

to two simulated laboratory tests, a triaxial compression shear test, and a triaxial 

torsional shear test. Using extracted soil behaviour from laboratory tests, they developed 

a neural network-based constitutive model. The developed model was then used in the 

prediction of the load-settlement behaviour of a simulated strip footing.  

 

Yun et al. (2008c) and Yun et al. (2006 b) used self-learning simulation to characterize 

cyclic behaviour of beam-column connections in steel frames. In these papers, they used 

similar NN model to Yun et al. (2008a) and (2008 b) to predict the cyclic and hysteretic 

behaviour of beam-column connection. The architecture of the NN and its input and 

output is presented in the following form. 

where 9I, = J #�K #� and Δ;I, = J #�ΔK  are the two internal variables, 

J=moment, K=rotation, JR?? and KW??: Y�→Y are the functional mapping to be 

established through NNs and n indicates nth time (or load) step. The two internal 

variables are described intuitively in the following figures. 

 

 

(a)                                                     (b) 

Figure  2.16: Internal variables defined for NN based cyclic connection model: (a) 
displacement control form; (b) stress resultant control form (Yun et al. 2008c). 

The following equation was used to calculate tangent stiffness of the NN-based 

connection model. 

 J = JR??(K , K #�, J #�, 9I, , Δ;I, )  2.17 

 p =
∂Δr
∂Δs

  2.18 
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where Δr = ΔrH�� − ΔrH   and Δs = ΔsH�� − ΔsH  

Self-learning simulation approach in this paper was enhanced with a new algorithmic 

formulation of the NN based cyclic material model. Both synthetic and actual data were 

used to validate the enhanced self-learning simulation method in prediction of cyclic 

behaviour of connections. As previously described in SelfSim method, in the 2nd step, 

two parallel finite element models (A, B) run in order to update and improve the NN-

based material model. In the model A, measured forces are applied and in the model B 

the measured displacement are enforced. Two different cases were considered to 

construct the stiffness matrix based on the FEM-A and FEM-B as shown in following 

figure. 

 

Figure  2.17: Case I: algorithmic tangent stiffness formulation during self-learning 
simulation (Yun et al., 2008c) 

 

Figure  2.18: Case II: algorithmic tangent stiffness formulation during self-learning 
simulation (Yun et al., 2008c) 

 

It is shown in this paper that the NN model from the case I provides a better prediction 

than case II for the examples presented in this study.  
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Hashash and Song (2008) utilized self-learning simulations (SelfSim) technique to 

extract soil constitutive behaviour. They used this approach to model three different 

problems; a triaxial test with frictional loading plates, deformation due to deep 

excavations, and site response as a result of horizontal shaking. Although they showed 

that developed model can predict the soil behaviour with a very good accuracy, however 

as stated by the authors, selecting SelfSim and neural network parameters is an 

empirical task and needs personal experiences. This shows the lack of interpretability of 

neural network models as extracting their optimum parameters could be a protracted 

trial and error procedure and in some cases can be subjective. 

 

Tsai and Hashash (2008) presented the application of SelfSim method in analysis of 

dynamic soil behaviour. The paper describes the implementation of SelfSim to integrate 

field data measurements and numerical simulations of seismic site response to obtain 

the underlying cyclic soil response. They applied the SelfSim to study 1D seismic site 

response in the following steps. 

Step 1: The ground response corresponding to a base shaking is measured in selected 

depths within soil profile. The input base shaking and the resultant measurements create 

sets of field data. Initially an NN soil model is pre-trained using stress-strain data that 

represent linear elastic behaviour over a limited strain range. 

Step 2(a): A simulated model of site response using the initial NN model is created and 

the measured acceleration from the deepest point in a downhole array is applied at the 

bottom of the soil column. After analysing, the stresses and strains are computed 

throughout the soil column based on dynamic equilibrium considerations. In the 

SelfSim approach it is assumed that since the applied boundary forces (due to base 

acceleration) are accurate then the corresponding computed equilibrium stresses provide 

an acceptable approximation of the true stress field experienced by the soil. However 

the computed strains may not match the expected results and will be discarded. 

Step 2(b): A similar site response analysis using the same NN model is carried out in 

which the measured displacements from a downhole array are imposed as additional 

boundary conditions. In this analysis stresses and strains are also computed in the soil 

column. It is assumed that the applied displacements are accurate and therefore the 

corresponding computed strains are an acceptable approximation of the true strain field 

experienced by the soil. 
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The stresses from step 2a and the strains from step 2b form stress-strain pairs that 

approximate the soil constitutive response. A material constitutive model is updated by 

training and retraining the NN-based material model using the extracted stress-strain 

pairs. The entire process is repeated several times using the full ground motion time 

series until analyses of step 2a provide ground response similar to the measured 

response. This process is shown in the following figure. 

 

 

Figure  2.19: SelfSim algorithm applied to a downhole array (Tsai and Hashash, 2008) 

 

Later in this paper they applied this procedure to a synthetically generated downhole 

array data. The methodology was applied to three different cases in order to evaluate its 

capability to extract dynamic soil behaviour. A single soil layer under a sinusolidal 

motion, a uniform but multilayer soil profile under seismic motion, and a non-uniform 

multilayer soil profile under seismic motions were the 3 synthetic cases. It was shown 

that SelfSim is able to provide a good prediction of the site response in all three cases. 

Eventually to evaluate the predictive capability of the extracted material model from 

individual events it was assumed there are two more recordings available in profile 3. 

Site response analyses (with FE incorporated NN material model obtained from a given 

event) were performed using input motions of the other two events. The results of these 

analyses are presented in Figure  2.20. In this figure it can be noticed that in some cases 

the prediction of surface response is very poor. 
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Figure  2.20: Predicted surface response spectra of a given event using SelfSim 
extracted NN material models from other events (Tsai and Hashash, 2008) 

 

As stated by the authors, this difference is caused because the site response analyses 

experienced a range of unseen strains which was not introduced to the NN model during 

the training stage. After this, the individual extracted stress-strain behaviour from three 

events were combined together in one single database to train a new NN material 

model. It was shown that the prediction of the new NN material model was improved 

compared to the previous results however there was still a significant difference in one 

of the predicted response spectra. Therefore further SelfSim training using all three 

events were performed to increase the accuracy of the results. 

 

Hashash et al. (2009) employed the SelfSim method to interpret the drained behaviour 

of sand from triaxial test with fully frictional loading platens. Three series of 

isotropically consolidated drained triaxial tests were performed on loose, medium, and 
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dense specimens. The triaxial tests were simulated using FE method and SelfSim 

method was used to extract the non-uniform stress-strain behaviour from external load 

and displacement measurements. It was shown that the SelfSim was capable of 

capturing the exact behaviour of the specimens. The authors claimed that using the 

proposed approach (integration of SelfSim and laboratory testing) it is possible to use a 

single laboratory test to generate a multitude of stress paths, instead of the current 

practice of a single laboratory test for a single stress path. The presented study did not 

provide any finite element modelling of a different boundary value problem than the 

triaxial ones to appraise the capability of the extracted NN model.  

 

Hashash et al. (2010) compared two different approaches for learning the behaviour of 

deep excavations in urban environment. In this paper, they utilized genetic algorithm 

(GA) and SelfSim approaches to learn the behaviour of soil in a deep excavation. In the 

first approach the material parameters of an existing material model (hardening soil 

model of PLAXIS) were optimised using a genetic algorithm. In the second approach a 

combination of finite element method and artificial neural network (ANN) was 

employed to extract the soil behaviour. In this approach no predefined constitutive 

model was needed. Both approaches were applied to a case study in Lurie Centre 

excavation in Chicago, USA. It was shown that GA and SelfSim could reproduce the 

wall deformations reasonably well; however it appears that the hardening soil model 

used in the FE model in the GA approach is not capable of reproducing the settlement 

profile behind the wall, neither in magnitude nor in shape. This is shown in Figure  2.21. 

In this figure the graph on the right shows the surface settlement. The difference 

between the results of GA-based approach and measured values can be noticed clearly 

in this graph; this difference for SelfSim results is negligible. This shows that the GA-

based approach highly depends on the selected constitutive model, i.e. the results would 

differ if a different soil constitutive model was used in the GA approach. On the left 

side of figure, while both approaches have provided a relatively good prediction, it can 

be observed that none of the methods have been able to predict the exact wall 

deformation.  

 

 

 



Chapter (2)                                       Review on data mining based constitutive modelling 

36 
 

 

Figure  2.21: Comparison of computed (a) lateral wall deformation and (b) surface 
settlement using GA and SelfSim for the stage 7 of excavation (Hashash et al., 2010) 

 

Jung and Ghaboussi (2010) presented a similar work to the Jung and Ghaboussi 

(2006a), Jung and Ghaboussi (2006b) and Jung et al. (2007). In this paper the authors 

first have explained and verified the rate-dependant neural network model. Then using 

the autoprogressive method, they trained neural network constitutive models with load-

displacement measurements from structural monitoring. After pre-training the NN, the 

method was applied to inverse identification of creep of a concrete beam. The results of 

the comparison between the experiment and the autoprogressive method are presented 

in Figure  2.22. 

 

Figure  2.22: Convergence of mid-span deflection during the autoprogressive training 
(Jung & Ghaboussi, 2010) 

In the application of the method it was tried to add the effect of shrinkage to the neural 

network model in order to improve its prediction. The result is illustrated in Figure  2.23. 

As it can be seen, including shrinkage effect has improved the prediction of NN model 

slightly and this improvement is not significant. 
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Figure  2.23: Convergence of mid-span deflection during the autoprogressive training 
(Jung & Ghaboussi, 2010) 

The authors of this study attempted to use the autoprogressive methodology to forecast 

the behaviour of concrete in long-term based on its behaviour in short-term. For this 

purpose they generated some data from the equation presented for creep in the ACI 

code. The data from this equation with different time steps and the original database 

were re-trained again to predict the 4th and 5th load steps of the concrete beam test based 

on the first three load steps. The best achieved results are presented in Figure  2.24. 

 

Figure  2.24: prediction after learning the first three steps and the database (Jung & 
Ghaboussi, 2010) 

Although the authors have tried to improve the prediction of NN model using different 

ways; however, looking at the figure presented above, clearly the proposed method has 

failed to forecast the prediction of concrete beam behaviour for the 4th and 5th load 

steps.  
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Following the suggestion by Kim et al. (2010), Ghaboussi et al. (2010) developed a 

hybrid modelling framework by using mathematics-based and information-based 

methods, called HMIM. This hybrid method combines the mathematical models of 

engineered systems (derived based on physics and mechanical laws) with artificial 

neural network models using autoprogressive and Self-learning Simulation. In HMIM, 

neural networks only store information that is in experimental data and mathematical 

models can not capture them due to their complex relationships. As an example the 

HMIM method was applied to modelling a steel beam-to-column connection. In this 

example the components of the connection were divided to mathematical-based or 

information-based components. The components that their underlying mechanics are 

well-developed are suitable for the mathematical modelling. Others fit to the 

informational modelling because their background theories or available representations 

are too poor or too complex to be implemented in the current computational power. The 

results of an experimental test on a top-and-seat-angle connection carried out by Kukreti 

and Abolmaali (1999) were employed to evaluate the capability of the proposed 

method. In this connection, angles and column panel zone components were classified 

as mathematics-based components and slip and ovalization as informational-based 

components. The mathematical-based components were idealized as one-dimensional 

springs and reliable constitutive equations were defined for each of them. The 

autoprogressive method was utilized to train the neural network model of the 

informational-based components. The behaviour of the connection under cyclic load 

predicted by the hybrid model and an analytical model were compared to the 

experimental results and is presented in Figure  2.25. From this figure it can be seen that 

the hybrid model has been able to predict the behaviour of this connection better than 

the analytical method. It should be noted that in the presented example in this paper the 

entire data has been used to train the neural network while it is common to use only a 

part of the data for training and the rest for validation. 
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Figure  2.25: Comparison between experiment and hybrid model (Ghaboussi et al., 
2010) 

 

Osouli et al. (2010) investigated the influence of different instruments and their 

locations in an excavation project and the quality of information that can be extracted 

for excavation modelling using self-learning simulation technique. A set of synthetic 

data, generated by finite element analysis using MIT-E3 constitutive model, 

representing the measurement from different locations of the excavation project 

including surface settlement, wall deflection etc. were considered. These data were 

utilized to study the relationship between field instrumentation selection and the quality 

of learned material behaviour. The results showed that in addition to the measurements 

of lateral wall deflections and surface settlement, inclinometers placed some distance 

behind the wall and measured forces in the struts can significantly improve the quality 

of extracted soil behaviour. These findings were verified with an actual case study of a 

deep excavation project in Taiwan. 

 

Hashash et al. (2011) applied the SelfSim approach to analyse a 3D deep excavation. 

They described numerical issues related to this problem including those occurred in 

developing the 3D model. They have shown that the proposed approach can capture the 

soil behaviour using the measured wall deformation and surface settlement from a 3D 

problem. 

 

Although it has been shown by various researchers that NNs offer great advantages in 

constitutive modelling of materials in finite element analysis; however, despite their 

good performance on the available data, these networks have some shortcomings. One 

of the disadvantages of the NNCM is that the optimum structure of the NN (such as 
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number of inputs, hidden layers, transfer functions, etc.) must be identified a priori 

which is usually obtained using a time consuming trial and error procedure. Also, the 

main drawback of the NN approach is the large complexity of the network structure, as 

it represents the knowledge in terms of a weight matrix together with biases which are 

not accessible to user. In other words NN models give no information on the way inputs 

affect the output and are therefore considered as a black box class of model. The lack of 

interpretability of NN models has inhibited them from achieving their full potential in 

real world problems (Lu et al., 2001 and Javadi & Rezania, 2009a). 

 

2.3.2 Application of evolutionary techniques in constitutive modelling 

Feng and Yang (2004) proposed a hybrid evolutionary algorithm to identify the 

structure of the non-linear constitutive material model and its coefficients. The problem 

was defined as finding the elements of Jacobian matrix using a combination of genetic 

programming and genetic algorithm. Genetic programming was used to find the 

structure of the mathematical relationship between stress and strain and the genetic 

algorithm then used to find its coefficients. The methodology can be described in the 

following steps: 

Step 1: A set of load-deflection data, obtained in a structural test, is divided in two 

groups. One is used for training to get the constitutive models and the other as 

testing to appraise applicability of the learned constitutive model. Then a non-

linear finite element analysis is performed to extract stress-strain data set of 

experimental load-deflection data. 

Step 2: A group of mathematical structures for constitutive models are randomly 

generated as an initial generation of model evolution using genetic 

programming. 

Step 3: The best coefficient set for the generated models at step 2 is found using genetic 

algorithm. 

Step 4: The applicability of each model is evaluated by calculating errors. 

Step 5: If the calculated error is less than the tolerable error or cannot be considerably 

reduced any more, then the procedure is terminated; or else, it goes to the next 

step (step 6). 

Step 6: New mathematical structures of material model are evolved and the process 

restart again from step 3. 
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The proposed methodology was applied to modelling the non-linear behaviour of 

laminated composite materials. The experimental results of a test on a laminated 

graphite plates with an open hole under compressive load was utilized to verify the 

methodology. The results showed that the proposed approach is generally capable of 

learning the behaviour of the laminated composites; however it was less promising for 

the cases that were used for testing.  

 

The proposed approach also suffers from other issues. For instance in the first step, it is 

not clear what constitutive equation is used in the FE model to generate the stress-strain 

data. The choice of the constitutive model has a very strong effect on the outcome 

results. 

2.4 Summary 

This chapter reviewed a number of approaches to constitutive material modelling using 

different data mining techniques. The review indicated that each approach has its own 

limitation and shortcoming. To overcome the issues and drawbacks associated with this 

approaches, a further refined approach, called evolutionary polynomial regression 

(EPR) is proposed in this thesis that provides transparent models in terms of 

mathematical expressions to describe the material models. It is shown that how material 

models and in particular models that describes soil behaviour, is developed using EPR. 

Furthermore the incorporation of the material models (developed by this new data 

mining technique) in finite element method (FEM) is described in this thesis and 

different examples are provided to illustrate the potential of the proposed EPR-FEM in 

analysing boundary value problems in engineering.  

 

Rezania, 2008 and Javadi & Rezania, 2009b were the only works that have used EPR 

for constitutive modelling of materials. They developed EPR models to predict the 

behaviour of shear stress in soil using the data from experimental test on soil (triaxial 

data). They introduced a methodology to incorporate the developed model in FE model 

and a number boundary value problems were used to verify the methodology. However 

these works have not addressed some main points. For instance in these studies the 

volumetric behaviour of soil was not considered and only a model was developed to 

predict the shear stress of soils. In addition only monotonic loading condition was 

considered in these studies when modelling the soil behaviour. In these works, the 
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Jacobian matrix was not developed based on the derivatives of the developed model and 

instead only elastic modulus was updated. Moreover when the developed models are 

incorporated in FE analysis the effect of Poisson’s ratio was not considered. 

Furthermore the developed models were incorporated in an in-house FE code and the 

capability of the developed model in a commercial software was not examined. Only 

two dimensional examples were used to verify the proposed methodology.  

