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ABSTRACT

Over the past decades simulation techniques, amdriicular finite element method,
have been used successfully to predict the respafrsgstems across a whole range of
industries including aerospace, automotive, chemipaocesses, geotechnical
engineering and many others. In these numericdyses the behaviour of the actual
material is approximated with that of an idealigedterial that deforms in accordance
with some constitutive relationships. Thereforege tichoice of an appropriate
constitutive model that adequately describes theawieur of the material plays an
important role in the accuracy and reliability betnumerical predictions. During the

past decades several constitutive models havedmazioped for various materials.

In recent years, by rapid and effective developmeéntcomputational software and
hardware, alternative computer aided pattern rdatogn techniques have been
introduced to constitutive modelling of materialBhe main idea behind pattern
recognition systems such as neural network, fuagiclor genetic programming is that
they learn adaptively from experience and extraatious discriminants, each
appropriate for its purpose.

In this thesis a novel approach is presented anglogied to develop constitutive
models for materials in general and soils in paléicbased on evolutionary polynomial
regression (EPR). EPR is a hybrid data mining teghlenthat searches for symbolic
structures (representing the behaviour of a systesijg genetic algorithm and
estimates the constant values by the least squaetBod. Stress-strain data from
experiments are employed to train and develop E&¥®d material models. The
developed models are compared with some of thdimgisonventional constitutive
material models and its advantages are highlightad.also shown that the developed
EPR-based material models can be incorporated nite fielement (FE) analysis.
Different examples are used to verify the develog@®R-based FE model. The results
of the EPR-FEM are compared with those of a stahd&dM where conventional
constitutive models are used to model the matéehlviour. These results show that
EPR-FEM can be successfully employed to analygerdiit structural and geotechnical

engineering problems.
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Chapter (1) Introduction

Chapter 1

INTRODUCTION

1.1 General Background

Constitutive models are relationships between twamnore physical quantities that
represent different aspects of material behaviawdt predict the response of that
material to applied loads, displacements, etc. @atige models play an important role
in modelling the behaviour of materials. In thetpdecades several constitutive models
have been developed to predict the behaviour dérémt materials including soils.
Among these model there are simple elastic modét®Ke, 1675); or more complex
material models such as cam clay model (Schofiel@&/&rth, 1968) or Lade’s single
hardening model (Lade & Jakobsen, 2002). Most es¢éhmodels involve determination
of material parameters. Generally in conventiormalstitutive material modelling, the
parameters of the model are identified from appat@iphysical tests on representative

samples.

One of the most fundamental functions of a consteumodel is its application in
numerical modelling techniques such as finite el@nmeethod (FEM). Finite element



Chapter (1) Introduction

method is a numerical technique to find approximsaitions of partial differential

equations (PDE). Most of the problems in engingeriesign and analysis can be
modelled as a single or a set of differential equat These differential equations
describe the response of a system subjected tonekt@fluences. Many differential

equations can not be solved analytically and ugualimerical techniques are used to
find their approximate solutions. Among numericathniques the finite element
method is known to be one of the most powerful ganechniques for the numerical
solution of variety of problems encountered in eegring. The basic idea behind finite
element method is to divide the structure, bodyregion being analysed into a large

number of elements (Stasa, 1986).

It is known that the accuracy of the finite elemanalyses results is mostly dependant
on the choice of an appropriate constitutive mottelt represents the material
behaviour. Therefore one of the crucial aspectsFBf analysis is selecting the
appropriate constitutive model. Despite the largenber of existing conventional
constitutive models and their complexity, nonel#fste models can completely describe
the real behaviour of some materials (e.g., smisks, composites, etc.) under different
loading conditions due to the erratic and complature of these materials. Therefore

alternative and different methods for developindgemal models seem to be vital.

For the first time, Ghaboussi and his co-worke89(@) proposed to use artificial neural
network (ANN) for modelling the behaviour of coniereAfter that other researchers
continued to apply this technique to modelling bedaviour of other materials. Some
of these works have proposed to incorporate theaheietwork material models in
finite element method to analysis engineering bampd/alue problems. Researchers
like Ghaboussi et al., (1998), Shin & Pande, (2G0@®) Hashash et al., (2006) proposed
autoprogressive or self learning approach to tresaral network material models via
sequences of training an embeded neural network) (NNa FEM using measured
displacements and forces of a structural or geoieahtest. These works indicated that
NNs can be used to model the behaviour of materidley also showed that if the
trained NN is used in FEM, it can provide reasoeabhd good predictions for
analysing engineering problems in comparison tactresrentional FEM. However NNs
suffer from some shortcomings. One of the disachged of the NNCM is that the

optimum structure of the NN (such as number of igpinidden layers, transfer

2



Chapter (1) Introduction

functions, etc.) must be identified a priori which usually obtained using a time
consuming trial and error procedure (Giustolisi &8, 2006). Another main drawback
of the NN approach is the large complexity of tle¢éwork structure, as it represents the
knowledge in terms of a weight matrix together withses which are not accessible to
user. In other words NN models give no informatmnthe way the inputs affect the
output and therefore are considered as a black d@mss of models. The lack of
interpretability of NN models has stopped them fraahieving their full potential in
real world problems (Lu et al., 2001 and Javadié&&ia, 2009a).

For the reasons mentioned above, an alternatigendeting technique which can dispel
the drawbacks of NN would be very benefitial. Amastger data mining techniques a
novel and recently developed technique named ewoky polynomial regression
(EPR) is considered here as a strong alternativilffbsince it express the model being
studied in terms of structured mathematical equati®&€PR was first introduced and
used by Giustolisi & Savic, (2006) to study the toydformatics and environmental
related problems. EPR is a two-step technique whetie first step it searches for
symbolic structures using a genetic algorithm amdhie second step EPR estimates
constant values by solving a linear least squaoblem. The application of EPR in
modelling and analysing different discipilines ohgeeering and in particular
geotechnical and structural engineering have adem linvestigated by the author of this

thesis and his co-workers.

1.2 Objectives

The potential of EPR in pattern recognition andadatning as well as its capability in
returning transparent mathematical expressions escrtbe systems, have been an
inspiration to employ this technique in constitetimaterial modelling soils. Therefore

the objective of this PhD thesis can be outlinethafollowing items:

* Review the main and recent developments in usirig daning techniques in
material modelling and their implementation in FE.

* Introduce and develop different approaches of naterodelling using EPR.

* Present a technique to extract additional data fix®mgle standard test in order

to prepare adequate data for training EPR.
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» Develop different material models for different poses and different materials.
In particular develop material models for soilsdrder to simulate both its
stress-strain and volumetric behaviour.

* Develop a model to predict cyclic behaviour of soil

» Construct Jacobian matrix using partial derivatieésdeveloped constitutive
models.

* Incorporate the developed EPR material models M.FE

* Verify the EPR-based FEM using a number of illustmexamples.

1.3 Layout of thethesis

The thesis consists of six chapters; a brief deson of the contents of each chapter is

given in the following paragraphs.

Chapter two provides a literature review of the keg recent developments in the use
of data mining techniques in material modellingisT¢hapter begins with the historical
background of conventional constitutive materialdelbng as well as first and latest
developments in using data mining techniques angairticular neural networks in

material modelling and its incorporation in fingkeement analysis.

Chapter three presents a complete explanation efngw data mining technique,
evolutionary polynomial regression (EPR). This dbapstarts with a general
introduction on most popular data mining techniquetficial neural network (ANN)
and genetic programming (GP). In addition a briefsatiption of evolutionary
algorithms and genetic algorithms is outlined siitée the main idea behind EPR. The
main focus of this chapter is on description of HRR and its key features.

In chapter four, EPR based modelling of materiald & particular soil is introduced.
Two different approaches are introduced to traid develop EPR-based model. Also
finding the optimum EPR models will be discussethis chapter. The developed EPR-
based models are compared with other conventiaratitutive material models and its
advantages are highlighted. Moreover an EPR-basedelnfor cyclic behaviour of

material is developed and presented.
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In chapter five, a procedure is presented for cangson of the Jacobian matrix from
the EPR models using their partial derivatives.oA#s methodology is presented for
incorporating of EPR-based model in FEM and inipaldr ABAQUS (FE software). A
number of different examples are provided to vaéidhe developed EPR-based FEM.
The presented examples range from simple to congeexnetry and from monotonic
to cyclic loading conditions with both linear andntinear material behaviour. The
results of the EPR-based FEM are compared to tbbsmned from standard FEM

using conventional constitutive models.

The final chapter 6 presents the main conclusiéniseothesis and recommendations for

further research.
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Chapter 2

REVIEW OF DATA MINING BASED
CONSTITUTIVE MODELLING

2.1 Introduction

During the recent decades, simulation techniques marticularly the finite element
method (FEM) have been extensively and successitidgd as a robust tool in the
analysis of a wide range of engineering problemduding aerospace, structural
engineering, automotive, biomedical, geotechnicgimeering and many others. In this
numerical analysis, the behaviour of the actualenitis approximated with that of an
idealised material that deforms in accordance witime constitutive relationships.
Therefore, the choice of an appropriate constieutodel that adequately describes the
behaviour of the material plays an important roléhe accuracy and reliability of the

numerical predictions.

This chapter review some of the application of teeently developed data mining

techniques in material modelling and discuss théwantages and shortcomings.
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2.2 Conventional Constitutive Modelling

In the past few decades several constitutive modal® been developed for various
materials including soils. Among theses modelselage simple elastic models (Hooke,
1675); plastic models (e.g., Drucker and Prages2),.9models based on critical state of
soils (Schofield & Worth, 1968), single or doublkertlening models (Lade & Jakobsen,
2002; Lade, 1977), etc. Most of these models imnwotietermination of material

parameters, many of which have little or no physitaaning (Shin & Pande, 2000).

In conventional constitutive material modelling, @appropriate mathematical model is
initially selected and the parameters of the mddelterial parameters) are identified
from appropriate physical tests on representatimmpdes to capture the material
behaviour. When these constitutive models are ussefihite element analysis, the
accuracy with which the selected material modete®sgnts the various aspects of the
actual material behaviour and also the accuracthefidentified material parameters
affect the accuracy of the finite element preditdio In spite of considerable
complexities of constitutive theories, due to tmeatic and complex nature of some
materials such as soils, rocks, composites, ette of the existing constitutive models
can completely describe the real behaviour of tmeaterials under various stress paths

and loading conditions.

2.3 Application of data mining techniquesin constitutive

modelling

In recent years, by rapid and effective developsientcomputational software and
hardware, alternative computer aided pattern ratogn approaches have been
introduced to constitutive modelling of materialBhe main idea behind pattern
recognition systems such as neural network, fuagiclor genetic programming is that
they learn adaptively from experience and extraatious discriminants, each
appropriate for its purpose. Artificial neural nerks (ANNSs) are the most widely used
pattern recognition procedures that have been gmagléor constitutive modelling of

materials. Recently other data mining techniquesh sas evolutionary methods have
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been utilised to modelling the behaviour of matseritn what follows a review of the
key works and the latest development in this figldresented.

The application of ANN for constitutive modellinga first proposed by Ghaboussi et
al. (1991) for modelling concrete behaviour. The v ANN was also continued by
Ellis et al. (1992) and Ghaboussi et al. (1994)o wpplied this technique to modelling
of geomaterials. These works indicates that neneélork based constitutive models
can capture nonlinear material behaviour. Theseefsodre versatile and have the

ability to continuously learn as additional datadrae available.

ANN models have the ability to operate on largengitias of data and learn complex
model functions from examples, i.e., by trainingsmts of input and output data. The
greatest advantage of ANNs over traditional matenadels is their ability to capture
nonlinear and complex interaction between variabliethe system without having to
assume the form of the relationship between inpdtautput variables.

The role of the neural network (NN) is to assiggiven set of output vectors to a given
set of input vectors. When applied to the constéutlescription, the physical nature of
these input-output data is determined by the medsguantities like stresses, strains,
pore pressure, temperature, etc (Javadi et al9)200

A typical NN based constitutive model is shown igufe 2.1.

Figure 2.1: A simple neural network based constitutive mode(eshin, 2001)
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In this simple network, one input layer, two hiddayers, and one output layer are used
to represent a constitutive model. Inputs are &itain componentsy, &y, ey, ande;,)

for a two dimensional problem and a forward passugh the network results in the
prediction of four corresponding stresses 6y, oxy, andos;) at the output layer. Every
neuron in each layer is connected to every neurdhe next layer with a “connection
weight”. The knowledge stored in the developed oetws represented by the set of
connection weights. The neural network is traingd adppropriately modifying its
connection weights, through the set of “trainingsesd, until the predicted stress
variables agree satisfactory with the correct streariables. Sometimes the NN
developed in this way is called back-propagation. NINe “back-propagation” term
refers to the algorithm by which the observed emothe predicted stress variables is

used to modify the connection weights.

Ghaboussi and Sidarta (1998) introduced nestedtigdapeural network (NANN) and

applied this neural network in modelling of the stitutive behaviour of geomaterials.
NANNSs take advantage of the nested structure ofithterial test data, and reflect it in
the architecture of the neural network. They apptles new type of neural network in

modelling of the drained and un-drained behavidwand in triaxial tests.

Penumadu & Zhao (1999) modelled the stress-straihvalume change behaviour of
sand and gravel under drained triaxial compresd@st conditions using neural
network. They used a vast number of database (dr@2tf triaxial test data) collected
from literature to train the neural network. Theyrfprmed a trial and error procedure to
find the optimum architecture of the neural netwofke developed neural network
consisted of 3 hidden layers, eleven neuron intinpb neurons in each hidden layer

and two outputs. The input and output parameters &g follow:

Inputs:Dsy, Cy, Ce, h,ng, e, €', Agt, 63, 05, &,

Outputs:gitl, i*?

where D, C,, C. are equivalent particle size and their distributib is hardness of
material,, n; shape factore is void ratio, ands; is effective confining pressure. The
current state units of stress and strain were septted with three inputs using deviator

stressr), axial strains’ and volumetric straig}. For a given specimen conditions and
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current state units the objective of neural netwasks prediction of two outputs,
deviator stresg*! and volumetric straimi*! of the next state of an input axial strain
incrementAst. It was observed that the developed NN model hastuced the
behaviour of soil with an acceptable accuracy mgeof both non-linear stress-strain
relationship, and volume change. Despite developingry comprehensive ANN-based
model for granular soils from a large databaseijrtberporation of this model in a finite

element (or another simulation) model was not preese

Shin and Pande (2002) described a strategy to genadditional data from general
homogeneous material tests in order to train NNCIMis was done by taking
advantage of isotropy when it is applicable to thaterial under consideration.
Assuming isotropy, transformation of the stresatstpairs was carried out by rotating
the datum axes (X-Y-Z) from the original axes (B)2in which the material test has
been done. This resulted in increasing the traidiaig significantly. A boundary value
problem of a circular cavity in a plane stresselats analysed with the FE code using
NNCM trained with the enhanced dataset. The NNCKBedaFE showed comparable
results with FE analyses using conventional canstd models. As stated by the

authors, this strategy has the limitation thaaimot be used for anisotropic materials.

Javadi and his co-workers carried out extensiveamh on application of neural
networks in constitutive modelling of complex méaks in general and soils in
particular. They have developed an intelligenttéinelement method (NeuroFE code)
based on the incorporation of a back-propagatiomratenetwork (BPNN) in finite
element analysis. The intelligent finite elementdelovas then applied to a wide range
of boundary value problems including several gduteal applications (e.g., Javadi et
al., 2002; Javadi & Zhang, 2003; Javadi et al. 420Qavadi & Zhang, 2004b; Javadi et
al., 2005; Javadi et al., 2009) and has shownNIN& can be very efficient in learning
and generalising the constitutive behaviour of clexpnaterials such as soils, rocks
and others.

Hashash et al. (2004a) described some of the isselesed to the numerical
implementation of a NNCM in finite element analysiad derived a closed-form
solution for material stiffness matrix for the nalunetwork constitutive model. They
derived a formula to compute consistent Jacobiafrixnéstiffness matrix) for NN

material models. For validation, the derived foramwas implemented in ABAQUS
10
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through its user defined material subroutine (UMAQ@ analyse a number of numerical

examples including analyses of a beam bending aledp excavation problem.

Furukawa and Hoffman (2004) proposed an approacmaterial modelling using
neural networks, which can describe monotonic aradicplastic deformation and its
implementation in a FEA system. They developed m&oral networks, each of which
was used separately learn the back stress anddbestiess. The back stress represents
kinematic hardening Y, and the drag stress repteseotropic hardening R. The
architecture of neural networks and their inputsl @autputs are illustrated in the

following figure.
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(a) Back stress (b) Drag stress

Figure 2.2: Structure of the proposed neural network materzdeh (Furukawa &
Hoffman, 2004)

In this figure Y and R represent the kinematic &wdropic hardening respectively and

e’is the plastic strain. The subscripts k, k-1 ang@ &re denoting the current and
previous states of each variable. After trainind aalidation stages of NNs, the NNCM
was implemented in a commercial FEA package, MARSIg its user subroutine for
material models. The implementation involves thiegeination of théd matrix, which

describes the stress-strain relationship,

o = D¢ 21

and is given by the sum of the elastic mabfand the plastic matri®®:

11
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D =De¢+ Dp 22

The elastic matrix is derived from Young's modulrsd Poisson’s ratio and only the
plastic matrix is updated using developed neurd@vokks. In order to appraise the
performance of the proposed approach, two materialels similar to Figure 2.2 were
developed using actual material data with monotgtéstic deformation. The results
were compared to one of the conventional materiatiets (Chaboche model) and
experimental data. A similar process was also edrout for cyclic plastic deformation
and a good agreement was noted. Eventually thelagfe models were implemented
in FEA package (MARC) using the described apprdacanalyse an axisymmetric FE
model, representing the central part of a tengiecisnen under a cyclic load. The

results are shown in Figure 2.3.
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Figure 2.3: Total equivalent stress data of experiment and REifts neural network
model and best-fit Chaboche model vs. cycles (Fawmak& Hoffman, 2004)

It can be seen in this figure that the resultshef developed FE model show a better
prediction compared to the conventional method f@Gbhe model), however as the

number of cycles increases the results of NN b&gadldiverge from the actual data.

12
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Nezami et al. (2006) utilized discrete element mdtlDEM) to generate the stress,
strain data to train Neural Network (NN) soil maglelhe trained NN models were then
used in Real Time Simulation (RTSM) framework. \fththis framework, model
training is done on the non-real time scale (sdveres faster than actual). This results
in a faster simulation run compared with the actD&M simulation. 2D and 3D
examples were used to verify the proposed apprdaetas shown that the results of
NN models in RTSM framework provide reasonable jgtezh compared to the DEM
results. In addition the results of the NN modeRinSM framework are obtained in a

significantly lower time.

Jung and Ghaboussi (2006a) presented a rate depeNde material model and its
implementation in finite element software. In ratependant materials, the material
behaviour is dependant on both strains (stresselsihe rate of strains (rate of stresses).

Therefore they developed a NN with the followinghatecture:

" = d'nNN(Sn, sn—l, o.n—l, o.n' én' én—l, o-.n—l) 23

where the following equations were used to deftness and strain rate.

O-.n — i(o.n _ O.n—l) 2.4
At ’

g-n — l(gn _ gn—l) 25
At ’

The developed NN model was then implemented indiivare ABAQUS through user
material (UMAT). The proposed model was verifiea # hypothetical material and
structure. In addition, laboratory test data olgdiby previous researchers were used as
an example application of the rate dependent NNen@tmodel. The test structure was
1/8" scale model of a real bridge, and the time dep®rsteain changes were measured
at the mid span using three strain gauges locdtéaeaop, centre, and bottom of the
bridge cross section as shown in Figure 2.4.

13
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Figure 2.4. Geometry of test specimen (Jung & Ghaboussi, 2006a)

(Unit: mm)

During the experiment, 10 cm by 20 cm cylinders eaverade with concrete used to

construct the beam. These samples were loadedhendinhe dependant strain was

measured. The stress and strain data extractedtfrese tests were used to train NN

material model. UMAT subroutine of ABAQUS was wédd to implement the

developed NN model and analysing the beam struciiie results of analysis and

measured strains are shown in the following figure.
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Figure 2.5: Measured and computed strains at mid-span (JunpadbQussi, 2006a)
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The figure shows good overall agreement betweendsklts using the implemented
NN model and the experiments. However a signifiaifference can be seen for the
results of the bottom gauge.

Kessler et al. (2007) demonstrated the implememtaof a neural network (NN)
material model in a finite element code, ABAQUSyotigh its user subroutine
VUMAT. They developed a NN model for 6061 Aluminiuamder compression and
different temperatures. They tried different type$ inputs and different NN
architectures and at the end the following inputsenselected to train NN.

Inputs:

1
In(e),In(¢),In(o) T tabular data of flow stresses and strains

wheree andé are strain and its rate respectivehyjs stress, and T is temperature.

The obtained NN model was implemented in ABAQUS VI@MAT to carry out
analysis and the results were compared to the th&r conventional build-in models of
ABAQUS (power law model and tabular data). The itestelieved that the NN-based
finite element model can provide a better prediciio comparison to the other two. It
was noted that some parameters need to be defiperafor conventional models,
while no parameter identification is required in MMbdel. No description is provided
in this paper on how the NN material model has bhegrlemented in ABAQUS. The
way that a constitutive model is implemented in &kalysis is vital and may have

significant effect on the output results.

Haj-Ali and Kim (2007) presented a neural networngtitutive model for fibre
reinforced polymeric (FRP) composites. Four differeombinations of NN models
were considered in this study. Data for training N models were gathered from off-
axis compression and tension tests performed wothpens cut from a monolithic
composite plate manufactured by pultrusion procésguts for NN models were
011, 022, T12 and outputs were scalar or vector of inelastictatal strains; which
created the four different combinations. The rasoftNN models were compared to the
experimental data and good agreement was obsdfuethermore a notched composite
plate with an open hole was tested and the readts used to examine its FE model
using the developed NNs model. For this purpose developed NNs were

implemented in ABAQUS material user subroutine. Témults of finite element model

15
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were compared to the experimental results in amaonvk point where the response of
structure was linear. It was shown that the modes wapable of predicting the general
linear behaviour of the composite at this point labwed a little diversion as strain
increased. No comparison was made between thetsesuthe FE model with NN

constitutive model and the experimental data ardbechole, where the behaviour was

more nonlinear.

Najjar and Huang (2007) used a recurrent neuralvorét to develop a model to

simulate clay behaviour under plane strain loadiogditions. They used this model to
investigate the effects of loading rate and sthest®ry on clay response. They showed
that developed model was able to assess the effesttain rate and stress history on
clay behaviour. However, as indicated by authdrs,mhodel cannot be directly used in

the solution of boundary value problems.

Yun et al. (2008a) and Yun et al. (2006a) proposedapproach for NN-based
modelling of the cyclic behaviour of materials. thre hysteric behaviour of material,
one strain value may correspond to multiple stieasel this can be a major reason that
stops NNs from learning hysteretic and cyclic bétxawv To overcome this issue, they
introduced two new internal variables in additiontlhe other ordinary inputs of NN-
based constitutive material models to help theniegr of the hysteretic and cyclic
behaviour of materials. The following two paramstgr,, An., are used as the

additional inputs of the NN material model:

On = Onn (Sn: €n-10n-1, gs,n; Ans,n) 2.6

whereeg,, is current straing,,_,, is previous state of straim,_;, iS previous state of
stress and, is current stress, ,,and An,, are the internal variables and are defined

in the following equations:

fs,n = Op-1&n-1 and Ans,n = Op-10&, 2.7

The above constitutive model was implemented ieregegal purpose FE code ABAQUS
using its user defined subroutine for materialse Téllowing equations were used to

construct the material tangent stiffness matrix

16
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Der — a(n+1Ao_)

- W 2.8

where "t'Ag = ""Ag — "Ao and "*!Ae = "*'Ae — "Ae. Two actual and one

simulated experimental data were used to verify pheposed NN-based material
models. In the first example, data from a cycl&t ten plain concrete were employed to
train a NN-based material model (equatihB). The results of training the NN model
together with experimental data and an analyticadieh are presented in the following

figure.

—=a— Experiment (Karsan and Jirsa, 1969)
09 =-=~= Analytical Model (Palermo, D and Vecchio, F.J., 2003)
a2 i—0— NN Prediction (Karsan and Jirsa)
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Figure 2.6: Results of training the proposed models and itspaymon with an
analytical model (Yun et al., 2008a)

The trained NN was used to predict a new serieslath in order to explore its
generalization capability. The results of this pegdn are presented in Figure 2.7.
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Figure 2.7: Trained neural network tested on different tesa @#un et al., 2008a)
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In the second example two experimental data from different steel beam-column
connections were used to train and verify anothBriddsed cyclic material model.
None of the NN-based material models in examplasd 2 were implemented in the
finite element code. However in the third numeriesample a three-floor building was
modelled in ABAQUS using Lemaitre-Chaboche as nitenodel and then simulated
data were extracted to train NN model. The architecof the NN is presented in the

following equation.

n+1 . n+1 . n+1 N n+1 . n+1 . n+1 .
{ 011, 022; 012} =6yn (" e €22; €12;

2.9

n .n . n .n .n . n . n+1 . n+1 . n+1
€115 €225 €12, 011, 022, O12; Ce,115 Ce,22; Cs,lz)

where ¢, , = &, + An., IS a combination of the two previously introducedernal
variables. The trained NN model was incorporated imon-linear FE code and used to
predict the cyclic behaviour of the beam sectidie results showed a good agreement
between the simulated data and predictions; howeweor differences can be seen in
some of the results. One of the key issues thag hat been discussed in this paper is
the effect of strain increment (i&s = "*'¢ — ™¢) on the results of the NN model. The
developed NN models should be examined for diffestrain increment. Moreover it
was not discussed that what range of strain inaném&s used for training the NN

models.

Yun et al. (2008 b) extended the NN-based cyclitene model developed by Yun et
al. (2008a) and Yun et al. (2006a) for beam-coluoomnections by adding the
mechanical and design parameters. The architecturew NN model can be presented

in the following equation:

Mn = MNN (Hn, 9n—1: Mn—lr fe,n’ AnG,n' gi (DV1' SN DV] )) 2.10

where n indicates the™nload (or time) step§ and M indicate the rotational
displacement and momen§y ,=M,,_,*6,_, and Ang, = M,,_; X AB,, are the two
internal variables for accelerating learning caliigbiof hysteretic behaviour and

G(DVy, ...,.DV)) is the " mechanical parameter as a function of design bimsa

For the purpose of validation of the proposed NNdetptwo different types of
connections, extended-end-plate (EEP) and top-aatiagle with double web-angle

18
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(TSADWA) connection, under cyclic and earthquakeadiog condition were
considered. Synthetic data were utilized to devel®fN for the EEP connection. Depth
of beam {,), thickness of end plate,) and diameter of boltff) were chosen as

design variables. Therefore the following equatian describe the NN model.

M, = MNN (Qn: On—1, My _1, fe,n: Afle,n: g(db; tp) fb)) 2.11

For the TRADWA connection, real experimental daerevemployed to train and test
the NN material model. In both cases good agreelmetmieen the NN material models
prediction and actual data can be seen; howevee slisgrepancies in results can also

be noticed.

Kim et al. (2010) compared two different approacfesmodelling of steel beam-to-
column connections. The first approach is a compbhased model where all
components of connection are idealized by usingdamensional springs. Constitutive
relationships for every deformable component (sprivere defined in order to
represent the actual comprehensive response afita Jde idealized component-based

model is shown in Figure 2.8.
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(a) Test specimen. (b) Component-based mechanical medel.

Figure 2.8: A top-and-seat angle connection with double webesn@im et al., 2010)

The component-based model approach was verifiethusio experimental data from

literature, Calado et al. (2000) and Kukreti ancbistali (1999). The experimental and
component-based model results for two exampleprasented in Figure 2.9 and Figure
2.10.
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Figure 2.9: Experimental and analytical hysteretic response€&tado et al. 2000
(Kim et al., 2010)
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Figure 2.10: Comparisons between experimental and analyticalteeim et al.,
2010)

From these figures it can be seen that the compdrasm®d model has been able to
predict the general behaviour of connection, howetvés not able to capture every

detail of connection behaviour.

In the second approach, the nonlinear hystereticahenetwork model, proposed by
Yun et al. (2008a), was employed to model stressrstelationship of connections.
The NN-based model was first verified by synthedata (generated by Ramberg-
Osgood relationship). The applicability of the NNpeoach was further appraised by
applying to the two experimental data (used tofyecomponent-based model). The

architecture, inputs and output of the NN is présgm the following equation.
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M, = MNN(Qn: On-1, Mn_1,$n, Any, En—l) 2.12

In this equatiorty ,, = M,,_,6,_, andAng,, = M,,_1A6,, are the two internal variables,
M=moment, #=rotation, Myy and Byy:R°—R are the functional mapping to be
established through NNs and n indicates nth timelqad) step. An additional input
variable ofE,,_; is introduced in this paper to represent the cemplysteric behaviour
that includes pinching and degradation. The resoftshe NN-based model were
compared to the experimental data. The comparibowed that the neural network
model is capable to predict the overall pinchedtdrys loops better than the
component-based model presented in this study. neheal network model of the
connections is limited only to prediction of thelghl response of the joint. It can not
represent the contribution of individual componearid therefore does not give the user
an insight into the underlying components mechanics

At the end, the authors proposed a third approackufure investigation that will be a
mixture of the two approaches proposed in thisystilithe suggested approach would
involve the most effective mechanical and inforrmiaéil aspects of the complex

behaviour of connections.

2.3.1 Autoprogressive and Self-Learning training of NNCM

After the pioneering work by Ghaboussi and his aykers (Ghaboussi et al., 1991) on
application of ANN for constitutive modelling of tesials, Ghaboussi et al. (1998)
presented an entirely different approach, termeadpragressive approach, for training
neural network material models. In this approach ithformation measured from a
global load-deflection response of a structural ieeemployed to enrich the data for
training the NN. In general, neural networks requa large amount of data for

modelling material behaviour which usually can betcollected from a single test on a
sample of material. The proposed approach overcdmesssue and utilizes the fact
that a structural test contains a huge and divarseunt of data (e.g., different patterns
of stresses and strains) that can be used foirtgaim this method the material model is
extracted from an iterative non-linear finite eleranalysis of the test specimen and
gradually improves stress-strain information withieh to train the neural network.

Two simple examples were presented in this papauctsral response data from a
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simple truss and a laminated structural plate ¢oimigran open hole. In this paper, the
minimum number of measured structural responses tlagir type and locations is an
important issue that has not been addressed. pp®ach requires data from structural

tests in priori which may not be available in sqonactical applications.

Sidarta and Ghaboussi (1998) developed a neunabriethased constitutive model for
geomaterials using autoprogressive training. Thegdua non-uniform material test (a
triaxial test with end friction) which had a nonHamm distribution of stresses and
strains. Then the measured boundary forces anthdespents were applied in a finite
element model of the test to generate the inputcartgut data for training the neural
network material model. Using the data generatedhat way, the autoprogressive

method was used to train the neural network matemael.

Shin and Pande (2000) presented a self-learninte felement code with a neural
network based constitutive model (NNCM) insteadaofonventional material model.
The methodology presented in this paper is ingantlar to what Ghaboussi and his co-
workers presented as “autoprogressive training’d8. Two boundary value problems
were used in this paper to validate the methodol®g first was a two-bar structure in
which one of the bars is made of an ideally plastia strain softening material whilst
the second bar is linear elastic. Artificially gested load-deformation data of the
structure was used for training of the neural nekvimsed constitutive model (NNCM)
for the non-linear bar. The second problem simslaeplane stress panel of linear
elastic material subjected to a concentrated \&rtbad at the top. The displacements at
a number of monitoring points were used to traMNCM. It was shown that the choice
of the position of monitoring points affects thaiting programme and consequently
the convergence of the NNCM predictions to standandtions. The position of the
load was then changed to demonstrate that the NIR&@vbeen adequately trained to be
able to perform analysis of any boundary value l@mbin which the material law

corresponds to the trained NNCM.

Shin and Pande (2001) presented an approach toutertiye tangential stiffness matrix
of the material using partial derivatives of the GIM (trained with total stress and
strain data). They incorporated the computed s&nmatrix in their self learning finite
element code. The potentials of the developedligesit FE code were examined by

analysing a rock specimen under uniaxial cylindrecanpression with fixed ends.
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Shin and Pande (2003) used the self learning FE ¢tee finite element code with
embedded NNCM) to identify elastic constants fothotropic materials from a
structural test. They proposed a two-step methagoio which, in the first step, the
monitored data of a structure are used to train N Idased constitutive model
implemented in a finite element code. In the secsteg, the trained NNCM is used to
form the constitutive matrix using the followingusdion to compute material elastic
parameters.
doy

Dyy = DNNy,(g;, 0%) = Fr 2.13
l

The input and output of the NN together with itgilm@l architecture are presented in
the following figure. Strain and stress vectors avéte input and output of the NN

respectively.

11 022 033 Ty2 Taz Ty3

€11 €2 €33 Y12 Y23 Y13

Figure 2.11: Architecture of the NNCM presented in Shin and Raf@D03)

The methodology was then applied to a plane sppasel with a circular hole at its
centre under a compressive pressure. A finite edémedel of the panel with assumed
values of the nine independent orthotropic elasticstants was created as a synthetic
structural test. Displacements of 66 nodes at % lewxels, obtained from the FE
analysis, were assumed as measured data from thetusal test. The material
behaviour was linear elastic and after 3rd cycleself learning approach a good
agreement was noted with target results. The adpmt elastic constants were also
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compared and a good prediction was observed. The elastic constants were as
follow:

Ey, Ey: E,, ny: Gyz; Gz Vayr Vyz, Vxz

Although it should be noted that the NN based ctutste matrices were not symmetric
and therefore 36 elastic constants was achieveely Were symmetrised by averaging
the off diagonal terms. A relatively large numbdrnodes are used to monitor the
displacements of a structure with a relatively dengeometry and simple behaviour
(linear elastic). This could pose a limitation tast method in more complex and

nonlinear problems.

Hashash et al. (2003) extended autoprogressiveirtgaimethodology to extract soil
constitutive behaviour using measurements of |aterall deflection and surface
settlements from a sequence of construction stafjesbraced excavation. The input
and output for training the neural network modelravebtained from a simulated
excavation problem using a synthetically generalkaa. For this simulated FE model,
modified cam clay was used as the material model.sfart the autoprogressive
procedure, two FE model of the problem were createw used to simulate soil
removal and bracing installation of'rexcavation stage and the second one to apply
monitored deformations of the same excavation stagem the first FE model stresses
were extracted and from the second one the stréimesstress-strain pairs gathered from
the two FE model were used to train a NN soil motielhould be mentioned that at the
beginning of the procedure the material behavisumknown and therefore the two FE
model were initialised with a NN model representiimgear elastic behaviour. The
procedure was repeated until the entire excavatiages are simulated. At the end of
the process, a NN material model which has beémetlavith a rich set of data, will be
created through this iterative process. The ressitswed that the methodology
proposed in this paper is capable of extractingviaait material behaviour from a series
of finite element analyses of the excavation andrementally learn from field

observation.
Hashash et al. (2004b) presented a systematic andra procedure for probing

constitutive models. The following general strarolge equation was utilized to explore

constitutive model behaviour.
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\/(Agn)z + (Agz2)? + (Ag33)? + (Ag12)? + (Agz3)% + (Ae31)? = Tae 2.14

Two special cases of probing, true triaxial stnarobe (TTSP) and plane-strain strain
probe (PSSP) are considered to investigate thdcapiph of the above equation in
studying material behaviour. Three different mod®lsn Mises, Modified Cam Clay,
and MIT-E3 were used to demonstrate the true algxiobing procedure. But for the
plane-strain probing case an artificial neural retn(ANN) model was considered. The
NN model was trained with the autoprogressive dlgor, in a braced excavation
problem using MIT-E3 constitutive model. The NN rebdhowed a good performance
in predicting the surface settlement and laterapldicement of excavation problem.
However when the probing procedure was performedint the yield loci of NN
model, it was discovered that NN model has noturapt the correct shape of the loci
but the overall size of response surface was sinalMIT-E3 model. A possible reason
for this, as stated by authors, can be the ladkagiing data for NN model. However as
the data were generated synthetically using thdtsesf FE analysis, it is not clear why

the model was not verified using additional data.

Hashash et al. (2006a) introduced SelfSim (seliieg simulations) which they called
a software analysis framework to implement andrektde autoprogressive algorithm.
The procedure and steps of SelfSim are in facttic&nto those introduced in
Ghaboussi et al. (1998) and (Hashash et al., 28833utoprogressive method. The
SelfSim performance was validated using a simulat@évation case history. Synthetic
data including lateral wall deflections and surfaettlements were generated using a
FE model employing the MIT-E3 as soil model. Threenerical examples and two
actual case histories were used to examine thébddpand performance of SelfSim in
prediction of deep excavation projects. The resshiswed that the proposed approach
extracts sufficient information on soil behavioor dccurately capture observed field

behaviour.

Hashash et al. (2006 b), used the SelfSim methodhtvacterize the constitutive
behaviour of granular material and in particulatraxerrestrial soils using load-
displacement measurements. The steps of SelfSasepted in this paper are exactly
the same as (Hashash et al.,, 2006a). It was asstima¢dan in-situ test will be

performed on an extra-terrestrial soil in which theplied load and resultant
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deformation are recorded. Two FE models of the domader consideration will be

created and measured loads and displacementsendpplied incrementally to each of
these two models. Stresses will be obtained fraeriitmodel where measured load are
applied, and measured displacements and compigtiwili be used to obtain the strains
in the second FE model. Since all the measurenvantbe taken in the place, the costly
process of acquiring and transferring the extreetgrial soils can be avoided. Also
because in the SelfSim method no priori assumpisoronsidered for constitutive

relationship of material, this method is a stroagdidate to investigate the behaviour of

unknown and new materials, such as extra-terréstibs.

Jung and Ghaboussi (2006b) extended autoprogressgaithm to include rate
dependant material models. Same NN architectudaiag and Ghaboussi (2006a) was
used to create the NN model. In the autoprogressigerithm, rate of stresses and
strains were added to the values measured fromai@uFE models.

A hypothetical cylinder with viscoelastic matersald variable diameter as shown in the

Figure 2.12 was considered to verify the propasethod.
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Figure 2.12: The structure and the creep function used in tinelsited experiment
(Jung & Ghaboussi, 2006 b)

A NN-based rate dependant material model was dpedlasing the global response of
the structural test shown in Figugl2. The trained NN material model was then
employed to solve a new boundary value problem.irAportant aspect of the NN
model was its learning of the time step effectsvdis observed by the authors of the
paper that if the NN model be trained using onlg time step, its prediction for other

time steps will be poor. Therefore it was suggestethe authors that the model should

26



Chapter (2) evikw on data mining based constitutive modelling

be trained using different time steps. The methogiplwas applied to the results of

actual experiments to capture the non-linear cbhedyaviour of a superalloy.

Aquino and Brigham (2006) used autoprogressive @f-lsarning finite element
method to develop a NN thermal constitutive modeke other applications of
autoprogressive method, this one also includedféllewing steps. Pre-training or
initialising of NN model, two simulated finite elemt models, and finally training the
NN material model.

To verify the methodology a simulated experimens wtlized. The simulated test was
a steel plate with a heat flux on one side and @@8mperature as boundary condition

on the other three sides as shown in Figure 2.13.

Applied heat flux

&
o —
S STEEL L
I PLATE S
GD
T=100 °C

Figure 2.13: Simulated experiment (Aquino & Brigham, 2006)

Synthetic data were generated using the above atetukexperiment. Three cases were
considered and in order to study the stability led self-learning FE methodology, a
random noise was introduced in the simulated dEten the self-learning algorithm
was started with pre-training of a NN model by gatiag random temperature,
temperature gradient, and their corresponding fleatusing Fourier law. Two finite
element models were created. The temperature amgetature gradient as inputs were
extracted from the second finite element model, lagat flux vectors from the first FE
analysis as output. The NN was trained with thevaliata set. The inputs and output

of the NN model were as following:

aT
—,and T
y

In utS'a—T
P ‘ox’ @

Outputsyy, J,
Where:g—i, g—; are gradients in x and y directions respectivelyg d is temperature.

Jx, and J,, are heat flux vectors in x and y directions.
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It was shown that self-learning method is capabiledeveloping a NN thermal

constitutive model even in the presence of noigg.da

Jung et al. (2007) used SelfSim to predict the tilependant behaviour of concrete
during the construction of a segmental bridge. Thiesed SelfSim to predict the
remaining or future stages of construction usifgMdeveloped with stresses, strains,
and their corresponding rates from early stagescafstruction. The proposed
methodology was applied to Pipiral Bridge, a cotergegmental bridge, built by the
balanced cantilever method in Colombia. The NN rhaded in this study had 2 hidden
layers 7 inputs and 1 output. Each hidden layerl#adodes as shown in Figure 2.14.