 

This thesis is biult on the works done by Rezania (2008) and Javadi & Rezania (2009) 

and address the shortcomings and issues associated with these studies. In this thesis two 

different strategies are introduced to develop EPR-based material models. The 

volumetric behaviour of the soil is taken into account when developing the material 

model (i.e. an additional model is developed to predict the volumetric behaviour of 

soil). In addition a model is developed to predict the cyclic behaviour of soils. Moreover 

in this thesis a methodology introduced to construct the Jacobian matrix using the 

derivatives of the developed models. The incorporation of the developed models in this 

thesis in a commercial software (ABAQUS) is introduced. Examples including 2D and 

3D problems are used to verify the methodology proposed in this thesis.  
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Evolutionary Polynomial Regression (EPR) 
 

 

 

3.1 Introduction 

As discussed in chapter 2, data mining techniques and especially neural networks (NNs) 

have been successfully trained with synthetic as well as experimental data to obtain 

constitutive models for materials. It was also shown that various researchers have 

successfully implemented the obtained material models in different numerical analysis 

methods such as finite elements (FE). 

 

Generally there are two most well known data-driven techniques, artificial neural 

networks (ANN) and genetic programming (GP). ANN use highly simplified models 

composed of many processing elements (neurons) connected by links of variable 

weights (parameters) to form black box representations of systems. ANNs are capable 

of dealing with large amount of data and learn complex model functions from examples, 

i.e. by training using sets of input and output data. ANNs have the ability to model 

complex, nonlinear processes without having to assume the form of the relationship 

between input and output variables. However, ANN also has some drawbacks; for 

example the structure of a neural network (e.g. model inputs, transfer functions, number 
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of hidden layers, etc) must be identified a priori. Another disadvantage of ANNs is the 

large complexity of the network structure, as it represents the knowledge in terms of a 

weight matrix and biases which are not accessible to user. In addition, parameter 

estimation and over-fitting are other disadvantages of models constructed by ANN 

(Giustolisi & Savic, 2006; Giustolisi & Laucelli, 2005). 

 

Genetic programming (GP) is another modelling approach that has recently became 

popular. It is an evolutionary computing method that generates a transparent and 

structured representation of the system being studied. The most frequently used GP 

method is symbolic regression, which was proposed by Koza (1992). This technique 

creates mathematical expressions to fit a set of data points using the evolutionary 

process of genetic programming. Like all evolutionary computing techniques, symbolic 

regression manipulates populations of solutions (in this case mathematical expressions) 

using operations analogous to the evolutionary processes that operate in nature. The 

genetic programming procedure mimics natural selection as the ‘fitness’ of the solutions 

in the population improves through successive generations. The nature of GP allows 

global explorations and allows the user to resolve further information on the system 

behaviour, i.e. gives an insight into the relationship between input and output data. 

However, the GP also has some limitations. It is proven that GP is not very powerful in 

finding constants and, more importantly, that it tends to produce functions that grow in 

length over time (Giustolisi & Savic, 2006). 

 

To avoid the problems associated with ANN and GP, a new data mining technique 

called evolutionary polynomial regression (EPR) is introduced in this chapter. EPR is a 

combination of Genetic Algorithm (GA) and Least Square (LS) regression which uses 

an evolutionary search for exponents of polynomial expressions by means of a GA 

engine. In what follows a brief description of evolutionary algorithms and especially 

genetic algorithm will be outlined and later a complete description of EPR will be 

explained in detail. 

3.2 Evolutionary Algorithms 

Evolutionary algorithms (EAs) are a subset of artificial intelligence that involve finding 

optimal solutions from a finite set of solutions. Evolutionary algorithms generate 



Chapter (3)                                                   Evolutionary Polynomial Regression (EPR) 

45 

 

solutions to optimization problems using techniques inspired by natural evolution, such 

as mutation, selection, and crossover. Genetic algorithm (GA) and genetic programming 

(GP) are the main types of evolutionary algorithms. As it was mentioned before EPR is 

a combination of GA and LS and for that reason a brief description of GA will be 

outlined in following. 

3.3 Genetic Algorithm (GA) 

Genetic algorithms are search algorithms based on the mechanics of natural selection 

and natural genetics. Genetic algorithms are combination of the survival of the fittest 

between string structures together with a randomized (but controlled and structured) 

information exchange to create a search algorithm with some of the innovative styles of 

human search. Genetic algorithms seek to maximize the fitness of the population by 

selecting the fittest individuals, based on Darwin’s theory of survival of the fittest, and 

using their genetic information in mating and mutation operations to create a new 

population of solutions. Although the process involves randomized operations, however 

genetic algorithms are not simple random walk. Genetic algorithms utilize historical 

information in an efficient way to find new search points with expected improved 

performance. Genetic algorithms have been developed by John Holland and his co-

workers in the University of Michigan (Goldberg, 1989). 

 

Genetic algorithms (GAs) have received much attention regarding their potential as 

global optimization techniques for problems with large and complex search spaces. GAs 

have many advantages over the traditional optimization methods. In particular, they do 

not require function derivatives and work on function evaluations alone. They have a 

better possibility of locating the global optimum because they search a population of 

points rather than a single point and they can allow for consideration of design spaces 

consisting of a mix of continuous and discrete variables. 

 

Application of genetic algorithms in optimization of various engineering problems has 

been extensively studied by several researchers. The author of this thesis and his co-

workers have also performed a study on application of genetic algorithm in optimization 

of micro-structures of materials with negative Poisson’s ratio (Javadi et al., 2011). The 
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results of these studies have shown that GAs can be successfully employed as strong 

optimization tool. 

3.4 Evolutionary Polynomial Regression 

3.4.1 Introduction 

Usually colour names are used in order to categorize mathematical modelling 

techniques based on their level of required prior information (i.e. white-box models, 

black-box models and grey-box models). A brief description for each of these types of 

models is as following (Giustolisi & Savic, 2006): 

 

• A white-box model is a model with known variables, parameters, and underlying 

physical laws. It explains the relationship of the system in form of a set or a 

single mathematical equation(s).  

• Black-box models are systems for which there is no prior information available. 

These are data-driven or regressive models, for which the functional form of 

relationships between variables and the numerical parameters in those functions 

are unknown and need to be estimated. 

• Grey-box models are conceptual models whose mathematical structure can be 

derived through conceptualisation of physical phenomena or through 

simplification of differential equations describing the phenomena under 

consideration. These models usually need parameter estimation by means of 

input/output data analysis, though the range of parameter values is normally 

known. 

 

From the above it is clear that white-box models have the advantage of describing the 

underlying relationships of process being modelled based on the principles of physics. 

However, the construction of white-box models can be difficult because the underlying 

mechanisms may not always be wholly understood, or because experimental results 

obtained in the laboratory environment may not completely represent the real sample 

environment. Because of these reasons, approaches based on data-driven techniques are 

gaining large attention. 
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In the context of modelling classification, EPR is classified as a symbolic grey box 

technique which can identify and construct structured model expressions for a given 

data. A schematic representation of EPR classification in comparison with other 

modelling methods is shown in Figure  3.1. 

Black-box modelling Grey-box Models White-box Models 

Artificial Neural Networks 

(ANN) 
Genetic Programming (GP) 

All of Mathematical 

Equations derived based on 

Physical principles 

 EPR  

 
              

 
              

Figure  3.1: Classification of EPR among modelling techniques 

3.4.2 The EPR scheme 

EPR is a two-step technique in which in the first step it searches for symbolic structures 

using an ad hoc but simple GA and in the second step EPR estimates constant values by 

solving a linear Least Square (LS) problem. These two steps will be discussed in details 

in following.  

3.4.2.1 Evolutionary structural identification 

A typical formulation of the EPR expression is given as (Giustolisi & Savic, 2006): 

 � =  � �(�, 	(�
, ��


��� + ��  3.1 

Understanding 

Physical Knowledge  
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where � is the estimated output of the system; �� is a constant value; � is a function 

constructed by the process; � is the matrix of input variables; 	 is a function defined by 

the user; and � is the number of terms of the expression excluding bias ��. 

 

The first step to identify the model structure is to transform equation ( 3.1) in to the 

following vector form: 

 ��×�(�, �
 =  ���         ��×
� � × ���    ��    …   �
�� = ��×� × ��×��   3.2 

where ��×�(�, �
  is the least square estimate vector of N target values ��×    is the vector of ! = � + 1 parameters �� , # = 1: �, �%! �� 

��×�   is a matrix formed by �, for bias ��, and � vector of variables &� that for 

a fixed # are a product of the independent predictor vectors of variables/inputs, � ='��   �(  …   �)*. 
EPR starts from equation  3.2 and searches first for the best structure, i.e. a combination 

of vectors of independent variables (inputs) �+��:). The matrix of inputs � is given as: 

 � =  
,-
--
--
./�� /�( /�0 … /�)/(� /(( /(0 … /()/0� /0( /00 … /0)… … … … …/�� /�� /�� … /�)12

22
22
3

=  ��� �( �0 … �)�   3.3 

 

where the 456 column of � represents the candidate variable for the #56 term of equation 

 3.2. Therefore the #56 term of equation  3.2 can be written as 

 ��×�� =  �(��
78(�,�
 ∙ (�(
78(�,(
 ∙ (�0
78(�,0
 ∙. . .∙ (�)
78(�,)
�  3.4 

where, �� is the #56 column vector in which its elements are products of candidate 

independent inputs and 78 is a matrix of exponents. Therefore, the problem is to find 

the matrix 78)×
 of exponents whose elements can be values within user-defined 

bounds. For example, if a vector of candidate exponents for inputs, �, (chosen by user) 

is 7� = �0, 1, 2� and number of terms (�
 (excluding bias) is 4, and the number of 
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independent variables (4
 is 3, then the polynomial regression problem is to find a 

matrix of exponents 78=×0. An example of such a matrix can be as following: 

 78 =  
,-
--
.0 1 20 1 11 2 01 1 012

22
3   3.5 

When this matrix is substituted into equation  3.4 the following set of mathematical 

expression is obtained 

 

�� = (��
� ∙ (�(
� ∙ (�0
( = �( ∙ �0( �( = (��
� ∙ (�(
� ∙ (�0
� = �( ∙ �0 �0 = (��
� ∙ (�(
( ∙ (�0
� = �� ∙ �(( �= = (��
� ∙ (�(
� ∙ (�0
� = �� ∙ �( 
 3.6 

Thus the expression of equation  3.2 is: 

 
� =  �� + �� ∙ �� + �( ∙ �( + �0 ∙ �0 + �= ∙ �=     =  �� + �� ∙ �( ∙ �0( + �( ∙ �( ∙ �0 +  �0 ∙ �� ∙ �(( + �= ∙ �� ∙ �(  3.7 

It should be noted that each row of 78 determines the exponents of the candidate 

variable of the #56 term in equations  3.1 and  3.2. Each of the exponents in matrix 78 

corresponds to a value from user-defined vector 7�. This allows the transformation of 

the symbolic regression problem into one of finding the best 78, i.e. the best structure of 

the EPR equation, e.g. in equation  3.7. 

 

It should also be mentioned that EPR can construct non-polynomial mathematical 

expression. It is possible to assume a function 	, such as natural logarithm, hyperbolic 

tangent, hyperbolic secant and exponential and a structure among the following 

(Doglioni, 2004): 

 
� =  �� + � �� ∙ (��
78(�,�
 ∙ … ∙


���
(�)
78(�,)


∙ 	>(��
78(�,)?�
@ ∙ … ∙ 	>(�)
78(�,()
@ 

case 1 
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 � =  �� + � �� ∙ 	>(��
78(�,�
 ∙ … ∙ (�)
78(�,)
@

���  case 2 

 

 
� =  �� + � �� ∙ (��
78(�,�
 ∙ … ∙


���
(�)
78(�,)


∙ 	>(��
78(�,)?�
 ∙ … ∙ (�)
78(�,()
@ 

case 3  3.8 

 

 � =  A B�� + � �� ∙ (��
78(�,�
 ∙ … ∙ (�)
78(�,)


��� C   case 4  

 

The global search for the best form of equation  3.7 is performed using a standard GA. 

The parameters being optimised are coded using ‘chromosomes’, i.e. a set of character 

strings that are analogous to the chromosomes found in DNA. Standard GAs use binary 

codes (characters are 0’s or 1’s) to form chromosomes. Instead, integer GA coding is 

used here to determine the location of the candidate exponents of 7� in the matrix 78 

(Doglioni, 2004). For example the positions in 7� = �0, 1, 2� correspond to the 

following string for the matrix of equation  3.5 and the expression of equation  3.7: 

 7� = �1 2 3, 1 2 2, 2 3 1, 2 2 1�  3.9 

It is clear that the presence of a zero in 7� ensures the ability to exclude some of the 

inputs and/or input combinations from the regression equation. 

 

After the evolutionary identification of the structure, EPR computes the values of the 

adjustable parameters �� by means of the linear Least Square (LS) method using the 

minimisation of the sum of squared errors (SSE) as the cost function. 

3.4.2.2 Least square solution 

Computing �� in equation  3.7 is an inverse problem that corresponds to solving an over-

determined linear system in form of a LS problem. This problem is traditionally solved 

by Gaussian elimination. However, an evolutionary search procedure may generate 



Chapter (3)                                                   Evolutionary Polynomial Regression (EPR) 

51 

 

candidate solutions (e.g. a combination of exponents of �) that correspond to an ill-

conditioned inverse problem. This often means that the rectangular matrix ��×�: 

 � = ���×� ��×�� ��×�( ��×�0 . . . ��×�E ��×(
?�
��×�  3.10 

may not be of full rank (if a solution contains a column of zeros) or the columns �� are 

linearly dependent. This can cause serious problems to Gaussian elimination and 

therefore a more robust method is required. For this purpose parameters estimation of �� 

(or �) in EPR is achieved using Singular Value Decomposition (SVD) of the matrix �. 

This approach makes the process of finding the solution to the LS problem more robust, 

although in general SVD is a slower technique than Gaussian elimination method(Golub 

& Van Loan, 1993). 

3.4.3 Objective functions of EPR 

In order to get the best symbolic model(s) of the system being studied, EPR is provided 

with different objective functions to optimise. EPR can work both in single as well as 

multi-objective configurations. Figure  3.2 shows a summary of main available objective 

functions/strategies in EPR. 
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Figure  3.2: Overview of main objective functions/strategies in EPR (after Doglioni, 

2004) 

EPR introduces a set of multidimensional strategies for model selection, based on a 

comprehensive analysis of complexity (including number of terms, number of inputs) 

and fitness of models. It is widely accepted that the best modelling approach is also the 

simplest that fits the purpose of the application. The so-called principle of parsimony 

states that for a set of equivalent models of a given phenomenon one should choose the 

simplest one to explain a set of data. Therefore, the fitness in regression-based models 

should also include a measure of trade-off between the model complexity (i.e. addition 

of new parameters) and the quality of fit. This can be achieved in two ways: 
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I. Single-objective: an objective function is used to control the fitness of the 

models without allowing unnecessary complexities enter in the models. 

II. Multi-objectives: at least two objective functions are introduced; in this case one 

objective function will control the fitness of the models, while at least one 

objective function controls the complexity of the models. This approach implies 

the advantage of returning a set of non-dominated models each one presenting 

fitting and complexity features which vary along the Pareto front representative 

of the model solutions. Therefore, the user is not required to assume the number 

of building blocks a-priori, but he/she just sets the maximum number of building 

blocks, while the control on the complexity will let them vary according to the 

fitness. Then, the Pareto front represents the trade-off surface (or line), of 

complexity vs. fitness, which is required. The trade-off surface allows the user to 

achieve a lot of purposes of the modelling approach to the phenomenon studied. 

3.4.3.1 Single-objective strategy 

For a given set of observations or data, a regression-based technique needs to search 

among a large if not an infinite number of possible models to explain those data. By 

varying the exponents for the columns of matrix � and searching for the best-fit set of 

parameters �, the EPR methodology searches among all those models. However it 

requires an objective function that will ensure the best fit, without the introduction of 

unnecessary complexity. Unnecessary complexity is here defined as the addition of new 

terms or combinations of inputs that fit some noise in the raw data rather than the 

underlying phenomenon. Therefore, the key objective here is to find a systematic means 

to avoid the problem of over-fitting. There are three possible approaches to this 

problem:  

I. To penalise the complexity of the expression by minimising the number of 

terms. 

II. To control the variance of �� constants (the variance of estimates) with respect to 

their values. 

III. To control the variance of �� ∙ �� terms with respect to the variance of residuals. 

 

In addition to the above, two more strategies can be used:  

(1) Cross-validation of the models  
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(2) Optimisation of the SSE evaluated on the simulation (off-line prediction) of the 

phenomenon performed by the models. These two strategies are more general purposed 

and the Cross-validation proved to be effective in those cases where a long data set is 

available and data are affected by a low disturbance (Giustolisi & Savic, 2006; 

Doglioni, 2004). In what follows description of the first three strategies will be given. A 

full and detailed description of the last two strategies can be found in Doglioni, (2004). 