2nd hidden layer
(14 nodes)

1st hidden layer
(14 nodes)

Figure 2.14: Rate-dependent neural network material model usddng et al. 2007

The inputs and output of NN were:
S-.n — S-,n NN(en en—l Sn—l Sn e-n én—l S-.n—l)
lm Im m»*lm »°lm »2lm “lm> *lm »°lm 2.15

wheresy, = 01, — 81m0,/3, €m = €im — OimEn/3, Oy = Ok €y = €y LM,k =1,2,3).
The superscripts n and n-1 represent the curredt the previous time steps
respectively. The proposed constitutive equatiors alved iteratively using the

following equation.
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n _ -n—-1 n n-1 .n-1 .n ,n n-1 sn-1
Sim = Sim +AtXNN(elm'elm »Stm  Stmo €1mo €im T Sim ) 2.16

The current strain and previous steps of otherrpatars were obtained from the results
of finite element analyses. The rate-dependent Nbddeh represents the creep of
concrete in this paper.

The method proposed in this paper was used in tiffereht ways to predict the
deflection of a segmental bridge (Figure 2.15)tHa first case, when a construction
case had a repetition of many cantilevers, the Nddlehwas calibrated using the first
couple of cantilevers and the remaining ones wezdigted using this NN model. In the
second case the NN model learned from earlier setgnaand predicted the deflections
of the remaining segments in one cantilever. Howévis known that NN models are
not reliable when they are used to predict dataohéywhat they have experienced
during training. The authors of the paper have estggl adding previously obtained
data from other sources (e.g. data from lab texdt] €lata, and synthetic data generated
by conventional models) to the current databaseorier to improve prediction
capability of SelfSim and predict the deflectioigemaining segments.

Literally this indicates that the SelfSim methodit& current way can not be used to
predict unseen range of strains and stresses babedn learning from early stages of
construction, and additional data is requireds Itherefore can be argued that SelfSim
should not claim to be a fully self-simulation teajue that can predict future stages of

a construction like segmental bridge.

(b) =] == L] leam
[] predict

Figure 2.15: Improvement of the camber using SelfSim: (a) ldesm the current
cantilever and predict deflections of the remaircagtilevers (b) learn from the earlier
segments and predict the deflections of the remgisegments (Jung et al., 2007)
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Fu et al. (2007) and Hashash et al. (2006 c) coetlrihe use of SelfSim for linking soil
laboratory testing and constitutive model developin&hey applied the methodology
to two simulated laboratory tests, a triaxial coeggsion shear test, and a triaxial
torsional shear test. Using extracted soil behaviimm laboratory tests, they developed
a neural network-based constitutive model. The ldgeel model was then used in the

prediction of the load-settlement behaviour ofratdated strip footing.

Yun et al. (2008c) and Yun et al. (2006 b) useétlsarning simulation to characterize
cyclic behaviour of beam-column connections inldt@nes. In these papers, they used
similar NN model to Yun et al. (2008a) and (2008dopredict the cyclic and hysteretic
behaviour of beam-column connection. The architectf the NN and its input and

output is presented in the following form.

M, = MNN (0, 01, My _q, ‘50,11' Ane,n) 2.17

where ¢y, = M,,_160,,_; and Ang, = M,_,A8, are the two internal variables,

M=moment, #=rotation, Myy and Byy:R°—R are the functional mapping to be
established through NNs and n indicatés time (or load) step. The two internal

variables are described intuitively in the follogifigures.

Ay, = 0, AM

e

() (b)

Figure 2.16: Internal variables defined for NN based cyclic cectiron model: (a)
displacement control form; (b) stress resultantr@fiorm (Yun et al. 2008c).

The following equation was used to calculate tahgsiffness of the NN-based

connection model.

_ 0AM

=320 2.18

30



Chapter (2) evikw on data mining based constitutive modelling

whereAM = "*'AM — "AM andA® = "*'A@ — "A@

Self-learning simulation approach in this paper wakanced with a new algorithmic
formulation of the NN based cyclic material mod&bth synthetic and actual data were
used to validate the enhanced self-learning sinomanethod in prediction of cyclic
behaviour of connections. As previously describe®elfSim method, in the@step,
two parallel finite element models (A, B) run inder to update and improve the NN-
based material model. In the model A, measurecefoere applied and in the model B
the measured displacement are enforced. Two diffecases were considered to
construct the stiffness matrix based on the FEMaA BEM-B as shown in following

figure.
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N

Figure 2.17: Case I: algorithmic tangent stiffness formulatiamidg self-learning
simulation (Yun et al., 2008c)
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Figure 2.18: Case Il algorithmic tangent stiffness formulatauring self-learning
simulation (Yun et al., 2008c)

It is shown in this paper that the NN model frora ttase | provides a better prediction

than case Il for the examples presented in thidystu
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Hashash and Song (2008) utilized self-learning REtians (SelfSim) technique to

extract soil constitutive behaviour. They used tpproach to model three different
problems; a triaxial test with frictional loadingapes, deformation due to deep
excavations, and site response as a result ofdmakshaking. Although they showed
that developed model can predict the soil behawwatlr a very good accuracy, however
as stated by the authors, selecting SelfSim andahewetwork parameters is an
empirical task and needs personal experiences.shioiss the lack of interpretability of

neural network models as extracting their optimusmameters could be a protracted

trial and error procedure and in some cases cauljective.

Tsai and Hashash (2008) presented the applicati@eliSim method in analysis of
dynamic soil behaviour. The paper describes théementation of SelfSim to integrate
field data measurements and numerical simulatidreeismic site response to obtain
the underlying cyclic soil response. They applied $elfSim to study 1D seismic site
response in the following steps.

Step 1: The ground response corresponding to a dedeng is measured in selected
depths within soil profile. The input base shakamgl the resultant measurements create
sets of field data. Initially an NN soil model iseprained using stress-strain data that
represent linear elastic behaviour over a limitedis range.

Step 2(a): A simulated model of site response ufiegnitial NN model is created and
the measured acceleration from the deepest poiatdawnhole array is applied at the
bottom of the soil column. After analysing, theesses and strains are computed
throughout the soil column based on dynamic equilib considerations. In the
SelfSim approach it is assumed that since the egpgdoundary forces (due to base
acceleration) are accurate then the correspondingpuated equilibrium stresses provide
an acceptable approximation of the true stresd gefperienced by the soil. However
the computed strains may not match the expectedtsesnd will be discarded.

Step 2(b): A similar site response analysis usirgdame NN model is carried out in
which the measured displacements from a downhabey aare imposed as additional
boundary conditions. In this analysis stressessdrains are also computed in the soil
column. It is assumed that the applied displacesnen¢ accurate and therefore the
corresponding computed strains are an acceptapl®xdmation of the true strain field

experienced by the soil.
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The stresses from step 2a and the strains from Zteform stress-strain pairs that
approximate the soil constitutive response. A niteonstitutive model is updated by
training and retraining the NN-based material maaghg the extracted stress-strain
pairs. The entire process is repeated several tumeg the full ground motion time

series until analyses of step 2a provide grounghomese similar to the measured

response. This process is shown in the followiggre.

3. Forward analysis with
extracted NN model

1. Field measurements

Stress-Strain data for initial NN
training:

1. linear elastic

2. Laboratory tests

3. Case histories

4. Approximate constitutive models Other events
AT Eﬂ ATy
2. SelfSim learning ]
‘ Xl Hher
"
. =Tl

(a) Simulate wave propagation | (b) Apply measurenents
-- Extract stresses T T -- Extract strains
%\\X\\t\\\\“\\ W NANN hased constitative model &\\\\\\\%\\ . w

Figure 2.19: SelfSim algorithm applied to a downhole array (Tesad Hashash, 2008)

Later in this paper they applied this procedure teynthetically generated downhole
array data. The methodology was applied to thréerdnt cases in order to evaluate its
capability to extract dynamic soil behaviour. A g soil layer under a sinusolidal
motion, a uniform but multilayer soil profile undseismic motion, and a non-uniform
multilayer soil profile under seismic motions wehe 3 synthetic cases. It was shown
that SelfSim is able to provide a good predictibthe site response in all three cases.
Eventually to evaluate the predictive capabilitytioé extracted material model from
individual events it was assumed there are two mecerdings available in profile 3.
Site response analyses (with FE incorporated NNen@tmodel obtained from a given
event) were performed using input motions of theeotwo events. The results of these
analyses are presented in Figure 2.20. In thigdigt can be noticed that in some cases

the prediction of surface response is very poor.
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Figure 2.20: Predicted surface response spectra of a given egerg SelfSim
extracted NN material models from other eventsi(@sd Hashash, 2008)

As stated by the authors, this difference is caussrhuse the site response analyses
experienced a range of unseen strains which wamtnotluced to the NN model during
the training stage. After this, the individual exdied stress-strain behaviour from three
events were combined together in one single databadrain a new NN material
model. It was shown that the prediction of the ¢ material model was improved
compared to the previous results however therestitha significant difference in one
of the predicted response spectra. Therefore flurefSim training using all three

events were performed to increase the accuradyeafesults.

Hashash et al. (2009) employed the SelfSim metbadtérpret the drained behaviour
of sand from triaxial test with fully frictional &mling platens. Three series of

isotropically consolidated drained triaxial testerevperformed on loose, medium, and
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dense specimens. The triaxial tests were simulasdg FE method and SelfSim
method was used to extract the non-uniform strrasasbehaviour from external load
and displacement measurements. It was shown tlatS#fSim was capable of
capturing the exact behaviour of the specimens. dutbors claimed that using the
proposed approach (integration of SelfSim and latooy testing) it is possible to use a
single laboratory test to generate a multitude toéss paths, instead of the current
practice of a single laboratory test for a sindgtess path. The presented study did not
provide any finite element modelling of a differdsaundary value problem than the

triaxial ones to appraise the capability of the@ted NN model.

Hashash et al. (2010) compared two different ambres for learning the behaviour of
deep excavations in urban environment. In this papey utilized genetic algorithm

(GA) and SelfSim approaches to learn the behawbgbil in a deep excavation. In the
first approach the material parameters of an exjstnaterial model (hardening soll
model of PLAXIS) were optimised using a geneticoaitdpm. In the second approach a
combination of finite element method and artificiaeural network (ANN) was

employed to extract the soil behaviour. In this rapph no predefined constitutive
model was needed. Both approaches were applied dasa study in Lurie Centre
excavation in Chicago, USA. It was shown that GA &elfSim could reproduce the
wall deformations reasonably well; however it appethat the hardening soil model
used in the FE model in the GA approach is not laepaf reproducing the settlement
profile behind the wall, neither in magnitude nershape. This is shown in Figure 2.21.
In this figure the graph on the right shows thefame settlement. The difference
between the results of GA-based approach and mexhsatues can be noticed clearly
in this graph; this difference for SelfSim resufishegligible. This shows that the GA-
based approach highly depends on the selectedtatinstmodel, i.e. the results would
differ if a different soil constitutive model wased in the GA approach. On the left
side of figure, while both approaches have providedlatively good prediction, it can
be observed that none of the methods have been tabjgedict the exact wall

deformation.
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Figure 2.21: Comparison of computed (a) lateral wall deformaaod (b) surface
settlement using GA and SelfSim for the stage &aavation (Hashash et al., 2010)

Jung and Ghaboussi (2010) presented a similar workhe Jung and Ghaboussi
(2006a), Jung and Ghaboussi (2006b) and Jung €0f7). In this paper the authors
first have explained and verified the rate-dependaunral network model. Then using
the autoprogressive method, they trained neuralari&tconstitutive models with load-
displacement measurements from structural mongowdter pre-training the NN, the
method was applied to inverse identification ofegref a concrete beam. The results of
the comparison between the experiment and the mngmssive method are presented
in Figure 2.22.
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Figure 2.22: Convergence of mid-span deflection during the awig@ssive training
(Jung & Ghaboussi, 2010)

In the application of the method it was tried ta dde effect of shrinkage to the neural
network model in order to improve its predictiomelresult is illustrated in Figu&23.
As it can be seen, including shrinkage effect hasroved the prediction of NN model

slightly and this improvement is not significant.
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Figure 2.23: Convergence of mid-span deflection during the awig@ssive training
(Jung & Ghaboussi, 2010)

The authors of this study attempted to use thepaogpessive methodology to forecast
the behaviour of concrete in long-term based orbéisaviour in short-term. For this
purpose they generated some data from the equpatesented for creep in the ACI
code. The data from this equation with differemtdisteps and the original database
were re-trained again to predict tHe @nd %' load steps of the concrete beam test based

on the first three load steps. The best achievaudlteeare presented in Figure 2.24.
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Figure 2.24: prediction after learning the first three steps #eddatabase (Jung &
Ghaboussi, 2010)

Although the authors have tried to improve the mtezh of NN model using different
ways; however, looking at the figure presented abalearly the proposed method has
failed to forecast the prediction of concrete belehaviour for the 4 and %' load

steps.
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Following the suggestion by Kim et al. (2010), Gtadsi et al. (2010) developed a
hybrid modelling framework by using mathematicsdshsand information-based
methods, called HMIM. This hybrid method combinégs tmathematical models of
engineered systems (derived based on physics amtameal laws) with artificial
neural network models using autoprogressive antii&ehing Simulation. In HMIM,
neural networks only store information that is kperimental data and mathematical
models can not capture them due to their compl&tioaships. As an example the
HMIM method was applied to modelling a steel bearadlumn connection. In this
example the components of the connection were e@ivitb mathematical-based or
information-based components. The components tiet tinderlying mechanics are
well-developed are suitable for the mathematicaldetiog. Others fit to the
informational modelling because their backgrounebties or available representations
are too poor or too complex to be implemented éndinrrent computational power. The
results of an experimental test on a top-and-segieaonnection carried out by Kukreti
and Abolmaali (1999) were employed to evaluate thpability of the proposed
method. In this connection, angles and column paoeé components were classified
as mathematics-based components and slip and atwatizas informational-based
components. The mathematical-based components ideaézed as one-dimensional
springs and reliable constitutive equations werdéindd for each of them. The
autoprogressive method was utilized to train therrale network model of the
informational-based components. The behaviour ef dbnnection under cyclic load
predicted by the hybrid model and an analytical ehlodere compared to the
experimental results and is presented in Figuzé.Zrom this figure it can be seen that
the hybrid model has been able to predict the hehawf this connection better than
the analytical method. It should be noted thatmpresented example in this paper the
entire data has been used to train the neural netwbile it is common to use only a
part of the data for training and the rest for dation.
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Figure 2.25: Comparison between experiment and hybrid model §Ghssi et al.,
2010)

Osouli et al. (2010) investigated the influence different instruments and their
locations in an excavation project and the qualitynformation that can be extracted
for excavation modelling using self-learning sintida technique. A set of synthetic
data, generated by finite element analysis usingT-EB constitutive model,
representing the measurement from different lonati@f the excavation project
including surface settlement, wall deflection eiere considered. These data were
utilized to study the relationship between fieldtrmmentation selection and the quality
of learned material behaviour. The results showed ih addition to the measurements
of lateral wall deflections and surface settlemaémt/inometers placed some distance
behind the wall and measured forces in the stramsstgnificantly improve the quality
of extracted soil behaviour. These findings wereafieel with an actual case study of a

deep excavation project in Taiwan.

Hashash et al. (2011) applied the SelfSim appréacmnalyse a 3D deep excavation.
They described numerical issues related to thidlpro including those occurred in
developing the 3D model. They have shown that tbpgsed approach can capture the
soil behaviour using the measured wall deforma#ind surface settlement from a 3D
problem.

Although it has been shown by various researchesNNs offer great advantages in
constitutive modelling of materials in finite elemeanalysis; however, despite their
good performance on the available data, these mktwaave some shortcomings. One

of the disadvantages of the NNCM is that the optimatructure of the NN (such as
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number of inputs, hidden layers, transfer functjogis.) must be identified a priori

which is usually obtained using a time consuming tnd error procedure. Also, the
main drawback of the NN approach is the large cemipl of the network structure, as
it represents the knowledge in terms of a weightrisnéogether with biases which are
not accessible to user. In other words NN models gb information on the way inputs
affect the output and are therefore considereddack box class of model. The lack of
interpretability of NN models has inhibited thenorfr achieving their full potential in

real world problems (Lu et al., 2001 and Javadié&&ia, 2009a).

2.3.2 Application of evolutionary techniquesin constitutive modelling

Feng and Yang (2004) proposed a hybrid evolutioragorithm to identify the
structure of the non-linear constitutive materiadal and its coefficients. The problem
was defined as finding the elements of Jacobiamixnasing a combination of genetic
programming and genetic algorithm. Genetic programgmwas used to find the
structure of the mathematical relationship betwstrss and strain and the genetic
algorithm then used to find its coefficients. Thethodology can be described in the
following steps:

Step 1. A set of load-deflection data, obtainedaistructural test, is divided in two
groups. One is used for training to get the camste models and the other as
testing to appraise applicability of the learneastdutive model. Then a non-
linear finite element analysis is performed to agtrstress-strain data set of
experimental load-deflection data.

Step 2: A group of mathematical structures for ttus/e models are randomly
generated as an initial generation of model ewotutiusing genetic
programming.

Step 3: The best coefficient set for the generatedels at step 2 is found using genetic
algorithm.

Step 4: The applicability of each model is evalddig calculating errors.

Step 5: If the calculated error is less than theradle error or cannot be considerably
reduced any more, then the procedure is terminatedlse, it goes to the next
step (step 6).

Step 6: New mathematical structures of material eh@de evolved and the process
restart again from step 3.
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The proposed methodology was applied to modellimg mon-linear behaviour of
laminated composite materials. The experimentallt®sof a test on a laminated
graphite plates with an open hole under compredsiad was utilized to verify the
methodology. The results showed that the propoggdoach is generally capable of
learning the behaviour of the laminated compositesyever it was less promising for

the cases that were used for testing.

The proposed approach also suffers from other ssgt@ instance in the first step, it is
not clear what constitutive equation is used inkERemodel to generate the stress-strain
data. The choice of the constitutive model has iy gtrong effect on the outcome

results.

2.4 Summary

This chapter reviewed a number of approaches tetitotive material modelling using
different data mining techniques. The review inthdathat each approach has its own
limitation and shortcoming. To overcome the issaied drawbacks associated with this
approaches, a further refined approach, calleduéwolary polynomial regression
(EPR) is proposed in this thesis that provides sparent models in terms of
mathematical expressions to describe the mateodets. It is shown that how material
models and in particular models that describestsshlviour, is developed using EPR.
Furthermore the incorporation of the material med@eveloped by this new data
mining technique) in finite element method (FEM) described in this thesis and
different examples are provided to illustrate tlo¢eptial of the proposed EPR-FEM in

analysing boundary value problems in engineering.

Rezania, 2008 and Javadi & Rezania, 2009b wereriheworks that have used EPR
for constitutive modelling of materials. They deygd EPR models to predict the
behaviour of shear stress in soil using the data fexperimental test on soil (triaxial
data). They introduced a methodology to incorpotia¢edeveloped model in FE model
and a number boundary value problems were usedrify the methodology. However

these works have not addressed some main pointsingtance in these studies the
volumetric behaviour of soil was not considered anty a model was developed to
predict the shear stress of soils. In addition amignotonic loading condition was

considered in these studies when modelling the Isalilaviour. In these works, the
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Jacobian matrix was not developed based on theadimes of the developed model and
instead only elastic modulus was updated. Moreowezn the developed models are
incorporated in FE analysis the effect of Poissoresio was not considered.
Furthermore the developed models were incorporiateah in-house FE code and the
capability of the developed model in a commercatveare was not examined. Only

two dimensional examples were used to verify tloppsed methodology.

This thesis is biult on the works done by RezaB08) and Javadi & Rezania (2009)
and address the shortcomings and issues assowikletthese studies. In this thesis two
different strategies are introduced to develop BRRed material models. The
volumetric behaviour of the solil is taken into amcbwhen developing the material
model (i.e. an additional model is developed todmtethe volumetric behaviour of

soil). In addition a model is developed to predie cyclic behaviour of soils. Moreover
in this thesis a methodology introduced to constthe Jacobian matrix using the
derivatives of the developed models. The incorpanadf the developed models in this
thesis in a commercial software (ABAQUS) is introdd. Examples including 2D and

3D problems are used to verify the methodology psep in this thesis.
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Chapter 3

Evolutionary Polynomial Regression (EPR)

3.1 Introduction

As discussed in chapter 2, data mining technigudseapecially neural networks (NNs)
have been successfully trained with synthetic ab &g experimental data to obtain
constitutive models for materials. It was also shotlat various researchers have
successfully implemented the obtained material rsomhedifferent numerical analysis

methods such as finite elements (FE).

Generally there are two most well known data-drivenhniques, artificial neural
networks (ANN) and genetic programming (GP). ANNe usghly simplified models
composed of many processing elements (neurons)ecteth by links of variable
weights (parameters) to form black box represemmatof systems. ANNs are capable
of dealing with large amount of data and learn demmodel functions from examples,
l.e. by training using sets of input and outputadaNNs have the ability to model
complex, nonlinear processes without having to mssthe form of the relationship
between input and output variables. However, ANBoahas some drawbacks; for

example the structure of a neural network (e.g.ehoguts, transfer functions, number
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of hidden layers, etc) must be identified a pridmother disadvantage of ANNSs is the
large complexity of the network structure, as presents the knowledge in terms of a
weight matrix and biases which are not accessiblaiger. In addition, parameter
estimation and over-fitting are other disadvantagésnodels constructed by ANN
(Giustolisi & Savic, 2006; Giustolisi & Laucelli0B5).