 

I. Complexity Penalisation 

 

To choose a model with optimum complexity corresponding to the best prediction for 

unseen data, a strategy is required to compare two models with different levels of 

complexity and model fit. The sum of squared errors (SSE) is normally used to conduct 

the search toward the best-fit model; 

 SSE = ∑ (yJ − yL
(MN�� O   3.11 

where yJ are the actual values (target values) in the training dataset and yL are the 

model predictions computed by using polynomial expression obtained by EPR. In order 

to allow a compromise between the quality of fit (SSE) and the model complexity 

(number of input combinations), the following penalization of complexity (PCS) fitness 

function was used by Doglioni (2004): 

 PQR = SSE(O! − S/ + 1
T  3.12 

where O! = 4 ∙ � is the maximum number of inputs that can be considered, S/ is the 

actual number of inputs selected by GA and U is an adjustable exponent that controls 

the amount of pressure to control complexity. In order to better understand this form of 

the fitness function, the derivative of the fitness function with respect to S/ can be 

presented as following: 

  VVS/ W SSE(O! − S/ + 1
TX = W 1(O! − S/ + 1
TX WVSSEVS/ + U ∙ SSEO! − S/ + 1X  3.13 

The fitness decreases with respect to S/ if the derivative in equation  3.13 is negative. 

This has been shown in Figure  3.3. 
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Figure  3.3: SSE variation vs. px (Doglioni, 2004) 

Therefore the following inequality should hold: 

 U ∙ SSEO! − S/ + 1 ≤ − VSSEVS/ = −Z[\]^(SSE
  3.14 

This means, adding another combination of inputs �, needs not only to be justified on 

the basis of decreasing SSE, but also need to take into account the terms (Nd-px) and  U ∙ SSE (see Figure  3.3). The bold line is the derivative of SSE with respect to px(P), 

while the curve is the natural SSE variation due to the increase in the number of input 

parameters. Equation  3.14 requires a value of the SSE derivative at P greater than or 

equal to the term on the left side of the inequality. Equation  3.14 shows that when the 

actual number of inputs S/ approaches the maximum O!, the left term of the inequality 

increases and, therefore, a high absolute variation of SSE will be required (Z[\]^(SSE
 

is always negative) which results in penalisation of complex structures by controlling 

the total number of inputs in the formula. 

 

II. Variance of �� 

 

It is possible in EPR to control the polynomial term contribution to variance of � 

expressed through their parameters during GA search. Indeed, it may be argued that low 

constant value with respect to variance of estimates corresponds to terms that begin to 

describe noise in preference to the underlying function of phenomena. Therefore 

Doglioni, (2004) suggested to use the variance of estimated constant values to eliminate 

 
SSE 

SSE (px) 

px (P) px 

P 
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those parameters with a value that is not sufficiently larger than the variance of the 

estimated value. Hence, the variance in estimation of parameters obtained by EPR can 

be computed as 

 _�`(�
 = �_�`(��
 _�`(��
 _�`(�(
 … _�`(�

�  3.15 

Assuming that constants are from a Gaussian probability density function, the following 

expression is used 

 a ∙ bc_�`(��
c = a ∙ cStD(��
c > c��c  ⟹  �� = 0  3.16 

where StD is the standard deviation of estimated constants, �� (from the diagonal 

elements of the covariance matrix) and a = 2.578 is the value from the table of the 

standard normal distribution related to the confidence interval of 99%. 

 

III. Variance of �� ∙ �k 
 

EPR can control the polynomial term contribution to variance of � explaining through 

evaluating the monomial building blocks �� ∙ �k with respect to variance of the noise in 

the raw data during GA search. Of course, a level of noise may exist under which the 

variance of the terms �� ∙ �k will describe noise, causing over-fitting related problems. 

This level of noise is not known a priori and, therefore, a residual vector could be used 

to estimate noise. In this manner, it is possible to compare the standard deviation of this 

residual vector with the standard deviation of terms �� ∙ �k, in the following form: 

 cStD(�� ∙ �k
c < m ∙ |StD(7
|  ⟹  �� = 0  3.17 

where m is a user selected adjusting parameter and 7 is the vector of residual (7 = � −�(�, �
). It is not easy to choose m, but it is possible to consider m = 1 as giving a 

pressure to EPR for formulæ having variance of each term greater than the variance of 

the residuals. 



Chapter (3)                                                   Evolutionary Polynomial Regression (EPR) 

57 

 

3.4.3.2 Multi-objective strategy 

The original and first version of EPR methodology (which has been described so far) is 

using single-objective genetic algorithm (SOGA) strategy for exploring the formulae 

space. As it was mentioned before this exploration is achieved by first assuming the 

maximum number of terms � in the pseudo-polynomial expressions shown in equation 

 3.2 and then sequentially exploring the formulae space having one, two, … and � 

terms. However, the SOGA-based EPR methodology has the following drawbacks. 

 

a) Its performance exponentially decreases by increasing number of polynomial 

terms � (more terms means more GA runs). 

b) The results of SOGA-based EPR are sometimes difficult to interpret. The 

identified models can either be ranked based on their fitness to data or according 

to their structural complexity. However, ranking models based on structural 

complexity requires some subjective judgment, and therefore this process can be 

biased by the analyst’s experience rather than being purely based on some 

mathematical criteria that in our case are the objectives. 

c) When searching for the formulae with # terms, those formulae that have fewer 

terms are not presented. However these formulas could have a better accuracy 

than the previously found ones with # − 1 terms (Giustolisi & Savic, 2009). 

 

To overcome these drawbacks, multi-objective genetic algorithm strategy 

(MOGA)(Goldberg, 1989) has been added to EPR. The multi-objective approach in 

EPR (MOGA-EPR) is aimed at searching for those model structures, which on one hand 

comply with the fitness and on the other hand with limiting the structural complexity. In 

this approach the control of fitness and complexity are demanded to different singly 

acting objective functions. The objectives represented by the functions are mutually 

conflicting, and then their optimisation returns a trade-off surface of models. The multi-

objective strategy in hybrid evolutionary computing enables the user to 

 

a) Find a set of feasible symbolic models. 

b) Make a robust choice. 

c) Get a set of models with variable parsimony levels in an efficient computational 

time. 
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MOGA-EPR tackles a multi-model strategy by varying the structural parsimony (i.e. the 

number of constant values in the equation) and working on the objective function used 

in Single-Objective EPR. Then, MOGA-EPR finds the set of symbolic expressions that 

perform well according to two (or more) conflicting criteria considered simultaneously, 

the level of agreement between simulated and observed measurements, and structural 

parsimony of the expressions obtained. The objective functions used are 

 

a) Maximization of the fitness. 

b) Minimization of the total number of inputs selected by the modelling strategy. 

c) Minimization of the length of the model expression. 

 

The obtained models are ranked according to the Pareto dominance criterion. MOGA-

EPR reduces the computational time required by the multiple executions of EPR, which 

would otherwise be required for one of each of the objective functions introduced in the 

previous section. The models that dominate others in the population of solutions are 

presented to the user. The Pareto set of solutions is likely to be the best set of 

expressions required for the analysis of the problem. 

The objective functions commonly used to measure the fitness of the symbolic 

structures are based on the Sum of Squared Errors (SSE) or on the Penalisation of 

Complex Structures (PCS). The result of the single-objective EPR optimization consists 

of a set of equally good models. They might be easily ranked according to their SSE, 

rather than according to their structural complexity. In fact, sorting models according to 

their structural complexity is usually a complex task. The multi-objective strategy is 

implemented to improve both the post-processing phase and the general modelling 

framework of EPR. Such strategy allows ranking models according both to the 

Coefficient of Determination (CoD) and structural complexity. The three objective 

functions implemented in MOGA-EPR are: 

 

a) (1-CoD), which has the same meaning as the SSE, 

 

 CoD =  1 − O − 1O  ∑ �(�L − �J
(��
∑ q(�J − 1O ∑ �r
� (s�

= 1 − 4 ∙ SSE 
 3.18 
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4 = 2(O − 1

∑ q(�r − 1O ∑ �r
� (s�

 

 

where �r is the vector of actual data, �L are the corresponding predicted values and O is 

the number of data on which the CoD is computed. 

b) The number of constant values �t (# of �t) and 

c) The total number of inputs involved in the symbolic expression (% of �N). 
Note that the total number of inputs corresponds to the number of times that each input 

is involved in the symbolic expression. The user must set the maximum number of 

constant values, which puts an upper limit on the maximum number of the symbolic 

expression inputs. Therefore, MOGA-EPR looks for the best non-dominated models 

with respect to both structural complexity and fitness performance, i.e. placed on the 

best Pareto front. Therefore, a direct multi-model approach is provided where the post-

processing phase is improved by MOGA-EPR, which returns models ranked according 

to both their fitness and their structural complexity. 

 

A further advantage of MOGA-EPR is the increased pressure to achieve structural 

parsimony because a large number of �t values or a large total number of inputs must be 

justified by the fitness of the model (note that the Pareto dominance criterion and the 

function are to be minimised). The introduced objective functions can be used in a two-

objective configuration or all together: 

 

a) CoD vs. (% of �N) 
b) CoD vs. (% of �t) 
c) CoD vs. [(% of �N) and (% of �t)] 

 

The choice of the Pareto dominance criterion for the multi-objective optimisation 

implies the following main advantages: 

 

a) It is reasonably fast for few objective functions in comparison with the total 

amount of time required by multiple single-objective sessions. 
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b) It deals simultaneously with multiple solutions. 

c) It is capable to provide a uniformly distributed range of Pareto solutions. 

 

A typical flow diagram for the EPR procedure is shown in Figure  3.4. 

 

Figure  3.4: Typical flow diagram for the EPR procedure (after Doglioni, 2004)  
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A typical outlook of EPR during its operation is presented in the following figure. It can 

be seen in this figure that EPR is performing a multi-objective strategy since it 

simultaneously optimising CoD, uN and ��. 

 

 

Figure  3.5: A typical outlook of EPR during a multi-objective operation 

3.4.4 Multi-Case Strategy for Evolutionary Polynomial Regression 

Models returned by the EPR usually contain a certain combination of explanatory 

variables which are common to the majority of Pareto optimal models, whereas other 

variables or even entire terms are selected in just a few models. In the case of individual 

systems, the balancing between model accuracy, complexity and prior insight on the 

phenomenon can help in selecting the most suitable model to avoid over-fitting. 

However when the same phenomenon is modelled for several separate systems 

significant differences may exist among relevant failure models. Such observation 
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makes it difficult to separate the description of the underlying physical phenomenon 

from other variables/terms which have been affected by local effects and the particular 

realization of the noise into each system. As a consequence, this poses doubts about the 

correctness of individual system models identified and their use as general performance 

indicators. The Multi-Case Strategy for EPR (MCS-EPR) aims at overcoming the above 

drawbacks by simultaneously identifying the best model structure and parameter values 

from the observed data available for multiple systems (cases).  

 

Assume there are C systems (cases) S�, S(, … , Sv each with the relevant observed dataset 

containing both system output �w and the corresponding potential 4 explanatory 

variables (i.e. �x,N, with y = 1, … , 4 and S = 1, … , C). Like EPR, MCS-EPR encodes 

each candidate model structure as a set of polynomial exponents corresponding to 

potential explanatory variables in all polynomial terms and then uses the MOGA-based 

search procedure to find the best model structure. The estimate of unknown polynomial 

coefficients (i.e., model parameters) �z,� ({ = 1, … , Q   # = 1, … , � + 1) is performed 

by means of numerical regression for all individual systems simultaneously. Evaluation 

of the last two objectives reported above (i.e., number of polynomial terms and the 

number of significant explanatory variables) is the same as in EPR, while the value of 

first objective (model accuracy) depends on how closely each of the Q models (with 

parameters �z,�, (# = 1, … , � + 1
 fits in its observed data. Unlike EPR, MCS-EPR 

employs the following measure of model accuracy: 

 F =  1 − ∑ ∑ (�] − �r
(�}~w��
∑ q(�r − 1O ∑ �r
� (s�

= 1 − ∑ Oz ∙ SSEw~w��∑ q(�r − 1O ∑ �r
� (s�
 

 3.19 

where N is the total number of samples over all Q datasets (i.e. O =  ∑ O+), �]  is the 

value predicted by the model built with the s-th vector of parameters of �z,� and �r is 

the actual (target) values. Similar to the CoD definition of equation  3.18, the closer to 1 

is F; the more suitable the model structure is in describing the overall observed dataset 

(Berardi & Kapelan, 2007). 
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3.4.5 EPR user interface 

EPR has been coded using MATLAB® in POLITECNICO DI BARI University, Italy, by 

Professor Giustolisi and his co-workers in collaboration with Professor Savic in 

University of Exeter, UK. EPR is provided with a friendly user interface, as it can be 

seen in the following figure. 

 

 

Figure  3.6:  EPR Graphical User Interface 

Within this graphical user interface (GUI), the user can set up the modelling phase 

according the features described in the previous sections. Moreover, the user can decide 

the number of generations of the GA, setting the proper value in the “Generation” box. 

This value corresponds to a proportionality factor which will be multiplied for the 

maximum length of the expression (maximum number m of monomial building blocks) 

and for the total number of inputs. Another option is about the possibility of seeding the 

population with random elements from the previous parental set. This option efficiently 

works when large data sets are available and in single-objective configuration. In multi-

objective search the seed option does not seem to add any advantage in the GA phase. 

Finally, the option “bias” refers to the possibility of looking for symbolic expression 

containing the term ��. If the bias option is not selected, EPR will automatically exclude 
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all those expressions containing ��, otherwise selecting bias EPR will search both for 

expression with �� term and without (Doglioni, 2004). 

3.4.6 The application of EPR in modelling engineering problems 

Application and potential of EPR in modelling and analysing different disciplines of 

engineering from structural to geotechnical and environmental engineering have been 

investigated by different researchers including the author of this thesis. The results of 

these studies have been published in several conference and journal papers (e.g., 

Rezania et al., 2011; Ahangar-Asr et al., 2011; Ahangar-Asr et al., 2010; Faramarzi et 

al., 2011; Javadi et al., 2010). 

 

Rezania et al., 2011 presented the application of EPR in prediction of liquefaction and 

earthquake-induced lateral displacement. They developed a 3D surface that 

discriminates between the cases of occurrence and non-occurrence of liquefaction using 

EPR. 

 

Ahangar-Asr et al, 2010 employed EPR in analysis of stability of soil and rock slopes. 

EPR models are developed and validated using results from sets of field data on the 

stability status of soil and rock slopes. The developed models are used to predict the 

factor of safety of slopes against failure for conditions not used in the model building 

process. The results show that the proposed approach is very effective and robust in 

modelling the behaviour of slopes and provides a unified approach to analysis of slope 

stability problems. It is also shown that the models can predict various aspects of 

behaviour of slopes correctly. 

 

Faramarzi et al., 2011 proposed to use EPR to predict the behaviour of steel plate shear 

walls (SPSW) under cyclic behaviour. The results of a number of actual experiments on 

cyclic behaviour of SPSW structures were used to develop EPR models to predict 

lateral deformation of SPSW due to the cyclic loading.    

  

Ahangar-Asr et al., 2011 showed that how EPR can be used to predict the mechanical 

properties of rubber concrete. They used data from 70 cases of experiments on rubber 

concrete for development and validation of the EPR models. 
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EPR Based Material Modelling 
 

 

 

4.1 Introduction 

As discussed in chapter 2, data mining techniques and especially neural networks (NNs) 

have been successfully applied in constitutive modelling of different materials. The 

disadvantages and drawbacks of ANN were discussed both in chapters 2 and 3 and a 

new data mining technique (evolutionary polynomial regression) was introduced in 

chapter 3 to overcome these shortcomings. In this chapter the application of the 

evolutionary polynomial regression (EPR) in material modelling will be discussed in 

detail. 

 

In material modelling using EPR, the raw experimental or in-situ test data are directly 

used for training the EPR model. As the EPR learns the constitutive relationships 

directly from raw data, it is the shortest route from experimental research to numerical 

modelling. In this approach there are no material parameters to be identified and as 

more data become available, the material model can be improved by re-training of the 

EPR using additional data. Furthermore, the incorporation of an EPR in the finite 

element procedure avoids the need for complex yield/failure functions, flow rules, etc. 
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An EPR model can be incorporated in a finite element code/procedure in the same way 

as a conventional constitutive model.  

 

In this chapter two different strategies will be introduced to train EPR and develop 

material models. In the first approach the total values of stresses and strains will be used 

to train and develop models while in the second one the incremental values will be 

employed to construct the constitutive models of materials. Different examples 

including modelling linear, non-linear, monotonic and cyclic behaviour of materials will 

be presented to validate both strategies.  

 

One of the main purposes of constitutive modelling of materials is to perform numerical 

analysis of boundary value problems. This is achieved by incorporation of developed 

models in numerical methods (for example finite element) analysis. Therefore when 

developing a constitutive model its suitability for implementation in finite element 

analysis should be taken into consideration. The material models developed in this 

chapter are all suitable to be implemented in finite element analysis. This will be shown 

in the next chapter through different examples. 

4.2 Total stress-strain strategy for material modelling 

The source of data, the training approach adopted and the way the trained EPR model is 

to be used have significant effects on the choice of input and output parameters. An 

EPR model formulated in the form of total stress-strain relationships (total stress-strain 

strategy) might be used for modelling of materials that are not strongly path-dependent. 

A similar strategy has been utilised by some researchers such as Ghaboussi et al., 

(1998) and Shin, (2001) for training neural network based material models. In this 

approach strain variables (i.e. ��, ��, ��, ���) which represent the strain components in a 

2D continuum, can be considered as inputs, and the corresponding stress variables 

(��, ��, ��, 	��) as outputs. It should be noted that due to the nature of EPR which 

represents the model as a mathematical equation; for each of the output parameters an 

equation needs to be developed. This is in contrast with artificial neural network (ANN) 

where you can have more than one parameter in output. 
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Data from material tests can be used to train EPR models. Usually a single test on a 

sample of a material provides a set of stress-strain relationships for a single stress path. 

However generally all the material tests that involve loading along the principal axes 

result in the shear components (shear strains, shear stresses) being zero. As a result an 

EPR model trained in this way would not be suitable to be incorporated in a finite 

element (FE) analysis, since all the components of the stress and strain tensors must be 

taken into account during analysis. Therefore to obtain an EPR model with the potential 

to be incorporated in FE framework, the EPR-based model should be trained along 

global axes with non-zero shear components. 

 

To overcome this issue, a procedure is employed here to generate additional data from 

an ordinary material test. It should be noted that this procedure can be applied when the 

material being studied is isotropic or isotropy can be assumed. This procedure was first 

proposed by Shin, (2001) and Shin & Pande, (2002). The procedure is described here 

for 2D problems but it can be easily extended to 3D. 

 

Figure  4.1: Transformation of stress components in a 2D continuum 
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Figure  4.1 shows a sample of a material under loading along principal axes 1-2. The 

additional data are generated in two steps. In the first step it is assumed that the material 

is isotropic. The assumption of isotropy enables to exchange the normal components, 

thereby to double up the data. Then transformation of each of the exchanged stress-

strain pairs is carried out by rotating the datum axes (X-Y) from the original axes (1-2) 

where the material tests have been carried out. By rotating the axes, non-zero shear 

stresses and strains and their corresponding normal components can be obtained as a 

function of the rotation angle 
. Based on Mohr’s circle, in the 2D space, the 

transformation of a principal stress vector by an angle 
 measured anti-clockwise from 

the X axis can be calculated as following: 

 

�� = �
 + ��2 + �
 − ��2 cos�2
� 

 �� = �
 + ��2 − �
 − ��2 cos�2
� 

 	�� = �
 − ��2 cos�2
� 

 4.1 

And for strains: 

 

�� = �
 + ��2 + �
 − ��2 cos�2
� 

 �� = �
 + ��2 − �
 − ��2 cos�2
� 

 ��� = �
 − ��2 cos�2
� 

 4.2 

This procedure can result in a large amount of training data (depending on the size of 

the original data and the number of rotational steps) which means additional training 

time will be required. To avoid any unnecessary training run any duplicated stress-strain 

pairs in the expanded data must be removed. If the stress or strain components in one 

the principal direction become zero or have the same value in both directions then in 

this case some parts of the data become duplicated and have to be eliminated. 

 

To evaluate the potential of using EPR to derive models describing the material 

behaviour using the above procedure, a feasibility study is performed using 

synthetically generated data for both linear and non-linear material behaviour. 



Chapter (4)                                                  EPR Based Material Modelling 

69 

 

4.2.1 EPR-based model of a material with linear behaviour 

In order to generate the required data for this section, a hypothetical test is conducted as 

following. The data is obtained from a finite element simulation of this hypothetical 

test. Figure  4.2 shows a sample of a material tested under a tensile load T along the axis 

2 together with its deformed shape. The test is carried out under plane stress conditions. 

The original shape of the sample is drawn in dashed line. The size of the sample 

is 10 cm × 5 cm. The sample is made of a linear elastic material with a Young’s 

modulus of E = 500 Pa and a Poisson’s ratio of  ν = 0.3.  

 

Figure  4.2: A plane stress sample of a material under tension along axis 2 

 

Although the sample is only loaded along axis 2, the deformations are measured along 

both axes 1 and 2 (note that stress in direction 1 is zero). The sample is loaded up to 20 

Pa. Figure  4.3 shows the stress-strain curve along axis 2 obtained from this test. The 

data from this figure together with the strains measured in axis 1 were employed to 

extend the data using the procedure described in the previous section. 
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Figure  4.3: Linear stress-strain relationship used to expand data 

4.2.1.1      Input and output parameters and data preparation 

50 stress-strain pairs were obtained from the hypothetical test described above. The 

stresses and strains in directions 1 and 2 (which contain zero shear components) were 

exchanged assuming that the sample in the test is isotropic. This doubled the data (100 

pairs); however the shear components of this data are still zero. For that reason, 

transformation of each stress-strain pair was carried out by an angular step ∆
 with 
 

varying from −45° to 45°.  This allowed the generation of all the possible combinations 

of stresses and strains with non-zero shear components. The transformation was 

performed in 30 steps (i.e. ∆
 = 3°) from −45° to 45° and therefore the resultant data 

set of 3000 stress-strain pairs was obtained. These include sets with non-zero shear 

components. For an efficient training, duplicated data were removed in the expanded 

data set. 

 

Since the model studied here represents a two dimensional plane stress case, only three 

components of stresses and three components of strains (out of plane strains are also 

zero) exist in the model. These are (��, ��, 	��) for stresses and (��, ��, ���) for strains. 

Three EPR models were developed each corresponding to one of the stress components. 

The inputs and outputs of the three models were: 
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Model 1 
&'()*: ��, ��, ��� ,)*()*: �� 

 

Model 2 
&'()*: ��, ��, ��� ,)*()*: �� 

 

Model 3 
&'()*: ��, ��, ��� ,)*()*: 	�� 

 

The target is to find a constitutive relationship in the general form of equation 3.1, 

where the matrix of inputs, -, for each model is: 

 - =
./
//
/0��
 ��
 ���

��� ��� ����
��1 ��1 ���1⋯ ⋯ ⋯��3 ��3 ���3 45

55
56
  4.3 

where superscript & represents the &78 row of the data. It should be noted that unlike 

ANN-based constitutive models (Hashash et al., 2004; Jung & Ghaboussi, 2006 a), in 

EPR the values of inputs and outputs do not need any normalisation or calibration 

before or after training and therefore these values can be used as they are. Before 

training the EPR, the data were randomly shuffled in order to make sure that the 

obtained models had no bias on a particular part of the data. 

4.2.1.2      Training EPR-based constitutive models 

The database was divided into two independent sets. One set was used for training to 

obtain the models and the other one for validation to verify the performance of the 

obtained constitutive models. Although some researchers have studied the extrapolation 

capabilities of models developed by EPR (Doglioni et al., 2008; Laucelli & Giustolisi, 

2011); however like any other data mining technique EPR does not demonstrate a good 

performance for data beyond the training range (i.e. extrapolation). It was therefore 

decided to choose the verification data in the range of the training data to avoid 

extrapolation as much as possible. Usually around 80% of data is used for training the 

model and the other 20% is used for validation. Therefore from the 1500 cases, 300 

were used for testing the obtained models. 
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4.2.1.3     EPR procedure and the obtained models  

Before starting the EPR process, some of the EPR parameters must be adjusted to 

control the obtained models. These parameters can control the optimisation techniques 

(i.e. single-objective or multi-objective), number of terms of the mathematical 

expressions, range of exponents, EPR structures and the type of the functions used to 

construct the EPR models. Since in this example the behaviour of material is known a 

priori (i.e. linear behaviour); therefore no function will be chosen. Also for the same 

reason the exponents can be limited to 90 1:. As it was mentioned in chapter 3 it is 

advised to include the value zero, which helps in discarding those variables or inputs 

that are not useful for models (Doglioni et al., 2008). The EPR type has no effect on the 

output model if no EPR function or an EPR type that involves a function is chosen. It 

should be mentioned that most of the times the behaviour of model is not known a priori 

and therefore different combinations of functions and exponents must be tried to get the 

best results of EPR. The maximum possible number of terms in a polynomial with 

above exponents is 8 terms including a constant coefficient and therefore the number of 

terms is set to 8. Finally as it was discussed in chapter 3, multi-objective strategy of 

EPR has resolved some of the drawbacks of single-objective EPR including its slow 

performance. For this reason the multi-objective EPR is used to construct the EPR 

models. Since the aim of this study is to involve all the components of the strains in the 

evolved EPR equations, therefore minimising total number of inputs (% of -) is not 

selected but instead to get an efficient equation, minimising the number of constant 

values �=>� is chosen as the other objective of EPR. After feeding the training and 

testing data and setting all the parameters, the EPR can be started. The results of EPR 

including the obtained equations, and coefficient of determination (CoD) values for 

training and validation sets are presented in the following equations and Table  4.1. 

 

It should be noted that the coefficients and constants are only valid for the dimension 

used for each variable and respective equations. For the equations developed in this 

thesis the units of parameters are provided as footnote on the same page as equation.  
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 Model 1 

* �� = 5.081  4.4 

 �� = 425.0854�� + 2.0669  4.5 

 �� = 549.4505�� + 164.8352�� − 5.1338 × 10B
�  4.6 

Model 2 

 �� = 5.119  4.7 

 �� = 425.5103�� + 2.0598  4.8 

 �� = 164.8352�� + 549.4505�� − 1.2134 × 10B

  4.9 

Model 3 

 	�� = −0.0009978  4.10 

 	�� = 192.3077��� + 3.2319 × 10B
�  4.11 

 

Table  4.1: Summary of results obtained for EPR based models for material with linear 

behaviour 

Equation 
No. 

Model No. CoD for training (%) CoD for validation (%) 

 4.4 

Model 1 

0.07 5.3 

 4.5 93.87 86.96 

 4.6 100 100 

 4.7 

Model 2 

0.07 6.74 

 4.8 93.90 77.97 

 4.9 100 100 

 4.10 
Model 3 

0.07 - 

 4.11 100 100 

                                                 
* Units: � �D/F�� 
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It can be seen from the obtained equations and Table  4.1 that for each model an 

equation with 100% accuracy (i.e. CoD = 100%) is achieved. It is also seen that despite 

the fact that we have fed EPR with three inputs (i.e. ��, ��, ���) in all three models, EPR 

has only taken the inputs that have greater effects on the models. This is more 

interesting when we compare them with the equations that we get from classic theory of 

elasticity.  

Equations  4.12,  4.13, and  4.14 describe the relationship between the strains and stresses 

for an elastic material (Timoshenko & Goodier, 1970). 

In these equations G represents elastic modulus, H is the Poisson’s ratio and I is shear 

modulus which is related to elastic modulus and Poisson’s ratio through following 

equation (Timoshenko & Goodier, 1970): 

If we substitute the values of G and H from the hypothetical test in equations  4.12 to 

 4.15 and re-arrange them, then the following equations are obtained: 

These equations are in an excellent agreement with those obtained from EPR (i.e. 

equations  4.6,  4.9, and  4.11 respectively). This shows that the EPR models have 

captured the relationships between stresses and strains with a superior accuracy. This 

example was deliberately kept simple in order to illustrate the capability of EPR in 

 �� = 1G J�� − HK�� + ��LM  4.12 

 �� = 1G J�� − H��� + ���M  4.13 

 ��� = 1I 	��  4.14 

 I = G2�1 + H�  4.15 

 �� = 549.45�� + 164.83��  4.16 

 �� = 164.83�� + 549.45��  4.17 

 	�� = 192.31���  4.18 
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modelling material behaviour. In the next example a material with a non-linear 

behaviour will be used to examine the capabilities of EPR. 

4.2.2 EPR-based model of a material with non-linear behaviour  

A sample of a material with a non-linear behaviour is utilised here to perform another 

hypothetical test. The data from FE simulation will be used to illustrate the potential of 

EPR in modelling of material with nonlinear behaviour.  

 

Figure  4.4: A plane stress sample of a material under a biaxial tension loading 

Figure  4.4 shows the sample under a biaxial tension loading. The sample corresponds to 

a plane stress geometrical condition. In this test a value of 15% tensile strain is applied 

to the sample along axis 2 and 10% tensile strain is applied along axis 1 at the same 

time. Figure  4.5 and Figure  4.6 show the response of this structure under the loading 

along axes 1 and 2 respectively. The data from these two curves were extended using 

the procedure described in previous sections in order to generate the required data for 

training the EPR model. The rotational steps, number of the data points, number of 

models and the inputs and outputs are same as the previous example. 

In the initial setting of EPR, the exponents were limited to 90  1  2: and no function was 

selected for EPR. For simplicity the number of terms was limited to 10. The remaining 

settings of EPR were kept identical to the previous example.  
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Figure  4.5: Stress-strain response of the structure along axis 1  

 

Figure  4.6: Stress-strain response of the structure along axis 2  

The results of training of EPR for all three models are presented in the following 

equations. It can be seen that a wide range of equations from short to long is returned by 

EPR each having a different CoD value. In all three models, the equations are sorted in 

order of their CoD values for validation data. The CoD values of each equation for 

training and validation data sets are presented in  

Table  4.2. In the third model (	��), the 7th, 8th, 9th and 10th equations were identical and 

therefore only one of them is shown. 
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Model 1 (��) 

 

 

 

 

 

 

 

 

 

                                                 
* Units: � �D/F�� 

* �� = 19.70 
 4.19 

 

 �� = 149.98�� + 10.10 
 4.20 

 

 �� = −12339.03����� + 321.29�� + 5.30  4.21 
 

 �� = −1680.01��� − 850.20���� + 474.55�� + 3.06  4.22 
 

 �� = 96948.66������ − 5327.67���� + 404.95�� + 259.16��+ 0.57 
 4.23 

 

 �� = 24133.50����� − 4455.67���� − 2768.33��� + 584.59��+ 138.97�� + 0.09 
 4.24 

 

 �� = 21341.35����� + 3673.06����� − 2321.70��� − 5079.49����+ 576.05�� + 154.9�� + 0.02 
 4.25 

 

 �� = 19240.12����� + 5875.12����� − 4495.79��� − 2535.63���− 2419���� + 562.29�� + 169.70�� 
 4.26 

 

 �� = 19888.41����� + 5755.47����� − 5676.00������ − 4544.66���− 2542.35��� − 1848.63���� + 564.09�� + 168.41�� 
 4.27 

 

 
�� = 19780.05����� + 5934.19����� − 4945.01������− 1483.55������ − 9837.68���� + 2956.03����+ 563.52�� + 169.06�� 

 4.28 
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Model 2 (��) 

 

 

 

 

 

 

 

 

 

                                                 
* Units: � �D/F�� 

* �� = 19.61  4.29 

 �� = 150.50�� + 10.05  4.30 

 �� = −12366.03����� + 322.10�� + 5.30  4.31 

 �� = −1686.65��� − 858.05���� + 476.08�� + 3.05  4.32 

 �� = 96555.76������ − 5304.64���� + 258.68�� + 403.70��+ 0.56 
 4.33 

 �� = 24220.93����� − 4463.08���� − 2773.55��� + 138.99��+ 584.97�� + 0.09 
 4.34 

 �� = 21393.01����� + 3656.64����� − 5081.24���� − 2325.47���+ 154.99�� + 576.1718�� + 0.02 
 4.35 

 �� = 5847.65����� + 19266.97����� − 2534.24��� − 4496.89���− 2417.57���� + 169.72�� + 562.25�� 
 4.36 

 �� = 5752.44����� + 19892.15����� − 5679.26������ − 2542.30���− 4544.92��� − 1849.22���� + 168.42�� + 564.09�� 
 4.37 

 
�� = 5934.19����� + 19780.05����� − 1483.55������− 4945.01������ − 5533.73���� − 1986.44���+ 886.82���� + 169.06�� + 563.52�� 

 4.38 
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Model 3 (	��) 

 

Table  4.2: CoD values of training and validation data set for all equations developed for 

all three models 

 Model 1  Model 2  Model 3 

Eq. 
No 

CoD (%) 
CoD_v 

(%) 
Eq. 
No 

CoD (%) 
CoD_v 

(%) 
Eq. 
No 

CoD (%) 
CoD_v 

(%) 

 4.19 0.07 5.97  4.29 0.07 7.37  4.39 0.07 - 

 4.20 74.96 72.77  4.30 74.96 72.34  4.40 91.76 0.97 

 4.21 94.14 93.15  4.31 94.12 94.43  4.41 99.05 81.99 

 4.22 97.56 97.16  4.32 97.54 97.56  4.42 99.76 96.72 

 4.23 99.25 99.44  4.33 99.25 99.54  4.43 100.00 99.96 

 4.24 99.96 99.97  4.34 99.96 99.98  4.44 99.99 99.98 

 4.25 99.99 99.99  4.35 99.99 100.00  4.45 100.00 100.00 

 4.26 99.99 100.00  4.36 99.99 100.00 4.45 100.00 100.00 

 4.27 100.00 100.00  4.37 100.00 100.00 4.45 100.00 100.00 

 4.28 100.00 100.00  4.38 100.00 100.00 4.45 100.00 100.00 

 	�� = −0.14  4.39 

 	�� = 72.64��� − 0.02  4.40 

 	�� = −791.75����� + 147.64��� − 0.11  4.41 

 	�� = 7341.59������ − 2078.58����� + 198.56��� − 0.10  4.42 

 	�� = 18899.81�������� + 2142.83������ − 954.47�����− 703.60����� + 190.17��� 
 4.43 

 	�� = 6557.03������� − 978.10����� − 982.61����� + 196.26���  4.44 

 	�� = 1661.50������ + 1661.50������ + 3323�������− 993.22����� − 993.22����� + 197.23��� 
 4.45 
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In order to assess the quality of the prediction provided by EPR equations, the stress-

strain relationship predicted by EPR equations for model 1 along axis 1 versus the 

actual data is presented in Figure  4.7. In the first graph the predictions provided by the 

first 5 models are plotted together with actual data. In this graph, it can be seen that as 

the evolutionary steps are increasing the accuracy of the models are getting better. In the 

second graph where the second 5 EPR models are shown, it is very difficult (if not 

impossible) to distinguish the EPR models from the actual data as they all have 

provided excellent predictions. This makes it difficult to choose the most suitable EPR 

model among them.    