Genetic programming (GP) is another modelling apgihothat has recently became
popular. It is an evolutionary computing methodttigenerates a transparent and
structured representation of the system being etudrhe most frequently used GP
method is symbolic regression, which was proposeddza (1992). This technique
creates mathematical expressions to fit a set td gaints using the evolutionary
process of genetic programming. Like all evolutigneomputing techniques, symbolic
regression manipulates populations of solutionghis case mathematical expressions)
using operations analogous to the evolutionary gsees that operate in nature. The
genetic programming procedure mimics natural selecs the ‘fitness’ of the solutions
in the population improves through successive gdimars. The nature of GP allows
global explorations and allows the user to resdiuvéher information on the system
behaviour, i.e. gives an insight into the relatlopsbetween input and output data.
However, the GP also has some limitations. It a/pn that GP is not very powerful in
finding constants and, more importantly, that iide to produce functions that grow in

length over time (Giustolisi & Savic, 2006).

To avoid the problems associated with ANN and GRew data mining technique
called evolutionary polynomial regression (EPRinisoduced in this chapter. EPR is a
combination of Genetic Algorithm (GA) and Least & (LS) regression which uses
an evolutionary search for exponents of polynoneigbressions by means of a GA
engine. In what follows a brief description of evibdnary algorithms and especially
genetic algorithm will be outlined and later a cdete description of EPR will be

explained in detalil.

3.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a subset of aitif intelligence that involve finding
optimal solutions from a finite set of solutionsvdtutionary algorithms generate
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solutions to optimization problems using technigumspired by natural evolution, such
as mutation, selection, and crossover. Genetiai#ihgo (GA) and genetic programming
(GP) are the main types of evolutionary algorith&s.it was mentioned before EPR is
a combination of GA and LS and for that reason iaf ldescription of GA will be

outlined in following.

3.3 Genetic Algorithm (GA)

Genetic algorithms are search algorithms basechemtechanics of natural selection
and natural genetic&enetic algorithms are combination of the surviefithe fittest
between string structures together with a randothigait controlled and structured)
information exchange to create a search algorithitim some of the innovative styles of
human search. Genetic algorithms seek to maxinfeefitness of the population by
selecting the fittest individuals, based on Darwitiieory of survival of the fittest, and
using their genetic information in mating and migtatoperations to create a new
population of solutions. Although the process imesl randomized operations, however
genetic algorithms are not simple random walk. @eragorithms utilize historical
information in an efficient way to find new searpbints with expected improved
performance Genetic algorithms have been developed by Johnahkidlland his co-

workers in the University of Michigan (Goldberg,859.

Genetic algorithms (GAs) have received much atentegarding their potential as
global optimization techniques for problems wittgaand complex search spaces. GAs
have many advantages over the traditional optinozanethods. In particular, they do
not require function derivatives and work on fuantievaluations alone. They have a
better possibility of locating the global optimuredause they search a population of
points rather than a single point and they canaaflar consideration of design spaces

consisting of a mix of continuous and discrete atalgs.

Application of genetic algorithms in optimizatiom warious engineering problems has
been extensively studied by several researchers.atithor of this thesis and his co-
workers have also performed a study on applicaifagenetic algorithm in optimization

of micro-structures of materials with negative Boiss ratio (Javadi et al., 2011). The
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results of these studies have shown that GAs casubeessfully employed as strong

optimization tool.

3.4 Evolutionary Polynomial Regression

3.4.1 Introduction

Usually colour names are used in order to categomnzathematical modelling
techniques based on their level of required pndormation (i.e. white-box models,
black-box models and grey-box models). A brief desion for each of these types of

models is as following (Giustolisi & Savic, 2006):

= A white-box model is a model with known variablparameters, and underlying
physical laws. It explains the relationship of gestem in form of a set or a
single mathematical equation(s).

* Black-box models are systems for which there ipnor information available.
These are data-driven or regressive models, foctwthe functional form of
relationships between variables and the numeriaameters in those functions
are unknown and need to be estimated.

» Grey-box models are conceptual models whose matieahatructure can be
derived through conceptualisation of physical pimeeoca or through
simplification of differential equations describinthe phenomena under
consideration. These models usually need paranestemation by means of
input/output data analysis, though the range otupater values is normally

known.

From the above it is clear that white-box modelgehtihe advantage of describing the
underlying relationships of process being modebiaded on the principles of physics.
However, the construction of white-box models cardifficult because the underlying

mechanisms may not always be wholly understoodhemause experimental results
obtained in the laboratory environment may not cetety represent the real sample
environment. Because of these reasons, approaeked bn data-driven techniques are

gaining large attention.
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In the context of modelling classification, EPRciassified as a symbolic grey box
technique which can identify and construct strieiumodel expressions for a given
data. A schematic representation of EPR classibicatn comparison with other

modelling methods is shown in Figure 3.1.

------------------------------------------------------------------------------------------------------------------

All of Mathematical
Art|f|C|aI Neural Networks
(ANN) Genetlc Programming (GP)Equatlons derived based on

Physical principles

Figure 3.1: Classification of EPR among modelling techniques

3.4.2 The EPR scheme

EPR is a two-step technique in which in the fitspst searches for symbolic structures
using an ad hoc but simple GA and in the secorERR estimates constant values by
solving a linear Least Square (LS) problem. Thesedteps will be discussed in details
in following.

3.4.2.1 Evolutionary structural identification

A typical formulation of the EPR expression is giwes (Giustolisi & Savic, 2006):

y = EF(X,f(X),ajHao 3.1

j=1
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wherey is the estimated output of the systeip;is a constant valug is a function
constructed by the procesgjs the matrix of input variableg; is a function defined by

the user; aneh is the number of terms of the expression exclubiaga,.

The first step to identify the model structure asttansform equation (3.1) in to the

following vector form:

Yyx1(0,Z) = [IN Z1]me] X[ag a; .. am]T = Zyxq X 95x1 3.2

where
Yn«1(0,Z) is the least square estimate vector of N targketes

014 is the vector ofl = m + 1 parameterg;,j = 1:m, and a,

Zyva is a matrix formed by, for biasa,, andm vector of variableg€’ that for

a fixed j are a product of the independent predictor veabbrgariables/inputsX =
X; X, .. Xp).

EPR starts from equation 3.2 and searches firgh@®best structure, i.e. a combination

of vectors of independent variables (inpXs) ;... The matrix of inputX is given as:

X111 X12 X33 X1k
X21  X22 X3 X2k

X=|x31 X3z X33 . X3|=[X; X, X3 .. Xi] 3.3
_le le le s xNk_

where thekt™ column ofX represents the candidate variable forjffigerm of equation
3.2. Therefore th¢#" term of equation 3.2 can be written as

ZIJ\'le = [(xl)ES(j,l) - (X,)E802) . (X)ESU) .. (Xk)ES(i,k)] 3.4
where,Z’ is the j** column vector in which its elements are produdtsandidate
independent inputs ars is a matrix of exponents. Therefore, the problenoifind
the matrix ES,,, of exponents whose elements can be values wither-defined
bounds. For example, if a vector of candidate egptsfor inputsX, (chosen by user)

iSEX=1[0, 1, 2] and number of termsn)) (excluding bias) is 4, and the number of
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independent variablesc) is 3, then the polynomial regression problem iditd a

matrix of exponentES, ;. An example of such a matrix can be as following:

[0 1 2]

ES:[O i 1‘ 3.5
1 2 0
1 1 0

When this matrix is substituted into equation 84 following set of mathematical
expression is obtained

Z, = (X1)0 : (Xz)l : (X3)2 =Xy X%
Z, = (X1)0 : (Xz)1 : (X3)1 =X, - X3

3.6
Z;= (X1)1 : (Xz)z : (X3)0 =X X%
Z,= (X1)1 : (Xz)l : (X3)0 =X;X,
Thus the expression of equation 3.2 is:
Y: a0+a1'Z1+a2'Z2+a3'Z3+a4'Z4
:a0+ al'Xz'Xé‘l' az'XZ'X3+ a3'X1'X%+a4'X1'X2 37

It should be noted that each row B$ determines the exponents of the candidate
variable of thejt* term in equations 3.1 and 3.2. Each of the egptsnin matrixES
corresponds to a value from user-defined veEXorThis allows the transformation of
the symbolic regression problem into one of finding beskS, i.e. the best structure of

the EPR equation, e.g. in equation 3.7.

It should also be mentioned that EPR can constnoct-polynomial mathematical

expression. It is possible to assume a fundfiosuch as natural logarithm, hyperbolic
tangent, hyperbolic secant and exponential andractate among the following

(Doglioni, 2004):

m

Y= a+ Z a; - (X)FSUD - (X,) B0
= case 1

F(XDEBSURHD) . F(X,)ESU20)
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m
Y=q,+ Z - f((XDEUD . (X, )ESUR) case 2
=1
m
Y= a+ Z @ - (X)FSUD - (X,) B0
= case3 3.8
. f((Xl)ES(j'k+1) .. (Xk)ES(j,Zk))
m
Y=g/|a,+ Z a; - (X)EBUD . (X,)ESUR case 4
=1

The global search for the best form of equatiohi8.performed using a standard GA.
The parameters being optimised are coded usingrohsomes’, i.e. a set of character
strings that are analogous to the chromosomes fouBdNA. Standard GAs use binary
codes (characters are 0’s or 1's) to form chrom@sorninstead, integer GA coding is
used here to determine the location of the canelidgaponents oEX in the matrixES
(Doglioni, 2004). For example the positions EX = [0, 1, 2]correspond to the

following string for the matrix of equation 3.5dcathe expression of equation 3.7:

EX=[123, 122, 231, 221] 3.9

It is clear that the presence of a zerd&EK ensures the ability to exclude some of the

inputs and/or input combinations from the regrassiquation.

After the evolutionary identification of the strucgé, EPR computes the values of the
adjustable parameters by means of the linear Least Square (LS) methangube

minimisation of the sum of squared errors (SSBhasost function.

3.4.2.2 Least squaresolution

Computinga; in equation 3.7 is an inverse problem that cpwasds to solving an over-
determined linear system in form of a LS problerisTproblem is traditionally solved

by Gaussian elimination. However, an evolutionaegarsh procedure may generate
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candidate solutions (e.g. a combination of expaehX) that correspond to an ill-

conditioned inverse problem. This often means tiiatrectangular matrizy ;-

Z:[Ile Z11V><1 Z12\I><1 ZIS\)le ervnxl]Nx(m+1)=N><d 3.10

may not be of full rank (if a solution containsauwmn of zeros) or the columi@d are
linearly dependent. This can cause serious problem&aussian elimination and
therefore a more robust method is required. Ferghrpose parameters estimatiorm,of
(or0) in EPR is achieved using Singular Value Decontpmsi(SVD) of the matrixX.
This approach makes the process of finding thetisolto the LS problem more robust,
although in general SVD is a slower technique tGanssian elimination method(Golub
& Van Loan, 1993).

3.4.3 Objectivefunctions of EPR

In order to get the best symbolic model(s) of tystem being studied, EPR is provided
with different objective functions to optimise. ERBn work both in single as well as
multi-objective configurations. Figure 3.2 showswemmary of main available objective

functions/strategies in EPR.
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EPR
objective
functions/strategies

Multi-Objective

Single-Objective

Cross validation 3 Objective

No. of g; vs. No. X;
vs. fitness

Control on
parameters

Control on
blocks

Penalization

2 Objective

No. of g; vs.
fitness

No. of X; vs. fithess

Figure3.2: Overview of main objective functions/strategie EPR (after Doglioni,
2004)

EPR introduces a set of multidimensional stratefmesmodel selection, based on a
comprehensive analysis of complexity (including temof terms, number of inputs)
and fitness of models. It is widely accepted that lbest modelling approach is also the
simplest that fits the purpose of the applicatibhe so-called principle of parsimony
states that for a set of equivalent models of amgphenomenon one should choose the
simplest one to explain a set of data. Therefdre fitness in regression-based models
should also include a measure of trade-off betwthermodel complexity (i.e. addition
of new parameters) and the quality of fit. This banachieved in two ways:
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I. Single-objective: an objective function is used cintrol the fitness of the
models without allowing unnecessary complexitieeeim the models.

[I.  Multi-objectives: at least two objective functioae introduced; in this case one
objective function will control the fitness of thmodels, while at least one
objective function controls the complexity of th@aels. This approach implies
the advantage of returning a set of non-dominatedats each one presenting
fitting and complexity features which vary along tRareto front representative
of the model solutions. Therefore, the user israquired to assume the number
of building blocks a-priori, but he/she just sdéte thaximum number of building
blocks, while the control on the complexity wilk ltnem vary according to the
fitness. Then, the Pareto front represents theetddd surface (or line), of
complexity vs. fitness, which is required. The &auff surface allows the user to

achieve a lot of purposes of the modelling appraadhe phenomenon studied.

3.4.3.1 Single-objective strategy

For a given set of observations or data, a regredsased technique needs to search
among a large if not an infinite number of possitrledels to explain those data. By
varying the exponents for the columns of maKiand searching for the best-fit set of
parameter®, the EPR methodology searches among all those ImoHewever it
requires an objective function that will ensure Hesst fit, without the introduction of
unnecessary complexity. Unnecessary complexitgis defined as the addition of new
terms or combinations of inputs that fit some nadiseghe raw data rather than the
underlying phenomenon. Therefore, the key objedise is to find a systematic means
to avoid the problem of over-fitting. There are ethrpossible approaches to this
problem:
I. To penalise the complexity of the expression byimising the number of
terms.
Il.  To control the variance af; constants (the variance of estimates) with resjpect
their values.

I11.  To control the variance af; - Z; terms with respect to the variance of residuals.

In addition to the above, two more strategies @anded:
(1) Cross-validation of the models
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(2) Optimisation of the SSE evaluated on the sitmda(off-line prediction) of the
phenomenon performed by the models. These twaegiest are more general purposed
and the Cross-validation proved to be effectivéhimse cases where a long data set is
available and data are affected by a low disturba(@iustolisi & Savic, 2006;
Doglioni, 2004). In what follows description of tfiest three strategies will be given. A

full and detailed description of the last two staés can be found in Doglioni, (2004).
. Complexity Penalisation

To choose a model with optimum complexity corregpog to the best prediction for
unseen data, a strategy is required to comparentadels with different levels of
complexity and model fit. The sum of squared er(&SE) is normally used to conduct

the search toward the best-fit model;

YL a — yp)? 3.11
N

SSE =

wherey, are the actual values (target values) in the ingimlataset ang, are the

model predictions computed by using polynomial espion obtained by EPR. In order
to allow a compromise between the quality of fiSE and the model complexity
(number of input combinations), the following pamation of complexity (PCS) fitness

function was used by Doglioni (2004):

PCS = Sk 3.12
~ (Nd —px + 1)@ '

whereNd = k - m is the maximum number of inputs that can be camsiipx is the
actual number of inputs selected by GA ands an adjustable exponent that controls
the amount of pressure to control complexity. Idesrto better understand this form of
the fitness function, the derivative of the fithdaaction with respect twpx can be

presented as following:

8( SSE )_( 1 )<OSSE+ a - SSE ) 3.13
dpx \(Nd —px + )%/ \(Nd —px + 1)*/\dpx Nd —px +1 '

The fitness decreases with respecptoif the derivative in equation 3.13 is negative.

This has been shown in Figure 3.3.
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A
SSE SSE (px)
P
>
px (P) px
Figure 3.3: SSE variation vgx (Doglioni, 2004)
Therefore the following inequality should hold:
a - SSE 0SSE
< - = —VAR,,(SSE) 3.14

Nd —px+1~ Opx

This means, adding another combination of inpytaeeds not only to be justified on
the basis of decreasing SSE, but also need toitékeaccount the termdN@-px) and

a - SSE (see Figure 3.3). The bold line is the derivatifeSSE with respect tpx(P),
while the curve is the natural SSE variation du¢h®increase in the number of input
parameters. Equation 3.14 requires a value ofSIBE derivative at P greater than or
equal to the term on the left side of the inequakiquation 3.14 shows that when the
actual number of inputgx approaches the maximuMi, the left term of the inequality
increases and, therefore, a high absolute variafi@SE will be required/AR,,, (SSE)

is always negative) which results in penalisatibrc@amplex structures by controlling

the total number of inputs in the formula.

Il.  Varianceof g;

It is possible in EPR to control the polynomialntecontribution to variance of

expressed through their parameters during GA selrdbed, it may be argued that low
constant value with respect to variance of estimatgresponds to terms that begin to
describe noise in preference to the underlying tiancof phenomena. Therefore

Doglioni, (2004) suggested to use the variancesbimated constant values to eliminate
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those parameters with a value that is not suffityelarger than the variance of the
estimated value. Hence, the variance in estimaifgmarameters obtained by EPR can

be computed as

var(0) = [var(ay) wvar(ay) wvar(ay) .. var(ap)] 3.15

Assuming that constants are from a Gaussian priyadensity function, the following

expression is used

y - |var(aj)| =y |StD(a]-)| > |aj| = a;=0 3.16

where StD is the standard deviation of estimated constamts(from the diagonal
elements of the covariance matrix) apé= 2.578 is the value from the table of the

standard normal distribution related to the confmieinterval of 99%.
[11. Variance of a; - Z;

EPR can control the polynomial term contributionvesiance ofY explaining through
evaluating the monomial building blocks - Z; with respect to variance of the noise in
the raw data during GA search. Of course, a letelotse may exist under which the
variance of the terms; - Z; will describe noise, causing over-fitting relatedigiems.

This level of noise is not known a priori and, #fere, a residual vector could be used
to estimate noise. In this manner, it is possibledmpare the standard deviation of this

residual vector with the standard deviation of ®an Z;, in the following form:

|StD(a; - Z))| < B - IStD(E)| = a; =0 3.17

wherep is a user selected adjusting parameterBisglthe vector of residuak(= Y —
Y(0,Z)). It is not easy to choogk but it is possible to considgt = 1 as giving a
pressure to EPR for formulae having variance of @ach greater than the variance of

the residuals.
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3.4.3.2 Multi-objective strategy

The original and first version of EPR methodologiich has been described so far) is
using single-objective genetic algorithm (SOGA)ttgy for exploring the formulae
space. As it was mentioned before this exploratsoachieved by first assuming the
maximum number of term& in the pseudo-polynomial expressions shown in ggua
3.2 and then sequentially exploring the formulpace having one, two, ... and
terms. However, the SOGA-based EPR methodologyheafllowing drawbacks.

a) Its performance exponentially decreases by inangasumber of polynomial
termsm (more terms means more GA runs).

b) The results of SOGA-based EPR are sometimes difficu interpret. The
identified models can either be ranked based an fiheess to data or according
to their structural complexity. However, ranking aets based on structural
complexity requires some subjective judgment, dedefore this process can be
biased by the analyst's experience rather thangbpurely based on some
mathematical criteria that in our case are theatijes.

c) When searching for the formulae wititerms, those formulae that have fewer
terms are not presented. However these formulalsl d@myve a better accuracy

than the previously found ones wjtk- 1 terms (Giustolisi & Savic, 2009).

To overcome these drawbacks, multi-objective genetlgorithm strategy
(MOGA)(Goldberg, 1989) has been added to EPR. Théi4objective approach in
EPR (MOGA-EPR) is aimed at searching for those rhsidectures, which on one hand
comply with the fitness and on the other hand Wttiting the structural complexity. In
this approach the control of fitness and complegity demanded to different singly
acting objective functions. The objectives représerby the functions are mutually
conflicting, and then their optimisation returngade-off surface of models. The multi-

objective strategy in hybrid evolutionary computargbles the user to

a) Find a set of feasible symbolic models.
b) Make a robust choice.
c) Get a set of models with variable parsimony leuwelan efficient computational

time.
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MOGA-EPR tackles a multi-model strategy by varyihg structural parsimony (i.e. the
number of constant values in the equation) and wwgrkn the objective function used
in Single-Objective EPR. Then, MOGA-EPR finds tle¢ af symbolic expressions that
perform well according to two (or more) conflictiegteria considered simultaneously,
the level of agreement between simulated and obdemeasurements, and structural

parsimony of the expressions obtained. The objedtinctions used are

a) Maximization of the fitness.
b) Minimization of the total number of inputs selectgdthe modelling strategy.

c) Minimization of the length of the model expression.