 
(a) 

 
(b) 

Figure  4.7: Comparison of EPR equations and actual data for model 1 (��)  

(a) Eq. 1-5 (b) Eq. 6-10 
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The model selection from results of EPR analysis requires some subjective judgment 

and may be often biased by analyst’s experience. As it can be seen the first four 

equations returned by EPR for all three models have presented a poor CoD values and 

therefore can be simply discarded. In order to select the best model among the 

remaining models, the performance of the equations in a finite element model will be 

observed. Based on the prediction capability of the EPR models in the finite element 

model, the best EPR model representing the material behaviour will be chosen. The 

incorporation of the developed EPR models in finite element and their performance will 

be discussed in the next chapter. 

 

 

 

 

4.3 Incremental stress-strain strategy for material modelling 

4.3.1 Input and output parameters 

Another strategy to train EPR-based material models includes an input set providing the 

EPR with the information relating to the current state units (current stresses and current 

strains) and an output that predicts the next state of stress and/or strain relevant to an 

input strain or stress increment. This is a typical scheme to train most of the neural 

network based models (Ghaboussi et al., 1998). A similar scheme is utilised in this 

section and different examples are provided to demonstrate the potential of this strategy 

for training EPR-based material models. 

In this section invariants of stresses and strains are used unlike the previous section 

where we used their values in the spatial directions. This means that mean stress (́3, 
deviator stress O3, volumetric strain �P3 , and distortional strain �Q3  are used as the input 

parameters representing the current state of stresses and strains in a load increment &, 
and deviator stress O3R
, and/or volumetric strain �P3R
 corresponding to the input 

incremental distortional strain ∆�Q3  are used as the output parameters. The definition of 

the stress and strain invariants is as follow (Muir Wood, 1990): 
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4.3.2 EPR-based material model of soils under monotonic loading 

To demonstrate the capability of EPR to obtain mathematical expressions describing the 

constitutive behaviour of soils using the incremental strategy, the results from a series 

of triaxial tests (Cekerevac & Laloui, 2004) are utilized in this section. The work done 

by Cekerevac & Laloui, (2004) contains information on both shear and volumetric 

behaviour of the soil samples studied which makes it a suitable collection of data for 

this purpose.  

 

Triaxial apparatus is one of the most widely used experimental systems for investigating 

the stress-strain behaviour of soils. A schematic diagram of a triaxial apparatus is 

presented in Figure  4.8.  In this experiment a cylindrical sample of soil is located in a 

cell filled with a fluid (usually water). The sample is surrounded by rubber membrane to 

isolate it from direct contact with the surrounding fluid. The cell fluid can be 

pressurised to cause the confining pressure around the sample. The sample sits in the 

cell between a rigid base and a rigid top cap. The quantities that are usually measured 

during the test are pressure in the cell fluid (the cell pressure �S) which provides an all-

round pressure on the soil sample; the axial stress �T, axial strain �T, the volumetric 

strain �P, if drainage from the soil sample is allowed or pressure in the pore fluid ), if 

drainage is prevented. 

  (́ = �́� + �́� + �́�3   4.46 

 O = UK�́� − �́�L� − ��́� − �́��� − K�́� − �́�L�
2 + 3�	��� + 	��� + 	��� �V
/�

  4.47 

 �P = �� + �� + ��  4.48 

 
�Q = 13 W2 XK�� − ��L� + ��� − ���� + K�� − ��L�Y

+ 3K���� + ���� + ���� LZ
/�
 

 4.49 
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Figure  4.8: A schematic diagram of a triaxial apparatus 

 

For triaxial loading conditions, due to the axisymmetric nature of the problem, 

equations  4.46 -  4.49 can be simplified as: 

Where �T is axial strain, �́T effective axial stress, �S is radial strain and �́S is effective 

axial stress in the triaxial apparatus. Usually during a standard triaxial test a confining 

pressure is imposed on the sample to represent its in-situ condition in the ground. In 

order to identify the characteristics and different parameters of soil, a number of tests 

with different confining pressures are performed on samples of the same soil. The tests 

  (́ = �́T + 2�́S3   4.50 

 O = �́= − �́[  4.51 

 �P = �T + 2�S  4.52 

 �Q = 2��T − �S�3   4.53 
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conducted by Cekerevac & Laloui, (2004) were performed with similar conditions. The 

results of these tests are presented in the following figures. 

 

 

(a) Deviator stress vs. shear strain 

 

(b) Volumetric strain vs. shear strain 

Figure  4.9: Drained triaxial test results (Cekerevac & Laloui, 2004) 

      

The results from 5 tests conducted at confining pressures 50, 100, 300, 400, 600 kPa 

were used for training of the EPR models while those for the sixth and seventh tests at 

confining pressures of 200, and 500 kPa were used for validation of the trained models. 
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The maximum number of terms was set to 15 for the first model (deviator stress) and 5 

for the 2nd model (volumetric strain) which was found to be adequate after a number of 

trial and error runs; the exponents were limited to 90, 1, 2, 3:. No function was chosen 

for EPR equations. After training, the best EPR models for both deviator stress and 

volumetric strain representing the behaviour of soil were selected. These equations are: 

Figure  4.10 shows the stress-strain curves predicted by the EPR model, (equations  4.54 

and  4.55) against those expected and used as training data. From these figures it is 

clearly seen that, the EPR models were able to capture the non-linear stress-strain 

relationship for the soil with very good accuracy. 

 

The generalisation capability of the EPR models is shown in Figure  4.11. The data from 

the tests conducted at the confining pressures of 200 and 500 kPa (which did not form a 

part of the training data) were used to test the trained EPR models. The predicted output 

values of the EPR models are compared with experimentally measured values in Figure 

 4.11. Excellent agreement is observed between the model results and the laboratory 

experimental data which demonstrates excellent capability of the EPR-based material 

models in generalising the constitutive relationship for unseen cases. 

 
 

 

                                                 
* Units: (́, O �\D/F�� 

* 

O3R
 = 4.9186�Q − 0.2521�Q� + 3.7739 × 10B1�Q1 − 4.9147�P3+ 0.2220O3 − 0.1169O3∆�Q + 1.4363 × 10B1KO3L�
− 1.1096 × 10B]KO3L1 + 0.4485(́ + 0.1355(́∆�Q− 2.0212 × 10B1(́�Q∆�Q − 5.1741 × 10B^(́�
+ 3.6161 × 10B
_(́1O3 

 4.54 

 
�P3R
 = �P3 + 1.1251 × 10B1O∆�Q − 1.0948 × 10B1 (́∆�Q + 1.7425

× 10B
^(�O �Q1∆�Q 
 4.55 
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(a) Deviator stress vs. shear strain 

 

(b) Volumetric strain vs. shear strain 

Figure  4.10: Results of training of the EPR 
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(a) Deviator stress vs. shear strain 

 

(b) Volumetric strain vs. shear strain 

Figure  4.11: Results of validation of the EPR 
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4.3.3      Incremental (point by point) prediction of the entire stress 

paths 

In addition to the validation that was presented in the previous section, the EPR models 

(equations  4.54 and  4.55) are used to predict the entire stress paths incrementally, point 

by point, in the O: �Q and �P: �Q spaces. This is used to evaluate the capability of the 

incremental EPR models to predict the behaviour of the soil during the entire stress 

paths. Figure  4.12 illustrates the procedure followed for updating the input parameters 

and building the entire stress path for the shearing stage of a triaxial test. 

 

Figure  4.12: Procedure followed for updating the input parameters and building the 

entire stress path for a shearing stage of a triaxial test 

At the start of the shearing stage in a conventional triaxial experiment, the values of all 

parameters are known. For example in a test on a sample of a saturated soil, the values 

of effective mean stress (́3, deviator stress O3, shear strain �Q3 , and volumetric strain �P3 , 

are known from values of applied cell pressure, back pressure and volume change at the 

end of the previous stage (e.g., at the start of shearing stage �Q_ = 0, �P_ = 0, and O_ =
0). Then for a given increment of shear strain, ∆�Q, the values of O3R
 and �P3R
 are 

calculated from the EPR models (equations  4.54 and  4.55 respectively). For the next 

increment, the values of  (́3, �Q3 , �P3 , and  O3 are updated as: 
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In these equations the current state of shear and mean stress as well as shear and 

volumetric strain are updated using the next state of these parameters and the next 

points on the curves are predicted using the EPR models. The incremental procedure is 

continued until all the points on the curves are predicted. Figure  4.13 shows the 

comparison between two complete sets of curves predicted using the EPR models 

following the above incremental procedure and the experimental results. The predicted 

results are in good agreement with the experimental results and the facts that (i) the 

entire curves have been predicted point by point; (ii) the errors of prediction of the 

individual points are accumulated in this process, and still the EPR models are able to 

predict the complete stress paths with a good degree of accuracy. These are testaments 

to the robustness of the developed EPR framework for modelling of soils. 

These figures show that the EPR has been able to capture the general trend of the 

nonlinear relationship of stresses and strains with a good accuracy. It also shows that the 

EPR model was trained sufficiently to adequately model the stress-strain behaviour of 

the soil. 

 O3 = O&+1  4.56 

 �P3 = �P3R
  4.57 

 (́3 = (́3 + `O3R
 − O33 a  4.58 

 �Q3 = �Q3 + ∆�Q  4.59 
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(a) O: �P 

 

(b) �P: �Q 

   Figure  4.13: Comparison of EPR incremental simulation with the actual data 
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4.3.4 Comparing the EPR-based models with conventional models  

In this section the performance of the developed EPR-based models is compared with 

some of the well known existing constitutive models. Mohr-Coulomb (MC) and 

Modified Cam Clay (MCC) are two constitutive models that are widely used by 

engineers to analyse different boundary value problems in geotechnical engineering. A 

brief description of these two models is presented in the following. 

  

(i) Mohr-Coulomb Model 

Mohr-Coulomb elastic-perfectly plastic model is a constitutive model that describes the 

behaviour of soil linearly in the elastic range using two parameters G (Elastic modulus), 

and H (Poisson’s ratio). The failure in Mohr-Coulomb (MC) is defined by two 

parameters b and c. The Mohr-Coulomb failure criterion states that failure of a soil 

mass will occur if the shear stress 	 on any plane in the soil mass reaches a critical 

value. This can be written as: 

This defines a straight line in the 	: �́ space as shown in the following figure. 

 

Figure  4.14: Mohr-Coulomb failure envelope 

 

If Mohr’s circle of effective stresses touches this line, then failure of the soil will occur. 

The intercept of this line, bd , is called cohesion intercept or apparent cohesion, and the 

τ

σ'σ'1σ'3

C' φ'

 	 = bd + �́ ∙ tan ϕd   4.60 
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slope of the line corresponds to cd , friction angle. These parameters can be identified 

from a set of triaxial tests. Mohr-Coulomb failure can also be defined in terms of stress 

invariants. Equation  4.60 can be rewritten in terms of triaxial stress invariants (́, O as 

following: 

 

 

(ii)  Modified Cam Clay Model 

Modified Cam Clay (MCC) is an elasto-plastic strain hardening model in which the 

non-linear behaviour is modelled using hardening plasticity. The MCC model assumes 

that the soil is fully saturated and there is a logarithmic relationship between the mean 

effective stress (́ and void ratio i (Roscoe & Burland, 1968).  

 

A typical yield curve of MCC model in the space of (́: O is illustrated in Figure  4.15. 

This figure shows that the yield curve has an elliptical shape in this space. 

 

 

Figure  4.15: Elliptical yield curve for MCC model in p':q space 

 

The model is based on critical state theory. This means that the MCC model assumes an 

ultimate condition in which plastic shearing could continue indefinitely without changes 

in volume or effective stresses. This condition of perfect plasticity is known as a critical 

state. A series of MCC yield curves which create a state boundary surface, and the 

critical state line are presented in (́: O: j space in Figure  4.16. 

     

 O = −6 sin cd3 + sin cd   ∙ ( +́ bd . cot cd   4.61 
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Figure  4.16: State boundary surface and critical state line of MCC model  (Helwany, 

2007) 

The MCC model can be summarised in the following equations. The elastic stress-strain 

response in the matrix form describes the elastic behaviour as following: 

and the plastic stress-strain response in the following form: 

 

In the above equations l and m are the slope of the normal consolidation line and 

unloading-reloading line in the j − ln (́ plane respectively. o is the slope of the critical 

state line in the (́ − O plane and p is O/(́. It should be mentioned that o and cd  (friction 

angle in Mohr-Coulomb model) are related through the following equation. 

 qr�Ps
r�Qst = Um/H(́ 0

0 1/3IV Ur(́
rOV   4.62 

 qr�Pu
r�Qu

t = �vBw�xú �yzR{z� U�o� − p�� 2p
2p 4p�/�o� − p��V Ur(́

rOV   4.63 

 o = 6 sin cd3 − sin cd     4.64 
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The parameters for both MC and MCC models can be obtained from a set of triaxial 

tests. The results of the triaxial test presented in section  4.3.2 are used to derive the 

material parameters. These parameters together with other characteristics of the soil 

presented in Cekerevac & Laloui (2004) are given in Table  4.3. 

   

Table  4.3: Material parameters for Modified Cam Clay and Mohr-Coulomb models 

 

It should be noted that identifying the material parameters from material tests can be a 

difficult and subjective process. This presents another disadvantage of conventional 

material models in comparison to EPR-based material model where there are no 

material parameters to determine. 

 

In order to compare the results of the EPR-based model with other conventional 

material models, the parameters in Table  4.3 are used to produce the stress-strain curves 

of this soil predicted by both Mohr-Coulomb and Modified Cam Clay models. These 

curves are plotted together with the actual (experimental) stress-strain curves obtained 

from the triaxial tests and those predicted by the EPR-based models (equations  4.54 and 

 4.55) for comparison. From seven different tests presented in Figure  4.9, three stress-

strain curves corresponding to confining pressures of 50 kPa, 300 kPa, and 600 kPa are 

chosen for comparison. These confining pressures represent heavily over-consolidated, 

over-consolidated and normally consolidated samples of the soil respectively. The 

comparison is made between deviator stress and axial strain and the results are 

presented in Figure  4.17. From the figure it can be seen that the EPR-based model has 

been able to predict the entire stress-strain path for the triaxial test with a better 

accuracy in comparison with the MC and MCC models. The modified cam clay model 

has particularly presented a poor prediction for heavily over-consolidated sample (graph 

(a) of Figure  4.17). This is one of the recognised issues and drawbacks of the MCC 

model which has been the subject of some research and some suggestions have been 

offered to overcome this problem and other problems connected with this constitutive 

model (Gens & Potts, 1988; YU, 1998; Mita et al., 2004). However both EPR-based 

bd  �kPa� 
cd  �°� o m j_ H �  �\D/F1� 

l 

11.7 21 0.8 0.00715 0.921 0.3 17 0.091 
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model and MCC model have provided reasonably accurate results for normally 

consolidated samples (graph (c)). 

 

    

 

(a) �́1 = 50 \}= 

 

 

(b) �́1 = 300 \}= 
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(c) �́1 = 600 \}= 

Figure  4.17: Comparison of stress-strain curve predicted by EPR-based, MC and MCC 

models versus the actual data 

Specific volume is a parameter that is used as a measure of the ratio of the total volume 

(volume of voids plus volume of soil particles) and soil particles. This parameter is 

related to the volumetric strain, �P, through the following equation. 

If the specific volume (or void ratio) is known at the initial stage of loading then using 

the above equation and the EPR model developed for volumetric strain (Equation  4.55) 

specific volume at any stage of loading can be determined.     

In the following figure the specific volume versus natural logarithm of mean effective 

stress (~ − ln (′) is plotted for three different confining pressures using actual data, 

MCC model and predictions provided by the EPR model. For confining pressure 400, 

graph (a), EPR has clearly presented a better prediction than MCC model. The EPR 

model has given almost the same results as the actual data in both graphs (a), and (b). 