The obtained models are ranked according to thet®alominance criterion. MOGA-
EPR reduces the computational time required byrthkiple executions of EPR, which
would otherwise be required for one of each ofdbgctive functions introduced in the
previous section. The models that dominate otherthe population of solutions are
presented to the user. The Pareto set of soluti®rigkely to be the best set of
expressions required for the analysis of the prable

The objective functions commonly used to measum filmess of the symbolic
structures are based on the Sum of Squared E&S8E)(or on the Penalisation of
Complex Structures (PCS). The result of the simffctive EPR optimization consists
of a set of equally good models. They might belgaanked according to their SSE,
rather than according to their structural compiexi fact, sorting models according to
their structural complexity is usually a compleskaThe multi-objective strategy is
implemented to improve both the post-processings@hand the general modelling
framework of EPR. Such strategy allows ranking ndeccording both to the
Coefficient of Determination (CoD) and structuranlexity. The three objective
functions implemented in MOGA-EPR are:

a) (1-CoD), which has the same meaning as the SSE,

N—-1 Y, —Y,)2
CoD= 1— Zn|(¥p = Ya)?] —1—k-SSE

Voo |

3.18
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. 2(N — 1)

- 2
ZN (Ya - %ZN Ya)

whereY, is the vector of actual dat¥, are the corresponding predicted values &nsl
the number of data on which the CoD is computed.

b) The number of constant values(# ofa;) and

c) The total number of inputs involved in the symb@xpression (% oX;).
Note that the total number of inputs correspondsiéonumber of times that each input
is involved in the symbolic expression. The userstmaet the maximum number of
constant values, which puts an upper limit on theximum number of the symbolic
expression inputs. Therefore, MOGA-EPR looks fag tiest non-dominated models
with respect to both structural complexity and égs performance, i.e. placed on the
best Pareto front. Therefore, a direct multi-maagbroach is provided where the post-
processing phase is improved by MOGA-EPR, whichrret models ranked according
to both their fitness and their structural compiexi

A further advantage of MOGA-EPR is the increasedspure to achieve structural
parsimony because a large numbes,ofalues or a large total number of inputs must be

justified by the fitness of the model (note that thareto dominance criterion and the
function are to be minimised). The introduced otwecfunctions can be used in a two-

objective configuration or all together:

a) CoD vs. (% oKX;)
b) CoD vs. (% ofg;)
c) CoD vs. [(% ofX;) and (% ofg;)]

The choice of the Pareto dominance criterion fag thulti-objective optimisation
implies the following main advantages:

a) It is reasonably fast for few objective functioms Gomparison with the total

amount of time required by multiple single-objeetsessions.
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b) It deals simultaneously with multiple solutions.

c) Itis capable to provide a uniformly distributeshge of Pareto solutions.

A typical flow diagram for the EPR procedure iswhdn Figure 3.4.

GA Random initialization of a
population of exponent vectors

'

Offspring generation of exponent Assignment of exponent vectors
vectors "1 to columns of input matrix

1 v
A population of equation
structures is created

'

Mutation Least Square
‘ "
A set of equations is created

'

Crossover of the population Fitness evaluation

‘ !
Construction of the best Pareto
front of equations

y

Selection (based on ranking) of
the mating pool of exponent = N
vector individuals

Is the stop criterion met?

YES

Figure 3.4: Typical flow diagram for the EPR procedure (afb&glioni, 2004)
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A typical outlook of EPR during its operation iepented in the following figure. It can
be seen in this figure that EPR is performing a thuldjective strategy since it

simultaneously optimising CoLX; anda;.

J Figure No. 3 Q@@

File Edit Yiew Insert Tools ‘Window Help
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Figure 3.5: A typical outlook of EPR during a multi-objectieperation

3.4.4 Multi-Case Strategy for Evolutionary Polynomial Regression

Models returned by the EPR usually contain a aertaimbination of explanatory
variables which are common to the majority of Ramgtimal models, whereas other
variables or even entire terms are selected ingdistv models. In the case of individual
systems, the balancing between model accuracy, leaitypand prior insight on the
phenomenon can help in selecting the most suitaidelel to avoid over-fitting.
However when the same phenomenon is modelled foerake separate systems

significant differences may exist among relevantufa models. Such observation
61



Chapter (3) Evolutionary Polynomial Regression (EPR)

makes it difficult to separate the description loé underlying physical phenomenon
from other variables/terms which have been affetigtbcal effects and the particular
realization of the noise into each system. As asequence, this poses doubts about the
correctness of individual system models identifiad their use as general performance
indicators. The Multi-Case Strategy for EPR (MCSRgRims at overcoming the above
drawbacks by simultaneously identifying the bestielstructure and parameter values
from the observed data available for multiple syst€cases).

Assume there are C systems (cases),, ..., Sc each with the relevant observed dataset
containing both system outplsand the corresponding potential explanatory
variables (i.eXg;, with i =1,..,k andS =1,...,C). Like EPR, MCS-EPR encodes
each candidate model structure as a set of polyoexponents corresponding to
potential explanatory variables in all polynomiatmhs and then uses the MOGA-based
search procedure to find the best model struclithie.estimate of unknown polynomial
coefficients (i.e., model parameters); (s=1,..,C j=1,..,m+ 1) is performed
by means of numerical regression for all individsipggtems simultaneously. Evaluation
of the last two objectives reported above (i.emhar of polynomial terms and the
number of significant explanatory variables) is s#aene as in EPR, while the value of
first objective (model accuracy) depends on hovsalp each of th& models (with
parameters;, (j = 1,..,m+ 1) fits in its observed data. Unlike EPR, MCS-EPR

employs the following measure of model accuracy:

_ Zgzl ZNS(Yp - Ya)z _ Zg=1 N; SSES

21 2
ZN (Ya - %ZN Ya) ] ZN [(Ya - %ZN Ya)

F=1
3.19

where N is the total number of samples overCatlatasets (i.eVv = Y Ns), Y, is the
value predicted by the model built with the s-tlctee of parameters af, ; andY, is

the actual (target) values. Similar to the CoDml&tn of equation 3.18, the closer to 1
is F; the more suitable the model structure isdactibing the overall observed dataset
(Berardi & Kapelan, 2007).
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3.45 EPR user interface

EPR has been coded using MATLAB® HoLITECNICO DI BARI University, Italy, by
Professor Giustolisi and his co-workers in colla@ion with Professor Savic in
University of Exeter, UK. EPR is provided with aefidly user interface, as it can be
seen in the following figure.

Evolutionary Polynomial Regression
EPR TYPB Fegression Type Function
[=sum{aitdl W2 i) +a0 ) |Dynamical ~| |Ma function =l
Temns Expon na. nb+nk Scale Input-Output Salution Gen " Seed
* Plat
[ [os121 | 17 [ [ w1 Ls = | 1 ¢ Hisy
CRY (Cd (SIM MOGA strateqy HMarne of the Fils
rOCE OPES CMOGA No ~ ak | #siData
1 1
03 0
05 08
04 04
02 02
o . 0
o 0.2 0.4 0& 03 1 o 02 04 06 0s 1
1 1
0 08
08 08
04 04
02 02
a a
] 02 04 05 08 1 [ 02 s i 08 1

Figure 3.6: EPR Graphical User Interface

Within this graphical user interface (GUI), the usan set up the modelling phase
according the features described in the previoososes. Moreover, the user can decide
the number of generations of the GA, setting traper value in the “Generation” box.
This value corresponds to a proportionality factdrich will be multiplied for the
maximum length of the expression (maximum numbeaf monomial building blocks)
and for the total number of inputs. Another opti®mbout the possibility of seeding the
population with random elements from the previoaseptal set. This option efficiently
works when large data sets are available and glesivbjective configuration. In multi-
objective search the seed option does not seemd@may advantage in the GA phase.
Finally, the option “bias” refers to the possilyiliof looking for symbolic expression

containing the term,. If the bias option is not selected, EPR will an#&tically exclude
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all those expressions containing, otherwise selecting bias EPR will search both for

expression witla, term and without (Doglioni, 2004).

3.4.6 Theapplication of EPR in modelling engineering problems

Application and potential of EPR in modelling anaabysing different disciplines of
engineering from structural to geotechnical andirenvnental engineering have been
investigated by different researchers including aléhor of this thesis. The results of
these studies have been published in several enderand journal papers (e.g.,
Rezania et al., 2011; Ahangar-Asr et al., 2011;mgaa-Asr et al., 2010; Faramarzi et
al., 2011; Javadi et al., 2010).

Rezania et al., 2011 presented the applicationRiR i prediction of liquefaction and
earthquake-induced lateral displacement. They deeel a 3D surface that
discriminates between the cases of occurrence amgbccurrence of liquefaction using
EPR.

Ahangar-Asr et al, 2010 employed EPR in analysistability of soil and rock slopes.
EPR models are developed and validated using sefuoitn sets of field data on the
stability status of soil and rock slopes. The depetl models are used to predict the
factor of safety of slopes against failure for dtinds not used in the model building
process. The results show that the proposed agpiisagery effective and robust in
modelling the behaviour of slopes and provides ifiaghapproach to analysis of slope
stability problems. It is also shown that the mede&an predict various aspects of

behaviour of slopes correctly.

Faramarzi et al., 2011 proposed to use EPR togirdtd behaviour of steel plate shear
walls (SPSW) under cyclic behaviour. The resulta oumber of actual experiments on
cyclic behaviour of SPSW structures were used teeldp EPR models to predict
lateral deformation of SPSW due to the cyclic logdi

Ahangar-Asr et al., 2011 showed that how EPR candeel to predict the mechanical
properties of rubber concrete. They used data ffOncases of experiments on rubber
concrete for development and validation of the ERdelels.
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Chapter 4

EPR Based Material Modelling

4.1 Introduction

As discussed in chapter 2, data mining technigudseapecially neural networks (NNs)
have been successfully applied in constitutive mimgeof different materials. The

disadvantages and drawbacks of ANN were discuse#dib chapters 2 and 3 and a
new data mining technique (evolutionary polynommedjression) was introduced in
chapter 3 to overcome these shortcomings. In th&pter the application of the
evolutionary polynomial regression (EPR) in matenmedelling will be discussed in

detail.

In material modelling using EPR, the raw experimkor in-situ test data are directly
used for training the EPR model. As the EPR ledh®s constitutive relationships
directly from raw data, it is the shortest routenfrexperimental research to numerical
modelling. In this approach there are no materabmeters to be identified and as
more data become available, the material modelbeammproved by re-training of the
EPR using additional data. Furthermore, the inc@afen of an EPR in the finite

element procedure avoids the need for complex Haldre functions, flow rules, etc.
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An EPR model can be incorporated in a finite elentexe/procedure in the same way

as a conventional constitutive model.

In this chapter two different strategies will bdraduced to train EPR and develop
material models. In the first approach the totdliga of stresses and strains will be used
to train and develop models while in the second theeincremental values will be
employed to construct the constitutive models oftemals. Different examples
including modelling linear, non-linear, monotonitdacyclic behaviour of materials will

be presented to validate both strategies.

One of the main purposes of constitutive modelbhgnaterials is to perform numerical
analysis of boundary value problems. This is adtdely incorporation of developed
models in numerical methods (for example finitemedat) analysis. Therefore when
developing a constitutive model its suitability fonplementation in finite element
analysis should be taken into consideration. Théen@ models developed in this
chapter are all suitable to be implemented indimement analysis. This will be shown

in the next chapter through different examples.

4.2 Total stress-strain strategy for material modelling

The source of data, the training approach adoptddte way the trained EPR model is
to be used have significant effects on the choicaput and output parameters. An
EPR model formulated in the form of total stresaiatrelationships (total stress-strain
strategy) might be used for modelling of materthlst are not strongly path-dependent.
A similar strategy has been utilised by some re$eas such as Ghaboussi et al.,
(1998) and Shin, (2001) for training neural netwtwksed material models. In this
approach strain variables (i, ¢, £, ¥x,) Which represent the strain components in a
2D continuum, can be considered as inputs, andctineesponding stress variables
(0x, 0y, 04, Txy) @S outputs. It should be noted that due to thereaof EPR which
represents the model as a mathematical equatiomafth of the output parameters an
equation needs to be developed. This is in contvaistartificial neural network (ANN)

where you can have more than one parameter in butpu
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Data from material tests can be used to train ERRels. Usually a single test on a
sample of a material provides a set of stressrstedationships for a single stress path.
However generally all the material tests that imeoloading along the principal axes
result in the shear components (shear strainsy stresgses) being zero. As a result an
EPR model trained in this way would not be suitaiolebe incorporated in a finite
element (FE) analysis, since all the componenth@ftress and strain tensors must be
taken into account during analysis. Therefore tmioban EPR model with the potential
to be incorporated in FE framework, the EPR-basedlehshould be trained along

global axes with non-zero shear components.

To overcome this issue, a procedure is employed teegenerate additional data from
an ordinary material test. It should be noted thist procedure can be applied when the
material being studied is isotropic or isotropy tenassumed. This procedure was first
proposed by Shin, (2001) and Shin & Pande, (200B¢. procedure is described here
for 2D problems but it can be easily extended to 3D
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Figure 4.1: Transformation of stress components in a 2D contim
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Figure 4.1 shows a sample of a material underingadlong principal axes 1-2. The
additional data are generated in two steps. Ifitbestep it is assumed that the material
is isotropic. The assumption of isotropy enablegxohange the normal components,
thereby to double up the data. Then transformatibeach of the exchanged stress-
strain pairs is carried out by rotating the datweasa(X-Y) from the original axes (1-2)
where the material tests have been carried outroBating the axes, non-zero shear
stresses and strains and their corresponding nacamponents can be obtained as a
function of the rotation angke. Based on Mohr's circle, in the 2D space, the
transformation of a principal stress vector by agl@d8 measured anti-clockwise from

the X axis can be calculated as following:

oy to gy — 0
Oy = 12 2 12 2cos(219)
o4 t+o gy — 0
Oy = 12 2 _ 12 2 c0s(26) 4.1

0, — O
Tyy = L > 2 cos(20)

And for strains:

&+ ¢ & — €
&y = 12 2 4 12 2cos(219)
&+ € & — €
gy = 12 2 _ 12 2 c0s(26) 4.2

& — €
Yxy = - > 2C05(29)

This procedure can result in a large amount ohiingi data (depending on the size of
the original data and the number of rotational stephich means additional training

time will be required. To avoid any unnecessarining run any duplicated stress-strain
pairs in the expanded data must be removed. Ibtiless or strain components in one
the principal direction become zero or have theesaalue in both directions then in

this case some parts of the data become duplieai@thave to be eliminated.

To evaluate the potential of using EPR to derivedet® describing the material
behaviour using the above procedure, a feasibitydy is performed using
synthetically generated data for both linear angt-ieear material behaviour.
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4.2.1 EPR-based modd of a material with linear behaviour

In order to generate the required data for this@®ca hypothetical test is conducted as
following. The data is obtained from a finite elarhaimulation of this hypothetical
test. Figure 4.2 shows a sample of a materiaddesnhder a tensile load T along the axis
2 together with its deformed shape. The test isexhput under plane stress conditions.
The original shape of the sample is drawn in dadivesl The size of the sample
iIS10cm X 5cm. The sample is made of a linear elastic materigh & Young’s
modulus ofE = 500 Pa and a Poisson’s ratio of = 0.3.

2
A

T

P e |

T

Figure4.2: A plane stress sample of a material under teraimmg axis 2

Although the sample is only loaded along axis 2, deformations are measured along
both axes 1 and 2 (note that stress in directinzkro). The sample is loaded up to 20
Pa. Figure 4.3 shows the stress-strain curve adowg)2 obtained from this test. The
data from this figure together with the strains sugad in axis 1 were employed to

extend the data using the procedure describeceiprétvious section.
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Figure 4.3: Linear stress-strain relationship used to expaatd d

4.2.1.1 Input and output parameters and data preparation

50 stress-strain pairs were obtained from the hgimal test described above. The
stresses and strains in directions 1 and 2 (whacttain zero shear components) were
exchanged assuming that the sample in the tesbtopic. This doubled the data (100
pairs); however the shear components of this dedastill zero. For that reason,
transformation of each stress-strain pair was edrout by an angular steéyp with 0
varying from—45"to45°. This allowed the generation of all the possiwebinations
of stresses and strains with non-zero shear commp@n&he transformation was
performed in 30 steps (i.26 = 3°) from —45" to45° and therefore the resultant data
set of 3000 stress-strain pairs was obtained. Tinedade sets with non-zero shear
components. For an efficient training, duplicatedadwere removed in the expanded
data set.

Since the model studied here represents a two dimmal plane stress case, only three
components of stresses and three components afss{@ut of plane strains are also
zero) exist in the model. These awg,@,,7,,) for stresses and( ¢, yy,) for strains.
Three EPR models were developed each correspotwionge of the stress components.
The inputs and outputs of the three models were:
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input: €., &,
Model 1 P xr &y Yy
output: o,

input: &, &y, Yxy

Model 2
output: o,

input: &y, &y, Yy
output: Ty,

Model 3

The target is to find a constitutive relationshipthe general form of equation 3.1,

where the matrix of inputX, for each model is:

-1 o1 1 -
E&x & VYxy
2 .2 2
Ex &  Vxy
=1.3 3 3 4.3
X & & Vxy
i i i
1€x &y Vxyl

where superscript represents th&" row of the data. It should be noted that unlike
ANN-based constitutive models (Hashash et al., 200dg & Ghaboussi, 2006 a), in
EPR the values of inputs and outputs do not negdnammalisation or calibration
before or after training and therefore these valc@s be used as they are. Before
training the EPR, the data were randomly shuffledorder to make sure that the
obtained models had no bias on a particular patietiata.

4.2.1.2 Training EPR-based constitutive models

The database was divided into two independent €sts. set was used for training to
obtain the models and the other one for validatmrverify the performance of the
obtained constitutive models. Although some redearchave studied the extrapolation
capabilities of models developed by EPR (Doglianale 2008; Laucelli & Giustolisi,
2011); however like any other data mining technigiR does not demonstrate a good
performance for data beyond the training range @xrapolation). It was therefore
decided to choose the verification data in the eaof the training data to avoid
extrapolation as much as possible. Usually aroud% 8f data is used for training the
model and the other 20% is used for validation.ré&toge from the 1500 cases, 300

were used for testing the obtained models.
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4.2.1.3 EPR procedure and the obtained models

Before starting the EPR process, some of the ERBnmers must be adjusted to
control the obtained models. These parameters @ainot the optimisation techniques
(i.e. single-objective or multi-objective), numbef terms of the mathematical
expressions, range of exponents, EPR structureshentype of the functions used to
construct the EPR models. Since in this exampleb#taviour of material is known a
priori (i.e. linear behaviour); therefore no fumctiwill be chosen. Also for the same
reason the exponents can be limitedoto 1]. As it was mentioned in chapter 3 it is
advised to include the value zero, which helpsigtatding those variables or inputs
that are not useful for models (Doglioni et al.08D The EPR type has no effect on the
output model if no EPR function or an EPR type ihablves a function is chosen. It
should be mentioned that most of the times the\netaof model is not known a priori
and therefore different combinations of functionsl @xponents must be tried to get the
best results of EPR. The maximum possible numbeewhs in a polynomial with
above exponents is 8 terms including a constarfficeat and therefore the number of
terms is set to 8. Finally as it was discussedhapter 3, multi-objective strategy of
EPR has resolved some of the drawbacks of singketze EPR including its slow
performance. For this reason the multi-objectiveRER used to construct the EPR
models. Since the aim of this study is to involitdlee components of the strains in the
evolved EPR equations, therefore minimising totamber of inputs % of X) is not
selected but instead to get an efficient equatiomimising the number of constant
values(a;) is chosen as the other objective of EPR. Aftedifeg the training and
testing data and setting all the parameters, the &h be started. The results of EPR
including the obtained equations, and coefficiehtdetermination (CoD) values for

training and validation sets are presented inaHewing equations and Table 4.1.
It should be noted that the coefficients and caortstare only valid for the dimension

used for each variable and respective equationsthHeoequations developed in this

thesis the units of parameters are provided asdde@ton the same page as equation.
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Model 1
* o, = 5.081 4.4
o, = 425.0854¢, + 2.0669 4.5
o, = 549.4505¢, + 164.8352¢, — 5.1338 X 10712 4.6
Model 2
gy, = 5.119 4.7
o, = 425.5103¢,, + 2.0598 4.8
o, = 164.8352¢, + 549.4505¢,, — 1.2134 X 107t 4.9
Model 3
Tyxy = —0.0009978 4.10
Tyy = 192.3077y,y + 3.2319 X 10712 4.11

Table 4.1: Summary of results obtained for EPR based modelsaterial with linear

behaviour
Eqﬁgﬁon Model No. CoD for training (%) CoD for validatiofol
4.4 0.07 5.3
4.5 Model 1 93.87 86.96
4.6 100 100
4.7 0.07 6.74
4.8 Model 2 93.90 77.97
4.9 100 100
4.10 0.07 -
Model 3
4.11 100 100

" Units:o (N/m?)
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It can be seen from the obtained equations andeTdll that for each model an
equation with 100% accuracy (i.e. CoD = 100%) isiemed. It is also seen that despite
the fact that we have fed EPR with three inputs ., ¢, yx,) in all three models, EPR
has only taken the inputs that have greater effectsthe models. This is more
interesting when we compare them with the equatibaswe get from classic theory of
elasticity.

Equations 4.12, 4.13, and 4.14 describe théoakhip between the strains and stresses

for an elastic material (Timoshenko & Goodier, 1970

1
=% [ax - v(ay + O'Z)] 4.12
1
& =% [a, — v(oy + 0,)] 4.13
1
Yay = Ty 4.14

In these equationB represents elastic modulusjs the Poisson’s ratio anil is shear
modulus which is related to elastic modulus ands$&m’s ratio through following

equation (Timoshenko & Goodier, 1970):

E

G=——o 4.1
2(1+v) >

If we substitute the values & andv from the hypothetical test in equations 4.12 to

4.15 and re-arrange them, then the following eqoatare obtained:

0, = 549.45¢, + 164.83¢, 4.16
g, = 164.83¢, + 549.45¢, 4.17
Ty = 19231y, 4.18

These equations are in an excellent agreement tvidbe obtained from EPR (i.e.
equations 4.6, 4.9, and 4.11 respectively). Bhisws that the EPR models have
captured the relationships between stresses aahsstvith a superior accuracy. This
example was deliberately kept simple in order losifate the capability of EPR in
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modelling material behaviour. In the next examplematerial with a non-linear

behaviour will be used to examine the capabilitieEPR.

4.2.2 EPR-based modd of a material with non-linear behaviour

A sample of a material with a non-linear behavimuutilised here to perform another
hypothetical test. The data from FE simulation Ww#l used to illustrate the potential of
EPR in modelling of material with nonlinear behaurio

2
A

T2

N .
L

-

Figure4.4: A plane stress sample of a material under a Hisetision loading

Figure 4.4 shows the sample under a biaxial tensiading. The sample corresponds to
a plane stress geometrical condition. In this &egalue of 15% tensile strain is applied
to the sample along axis 2 and 10% tensile stsai@pplied along axis 1 at the same
time. Figure 4.5 and Figure 4.6 show the respafdhis structure under the loading
along axes 1 and 2 respectively. The data frometl@s curves were extended using
the procedure described in previous sections ierai@ generate the required data for
training the EPR model. The rotational steps, nundfethe data points, number of
models and the inputs and outputs are same asdhi®ps example.

In the initial setting of EPR, the exponents wemgted to[0 1 2] and no function was
selected for EPR. For simplicity the number of tenvas limited to 10. The remaining

settings of EPR were kept identical to the previexsmple.
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Figure 4.5: Stress-strain response of the structure alonglaxis
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Figure 4.6: Stress-strain response of the structure along2axis

The results of training of EPR for all three modale presented in the following

equations. It can be seen that a wide range oftemsarom short to long is returned by
EPR each having a different CoD value. In all threzdels, the equations are sorted in
order of their CoD values for validation data. T@eD values of each equation for

training and validation data sets are presented in

Table4.2. In the third model,,), the 7', 8", 9th and 18 equations were identical and

therefore only one of them is shown.
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Model 1 6,)

o, = 19.70 419

o, = 149.98¢, + 10.10 4.20

o, = —12339.03¢2¢, + 321.29, + 5.30 421

2 4.22

0, = —1680.01£2 — 850.20e,¢, + 474.55¢, + 3.06

0, = 96948.66£2£2 — 5327.67¢,&, + 404.95¢, + 259.16¢, 4.23
+ 0.57

0, = 24133.50¢2¢, — 4455.67¢.¢, — 2768.33¢2 + 584.59%, 4.24
+ 138.97¢,, + 0.09

0, = 21341.35¢2¢,, + 3673.062¢, — 2321.70e2 — 5079.49,¢, 4.25
+ 576.05¢, + 154.9¢,, + 0.02

0, = 19240.12¢2¢,, + 5875.12¢,62 — 4495.79¢2 — 2535.63¢2 4.26
— 2419y2, + 562.29¢, + 169.70¢,

oy = 19888.41¢fe), + 5755.47 ¢, — 5676.00&,y5, — 4544.66¢; 4.27
- 2542.35832, - 1848.63)/9%, + 564.09¢, + 168.41¢,,

ox = 19780.05¢7¢), + 5934.19¢, &5 — 4945.01¢,77, 4.08

— 1483.55¢, 72, — 9837.68¢,¢, + 2956.03y3,
+563.52¢, + 169.06¢,

" Units:o (N/m?)
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Model 2 @)
" g, =1961 4.29
5, = 150.50¢, + 10.05 4.30
o, = —12366.03,62 + 322.10z, + 5.30 431
o, = —1686.65¢% — 858.05¢,¢, + 476.08¢,, + 3.05 4.32
0, = 96555.76e262 — 5304.64¢,&, + 258.68¢, + 403.70¢, 433
+0.56
o, = 24220.93e,£2 — 4463.085,¢, — 2773.55¢% + 138.99%, 4
+584.97¢, + 0.09 '
o, = 21393.01e,e2 + 3656.64e2e, — 5081.24¢,&, — 2325.47¢2 .
+154.99¢, + 576.1718¢,, + 0.02 '
0, = 5847.65e2¢, + 19266.97¢,62 — 2534.24c2 — 44968952 436
— 2417.57y2, + 169.72¢, + 562.25¢, '
0y = 575244¢le, +19892.15¢,83 — 5679265, v, — 25423062,

- 4544.92832, - 1849.22)/9%, + 168.42¢, + 564.09¢,,

0y = 5934.19¢%¢), + 19780.05¢, &5 — 1483.55e,¥5,
— 4945.01¢,y2, — 5533.73¢&, — 1986.44¢2 4.38
+ 886.82y2, + 169.06¢, + 563.52¢,

" Units:o (N/m?)
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Model 3 ¢,,)

Ty = —0.14

Ty = 72.64Y,, — 0.02

Tyy = —791.758, Yy, + 147.647,, — 0.11

Tyy = 7341592y, — 2078.58¢, Yy, + 198.56y,, — 0.10

Ty = 18899.81e,60yyy + 2142.8367yyy — 954.47 €, Vyy
— 703.608, Yy, + 190.177,,

4.39

4.40

441

4.42

4.43

Ty = 6557.03£x£yyxy — 978.10&xYxy — 982.61€, Yy, + 196.26yy,, 4.44

Ty = 1661.5067Yy, + 1661.50€5 Vs, + 332366, ¥y
— 993.22¢, ¥y, — 993.226, ¥y, + 197.23y,,

4.45

Table 4.2: CoD values of training and validation data setdibequations developed for

all three models

Model 1
CoD (%) ng)—"
007 5097
7496 7277
94.14  93.15
97.56  97.16
99.25  99.44
99.96  99.97
99.99  99.99
99.99  100.00
100.00  100.00
100.00  100.00

Eq.
No

4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38

Model 2
CoD (%) ng)—"

007  7.37
7496  72.34
94.12  94.43
97.54  97.56
99.25  99.54
99.96  99.98
99.99  100.00
99.99  100.00
100.00  100.00
100.00  100.00

Model 3
=0 cob (%) ng)—"
439  0.07 -
440 9176 70.9
441 99.05 9WBL.
442 99.76 726.
443 100.00 .9699
444  99.99 989.
4.45  100.0000.0D
4.45  100.0000.0D
4.45  100.0000.00
4.45  100.0000.00
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In order to assess the quality of the predictioovgted by EPR equations, the stress-
strain relationship predicted by EPR equationsnfmdel 1 along axis 1 versus the
actual data is presented in Figure 4.7. In thst §raph the predictions provided by the
first 5 models are plotted together with actualbd#t this graph, it can be seen that as
the evolutionary steps are increasing the accuratye models are getting better. In the
second graph where the second 5 EPR models arenslitoig very difficult (if not
impossible) to distinguish the EPR models from #wtual data as they all have
provided excellent predictions. This makes it difft to choose the most suitable EPR

model among them.
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Figure 4.7: Comparison of EPR equations and ackaial for model 1)

(a) Eq. 1-5 (b) Eq. 6-10
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The model selection from results of EPR analysipiires some subjective judgment
and may be often biased by analyst’s experienceit Aein be seen the first four
equations returned by EPR for all three models Ipesented a poor CoD values and
therefore can be simply discarded. In order to csetbe best model among the
remaining models, the performance of the equatiores finite element model will be
observed. Based on the prediction capability of ERR models in the finite element
model, the best EPR model representing the mateehaviour will be chosen. The
incorporation of the developed EPR models in fieitement and their performance will

be discussed in the next chapter.

4.3 Incremental stress-strain strategy for material modelling

4.3.1 Input and output parameters

Another strategy to train EPR-based material mokdelsides an input set providing the
EPR with the information relating to the currerdtstunits (current stresses and current
strains) and an output that predicts the next sithtress and/or strain relevant to an
input strain or stress increment. This is a typweaheme to train most of the neural
network based models (Ghaboussi et al., 1998).milasi scheme is utilised in this
section and different examples are provided to detnate the potential of this strategy
for training EPR-based material models.

In this section invariants of stresses and stramsused unlike the previous section
where we used their values in the spatial direstidfhis means that mean strgss
deviator stresg’, volumetric straire,, and distortional straie} are used as the input
parameters representing the current state of egemsd strains in a load incremént
and deviator stregg*!, and/or volumetric straire}*' corresponding to the input
incremental distortional straimeg are used as the output parameters. The definifion

the stress and strain invariants is as follow (MMood, 1990):
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G+ 6,46,

p= 3 4.46
. L \2 . . . \2 1/2
g = [(UY —5%) — G _20")2 —(6:=6) | 3(t2, + 12, + 12,) 4.47
&, =&t te, 4.48
1 2 ) 2
€ = §{2 [(sy —&,) + (g, — )%+ (ey — &) ] 4.49

1/2
+3(v% + v +73)}

4.3.2 EPR-based material model of soils under monotonic loading

To demonstrate the capability of EPR to obtain maidtical expressions describing the
constitutive behaviour of soils using the increnaéstrategy, the results from a series
of triaxial tests (Cekerevac & Laloui, 2004) ardized in this section. The work done
by Cekerevac & Laloui, (2004) contains information both shear and volumetric
behaviour of the soil samples studied which makes Suitable collection of data for

this purpose.

Triaxial apparatus is one of the most widely usgokeimental systems for investigating
the stress-strain behaviour of soils. A schematagrdam of a triaxial apparatus is
presented in Figure 4.8. In this experiment andyical sample of soil is located in a
cell filled with a fluid (usually water). The saneplk surrounded by rubber membrane to
isolate it from direct contact with the surroundifigid. The cell fluid can be
pressurised to cause the confining pressure arthendample. The sample sits in the
cell between a rigid base and a rigid top cap. qimntities that are usually measured
during the test are pressure in the cell fluid @¢be pressure,) which provides an all-
round pressure on the soil sample; the axial strgsaxial straire,, the volumetric
straing,,, if drainage from the soil sample is allowed oegsure in the pore fluid, if

drainage is prevented.
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-

Axial
deformation

&)
Confining Pressure < >

caused by cell fluid

\

Soil sample

/

Cell fluid 1"
_ Drainage or
[ pore pressure
Cell pressure = T measurement

Figure 4.8: A schematic diagram of a triaxial apparatus

For triaxial loading conditions, due to the axisyatrit nature of the problem,
equations 4.46 - 4.49 can be simplified as:

G4+ 26,

= 4.50
P 3
q=06,—06, 4.51
&y = &q t+ 2&, 4.52
2(eq — &)
g =—3— 4.53

Whereg, is axial straing, effective axial stresg, is radial strain and,. is effective

axial stress in the triaxial apparatus. Usuallyiyia standard triaxial test a confining

pressure is imposed on the sample to represemt-gigu condition in the ground. In

order to identify the characteristics and differpatameters of soil, a number of tests

with different confining pressures are performedsamples of the same soil. The tests
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conducted by Cekerevac & Laloui, (2004) were penfedl with similar conditions. The
results of these tests are presented in the faligdgures.
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Figure 4.9: Drained triaxial test results (Cekerevac & Lald&004)

The results from 5 tests conducted at confiningguees 50, 100, 300, 400, 600 kPa
were used for training of the EPR models while ¢hfus the sixth and seventh tests at

confining pressures of 200, and 500 kPa were usedalidation of the trained models.
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The maximum number of terms was set to 15 for itis¢ inodel (deviator stress) and 5
for the 29 model (volumetric strain) which was found to bequate after a number of
trial and error runs; the exponents were limitefdtol, 2, 3]. No function was chosen
for EPR equations. After training, the best EPR at®dor both deviator stress and

volumetric strain representing the behaviour of eire selected. These equations are:

q"*! = 4.9186¢, — 0.2521¢Z + 3.7739 X 10733 — 4.9147¢]
+0.2220q" — 0.1169q'A¢e, + 1.4363 X 10-3(qi)2

—1.1096 x 10-5(g')” + 0.4485p + 0.1355pA¢, 4.54
—2.0212 X 103 pe,Ae, — 5.1741 x 1074p?
+3.6161 x 107 1%%3¢¢

estl = el + 1.1251 X 1073qAg, — 1.0948 x 1073 pAe, + 1.7425
4.55

X 107 p?q g3 A,
Figure 4.10 shows the stress-strain curves petlicy the EPR model, (equations 4.54
and 4.55) against those expected and used asmgalata. From these figures it is
clearly seen that, the EPR models were able touoapghe non-linear stress-strain

relationship for the soil with very good accuracy.

The generalisation capability of the EPR modekhiswn in Figure 4.11. The data from
the tests conducted at the confining pressure®®fadd 500 kPa (which did not form a
part of the training data) were used to test thmé&d EPR models. The predicted output
values of the EPR models are compared with expetag measured values in Figure
4.11. Excellent agreement is observed betweemibeel results and the laboratory
experimental data which demonstrates excellentlsbiyaof the EPR-based material

models in generalising the constitutive relatiopdior unseen cases.

" Units: p, q (kN/m?)
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Figure 4.10: Results of training of the EPR
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Figure 4.11: Results of validation of the EPR
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4.3.3 Incremental (point by point) prediction of the entire stress
paths

In addition to the validation that was presentethim previous section, the EPR models
(equations 4.54 and 4.55) are used to predicéniiee stress paths incrementally, point
by point, in theq: e, ande,: e, spaces. This is used to evaluate the capabilitthef

incremental EPR models to predict the behaviouthef soil during the entire stress
paths. Figure 4.12 illustrates the procedure vadio for updating the input parameters

and building the entire stress path for the shgasiage of a triaxial test.

Figure 4.12: Procedure followed for updating the input paramsetend building the

entire stress path for a shearing stage of a aligest

At the start of the shearing stage in a conventibraxial experiment, the values of all
parameters are known. For example in a test omplsaof a saturated soil, the values
of effective mean stregs, deviator stresg’, shear straig;, and volumetric straia},

are known from values of applied cell pressureklpgessure and volume change at the
end of the previous stage (e.g., at the start efushg stage) = 0,¢) = 0, andq® =

0). Then for a given increment of shear strai,, the values ofy'** and&/** are
calculated from the EPR models (equations 4.54 /B8 respectively). For the next

increment, the values qf', ¢}, €5, and ¢* are updated as:
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' = qi*? 4.56
gl = ghtt 4.57
pt=p'+ <g> 4.58
€L =€l + Agy 4.59

In these equations the current state of shear agahmstress as well as shear and
volumetric strain are updated using the next stdit¢hese parameters and the next
points on the curves are predicted using the EPBetaoThe incremental procedure is
continued until all the points on the curves aredmted. Figure4.13 shows the
comparison between two complete sets of curvesigieed using the EPR models
following the above incremental procedure and tkigeemental results. The predicted
results are in good agreement with the experimaetllts and the facts that (i) the
entire curves have been predicted point by pointiti{e errors of prediction of the
individual points are accumulated in this process] still the EPR models are able to
predict the complete stress paths with a good e@egfr@ccuracy. These are testaments

to the robustness of the developed EPR framewaorktalelling of soils.

These figures show that the EPR has been ablepiureathe general trend of the
nonlinear relationship of stresses and strains avigood accuracy. It also shows that the
EPR model was trained sufficiently to adequatelydeldhe stress-strain behaviour of

the soil.
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Figure 4.13: Comparison of EPR incremental simulation with dlctual data
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4.3.4 Comparingthe EPR-based modelswith conventional models

In this section the performance of the develope®&BBRsed models is compared with
some of the well known existing constitutive modeldohr-Coulomb (MC) and

Modified Cam Clay (MCC) are two constitutive moddlsat are widely used by
engineers to analyse different boundary value prablin geotechnical engineering. A

brief description of these two models is preseimetie following.

() Mohr-Coulomb Model

Mohr-Coulomb elastic-perfectly plastic model isanstitutive model that describes the
behaviour of soil linearly in the elastic rangengstwo parameterB (Elastic modulus),
and v (Poisson’s ratio). The failure in Mohr-Coulomb (M@ defined by two
parameterd and¢. The Mohr-Coulomb failure criterion states thalui@ of a soil
mass will occur if the shear stresson any plane in the soil mass reaches a critical

value. This can be written as:

T=C+d-tand 4.60

This defines a straight line in theg space as shown in the following figure.

Figure 4.14: Mohr-Coulomb failure envelope

If Mohr's circle of effective stresses touches timg, then failure of the soil will occur.

The intercept of this ling, is called cohesion intercept or apparent cohesiod the
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slope of the line corresponds ¢ friction angle. These parameters can be idedtifie
from a set of triaxial tests. Mohr-Coulomb failw@an also be defined in terms of stress
invariants. Equation 4.60 can be rewritten in ®mh triaxial stress invariants g as
following:
—6sin ¢

— -p+ C.cot 4.61

q_3+sin¢

(i) Modified Cam Clay Model

Modified Cam Clay (MCC) is an elasto-plastic str&ardening model in which the
non-linear behaviour is modelled using hardeniragiitity. The MCC model assumes
that the soil is fully saturated and there is aaligmic relationship between the mean

effective stresg and void ratiav (Roscoe & Burland, 1968).

A typical yield curve of MCC model in the spacepof; is illustrated in Figure 4.15.

This figure shows that the yield curve has an &tlgh shape in this space.

qA

Figure 4.15: Elliptical yield curve for MCC model ip':q space

The model is based on critical state theory. Theans that the MCC model assumes an
ultimate condition in which plastic shearing coatthtinue indefinitely without changes
in volume or effective stresses. This conditiormpeffect plasticity is known as a critical
state. A series of MCC vyield curves which creatstate boundary surface, and the

critical state line are presentedgng: e space in Figure 4.16.
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Figure 4.16: State boundary surface and critical state lineIGC model (Helwany,
2007)

The MCC model can be summarised in the followingagipns. The elastic stress-strain

response in the matrix form describes the elagt@biour as following:

deg K/vp 0 op
deg 0 1/3G1 Ldq
and the plastic stress-strain response in theviollgp form:
5eb M? —n? 2 5p
" am [( n°) U ] [ p] 463
vp (M%+1?) '
8eq 20 An?/(M?—7?)

In the above equations and k are the slope of the normal consolidation line and
unloading-reloading line in the— Inp plane respectively is the slope of the critical
state line in thegg — g plane and; is q/p. It should be mentioned that and¢ (friction

angle in Mohr-Coulomb model) are related throughftillowing equation.

6 sin ¢

= 4.64
3 —sin¢
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The parameters for both MC and MCC models can heirdd from a set of triaxial
tests. The results of the triaxial test presentedection 4.3.2 are used to derive the
material parameters. These parameters together ofligr characteristics of the soill
presented in Cekerevac & Laloui (2004) are givemable 4.3.

Table 4.3: Material parameters for Modified Cam Clay and M@aulomb models

¢ ¢ o %
kpa) PO M K €0 gmty
11.7 21 0.8 000715 0921 0.3 17 0.091

It should be noted that identifying the materiatgmaeters from material tests can be a
difficult and subjective process. This presentstlagio disadvantage of conventional
material models in comparison to EPR-based mateniatlel where there are no

material parameters to determine.