This figure shows that EPR model has captured the volumetric behaviour of the soil, 

and is also capable to predict the changes of specific volume against effective mean 

stress correctly.           
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(a) 

 

 

(b) 

Figure  4.18: Comparison of v-ln(p') curve predicted by EPR-based, MC and MCC 

models versus the actual data 
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Figure  4.19: Comparison of p'-q curve predicted by EPR-based, MC and MCC models 

versus the actual data 

 

In addition to the figures presented above, the deviator stress versus mean effective 

stress (stress path) for MCC and EPR models together with the actual data is depicted in 

Figure  4.19. The figure shows that the EPR model is in excellent agreement with the 

actual data. However, it can be noticed that the MCC model has over-predicted the 

deviator stress in the first two confining pressures (50 kPa, 100 kPa). These two 

confining pressures are representing heavily over-consolidated samples. 

 

 

The performance and capabilities of the developed EPR-based models have been shown 

in the previous sections for monotonic loading conditions. In the next section the 

capability of EPR-based models to predict cyclic behaviour of materials (soil in 

particular) is presented. 
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4.3.5 EPR-based material model of soils under cyclic loading  

In this section, the behaviour of a soil is studied in triaxial tests under cyclic axial 

loading. The test data for this example were generated by numerical simulation of 

triaxial experiments. In general, generating data by numerical simulation has advantages 

including: (i) it is more economic (ii) it is far less time demanding, (iii) it can simulate 

loading paths and test conditions that can not be easily achieved in physical testing due 

to physical constraints of the testing equipment. The data for training and validation of 

the EPR models were created by finite element simulation of triaxial cyclic loading tests 

at constant cell pressure using the Modified Cam Clay Model. The material parameters 

assumed for the soil are: 

 l = 0.174 (Slope of the virgin consolidation line), m = 0.026 (Slope of the unloading-reloading lines in j − ln (́ plane), o = 1 (Slope of the critical state line in the O − (́ plane), (_ = 100 \}= (Isotropic pre-consolidation pressure), 

 

The simulated tests were conducted at five different confining pressures on triaxial 

samples. The data generated by numerical simulation of the cyclic loading along axial 

direction at confining pressures of 100, 150, 200, 250 and 300 kPa are shown in Figure 

 4.20.  
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(a)  

 

(b)  

Figure  4.20: Cyclic loading test data used for training and validation of EPR-based 

model (a) Deviator stress (b) Volumetric strain 
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In order to introduce a level of noise that inevitably exists in real triaxial test data, 

numerical simulation for each confining pressure was repeated by changing the total 

number of load increments in the simulation and the obtained data were combined and 

used in training of the EPR models. Figure  4.21 shows typical results of the tests 

conducted at confining pressure of 150 kPa with four different load increments. 

 

 

Figure  4.21: Typical cyclic loading test results with different load increments at 

confining pressure of 150 kPa 

 

The data from the tests at confining pressures of 100, 150, 200 and 300 kPa were used 

for the training of the two EPR models. The trained EPR models were validated using 

the data from the test at confining pressure of 250 kPa. 

The first model was developed to predict the deviator stress O3R
 and the second one to 

predict the volumetric strain �P3R
. In the input parameters of the developed EPR models 

for cyclic loading, the distortional strain �Q and increment of distortional strain ∆�Q is 

replaced with axial strain �
 and increment of axial strain  ∆�
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mentioned that in triaxial testing conditions �Q can be calculated from the following 

equation at any stage of the loading: 

The selected EPR models for O and �P are: 

 

Figure  4.22 shows the curves predicted by equations  4.67 and  4.68 for the training data 

set. In this figure, the actual (numerically simulated) data are plotted together with 

results of the EPR models predictions. It can be seen from the figures that EPR models 

were capable of learning, with a very good accuracy the constitutive relationships of the 

soil under cyclic loading paths.      

 

 

                                                 
* Units: (, Ó  �D/F�� 

 �Q = �
 − �P3    4.66 

* 

O3R
 = − 0.0084 �O3�1
(́� �P3 − 2667.247�O3���Δ�
��(́ �

− 0.060714 �O3�1Δ�
(́ �P3 + 1.8866 �PΔ�
O3
− 1.9676 O3Δ�
  �P3 + 888.4 �O3���Δ�
�1

 �P3+ 104.4964 (́Δ�
 − 1.4 × 10B�(́�
+ 0.018826 (́�O3 �P3  Δ�
 + 1.0525O3 − 0.71525 

 4.67 

 

�P3R
 = 0.02369O3Δ�
(́ �
 − 0.4217O3 Δ�
(́ + 9.3 × 10B] �
O3
+ 0.45727 Δ�
 + 0.99 �P3 + 0.000041535 

 4.68 
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(a)  

 

(b)  

Figure  4.22: EPR prediction for cyclic loading versus actual data 
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The trained EPR models were validated using a data set corresponding to the confining 

pressure of 250 kPa. The results of the validation tests are shown in Figure  4.23. It is 

shown that the trained EPR models were able to generalise the training to loading cases 

that were not introduced to the EPR during training. 

 

(a)  

 

(b)  

Figure  4.23: Results of the validation of the trained EPR models: comparison between 

the actual (numerically simulated) data and the EPR predictions for confining pressure 

of 250 kPa (a) deviator stress (b) volumetric strain 
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Moreover the incremental prediction capability (described in section  4.3.3) of the 

developed EPR models is examined and presented in Figure  4.24 where the point by 

point prediction of EPR models are compared to the actual data. 

 

(a)  

 

(b)  

Figure  4.24: Comparison of EPR (incremental) predictions with the actual data for 

confining pressure of 250 kPa (a) O − �
 (b) �P − �
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It should be mentioned that, for practical problems, the data used for training EPR, 

should cover the range of stresses and strains that are likely to be encountered in 

practice. This is due to the fact that EPR models are good at interpolation but not so 

good at extrapolation. Therefore, any attempt to use EPR-based FE method for loading 

conditions that may lead to stresses or strains outside the range of the stresses and 

strains used in training of the EPR may lead to unacceptable errors. The following table 

is provided to show the acceptable ranges of stresses and strains in the developed 

equations. 

Table  4.4: Range of stresses and strains for developed EPR models 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter it was shown that EPR can be employed to construct material models 

using both synthetic and experimental data gathered from material tests. Two different 

approaches were presented, total and incremental strategies, in order to obtain EPR-

based material models. It was shown that EPR can produce mathematical expressions 

that can accurately predict the material behaviour in both cases. Different materials 

(including soil that is known for having a complex behaviour) with different behaviour 

(e.g. linear, elasto-plastic) under different loading conditions (monotonic and cyclic 

loading) were examined to asses the capability of EPR-based models in predicting 

material behaviour. In the next chapter EPR-based models will be incorporated in a 

finite element model and will be used to analyse different engineering problems. The 

advantages of the developed EPR-based finite element method will be highlighted. 

Equations 4.54, 4.55 

Parameters ṕ (kPa) q (kPa) ε�(%) ε�(%) ∆�Q(%) 

Max 823 670.0 0.9 31.8 1.48 

Min 50 0.0 -6.3 0.0 0.08 

Equations 4.67, 4.68 

Parameters ṕ (kPa) q (kPa) ε�(%) ε
(%) ∆�Q(%) 

Max 375 223 7 14 0.6 

Min 100 0 0 0 -0.2 
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Chapter Chapter Chapter Chapter 5555  
 

 

EPR Based Finite Element Method 
 

 

 

5.1 Introduction 

As it was mentioned in chapter 2, the finite element method (FEM) has been used 

successfully in modelling and analysing a wide range of engineering problems in 

different fields including aerospace, automotive, biomechanical, chemical process, 

geotechnical engineering and many others. It was also shown that neural network based 

constitutive models (NNCM) have been implemented successfully in the finite element 

procedure to analyse engineering systems, in particular structural and geotechnical 

engineering problems. 

 

Two different strategies were introduced in chapter 4 to train EPR-based constitutive 

material models. In this chapter the EPR-based material models developed in the 

previous chapter will be incorporated in the finite element model for both strategies. 

Different examples will be presented to illustrate the capabilities of the proposed EPR-

based finite element method. 
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5.2 EPR-based Jacobian Matrix  

Any material model that is intended to be incorporated in finite element method must 

provide material stiffness matrix, also called Jacobian matrix, and can be defined as the 

following equation. 

where, � and � are the vectors of stresses and strains respectively. This matrix is defined 

explicitly for different material models. For instance the stiffness matrix (�) for a linear 

elastic material model obeying the Hook’s law in plane strain geometrical conditions is 

defined as follow (Stasa, 1986): 

where � represents elastic modulus and � is the Poisson’s ratio. 

 

Hashash et al. (2004) recommended to use consistent Jacobian matrix (Equation  5.3) 

and proposed a method to estimate partial derivation of NNCM to form the Jacobian 

matrix. 

where � and � are the vectors of stresses and strains respectively and i+1 denotes the 

next state of stresses and strains. Clearly this formulation of Jacobian matrix needs the 

constitutive model to be constructed in an incremental form. 

On the other hand Shin (2001) and Shin and Pande (2003) used direct derivation of 

NNCM (Equation  5.4) and proposed a procedure to calculate the first order partial 

derivation of NNCM.  

 � = 	(��)
	(��)   5.1 

 � =  �
(1 + �)(1 − 2�)

��
��
��
1 − � � � 0

� 1 − � � 0
� � 1 − � 0
0 0 0 (1 − 2�)

2 ��
��
��
  5.2 

 � = 	∆����
	∆����    5.3 

 ��� = 	�
	�   5.4 
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In this study direct derivation of EPR-based material models is used to construct the 

Jacobian matrix for materials. 

5.2.1 Partial derivatives of EPR models 

Differentiation of the models developed by data mining techniques has been studied by 

a number of researchers. In particular derivation of neural networks models developed 

for constitutive modelling of materials has been discussed by Shin, (2001); Hashash et 

al., (2004); and Shin & Pande, (2000). Due to the nature of EPR models which are in 

the form of mathematical expressions, differentiation of them seems to be a 

straightforward task. However it should be mentioned that the accuracy of derivative of 

the developed EPR models depends on the accuracy of the EPR model.  

 

Consider an objective function � (��, �!, … , �#) that is intended to be estimated by an 

EPR model $ (��, �!, … , �#) where ��, �!, … , �# are all effective parameters that 

influence the objective function. It is known that in any regression model an error term 

exists which captures all other factors that influence the objective function (following 

equation). 

The relationship between the error term and input parameters is a crucial matter in 

modelling a phenomenon. If the partial derivative of equation  5.5 with respect to an 

arbitrary input �% is performed, the following equation is obtained. 

Obviously if the error term &'' is a constant value and not a function of other input 

parameters, its derivative is zero and can be omitted from equation  5.6. In this case the 

error term has no influence on the differentiation of the EPR models. On the other hand 

if the error term is correlated with other input parameters and varies with them the error 

term plays an important role in both EPR model and its derivatives.  

 

There could be different reasons for the error term being non-constant and significant in 

an EPR model. For instance, incorrect or insufficient training data, not having all the 

 � (��, �!, … , �#) = $ (��, �!, … , �#) + &''  5.5 

 	� (��, �!, … , �#)
	�% = 	$ (��, �!, … , �#)

	�% + 	&''
	�%   5.6 
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input parameters, user mistakes in setup of control parameters, improper choice of the 

solutions provided by EPR, etc. or a combination of the above. Among these reasons, 

two of them which have the most effect on the quality of the EPR models are described 

here.  

 

One of the reasons could be that one or more input parameters which influence the 

phenomenon are not included in the EPR model and therefore the obtained EPR model 

is not a proper representative of the phenomenon. This raises the importance of the fact 

that the physics behind the event must be studied thoroughly before construction of EPR 

models. Mechanics of the event and literature are two most important sources of 

information that must be considered and studied prior to modelling by EPR in order to 

include all the effective parameters in the model. It should be mentioned when 

modelling a phenomenon using EPR, if the user has doubt about including a parameter, 

it is advised to involve that parameter since EPR has the capability to disregard the 

parameters that have negligible or no influence on the model (Doglioni, 2004). 

 

Another main reason for having an error term with a correlation with other input 

parameters could be the fact that the right model is not chosen from the solutions 

provided by EPR. This emphasises the importance of model selection in the modelling 

process using EPR. As it was described in chapter 3, EPR offers a range of solutions in 

the form of a pareto-front surface (or curve) which helps the user to choose the right 

mathematical expression to describe the phenomenon. EPR can control the number of 

input parameters, and the number of terms versus the coefficient of determination 

(CoD) using a multi-objective strategy. Moreover the wide range of available functions 

and EPR types assist the user to explore among these available options to select the 

suitable mathematical expression. In what follows a number of examples will be 

presented to evaluate the accuracy of the partial derivatives of the EPR models.  

5.2.1.1 Illustrative examples 

A number of different mathematical functions are considered and the values of 

functions are determined for different input values in order to generate the required data 

points. These data points are then used to train and obtain EPR models. The derivatives 
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of the EPR models are determined and comparisons are made between the EPR models 

and the original mathematical functions as well as their derivatives. 

 

(i) Example 1 

 

For the first example a polynomial equation is chosen as following: 

The surface (red mesh) and the generated data points (blue dots) from this surface are 

plotted in the following figure. 

 

 

Figure  5.1: Polynomial function and training data 

 

These data points are fed into EPR to obtain an EPR model. Since it is supposed that the 

objective function is not known a priori, the exponents range is limited to integer 

numbers between -4 to 4 including 0 and the number of terms is limited to 20. The 

results of training of EPR are presented in the following equations. 

 

 

 (()�, )!) = )�)!! + )�)! + )�! + )!!  5.7 
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In these equations *()�, )!) is the estimated EPR model. From these equations it can be 

seen that although the maximum number of terms was set to 20 and the range of 

exponents was −4: +4 however, the maximum number of terms achieved by EPR in the 

final stage of the evolutionary steps is 5. This shows the strength of EPR to avoid the 

problem of over-fitting by using different strategies as described in detail in chapter 3. 

 

The accuracy of equation  5.12 is 100% and by comparing it to the function (()�, )!) it 

can be seen that it exactly matches the original function except for the constant term 

4.1 × 10/�0 which is negligible. As it was mentioned earlier this constant term has no 

influence in differentiation of the function and clearly the partial derivative of the 

estimated function is equal to that of the objective function.   

 

 

 

 

 

 

 

 

 

 Equations CoD  

 *()�, )!) = 26 0.0 %  5.8 

 *()�, )!) = )�)!! + 26 89.95 %  5.9 

 *()�, )!) = )�)!! + 0.055)�!)!! + 16.7 94.38 %  5.10 

 *()�, )!) = )�)! + )�)!! + 0.055)�!)!! + 16.7 98.23 %  5.11 

 *()�, )!) = )�)!! + )�)! + )�! + )!! + 4.1 × 10/�0 100 %  5.12 
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(ii) Example 2 

A trigonometric function (equation  5.13) is chosen for the second example to illustrate 

how well the derivatives of the EPR model can approximate the derivatives of the 

function.  

This function is used to generate data points and train EPR models to find the best EPR 

function that can approximate this function. Before training the EPR model, the number 

of terms was set to 20, the range of exponents to [-4:+4], and no function was chosen. 

After training, the best EPR model representing equation  5.13 was as follow: 

The coefficient of determination of this equation was 85.16% which shows the EPR 

model is not a perfect representative of the original function. The original function and 

EPR prediction (points) are depicted in the following figure. 

 

Figure  5.2: Trigonometric function (red mesh) and EPR prediction (blue dots) 

Differentiation of the trigonometric function and the EPR model with respect to )� is 

compared in Figure  5.3. It can be seen that the accuracy of the differentiation is not 

 (()�, )!) = sech ()�) ∙ tanh()!)  5.13 

 

*()�, )!)  =  −1.15 × 10/0)�<)!=  + 5.41 × 10/<)�!)!=  + 6.05
× 10/<)�<)! − 0.03)�!)! − 5.55 × 10/=)!= + 0.29)!
+ 7.58 × 10/�A 

 5.14 
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acceptable and therefore the selected polynomial function is not good enough to 

represent the original function. 

 

Figure  5.3: EPR prediction for partial derivatives of the trigonometric function with 

respect to )� versus the differentiation of original function 

 

In order to find a better EPR model, different available functions in EPR and various 

EPR types with different exponent ranges and number of terms were tried and 

eventually it was found that the accuracy of the EPR models will only get better if 

tangent hyperbolic or secant hyperbolic is used as the function to train EPR. After 

training the EPR using tangent hyperbolic function, the following equation was chosen 

to compare the EPR model and its derivative with the original function. 

The CoD of this equation is 99.98 % and it is compared with original function in Figure 

 5.4. The derivatives of this equation with respect to )� and )! are determined and 

presented in equations  5.16 and  5.17 respectively. A good agreement between the 

 

*()�, )!) = −0.49 )�! tanh!()�) tanh()!)
− 0.93 tanh!()�) tanh()!) + 0.49)�! tanh()!)
+ 0.99 tanh()!) 

 5.15 
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partial derivatives of the EPR model and partial derivatives of the original function with 

respect to )� and )! can be seen in Figure  5.5 and Figure  5.6. 