In order to compare the results of the EPR-basedemwith other conventional
material models, the parameters in Table 4.3 sed to produce the stress-strain curves
of this soil predicted by both Mohr-Coulomb and Mumdl Cam Clay modelsThese
curves are plotted together with the actual (expenital) stress-strain curves obtained
from the triaxial tests and those predicted byER&R-based models (equations 4.54 and
4.55) for comparison. From seven different teses@nted in Figure 4.9, three stress-
strain curves corresponding to confining pressofés) kPa, 300 kPa, and 600 kPa are
chosen for comparison. These confining pressum@®&sent heavily over-consolidated,
over-consolidated and normally consolidated samplieshe soil respectively. The
comparison is made between deviator stress and aw@n and the results are
presented in Figure 4.17. From the figure it carseen that the EPR-based model has
been able to predict the entire stress-strain paththe triaxial test with a better
accuracy in comparison with the MC and MCC modéle modified cam clay model
has particularly presented a poor prediction favilg over-consolidated sample (graph
(a) of Figure 4.17). This is one of the recognisexiies and drawbacks of the MCC
model which has been the subject of some researdls@me suggestions have been
offered to overcome this problem and other probleosrnected with this constitutive
model (Gens & Potts, 1988; YU, 1998; Mita et aD02). However both EPR-based
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model and MCC model have provided reasonably ateurasults for normally

consolidated samples (graph (c)).
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Figure 4.17: Comparison of stress-strain curve predicted byased, MC and MCC
models versus the actual data

Specific volume is a parameter that is used asasumne of the ratio of the total volume
(volume of voids plus volume of soil particles) asdil particles. This parameter is
related to the volumetric straigy,, through the following equation.

—Av

Agv = T 4.65

If the specific volume (or void ratio) is known thie initial stage of loading then using
the above equation and the EPR model developedbfametric strain (Equatiod.55)
specific volume at any stage of loading can berdeted.

In the following figure the specific volume versnatural logarithm of mean effective
stress f — Inp’) is plotted for three different confining pressunesing actual data,
MCC model and predictions provided by the EPR moBel confining pressure 400,
graph (a), EPR has clearly presented a better gir@aithan MCC model. The EPR
model has given almost the same results as thalatdta in both graphs (a), and (b).
This figure shows that EPR model has captured ttemetric behaviour of the soil,
and is also capable to predict the changes of fipeclume against effective mean

stress correctly.
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Figure 4.18: Comparison of v-Irg’) curve predicted by EPR-based, MC and MCC
models versus the actual data
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Figure 4.19: Comparison of p'-q curve predicted by EPR-based,avid MCC models
versus the actual data

In addition to the figures presented above, theadew stress versus mean effective
stress (stress path) for MCC and EPR models togeiitie the actual data is depicted in
Figure 4.19. The figure shows that the EPR maosléh iexcellent agreement with the
actual data. However, it can be noticed that theOvi@odel has over-predicted the
deviator stress in the first two confining pressufé0 kPa, 100 kPa). These two

confining pressures are representing heavily ovesalidated samples.

The performance and capabilities of the develodeR-ased models have been shown
in the previous sections for monotonic loading d¢bods. In the next section the
capability of EPR-based models to predict cyclidhhdaour of materials (soil in

particular) is presented.
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4.3.5 EPR-based material model of soilsunder cyclic loading

In this section, the behaviour of a soil is studiedriaxial tests under cyclic axial
loading. The test data for this example were geedrdy numerical simulation of
triaxial experiments. In general, generating dgtalmerical simulation has advantages
including: (i) it is more economic (ii) it is fae$s time demanding, (iii) it can simulate
loading paths and test conditions that can notasdyeachieved in physical testing due
to physical constraints of the testing equipmetie @ata for training and validation of
the EPR models were created by finite element sitiwud of triaxial cyclic loading tests
at constant cell pressure using Medified Cam Clay ModelThe material parameters

assumed for the soil are:

A = 0.174 (Slope of the virgin consolidation line),
k = 0.026 (Slope of the unloading-reloading lineseir- In p plane),
M = 1 (Slope of the critical state line in the- p plane),

po = 100 kPa (Isotropic pre-consolidation pressure),

The simulated tests were conducted at five diffe@nfining pressures on triaxial
samples. The data generated by numerical simulatiadhe cyclic loading along axial
direction at confining pressures of 100, 150, ZfHY) and 300 kPa are shown in Figure
4.20.
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Figure 4.20: Cyclic loading test data used for training andidatlon of EPR-based

model (a) Deviator stress (b) Volumetric strain
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In order to introduce a level of noise that ineviyaexists in real triaxial test data,
numerical simulation for each confining pressures wapeated by changing the total
number of load increments in the simulation anddb&ined data were combined and
used in training of the EPR models. Figure 4.2dwshtypical results of the tests

conducted at confining pressure of 150 kPa with thifierent load increments.
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; O
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€

Figure 4.21: Typical cyclic loading test results with differdoad increments at

confining pressure of 150 kPa

The data from the tests at confining pressure06f 150, 200 and 300 kPa were used
for the training of the two EPR models. The traif&®R models were validated using
the data from the test at confining pressure of K34.

The first model was developed to predict the deviatress;'** and the second one to
predict the volumetric straigf,**. In the input parameters of the developed EPR tsode
for cyclic loading, the distortional straip and increment of distortional stralz, is
replaced with axial straigy and increment of axial straine; respectively but the other

parameters were kept the same as those used footomon loading. It should be
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mentioned that in triaxial testing conditions can be calculated from the following

equation at any stage of the loading:

817
Eqg =& — 3 4.66

The selected EPR models fpande, are:

0.0084 (¢)% 2667.247(q")?(Ag,)?
p* 515 D&
_ 0.060714 (¢")°Ae N 1.8866 ¢,A¢,
. p s,i, qt
19676 q'As, N 888.4 (¢")%(Ag;)?
& &
+ 104.4964 pAe; — 1.4 X 1075p2

+0.018826 p?q‘ € Ae; + 1.0525q — 0.71525

i+1 —
q

4.67

0.02369q'As;  0.4217q" Agy N 9.3x107% ¢
D& 14 qt

8117+1

4.68
+0.45727 Ag; + 0.99 £ + 0.000041535

Figure 4.22 shows the curves predicted by equato@7 and 4.68 for the training data
set. In this figure, the actual (humerically simte§ data are plotted together with
results of the EPR models predictions. It can le $eom the figures that EPR models

were capable of learning, with a very good accutheyconstitutive relationships of the

soil under cyclic loading paths.

" Units: p, q (N/m?)
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Figure 4.22: EPR prediction for cyclic loading versus actuakdat
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The trained EPR models were validated using a skttaorresponding to the confining
pressure of 250 kPa. The results of the validatgsts are shown in Figure 4.23. It is
shown that the trained EPR models were able torgkse the training to loading cases

that were not introduced to the EPR during training
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©
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Figure 4.23: Results of the validation of the trained EPR msdebmparison between

the actual (numerically simulated) data and the pRHlictions for confining pressure

of 250 kPa (a) deviator stress (b) volumetric gtrai
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Moreover the incremental prediction capability @dsed in section 4.3.3) of the
developed EPR models is examined and presentedyuneF4.24 where the point by
point prediction of EPR models are compared tcatttaal data.
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Figure 4.24: Comparison of EPR (incremental) predictions wité actual data for

confining pressure of 250 kPa @)- ¢, (b) &, — &
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It should be mentioned that, for practical probleitine data used for training EPR,
should cover the range of stresses and strainsatiealikely to be encountered in
practice. This is due to the fact that EPR modetsgmod at interpolation but not so
good at extrapolation. Therefore, any attempt ® EBR-based FE method for loading
conditions that may lead to stresses or strainsiagmitthe range of the stresses and
strains used in training of the EPR may lead tccaeptable errors. The following table
is provided to show the acceptable ranges of @seasd strains in the developed

equations.

Table 4.4: Range of stresses and strains for developed ERRIm0

Equations 4.54, 4.55

Parameters p (kPa) q (kPa) &,(%) &q(%) Agy(%)

Max 823 670.0 0.9 31.8 1.48

Min 50 0.0 -6.3 0.0 0.08

Equations 4.67, 4.68

Parameters p (kPa) q (kPa) &,(%) £,(%) Agy(%)

Max 375 223 7 14 0.6

Min 100 0 0 0 -0.2

In this chapter it was shown that EPR can be engoldp construct material models
using both synthetic and experimental data gath&oed material tests. Two different

approaches were presented, total and incrememtdegies, in order to obtain EPR-
based material models. It was shown that EPR cadupe mathematical expressions
that can accurately predict the material behaviouboth cases. Different materials
(including soil that is known for having a compleghaviour) with different behaviour

(e.g. linear, elasto-plastic) under different lowgiconditions (monotonic and cyclic

loading) were examined to asses the capability BR¥ased models in predicting
material behaviour. In the next chapter EPR-basedets will be incorporated in a

finite element model and will be used to analydéeint engineering problems. The
advantages of the developed EPR-based finite etemetimnod will be highlighted.
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Chapter 5

EPR Based Finite Element Method

5.1 Introduction

As it was mentioned in chapter 2, the finite elemerethod (FEM) has been used
successfully in modelling and analysing a wide earmd engineering problems in
different fields including aerospace, automotivépniiechanical, chemical process,
geotechnical engineering and many others. It wes stiown that neural network based
constitutive models (NNCM) have been implementettassfully in the finite element
procedure to analyse engineering systems, in péaticstructural and geotechnical

engineering problems.

Two different strategies were introduced in chaptdo train EPR-based constitutive
material models. In this chapter the EPR-based maatmodels developed in the
previous chapter will be incorporated in the findlement model for both strategies.
Different examples will be presented to illustrdie capabilities of the proposed EPR-

based finite element method.

107



Chapter (5) EPR Based Finite Element Method

5.2 EPR-based Jacobian M atrix

Any material model that is intended to be incorpedain finite element method must
provide material stiffness matrix, also called Jaao matrix, and can be defined as the
following equation.

_ 9(do)
~ 9(de)

where,o ande are the vectors of stresses and strains resplgctilas matrix is defined

5.1

explicitly for different material models. For instze the stiffness matribD] for a linear
elastic material model obeying the Hook’s law iar@ strain geometrical conditions is
defined as follow (Stasa, 1986):

1—v v v 0
E v 1—v v 0
D= 52
A+v)A-2v)| v v 1-v 0
0 0 (1-2v)
2

whereE represents elastic modulus ang the Poisson’s ratio.

Hashash et al. (2004) recommended to use consideobian matrix (Equation 5.3)
and proposed a method to estimate partial derivatioNNCM to form the Jacobian

matrix.

aAo.i+1
~ GAgitl

whereo and € are the vectors of stresses and strains resplgctve i+1 denotes the

J 5.3

next state of stresses and strains. Clearly thmautation of Jacobian matrix needs the
constitutive model to be constructed in an incretadorm.

On the other hand Shin (2001) and Shin and Pan@d@3j2used direct derivation of
NNCM (Equation 5.4) and proposed a procedure toutate the first order partial
derivation of NNCM.

do
Dyy = - 5.4
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In this study direct derivation of EPR-based matemodels is used to construct the

Jacobian matrix for materials.

5.2.1 Partial derivatives of EPR models

Differentiation of the models developed by datainmgrtechniques has been studied by
a number of researchers. In particular derivatibneural networks models developed

for constitutive modelling of materials has beescdssed by Shin, (2001); Hashash et
al., (2004); and Shin & Pande, (2000). Due to thmire of EPR models which are in

the form of mathematical expressions, differerdmmtiof them seems to be a

straightforward task. However it should be menttieat the accuracy of derivative of

the developed EPR models depends on the accurdiog &PR model.

Consider an objective functidh (X,, X5, ..., X;;) that is intended to be estimated by an
EPR modelc (X, X,, ..., X;,) where X;,X,,...,X,, are all effective parameters that
influence the objective function. It is known thatany regression model an error term
exists which captures all other factors that inflcee the objective function (following

equation).

]F(Xl,Xz,...,Xn) = G(Xl,Xz,...,Xn) + err 55

The relationship between the error term and in@raiqmeters is a crucial matter in
modelling a phenomenon. If the partial derivatifeequation 5.5 with respect to an

arbitrary inputX; is performed, the following equation is obtained.

OF (X1, X3, ., Xn)  0G (X1, Xy, ..., X,) | Oerr

5.6
ax, 9, T ax

Obviously if the error ternerr is a constant value and not a function of otheuin

parameters, its derivative is zero and can be ecthitbom equation 5.6. In this case the
error term has no influence on the differentiattéthe EPR models. On the other hand
if the error term is correlated with other inputgraeters and varies with them the error

term plays an important role in both EPR model isderivatives.

There could be different reasons for the error teemmg non-constant and significant in

an EPR model. For instance, incorrect or insufficigaining data, not having all the
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input parameters, user mistakes in setup of coptchmeters, improper choice of the
solutions provided by EPR, etc. or a combinatiorihef above. Among these reasons,
two of them which have the most effect on the quaif the EPR models are described

here.

One of the reasons could be that one or more ipptameters which influence the
phenomenon are not included in the EPR model am@fitre the obtained EPR model
is not a proper representative of the phenomenbis. raises the importance of the fact
that the physics behind the event must be stutieebtighly before construction of EPR
models. Mechanics of the event and literature are most important sources of

information that must be considered and studiedrga modelling by EPR in order to

include all the effective parameters in the modelshould be mentioned when

modelling a phenomenon using EPR, if the user babtdabout including a parameter,
it is advised to involve that parameter since ERR the capability to disregard the
parameters that have negligible or no influencéhermodel (Doglioni, 2004).

Another main reason for having an error term witltaarelation with other input
parameters could be the fact that the right modehat chosen from the solutions
provided by EPR. This emphasises the importangaarfel selection in the modelling
process using EPR. As it was described in chaptBEPR offers a range of solutions in
the form of a pareto-front surface (or curve) whietps the user to choose the right
mathematical expression to describe the phenoméf@R. can control the number of
input parameters, and the number of terms versesctefficient of determination
(CoD) using a multi-objective strategy. Moreovee thide range of available functions
and EPR types assist the user to explore among teslable options to select the
suitable mathematical expression. In what followswanber of examples will be

presented to evaluate the accuracy of the pasi@atives of the EPR models.

5.2.1.1 lllustrative examples

A number of different mathematical functions arensidered and the values of
functions are determined for different input valiresrder to generate the required data
points. These data points are then used to tralrobtain EPR models. The derivatives
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of the EPR models are determined and comparisensiade between the EPR models

and the original mathematical functions as welhasr derivatives.

() Example 1

For the first example a polynomial equation is @moas following:

fxy, %) = x1x5 + x,%, + x2 + x2 5.7

The surface (red mesh) and the generated dataspilnee dots) from this surface are

plotted in the following figure.
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Figure 5.1: Polynomial function and training data

These data points are fed into EPR to obtain an iGB&el. Since it is supposed that the
objective function is not known a priori, the expats range is limited to integer
numbers between -4 to 4 including 0 and the nunobéerms is limited to 20. The

results of training of EPR are presented in thiofahg equations.
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Equations CoD

g(xq,x;) =26 0.0% 5.8
g(x1,%3) = x1%% + 26 89.95 % 5.9
g(x1,%3) = x,x5 + 0.055x%x% + 16.7 94.38 % 5.10
g(x1, %) = x1%5 + x.x3 + 0.055x%x2 + 16.7 98.23 % 5.11
g(x1,x3) = x.x2 + x1%, + x% + x2 + 4.1 x 10715 100 % 5.12

In these equationg(x,, x,) is the estimated EPR model. From these equatiaamibe
seen that although the maximum number of terms sesto 20 and the range of
exponents was-4: +4 however, the maximum number of terms achieved PR i the
final stage of the evolutionary steps is 5. Thisvet the strength of EPR to avoid the

problem of over-fitting by using different strategias described in detail in chapter 3.

The accuracy of equation 5.12 is 100% and by coimgat to the functionf (x4, x,) it

can be seen that it exactly matches the originattian except for the constant term
4.1 x 107> which is negligible. As it was mentioned earlieistconstant term has no
influence in differentiation of the function andeatly the partial derivative of the

estimated function is equal to that of the objexfunction.
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(i) Example 2

A trigonometric function (equation 5.13) is chogenthe second example to illustrate
how well the derivatives of the EPR model can apipnate the derivatives of the

function.

f(x1,x5) = sech (x;) - tanh(x,) 5.13

This function is used to generate data points emid EPR models to find the best EPR
function that can approximate this function. Befoeening the EPR model, the number
of terms was set to 20, the range of exponentsdte4], and no function was chosen.

After training, the best EPR model representingatign5.13 was as follow:

g(xy,x) = —1.15x 107%xfx3 +5.41 X 10~*x%x3 + 6.05
X 10™*xfx, — 0.03x%x, — 5.55 x 1073x3 + 0.29x, 5.14
+7.58 x 10717
The coefficient of determination of this equatiomsn35.16% which shows the EPR
model is not a perfect representative of the oaigfanction. The original function and

EPR prediction (points) are depicted in the follegvfigure.

Figure 5.2: Trigonometric function (red mesh) and EPR predit{blue dots)

Differentiation of the trigonometric function andet EPR model with respect iq is

compared in Figure 5.3. It can be seen that tloaracy of the differentiation is not
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acceptable and therefore the selected polynomiattion is not good enough to

represent the original function.

| df{x1,x2)dx1

Figure 5.3: EPR prediction for partial derivatives of the tnigpmetric function with

respect tor; versus the differentiation of original function

In order to find a better EPR model, different #aale functions in EPR and various
EPR types with different exponent ranges and numndfeterms were tried and
eventually it was found that the accuracy of theRERodels will only get better if
tangent hyperbolic or secant hyperbolic is usedhasfunction to train EPR. After
training the EPR using tangent hyperbolic functithe following equation was chosen

to compare the EPR model and its derivative withdhginal function.

g(x1,x,) = —0.49 x? tanh?(x,) tanh(x,)
— 0.93 tanh?(x,) tanh(x;) + 0.49x? tanh(x,) 515
+ 0.99 tanh(x;)

The CoD of this equation is 99.98 % and it is coragawith original function in Figure
5.4. The derivatives of this equation with respictc; and x, are determined and

presented in equations 5.16 and 5.17 respectivelgood agreement between the
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partial derivatives of the EPR model and partiahd@ives of the original function with

respect to; andx, can be seen in Figure 5.5 and Figure 5.6.

N
I

Ll

‘ fix1,x2)
mq\\\li‘rl\llTll\lTl\

Figure 5.4: Trigonometric function (red mesh) and EPR predictising tanh function
(blue dots)

df(x1,x2)/dx1

|

e

[¥)
[

-6 -6

Figure 5.5: EPR prediction using tanh function for partialidatives of the
trigonometric function with respect 1q versus the differentiation of the original
function
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Figure 5.6: EPR prediction using tanh function for partialidatives of the
trigonometric function with respect ig versus the differentiation of the original

function

g (xy,
% = —1.86 tanh(x,) tanh(x,) (1 — tanh?(x,))
1
+ 0.98x; tanh(x,) — 0.98x, tanh?(x,) tanh(x,) 5.16
— 0.98x7 tanh(x;) tanh(x,) (1 — tanh?(x;))
09 (x4,
% = 0.99(1 — tanh?(x,)) + 0.49x7(1 — tanh?(x,))
2

— 0.93 tanh?(x;) (1 — tanh? (xz)) 5.17
— 0.49x7tanh?(x,) (1 — tanh?(x,))

The presented examples show that if the right misdethosen from the results of EPR,
the selected model and its partial derivatives jiewa good approximation to the
phenomenon being studied.
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5.3 Incorporation of EPR models (total stress-strain
strategy) in FEM

The developed EPR-based material models in chdptee implemented in a widely
used general-purpose finite element code ABAQUSuth its user defined material
module (UMAT). UMAT updates the stresses and presithe material Jacobian matrix

for every increment in every integration point (AQAIS, 2007).

mmm————————————
. FEA 4 (e )
_______________ I

Input Data (Geometry,

Applied Load, Initial and
Boundary Condition)

<

7

Increase the Applied Load
Incrementally

e - . 4
, .
: EPR : LUM&T _| € (strains)
| EPRCM(s) | _3_
EPR @
R v s
onstitutive ’I o (stresses) o
equation I =

»

I 1- Jacobian Matrix (90/0¢) I

I 2- Update Stresses l

Solve the Main
Equation

Convergence

YES |

Whole load
applied?
STOP |« /%8

Figure5.7: The incorporation of EPRCM in ABAQUS finite elemeoftware

» doo uoljelsy|

Output Result -t

NO

NO

The material Jacobian matrix can be derived usiegideveloped EPR models using the

total stress-strain strategy using the followingatepn:
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Jdo

] =— 5.18
e

Equation5.18 can be applied in both elastic and inelastigions because an EPR
constitutive model (EPRCM) does not require thenkgdn of a transition between

elastic and inelastic regions (i.e. yield poinfBhe Jacobian matrix resulting from the
EPRCM can be directly incorporated in a conveniioRR code instead of the
conventional elasto-plastic constitutive matrix. eTlway in which EPRCM s

incorporated in the finite element method, is shawRigure5.7.

5.3.1 Numerical Examples

To illustrate the developed computational methogplaescribed in the previous

section, five examples of application of the depelb EPR-based finite element method
to boundary value problems are presented. In thetfivo examples, the application of
the methodology to a simple case of linear elabhaviour is examined. The

constitutive equations for this material were deped in the previous chapter (section
4.2.1.3). For the third example a finite elementdeioof the material test in section

4.2.2, chapter 4 is considered in order to chobsebest EPR model among those
presented in that section. In the fourth and fé#amples, the method is applied to a
problem with the same geometries as the first aubred one but with a non-linear

material behaviour chosen from the results of tivel texample.