 

Figure  5.4: Trigonometric function (red mesh) and EPR prediction using tanh function 
(blue dots) 

 

Figure  5.5: EPR prediction using tanh function for partial derivatives of the 
trigonometric function with respect to )� versus the differentiation of the original 

function 
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Figure  5.6: EPR prediction using tanh function for partial derivatives of the 

trigonometric function with respect to )! versus the differentiation of the original 

function 

 

 

The presented examples show that if the right model is chosen from the results of EPR, 

the selected model and its partial derivatives provide a good approximation to the 

phenomenon being studied. 

 

 

 

 

	*()�, )!)
	)� = −1.86 tanh()�) tanh()!) B1 − tanh!()�)C

+ 0.98)� tanh()!) − 0.98)�tanh!()�) tanh()!)
− 0.98)�! tanh()�) tanh()!) B1 − tanh!()�)C 

 5.16 

 

	*()�, )!)
	)! = 0.99B1 − tanh!()!)C + 0.49)�!B1 − tanh!()!)C

− 0.93 tanh!()�) B1 − tanh!()!)C
− 0.49)�!tanh!()�)B1 − tanh!()!)C 

 5.17 
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5.3   Incorporation of EPR models (total stress-strain 

strategy) in FEM  

The developed EPR-based material models in chapter 4 are implemented in a widely 

used general-purpose finite element code ABAQUS through its user defined material 

module (UMAT). UMAT updates the stresses and provides the material Jacobian matrix 

for every increment in every integration point (ABAQUS, 2007). 

 

 

Figure  5.7: The incorporation of EPRCM in ABAQUS finite element software 

 

The material Jacobian matrix can be derived using the developed EPR models using the 

total stress-strain strategy using the following equation: 
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Equation  5.18 can be applied in both elastic and inelastic regions because an EPR 

constitutive model (EPRCM) does not require the definition of a transition between 

elastic and inelastic regions (i.e. yield points). The Jacobian matrix resulting from the 

EPRCM can be directly incorporated in a conventional FE code instead of the 

conventional elasto-plastic constitutive matrix. The way in which EPRCM is 

incorporated in the finite element method, is shown in Figure  5.7. 

5.3.1 Numerical Examples 

To illustrate the developed computational methodology described in the previous 

section, five examples of application of the developed EPR-based finite element method 

to boundary value problems are presented. In the first two examples, the application of 

the methodology to a simple case of linear elastic behaviour is examined. The 

constitutive equations for this material were developed in the previous chapter (section 

4.2.1.3). For the third example a finite element model of the material test in section 

4.2.2, chapter 4 is considered in order to choose the best EPR model among those 

presented in that section. In the fourth and fifth examples, the method is applied to a 

problem with the same geometries as the first and second one but with a non-linear 

material behaviour chosen from the results of the third example.  

5.3.1.1 Example 1: Plate with a circular hole (linear elastic)  

This example involves a plane stress plate with a circular hole in its centre. The plate is 

assumed to be made of a linear elastic material with elastic modulus E = 500 Pa and 

Poisson’s ratio � = 0.3. An EPRCM was developed for this linear elastic material in 

section 4.2.1.3 in chapter 4 and the developed constitutive equations are repeated here. 

 FG = 549.4505HG + 164.8352HI − 5.1338 × 10/�!  5.19 

 FI = 164.8352HG + 549.4505HI − 1.2134 × 10/��  5.20 

 JGI = 192.3077KGI + 3.2319 × 10/�!  5.21 

 � = 	�
	�   5.18 



Chapter (5)                                                  EPR Based Finite Element Method 

119 

 

Figure  5.8 shows the geometry, boundary conditions and loading of the plate. Due to the 

symmetry in the geometry of the plate only a quarter of the plate is modelled and 

therefore appropriate boundary conditions are provided on the bottom and left sides of 

the model. The model is made of 100 isoparametric 8-node elements and is stretched 

along Y direction by applying of a uniform pressure of 10 Pa.  

 

Figure  5.8: A plate with circular hole at its centre under tension loading along Y 

direction 

Using equations  5.18 and  5.19- 5.21 the EPR-based material Jacobian matrix for this 

example is computed and presented in the following equation. 

 

On the other hand the conventional stiffness matrix for an isotropic, elastic material for 

plane stress conditions in terms of Young’s modulus and Poisson ratio is given as 

follow (Stasa, 1986): 

T

26 cm4 cm

Y

X

44

 � =

��
��
��
��
� 	FG	HG

	FG	HI
	FG	HGI

	FI	HG
	FI	HI

	FI	HGI
	FGI	HG

	FGI	HI
	FGI	HGI ��

��
��
��
�

=

��
��
��
�549.45 164.83 0.00

164.83 549.45 0.00

0.00 0.00 192.31��
��
��
�
  5.22 
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If the values of E = 500 Pa and � = 0.3 are substituted in the above equation the 

following matrix will be obtained: 

By comparing the equation  5.22 and  5.24 it can be seen that the Jacobian matrix 

obtained from EPR models is in an excellent agreement with the conventional elastic 

plane stress stiffness matrix.  

    

The EPR Jacobian matrix is implemented in UMAT and the above structure is analysed 

under the given loading and boundary conditions. The problem is also analysed using 

the elastic material model provided by ABAQUS which requires elastic modulus and 

Poisson’s ratio. The vertical displacement of the crown of the hole versus the applied 

tension is compared between standard finite element analysis and EPR-based finite 

element method and the results are depicted in Figure  5.9. 

 � = �
1 − �!

��
��
��
� 1 � 0

� 1 0

0 0 (1 − �)/2��
��
��
�
  5.23 

 � =

��
��
��
�549.45 164.83 0

164.83 549.45 0

0 0 192.31��
��
��
�
  5.24 
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Figure  5.9: Tension-displacement curve of node 44 for Standard FE and EPR-based FE 

An excellent agreement can be seen from this figure between the displacement of node 

44 using standard FE and EPR-based FE analyses. This shows that the EPR-based 

material Jacobian matrix has been successfully implemented in the finite element 

analysis and the methodology can be used to predict the behaviour of a linear elastic 

material. 

5.3.1.2 Example 2: Plate subjected to an in-plane load (linear elastic) 

A 2D plane stress panel subjected to an in-plane compression is set up to evaluate 

further, the potential of the proposed EPR-based FE method. The model of the panel 

with applied load and its surrounding boundary conditions is shown in Figure  5.10. It is 

assumed that the plate is made of the same material as the one introduced in section 

4.2.1.3 in chapter 4. It is also assumed that the EPR models developed for this material 

in chapter 4 are valid and will be used here. 

 

The FE analysis of the panel is first carried out using a standard FE model with 270 

isoparametric elements. The elastic parameters used for the panel are; Young’s modulus 

E = 500 Pa and Poisson’s ratio � = 0.3. On the other hand the EPR-based FE analysis 

was performed using the Jacobian matrix presented in equation  5.22. The results of 

these two analyses are compared in terms of vertical stresses and strains in Figure  5.11 

and Figure  5.12.  
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Figure  5.10: The FE mesh and geometry of plane stress panel and its boundary 

conditions and loading 

             

(a)                                                                        (b) 

Figure  5.11: Comparison between vertical stress contours in (a) standard FEM (b) EPR-

FEM 
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(a)                                                                        (b) 

Figure  5.12: Comparison between vertical strain contours in (a) standard FEM (b) EPR-

FEM 

From the above figures it can be seen that the results of the EPR-based FE analysis are 

in a very good agreement with the standard FEM results. 

 

5.3.1.3 Example 3: A plate under biaxial tension (non-linear elastic) 

A finite element model of the hypothetical test conducted in section 4.2.2, chapter 4, is 

employed here in order to find the best EPR model representing the nonlinear material 

behaviour. In section 4.2.2, it was shown that EPR has returned one equation for each 

stress (three in total) at every evolutionary step. Using these equations, the Jacobian 

matrix corresponding to each evolutionary step (10 in total) is constructed. For instance, 

the Jacobian matrix for the 2nd evolutionary step of EPR is as follow: 

    

 � =

��
��
��
�149.97 0.0 0.0

0.0 150.50 0.0

0.0 0.0 72.64��
��
��
�
  5.25 
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The calculated Jacobian matrix for each evolutionary step is implemented in finite 

element to analyse the model of the material test. The finite element mesh of the model 

is shown in Figure  5.13.      

   

 

 

 

 

 

 

 

 

 

 

 

Figure  5.13: Finite element model of the material test conducted in section 4.2.2 

After analysis, the stress-strain curve of each model is recorded to compare the stress-

strain behaviour of the different evolutionary steps provided by EPR. These stress-strain 

curves are presented in the following figure. 

 

Figure  5.14: Stress-strain curve, obtained from different evolutionary steps 
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Since the EPR model corresponding to the first evolutionary step consisted of a constant 

value, its Jacobian matrix becomes zero and therefore it is not possible to perform an 

analysis for the 1st step. From the figure it can be seen that as the EPR steps increase, 

the predictions provided by EPR models become closer to the test data. Once the EPR 

model from the 8th step is incorporated in the FE, it is seen that the results are in a very 

good agreement with the test data; this is also valid for the 9th step. However it can be 

seen that the 10th model (red dashed line) has provided less accurate results in compared 

to the 8th and 9th steps. One reason for this could be the over-fitting problem in the EPR 

equations of 10th model. From the results of this example it can be concluded that the 

best EPR model representing the material tested in section 4.2.2 is 8th model (equations 

4.26, 4.36, 4.45). This model will be used to analyse the next two numerical examples. 

 

 

 

5.3.1.4 Example 4: Plate with a circular hole (non-linear elastic) 

The same plate used in example 1 (section  5.3.1.1) with same geometry and boundary 

conditions is used for the fourth example. This time the plate is under tension loading 

on both right and top sides. The EPRCM selected from the previous example is used to 

represent the material behaviour. 

 

The EPR-based Jacobian matrix is then implemented in the finite element model to 

analyse the plate with the circular hole (Figure  5.15) under a biaxial tension which is 

applied through prescribed boundary conditions of 5 mm on each side. 
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Figure  5.15: A plate with circular hole at its centre under tension loading along both X 

and Y direction 

The plate was also analysed using a standard finite element model. For the standard 

finite element analysis an existing elasto-plastic material model in ABAQUS was 

chosen, in which for the elastic part the elastic modulus and Poisson’s ratio were used 

and a tabulated stress-strain data was entered for the plastic part. The data for the Elastic 

properties and tabulated stress-strain were obtained from the hypothetical test discussed 

in chapter 4 (section 4.2.2). The results of the analysis of this problem using the two 

material models are compared in Figure  5.16 and Figure  5.17. In these figures major 

and minor principal stresses are shown for standard FE analysis and EPR-based finite 

element analysis. The maximum difference between the major principal stress from 

standard FEM and EPR-FEM is 4.2%. This value for the minor principal stress is 7.3%. 

The average difference between the major principal stress in standard FE and EPR-FE is 

1.67% while the average difference for the minor principal stress is 4.48%. Small 

differences can be spotted between two results; however apart from that, the figures 

show that EPR has been able to predict the nonlinear behaviour of the material and 

provided a good estimation of the resulting stresses in the plate due to the biaxial 

tension loading. 
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(a)  

 

 

(b)  

Figure  5.16: Comparison of max principal stress (a) results of the standard FE analysis 

(b) results of the EPR-based FE analysis 
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(a)  

 
(b) 

Figure  5.17: Comparison of min principal stress (a) results of standard FE analysis (b) 

results of the EPR-based FE analysis 
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5.3.1.5 Example 5: Plate subjected to an in-plane load (nonlinear elastic) 

The same plate as the one presented in example 2 with same geometry and boundary 

conditions is employed here to compare the results of nonlinear FE analyses using 

standard FEM and EPR-FEM. It is assumed that the panel material is identical to the 

one used in example 4. For standard FE analysis elasto-plastic material model with 

Young’s modulus and Poisson’s ratio for elastic region and tabulated stress-strain data 

for plastic region are used. It is also assumed that the EPR equations developed for this 

material (discussed in example 3) are valid and can be used to establish the Jacobian 

matrix. The panel is loaded using two biaxial prescribed displacements of 1 cm as 

shown in Figure  5.18. 

 

Figure  5.18: The FE mesh and geometry of plane stress panel under biaxial tension 

loading 

The results of the two different analyses are compared in terms of maximum stresses 

and maximum strains. The results reveal that the EPR-FEM provides a very close (less 

than 2% difference for max principal stress and less than 0.7% for max principal strain) 

prediction to those of the standard FEM. 

 

22 cm

d = 1cm
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(a)                                                                                 (b) 

Figure  5.19: Contours of max principal stress (a) standard FE (b) EPR-FEM 

 

         

(a)                                                                               (b) 

Figure  5.20: Contours of max principal strains (a) standard FE (b) EPR-FEM 
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5.4 Incorporation of EPR models (incremental stress-strain 

strategy) in FEM 

The developed EPR-based material models can also be implemented in the finite 

element method in a different manner from that presented in section  5.2. This strategy 

takes advantage of the definition of the elastic stiffness matrix which is usually 

described in terms of elastic parameters. The constitutive relationships are generally 

given in the following form (Owen & Hinton, 1980): 

where � is material stiffness matrix, also known as the Jacobian matrix. For an isotropic 

and elastic material, matrix � can be expressed in terms of two elastic constants. 

Generally there are six different elastic constants E (Young Modulus), � (Poisson’s 

ratio), G (shear modulus), K (bulk modulus), M (Lame’s first parameters), and M (P-

wave modulus) to describe elastic behaviour of materials (Timoshenko & Goodier, 

1970). However for isotropic materials, only two of these parameters are required to 

form stiffness matrix since they are all related to each other through the following 

equations. 

In order to construct the stiffness matrix in this section, the material constitutive models 

developed in section 4.3 are used. Therefore the function of EPR-based material model 

in a FE model (at every element’s integration point) can be described as follows: 

 

(I) For the i+1th load increment, the input pattern for the EPR-based material 

model contains (1) the values of (Ń%, P%, HQ% , HR% ) which have already been 

 δ� = �δ�  5.26 

 T = �
3(1 − 2�)  5.27 

 M = ��
(1 − 2�)(1 + �)  5.28 

 U = �
3(1 + �)  5.29 

 V = �(1 − �)
(1 + �)(1 − 2�)  5.30 
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calculated in the previous load increment and (2) value of ∆HR% . The new 

values of P%�� and HQ%�� are then calculated for the next step. 

(II)  For each load increment the material Young’s modulus, EWXY and the 

Poisson’s ratio, νWXY can be calculated from the relationship between the 

relevant stresses and strains. For example for axisymmetric condition: 

  

Once the stiffness matrix is built it will be implemented in the finite element analysis in 

the same way described in the previous section. The EPR-based finite element method 

does not require yielding, plastic potential, failure functions, flow rules, etc. In this 

method the conventional elasto-plastic stiffness matrix will be replaced by the EPR 

stiffness matrix and the problem will be treated as a nonlinear problem from beginning 

to the end of analysis. This is more straightforward than conventional finite element 

method and can save lots of computational time since there is no need to check the 

yielding, compute gradients of the plastic potential curve, update the yield surface etc. A 

number of examples are provided in the next section to show the capabilities of this 

approach. 

5.4.1 Numerical Examples 

To illustrate the developed computational methodology, five numerical examples of 

application of the developed EPR-based finite element method to engineering problems 

are presented. In the first example, the application of the methodology to a simple case 

of linear elastic material behaviour is examined. In the second example, the method is 

applied to a boundary value problem involving the analysis of stresses and strains 

around a tunnel considering nonlinear and elasto-plastic material behaviour. In the third 

and fourth examples, the proposed method is applied to analyse the deformation of 2D 

and 3D foundation under vertical pressure. And finally in the fifth example the 

 EWXY = ∆P%
∆H�%

  5.31 

 νWXY =
[
\]

1 − ∆HQ%∆H�%2
^
_̀  5.32 
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application of the method to the analysis of the behaviour of soil under cyclic loading is 

presented. 

5.4.1.1 Example 1: circular cylinder under internal pressure 

This example involves a thick circular cylinder conforming to plane strain geometrical 

condition. Figure  5.21 shows the geometric dimensions and the element discretisation 

employed in the solution where 12 8-node isoparametric elements have been used. The 

cylinder is made of linear elastic material with Young’s modulus of E=2.1×105 N/mm2 

and a Poisson’s ratio of 0.3 (Owen & Hinton, 1980). This example was deliberately kept 

simple in order to verify the computational methodology by comparing the results with 

those of a linear elastic finite element model. The compressibility of the material is 

assumed to be negligible and hence the EPR model for volumetric strain is not 

considered in this example. The loading considered involves an internal pressure of 

80.0 Vab as shown in Figure  5.21.      

 

Figure  5.21: FE Mesh in symmetric quadrant of a thick cylinder 

Figure  5.22 (a) shows a linear elastic stress-strain relationship with a gradient of 

2.1×105. The slope of this line represents the elastic modulus, E, for the material. The 

data from this figure were used to train the EPR model in order to capture the linear 

stress-strain relationship for the material. After training, the selected EPR model is as 

follow: 

100 mm

200 mm

P
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(a)  

 

(b)  

Figure  5.22: (a) Linear stress-strain relationship used for training, (b) the results of EPR 

predictions (red circles) for stress-strain value 

Figure  5.22 (b) shows the stress-strain relationship predicted by the EPR model, 

together with the original one. It is seen that after training, the EPR model has 

successfully captured the stress-strain relationship with a precise accuracy. 

The EPR-based finite element model incorporating the trained EPR model was used to 

analyse the behaviour of the cylinder under applied internal pressure. The results are 

compared with those obtained using a standard linear elastic finite element method.  
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 qd�� = − 1.47 × 10/e
∆ε − 3.47 × 10/ghqd + 2.42 × 10��(∆ε + ε)
− 0.005εhqd + 0.012 

 5.33 
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Figure  5.23 shows the radial displacement and radial stresses predicted by the two 

methods. Comparison of the results shows that the results obtained using the EPR-based 

FEM are in excellent agreement with those obtained from the standard finite element 

analysis. This shows the potential of the developed EPR-based finite element method in 

deriving constitutive relationships from raw data using EPR and using these 

relationships to solve boundary value problems.  

 

(a)  

 

(b) 

Figure  5.23: Comparison of the results of the EPR-FEM and standard FEM solution (a) 

radial stress, (b) radial displacement 
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5.4.1.2 Example 2: Tunnel subjected to gravity and excavation loading 

This example involves the analysis of deformations around a tunnel subjected to 

excavation and gravity loadings. The geometry of the tunnel and the finite element mesh 

are shown in Figure  5.24.    

 

 

Figure  5.24: Geometry of the tunnel and the FE mesh 

The finite element mesh includes 142 8-node isoparametric elements and 451 nodes. 

The depth of the tunnel crown from the ground surface is 12 meters. The analysis is 

done in two steps. The first step includes a geostatic analysis where all the elements are 

subjected to gravity loading. In the second step 46 elements representing the tunnel 

elements, are removed to simulate the excavation process. It was assumed that the soil 

tested in chapter 4 section 4.3.2, is representative of the soil material around the tunnel. 

The problem was analysed using three different constitutive models, (a) Mohr-Coulomb 

(MC), (b) Modified Cam Clay (MCC), and (c) EPR-based material model. For the first 

two methods the material parameters presented in chapter 4, Table 4.3 were entered in 
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finite element software (ABAQUS) and the tunnel was analysed under gravity and 

excavation loading. For the EPR-based material model, the models developed in chapter 

4, section 4.3.2 (equations 4.56 and 4.57), were used to construct the stiffness matrix. 

Then the obtained stiffness matrix was implemented in user material subroutine 

(UMAT) in ABAQUS. The FE model incorporating the EPR models was then used to 

simulate the behaviour of the tunnel under gravity and excavation loadings. 

 

 

 

Figure  5.25: Comparison between the results of the EPR-FEM and conventional FE 

using Mohr-Coulomb and Modified Cam Clay models 

Figure  5.25 shows the comparison between the displacements in the tunnel predicted by 

standard finite element analyses using MCC and MC constitutive models as well as the 

EPR-based finite element method where the raw data from the triaxial tests were 

directly used in deriving the EPR-based constitutive model (chapter 4, section 4.3.2). In 

this figure deformation of the tunnel face is magnified by a factor of 5 in order to show 

the difference between the three different approaches. The pattern of deformations is 

similar in all 3 analyses. Despite the relatively small difference between the results from 

the different analyses, it can be argued that the EPR-based FE results are more reliable, 

as this method used the original raw experimental data to learn the constitutive 
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relationships for the material and it did not assume any particular constitutive 

relationships, yield conditions, etc. in priori. 

 

The results show that the developed EPR-FEM can offer very realistic prediction for the 

behaviour of complex structures. 

5.4.1.3 Example 3: Settlement of a 2D shallow foundation 

This example presents finite element analysis of a strip foundation using the EPR-based 

FEM. Settlement and stress distribution of the foundation is obtained using standard 

finite element method and EPR-FEM. The results of these two methods are compared to 

show the capability of the EPR-FEM. Plane strain geometrical condition is considered 

for modelling the foundation and due to the symmetry only half of the foundation is 

modelled. The finite element mesh of the foundation has 304 isoparametric 8-node 

element and 340 nodes. The geometry and finite element mesh of the foundation are 

presented in Figure  5.26. The density of the FE mesh is increased in the vicinity of the 

foundation since it is the zone of stress concentration. The footing is made of concrete 

but it’s not modelled here to simplify the model. The foundation is constructed 2.5 

meters beneath the surface and to simulate the foundation depth, the 2.5 meters layer of 

soil is replaced by an overburden pressure equivalent to the weight of soil.    

 

Figure  5.26: FE mesh and geometry of foundation 
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The soil material is same as the one introduced in chapter 4 section 4.3.2. The 

foundation was analysed under its weight as well as footing pressure of 150 kPa. For the 

standard finite element analysis, the Mohr-Coulomb and modified cam clay material 

constitutive models are employed, using material parameters presented in chapter 4, 

Table 4.3. Figure  5.27 shows the resulting max principal stress contours obtained from 

(a) standard FE using MCC constitutive model, and (b) EPR-based FEM. 

 

(a)  

 

(b)  

Figure  5.27: Distribution of max principal stress obtained from  

(a) MCC-FEM (b) EPR-FEM 
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In addition, the settlement of the footing at its centre is presented in Figure  5.28. In this 

figure the surface settlements obtained from the standard FEM using MC and MCC 

models are compared with those obtained from the EPR-FEM. The settlement due to the 

gravity load is not considered in this graph. The EPR-FEM has predicted a larger 

settlement compared with the other two methods and MCC has especially provided a 

small deformation. This can be explained by the fact that MCC model underestimates 

the deformation for heavily over-consolidated soils (Gens & Potts, 1988; Mita et al., 

2004)  while EPR material model is providing a more realistic prediction (see chapter 4 

section 4.3.4). For this reason it can be claimed that the results of EPR-FEM are more 

reliable than MCC-FEM especially for heavily over-consolidated soils as the EPR 

models are trained directly with raw data. 

 

         

 

Figure  5.28: Comparison of the settlement of the footing obtained from standard finite 

element and EPR-FEM 
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5.4.1.4 Example 4: Settlement of a 3D shallow foundation 

This example involves analysis of a square shallow foundation subjected to applied 

pressure of 150 kPa. Due to symmetry only a quarter of the domain is modelled and 

analysed. The geometry of the foundation and the finite element mesh are shown in 

Figure  5.29. 

 

 

Figure  5.29: Dimension and finite element mesh of a quarter of the square shallow 

foundation 

 

The finite element mesh includes 576 eight-node elements and 810 nodes. The aim of 

the analysis is to calculate settlement of the 3m×3m foundation on a 12m thick 

homogeneous layer of a soil, using Mohr-Coulomb and EPRCM based finite element 

method. The foundation is situated at a depth of 2.5m from ground level. It is assumed 

that the soil material is same as the one used in the 2D shallow foundation example.  

 

Figure  5.30 shows the pressure-settlement curves for the centre of the foundation 

predicted by standard finite element analysis using the Mohr-Coulomb elasto-plastic 
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model as well as the EPR-based finite element method. In the initial elastic zone, the 

predictions of the two models are almost the same. As loading progresses, inelastic 

deformations start and differences appear in the prediction of pressure-settlement 

behaviour of the foundation.  

 

Figure  5.30: Comparison of the results for foundation settlement obtained from MC-

FEM and EPR-FEM 

In addition the contours of vertical stresses are plotted for both MC-FE and EPR-FE in 

Figure  5.31. Despite the difference between the results of the two different methods, 

their pattern is similar. It can be concluded that the developed EPR-model can be used 

to analyse three dimensional problems despite the fact that they have been constructed 

using data from a triaxial apparatus. It shows that the results of the EPR-based FEM are 

reliable and provide reasonable predictions (close to conventional methods) for 3D 

boundary value problems. 
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(a)  

 

(b)  

Figure  5.31: Vertical stress distribution in (a) MC-FEM (b) EPR-FEM 
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5.4.1.5 Example 5: Behaviour of soil under cyclic loading     

In this example, the behaviour of soil is studied in triaxial tests under cyclic axial 

loading. The test data for this example were generated in chapter 4 section 4.3.5 by 

numerical simulation of triaxial experiments. The generated data were used to train, 

validate and develop EPR-based material models (equations 4.68 and 4.69). The 

developed models are incorporated in the EPR-based finite element model to represent 

the soil behaviour under cyclic loading. The results of the EPR-based FE analyses are 

compared with those attained using conventional finite element method. The 

performance of the EPR-FEM is evaluated for two separate cases of loading where the 

soil is subjected to (i) regular and (ii) irregular cyclic loading and unloading conditions. 

 

 

(i) Multiple regular cycles 

 

In the first case, the EPR-based FE model was used to simulate a triaxial test on a 

sample of the soil subjected to multiple and regular cycles at a confining pressure of 250 

kPa which was an unseen case for EPR during its training (chapter 4, section 4.3.5). The 

loading cycles involved the application of a total axial strain of 8% in ten loading and 

unloading cycles. 

 

The results of the EPR-FEM are compared with those attained using the conventional 

FE simulation in Figure  5.32. It is seen that the results of the EPR-FEM are in close 

agreement with those of the conventional FE simulation. It can be seen from the figure 

that, the EPR-based FE model is capable of solving boundary value problems involving 

cyclic loading with a good accuracy. 
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(a)  

 

(b)  

 

Figure  5.32: Comparison between the results of the EPR-FEM and conventional FE for 

multiple regular loading cycles (a) deviator stress (b) volumetric strain 
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(ii) Irregular loading cycles 

 

In the first case, all the simulations (including those used for training and testing of the 

EPR) were performed with a regular loading pattern involving regular induced 

displacements in the cycles. This case is set out to examine if the EPR-based FE model, 

trained with regular cyclic loading data, would be able to generalise the training to 

predict the behaviour of the soil for irregular loading patterns that are different from 

those used for training of the EPR model. Although the loading pattern was different 

from that used for training of the EPR, the imposed strains (and loads) used in the 

simulation were kept within the ranges of values used for training so as to avoid 

extrapolation. 

 

In this case, the EPR-FEM was used to simulate the behaviour of the soil with an 

irregular cyclic loading pattern as shown in Figure  5.33. The test was simulated at 

confining pressure of 250 kPa that was not introduced to the EPR during training. The 

test involved the application (and removal) of total axial strains of 1.6% and 4% in the 

first and second cycles respectively.  

 

In Figure  5.33, the results of the EPR-FEM are compared with those obtained using the 

conventional FE simulation (using MCC model) of the same irregular pattern. From the 

figure, it can be seen that the results of the EPR-based FE simulation are in a very good 

agreement with those obtained using the conventional FE. The results are also compared 

with those obtained for a regular 5-cycle pattern with imposed strains of 0.8, 1.6, 2.4, 

3.2, and 4 percent in cycles 1 to 5 respectively and has been depicted in Figure  5.34. 

Comparison of the results shows that, although the EPR was only trained with data from 

regular cyclic loading tests, the EPR-FEM was able to predict the behaviour of the soil 

under irregular loading patterns. It can be concluded that the EPR-FEM is also capable 

of generalising the behaviour of the soil for cyclic loading with different loading and 

unloading patterns. This further illustrates the robustness of the proposed EPR-FEM and 

shows the excellent capability of the method in capturing the underlying constitutive 

relationships for the material from raw data and generalising it to predict different 

conditions not introduced to the EPR during training.   
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(a)  

 

(b)  

Figure  5.33: Comparison between the results of the EPR-FEM and conventional FE for 

two irregular loading cycles (a) deviator stress (b) volumetric strain 
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(a)  

 

(b)  

Figure  5.34: Comparison between the results of the EPR-FEM for 2 irregular loading 

cycles and the original cycle loading data used for training (a) deviator stress (b) 

volumetric strain. 
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Chapter Chapter Chapter Chapter 6666  
 

 

CONCLUDING REMARKS  
 

 

 

6.1 Summary 

In this thesis a novel approach is presented for material modelling in general and 

modelling the behaviour of soils in particular, using evolutionary polynomial regression 

(EPR). EPR is a hybrid data mining technique that searches for symbolic structures 

using a genetic algorithm and estimates the constant values by the least squares method. 

Stress-strain data from experiments were employed to train EPR and develop EPR-

based material models. The developed models were compared to the existing 

conventional constitutive material models and their advantages were highlighted. It was 

also shown that the developed EPR-based material models can be incorporated in finite 

element (FE) analysis. Different examples were used to verify the developed EPR-based 

FEM. The results of the EPR-FEM were compared with standard FEM where 

conventional constitutive models were used to model the behaviour of materials. These 

results showed that EPR-FEM can be successfully employed to analyse different 
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structural and geotechnical engineering problems. The following are the achievements 

of this research in presenting a new framework for constitutive modelling in FEA: 

 

• A total stress-strain strategy was introduced for developing EPR-based material 

models and a procedure was described to expand the data from a single 

experimental test on isotropic materials.  

• Also an incremental strategy was presented and a set of actual experimental data 

on samples of a soil from a triaxial apparatus was considered to develop EPR 

models to predict the soil behaviour using this strategy. 

• Volume change was modelled using EPR in order to predict volumetric 

behaviour of soils. 

• A strategy was introduced to examine the developed EPR models using a point 

by point prediction of the entire stress paths. 

• The implementation of the developed EPR models in commercial finite element 

software (ABAQUS) was presented. 

• A model for simulating the behaviour of soil under cyclic loading was 

developed using EPR. It was shown that EPR can learn the behaviour of the 

material under complex and cyclic loading conditions taking into account the 

stress history of the soil.  

• A methodology was introduced to incorporate the developed EPR models in 

FEM. It was shown that it is possible to construct the material stiffness matrix 

(also known as Jacobian) using partial derivatives of the developed EPR models. 

The EPR-based Jacobian matrix was implemented in FEM and a number of 

boundary value problems (including 2D and 3D problems as well as monotonic 

and cyclic loading conditions) were used to verify the methodology. 

6.2 Conclusions 

The following conclusions are drawn from the results of this thesis: 

• The EPR has all the advantages of ANN and in addition it provides the user with 

transparent and practical mathematical equations. 
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• When modelling using EPR it should be noted that different EPR types and 

functions and their combinations should be explored to find the best model.   

 

• The main benefits of using EPR-based material models are that it provides a 

unified approach to constitutive modelling of all materials (i.e., all aspects of 

material behaviour can be implemented within a unified environment of an EPR 

model); it does not require any arbitrary choice of the constitutive 

(mathematical) models.  

 

• In EPR-based material models there are no material parameters to be identified 

and the model is trained directly from experimental data. It should be noted that 

identifying the material parameters from material tests can be a difficult and 

subjective process. This presents another disadvantage of conventional material 

models in comparison to EPR-based material models where there are no material 

parameters to determine. EPR is capable of learning the material behaviour 

directly from raw experimental data; therefore, EPR-based material models are 

the shortest route from experimental research (data) to numerical modelling.  

 

• Another advantage of EPR based constitutive model is that as more 

experimental data become available, the quality of the EPR prediction can be 

improved by learning from the additional data, and therefore, the EPR model can 

become more effective and robust.  

 

• A trained EPR-based model can be incorporated in a FE code in the same way as 

a conventional constitutive model. It can be incorporated either as incremental or 

total stress-strain strategies. An EPR-based FE method can be used for solving 

boundary value problems in the same way as the conventional FEM.  

 

• The incorporation of an EPR-based constitutive model in FE procedure avoids 

the need for complex yielding/plastic potential/failure functions, flow rules, etc.; 

there is no need to check yielding, to compute the gradients of the plastic 

potential curve or to update the yield surface. 
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• It should be noted that, for practical problems, the data used for training EPR, 

should cover the range of stresses and strains that are likely to be encountered in 

practice. This is due to the fact that EPR models are good at interpolation but not 

so good at extrapolation. Therefore, any attempt to use EPR-based FE method 

for loading conditions that may lead to stresses or strains outside the range of the 

stresses and strains used in training of the EPR may lead to unacceptable errors. 

 

• EPRCMs are especially useful for materials that their constitutive models are not 

well developed (e.g., biomaterials).  

6.3 Recommendations for future research 

• Although it was shown that it is possible to develop constitutive models for 

materials in general and in particular soils with both linear and non-linear 

behaviour using EPR; its application to materials with more complex behaviour 

(e.g., unsaturated soils) can be the subject of future works. 

 

• In chapter 4 a strategy was introduced to extend and enrich data from a single 

laboratory experiment. However as it was mentioned there, the strategy was only 

applicable if the material under consideration was isotropic. The strategy should 

be extended to non-isotropic materials, as some materials like wood or some 

composites demonstrate orthotropic or non-isotropic behaviour. 

 

• All the examples presented in chapter 5 are static and dynamic problems are not 

studied in this thesis. The capability of EPR to capture the behaviour of material 

under dynamic (e.g., earthquake) loading can be investigated. Appropriate 

boundary value examples that involve dynamic analysis should be used to 

validate the EPR-based FEM.    
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