5.3.1.1 Examplel: Platewith acircular hole(linear elastic)

This example involves a plane stress plate withrailar hole in its centre. The plate is
assumed to be made of a linear elastic materidl alastic modulu€ = 500 Pa and
Poisson’s ratio = 0.3. An EPRCM was developed for this linear elastidemal in

section 4.2.1.3 in chapter 4 and the developedtitotige equations are repeated here.

0, = 549.4505¢, + 164.8352¢, — 5.1338 x 10712 5.19
g, = 164.8352¢, + 549.4505¢, — 1.2134 x 10~ 5.20
Ty = 192.3077Y,, + 3.2319 x 10712 5.21
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Figure 5.8 shows the geometry, boundary conditamtsloading of the plate. Due to the
symmetry in the geometry of the plate only a quadkthe plate is modelled and

therefore appropriate boundary conditions are plexion the bottom and left sides of
the model. The model is made of 100 isoparametnod elements and is stretched
along Y direction by applying of a uniform pressofel0 Pa.

T

SIS SIS SIS S SA
O 0 0O 0O 0O O O

L.

I 7 77777777

<«4cmre———26CmM >

Figure 5.8: A plate with circular hole at its centre underdien loading along Y
direction

Using equations 5.18 and 5.19-5.21 the EPR-basaérial Jacobian matrix for this
example is computed and presented in the followingation.

rdo, 00, 00,

de, e, O, | [C404° 16483 0007

aay aay

)= 0ey  0gy, 0y,

=1164.83 549.45 0.00 5.22

00y, 00y, 00y,

- 0.00 0.00 192.31

| 0e,x  0&y, 0y

On the other hand the conventional stiffness mddni>xan isotropic, elastic material for
plane stress conditions in terms of Young's modwdnsl Poisson ratio is given as
follow (Stasa, 1986):
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1 —2

0

0

(1—v)/2

5.23

If the values ofE = 500 Pa andv = 0.3 are substituted in the above equation the

following matrix will be obtained:

549.45 164.83

D =1164.83 549.45

0 0

0

0

192.31-

5.24

By comparing the equation 5.22 and 5.24 it cansben that the Jacobian matrix

obtained from EPR models is in an excellent agre¢méh the conventional elastic

plane stress stiffness matrix.

The EPR Jacobian matrix is implemented in UMAT #melabove structure is analysed

under the given loading and boundary conditionse Pploblem is also analysed using

the elastic material model provided by ABAQUS whigguires elastic modulus and

Poisson’s ratio. The vertical displacement of themn of the hole versus the applied

tension is compared between standard finite eleraaatysis and EPR-based finite

element method and the results are depicted irnr&ig.9.

120



Chapter (5) EPR Based Finite Element Method

N /.
°
4 ./ e Standard FE
/ ® - - EPR-based FE

O ® T T T T T T 1

0 1 2 3 4 5 6 7
Displacement (mm)

Tension (Pa)
[e)}

Figure 5.9: Tension-displacement curve of node 44 for Stan8&and EPR-based FE

An excellent agreement can be seen from this figeteveen the displacement of node
44 using standard FE and EPR-based FE analyses.shbiws that the EPR-based
material Jacobian matrix has been successfully amphted in the finite element
analysis and the methodology can be used to prédticbehaviour of a linear elastic

material.

5.3.1.2 Example 2: Plate subjected to an in-planeload (linear elastic)

A 2D plane stress panel subjected to an in-plamapcession is set up to evaluate
further, the potential of the proposed EPR-basedrféihod. The model of the panel
with applied load and its surrounding boundary dtms is shown in Figure 5.10. It is
assumed that the plate is made of the same magexitlie one introduced in section
4.2.1.3 in chapter 4. It is also assumed that PR Ehodels developed for this material
in chapter 4 are valid and will be used here.

The FE analysis of the panel is first carried osihg a standard FE model with 270
isoparametric elements. The elastic parametersfosékde panel are; Young’s modulus

E = 500 Pa and Poisson’s ratio = 0.3. On the other hand the EPR-based FE analysis
was performed using the Jacobian matrix presemteelquation 5.22. The results of
these two analyses are compared in terms of vestieEsses and strains in Figure 5.11
and Figure 5.12.
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Wwo 0¢
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< 22 cm >

Figure5.10: The FE mesh and geometry of plane stresd padets boundary
conditions and loading

S, 522

(Avg: 75%)
+1.114e+00
+9.401e-02
-9.263e-01
-1.947e+00
-2.967e+00
-3.987e+00
-5.007e+00
-6.028e+00
-7.048e+00
-8.068e+00
-9.089e+00
-1.011e+01
-1.113e+01

(a) (b)
Figure5.11: Comparison between vertical stress contous)istandard FEM (b) EPR-

FEM
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() (b)

Figure5.12: Comparison between vertical strain contoui(®) standard FEM (b) EPR-
FEM

From the above figures it can be seen that thdtsestithe EPR-based FE analysis are

in a very good agreement with the standard FEMltesu

5.3.1.3 Example3: A plateunder biaxial tension (non-linear elastic)

A finite element model of the hypothetical test docted in section 4.2.2, chapter 4, is
employed here in order to find the best EPR moeletasenting the nonlinear material
behaviour. In section 4.2.2, it was shown that BRR returned one equation for each
stress (three in total) at every evolutionary sldping these equations, the Jacobian
matrix corresponding to each evolutionary stepiltdtal) is constructed. For instance,

the Jacobian matrix for thé%evolutionary step of EPR is as follow:

1149.97 0.0 0.0 1

J=1 0.0 150.50 0.0 5.25

0.0 0.0 72.64-
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The calculated Jacobian matrix for each evolutiprgtep is implemented in finite
element to analyse the model of the material Tt finite element mesh of the model
Is shown in Figure 5.13.

(— —)

Figure5.13: Finite element model of the material testdtmted in section 4.2.2

After analysis, the stress-strain curve of eacheh@recorded to compare the stress-
strain behaviour of the different evolutionary stgpovided by EPR. These stress-strain
curves are presented in the following figure.

35 4

TEST

== STEP2
30 1

STEP3
—e— STEP4

25 —gr== STEP5

STEP6
STEP7
20 4

STEP8
¢ STEP9

15 | — — STEP10

Max. principal sress (Pa)

10 A

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Max. prncipal strain

Figure5.14: Stress-strain curve, obtained from differdlutionary steps
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Since the EPR model corresponding to the firstudiahary step consisted of a constant
value, its Jacobian matrix becomes zero and therefas not possible to perform an
analysis for the °i step. From the figure it can be seen that as PR &eps increase,
the predictions provided by EPR models become clmsthe test data. Once the EPR
model from the 8 step is incorporated in the FE, it is seen thatrésults are in a very
good agreement with the test data; this is alsml fat the g step. However it can be
seen that the 0model (red dashed line) has provided less accueatdts in compared
to the &' and 9" steps. One reason for this could be the ovendjtfiroblem in the EPR
equations of 10 model. From the results of this example it carcbecluded that the
best EPR model representing the material testsgdtion 4.2.2 is'8model (equations
4.26, 4.36, 4.45). This model will be used to asalthe next two numerical examples.

5.3.1.4 Example4: Platewith acircular hole (non-linear elastic)

The same plate used in example 1 (section 5.3wlith)same geometry and boundary
conditions is used for the fourth example. Thisetithe plate is under tension loading
on both right and top sides. The EPRCM selecteat fitee previous example is used to

represent the material behaviour.
The EPR-based Jacobian matrix is then implementeithe finite element model to

analyse the plate with the circular hole (Figurg5) under a biaxial tension which is

applied through prescribed boundary conditions wfrb on each side.
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Applied Displacement=5 mm
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Figure 5.15: A plate with circular hole at its centre undersien loading along both X

and Y direction

The plate was also analysed using a standard feheeent model. For the standard
finite element analysis an existing elasto-plastiaterial model in ABAQUS was
chosen, in which for the elastic part the elastadaolus and Poisson’s ratio were used
and a tabulated stress-strain data was enterd¢ldeqrastic part. The data for the Elastic
properties and tabulated stress-strain were olatdnoen the hypothetical test discussed
in chapter 4 (section 4.2.2). The results of thalysis of this problem using the two
material models are compared in Figure 5.16 agdrEi5.17. In these figures major
and minor principal stresses are shown for stanB&rénalysis and EPR-based finite
element analysis. The maximum difference betweenntajor principal stress from
standard FEM and EPR-FEM is 4.2%. This value ferrthnor principal stress is 7.3%.
The average difference between the major pring@paks in standard FE and EPR-FE is
1.67% while the average difference for the minangpal stress is 4.48%. Small
differences can be spotted between two results;efiewapart from that, the figures
show that EPR has been able to predict the nomlibehaviour of the material and
provided a good estimation of the resulting stregsethe plate due to the biaxial
tension loading.
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S, Max. In-Plane Principal

(Avg: 75%)
+2.208e+01
+2.136e+01
+2.065e+01
+1.994e+01
+1.922e+01
+1.851e+01
+1.779e+01
+1.708e+01
+1.636e+01
+1.565e+01
+1.493e+01
+1.422e+01
+1.350e+01

(@)

S, Max. In-Plane Principal

(Avg: 75%)
+2.208e+01
+2.136e+01
+2.065e+01
+1.994e+01
+1.922e+01
+1.851e+01
+1.779e+01
+1.708e+01
+1.636e+01
+1.565e+01
+1.493e+01
+1.422e+01
+1.350e+01

(b)

Figure 5.16: Comparison of max principal stress (a) resulthefstandard FE analysis
(b) results of the EPR-based FE analysis
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S, Min. In-Plane Principal
(Avg: 75%)
+1.347e+01
[ +1.281e+01
+1.215e+01
— +1.149e+01
— +1.083e+01
+1.017e+01
i +9.514e+00
+8.856e+00
— +8.197e+00
+7.538e+00
+6.880e+00
+6.221e+00
+5.563e+00

¥

L.

(@)

S, Min, In-Plane Principal

(Avg: 75%)
+1.347e+01

[ +1.281e+01
+1.215e+01

= +1.14%e+01
—— +1.083e+01

+1.017e+01
+9.514e+00
+8.856e+00
— +B.197e+00

+7.538e+00
+6.880e+00
+6.221e+00

+5.563e+00

(b)

Figure5.17: Comparison of min principal stress (a) resoftstandard FE analysis (b)

results of the EPR-based FE analysis
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5.3.1.5 Example5: Plate subjected to an in-planeload (nonlinear elastic)

The same plate as the one presented in exampl¢h2same geometry and boundary
conditions is employed here to compare the resafltaonlinear FE analyses using
standard FEM and EPR-FEM. It is assumed that timelpaaterial is identical to the
one used in example 4. For standard FE analyssoegtdastic material model with
Young’s modulus and Poisson’s ratio for elastidorgand tabulated stress-strain data
for plastic region are used. It is also assumettttaEPR equations developed for this
material (discussed in example 3) are valid andlmmised to establish the Jacobian
matrix. The panel is loaded using two biaxial prisdd displacements of 1 cm as
shown in Figure 5.18.

d=1cm

il

=p

woy

wo 0¢
O O O O O O O O O O O

O O 0 O 0 O 0 O

< 22 cm >

Figure 5.18: The FE mesh and geometry of plane stress panel tomakial tension

loading

The results of the two different analyses are comgan terms of maximum stresses
and maximum strains. The results reveal that the-EBM provides a very close (less
than 2% difference for max principal stress and tean 0.7% for max principal strain)
prediction to those of the standard FEM.
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, Max. In-Plane Principal ‘
g: 75%;

() (b)

Figure5.19: Contours of max principal stress (a) stané&db) EPR-FEM

(a) (b)
Figure5.20: Contours of max principal strains (a) stadd&E (b) EPR-FEM
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5.4 Incorporation of EPR models (incremental stress-strain
strategy) in FEM

The developed EPR-based material models can alsonpemented in the finite
element method in a different manner from that gmésd in section 5.2. This strategy
takes advantage of the definition of the elastiffngiss matrix which is usually
described in terms of elastic parameters. The ttatigé relationships are generally

given in the following form (Owen & Hinton, 1980):

0o = Dé¢ 5.26

whereD is material stiffness matrix, also known as theobamn matrix. For an isotropic
and elastic material, matriB can be expressed in terms of two elastic constants
Generally there are six different elastic constaat§Young Modulus),y (Poisson’s
ratio), G (shear modulus), K (bulk modulug)(Lame’s first parameters), and M (P-
wave modulus) to describe elastic behaviour of madse (Timoshenko & Goodier,
1970). However for isotropic materials, only two tbese parameters are required to
form stiffness matrix since they are all relatedetch other through the following

equations.

K= £ 5.27

- 3(1-2v) '
A= Ev 5.28

S (A-2v)1+V) '
G = E 5.29

3(1+4v) '

E(1-

d-v 5.30

T A+v(a-2v)
In order to construct the stiffness matrix in théstion, the material constitutive models
developed in section 4.3 are used. Therefore thetin of EPR-based material model
in a FE model (at every element’s integration patan be described as follows:

() For the i+1" load increment, the input pattern for the EPR-basaterial

model contains (1) the values qf'(q’, &}, €5) which have already been
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calculated in the previous load increment and @ue ofAef]. The new

values ofg*! ands’** are then calculated for the next step.
() For each load increment the material Young's maslllgeg and the
Poisson’s ratioygpgr Ccan be calculated from the relationship between th

relevant stresses and strains. For example foyraxmetric condition:

Aqt
EPR Agi

As!
1-52%
/ Agg

VEPR=\ 5 ) 5.32

Once the stiffness matrix is built it will be imphented in the finite element analysis in

the same way described in the previous section.EIRiR-based finite element method
does not require yielding, plastic potential, feglfunctions, flow rules, etc. In this
method the conventional elasto-plastic stiffnesgrimavill be replaced by the EPR
stiffness matrix and the problem will be treatecaasonlinear problem from beginning
to the end of analysis. This is more straightfodvdran conventional finite element
method and can save lots of computational timeesthere is no need to check the
yielding, compute gradients of the plastic potdrtiave, update the yield surface etc. A
number of examples are provided in the next sedioshow the capabilities of this

approach.

5.4.1 Numerical Examples

To illustrate the developed computational methogpldive numerical examples of
application of the developed EPR-based finite el@meethod to engineering problems
are presented. In the first example, the applicatibthe methodology to a simple case
of linear elastic material behaviour is examinedtHe second example, the method is
applied to a boundary value problem involving thealgsis of stresses and strains
around a tunnel considering nonlinear and elasistjgl material behaviour. In the third
and fourth examples, the proposed method is appdieshalyse the deformation of 2D

and 3D foundation under vertical pressure. And lfinan the fifth example the
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application of the method to the analysis of thiedv&our of soil under cyclic loading is

presented.

54.1.1 Examplel: circular cylinder under internal pressure

This example involves a thick circular cylinder mmming to plane strain geometrical
condition. Figure 5.21 shows the geometric dimamsiand the element discretisation
employed in the solution where 12 8-node isoparamelements have been used. The
cylinder is made of linear elastic material withw’s modulus of E=2.1x20N/mn?
and a Poisson’s ratio of 0.3 (Owen & Hinton, 1980)is example was deliberately kept
simple in order to verify the computational methledy by comparing the results with
those of a linear elastic finite element model. Toenpressibility of the material is
assumed to be negligible and hence the EPR modeldlumetric strain is not
considered in this example. The loading considenedlves an internal pressure of
80.0 MPa as shown in Figure 5.21.

\
} 100 mm |
[
[
|

Figure 5.21: FE Mesh in symmetric quadrant of a thick cylinder

Figure 5.22 (a) shows a linear elastic stressnstralationship with a gradient of
2.1x10. The slope of this line represents the elastic uhed E, for the material. The
data from this figure were used to train the EPRi@ehan order to capture the linear
stress-strain relationship for the material. Ati@ining, the selected EPR model is as

follow:
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Figure 5.22: (a) Linear stress-strain relationship used faining, (b) the results of EPR

predictions (red circles) for stress-strain value

Figure 5.22 (b) shows the stress-strain relatipngiredicted by the EPR model,
together with the original one. It is seen thatemaftraining, the EPR model has
successfully captured the stress-strain relatignsith a precise accuracy.

The EPR-based finite element model incorporatiregtthined EPR model was used to
analyse the behaviour of the cylinder under appiedrnal pressure. The results are

compared with those obtained using a standardrleleatic finite element method.
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Figure 5.23 shows the radial displacement andaleastresses predicted by the two

methods. Comparison of the results shows thatebelts obtained using the EPR-based

FEM are in excellent agreement with those obtaiineoh the standard finite element

analysis. This shows the potential of the develdpBR&-based finite element method in

deriving constitutive relationships from raw datasing EPR and using these

relationships to solve boundary value problems.
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Figure 5.23: Comparison of the results of the BEFERA and standard FEM solution (a)

radial stress, (b) radial displacement
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5.4.1.2 Example2: Tunnel subjected to gravity and excavation loading

This example involves the analysis of deformati@meund a tunnel subjected to
excavation and gravity loadings. The geometry efttinnel and the finite element mesh

are shown in Figure 5.24.

30 m

- 21m -

Figure 5.24: Geometry of the tunnel and the FE mesh

The finite element mesh includes 142 8-node isopatac elements and 451 nodes.
The depth of the tunnel crown from the ground sigfes 12 meters. The analysis is
done in two steps. The first step includes a géostaalysis where all the elements are
subjected to gravity loading. In the second stepelnents representing the tunnel
elements, are removed to simulate the excavatiooegs. It was assumed that the soll
tested in chapter 4 section 4.3.2, is represewtatithe soil material around the tunnel.
The problem was analysed using three differentttatise models, (a) Mohr-Coulomb

(MC), (b) Modified Cam Clay (MCC), and (c) EPR-bdgeaterial model. For the first

two methods the material parameters presentedapten4, Table 4.3 were entered in
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finite element software (ABAQUS) and the tunnel wasalysed under gravity and
excavation loading. For the EPR-based material intda® models developed in chapter
4, section 4.3.2 (equations 4.56 and 4.57), weeel &g construct the stiffness matrix.
Then the obtained stiffness matrix was implemenieduser material subroutine
(UMAT) in ABAQUS. The FE model incorporating the ERnodels was then used to

simulate the behaviour of the tunnel under graartg excavation loadings.
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Figure 5.25: Comparison between the results of the EPR-FEMcangentional FE

using Mohr-Coulomb and Modified Cam Clay models

Figure 5.25 shows the comparison between theatispients in the tunnel predicted by
standard finite element analyses using MCC and MitSiitutive models as well as the
EPR-based finite element method where the raw #ata the triaxial tests were
directly used in deriving the EPR-based constitutivodel (chapter 4, section 4.3.2). In
this figure deformation of the tunnel face is mdigui by a factor of 5 in order to show
the difference between the three different apprescithe pattern of deformations is
similar in all 3 analyses. Despite the relativatyadl difference between the results from
the different analyses, it can be argued that fAR-Based FE results are more reliable,

as this method used the original raw experimentth do learn the constitutive
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relationships for the material and it did not assumny particular constitutive

relationships, yield conditions, etc. in priori.

The results show that the developed EPR-FEM caar g#iry realistic prediction for the

behaviour of complex structures.

54.1.3 Example3: Settlement of a 2D shallow foundation

This example presents finite element analysis sifip foundation using the EPR-based
FEM. Settlement and stress distribution of the @tation is obtained using standard
finite element method and EPR-FEM. The resulthe$é two methods are compared to
show the capability of the EPR-FEM. Plane straiongetrical condition is considered

for modelling the foundation and due to the symsnetnly half of the foundation is

modelled. The finite element mesh of the foundati@s 304 isoparametric 8-node
element and 340 nodes. The geometry and finite esiermesh of the foundation are
presented in Figure 5.26. The density of the FEhmsg increased in the vicinity of the

foundation since it is the zone of stress concéotraThe footing is made of concrete
but it's not modelled here to simplify the modehel foundation is constructed 2.5
meters beneath the surface and to simulate thelédiom depth, the 2.5 meters layer of

soil is replaced by an overburden pressure equivébethe weight of soil.

-2 m—»

q

Y

wol

- 20 m -

Figure 5.26: FE mesh and geometry of foundation
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The soil material is same as the one introducecthapter 4 section 4.3.2. The
foundation was analysed under its weight as welbasng pressure of 150 kPa. For the
standard finite element analysis, the Mohr-Coulcamd modified cam clay material

constitutive models are employed, using materiabip@ters presented in chapter 4,
Table 4.3. Figure 5.27 shows the resulting mamqgypal stress contours obtained from
(a) standard FE using MCC constitutive model, d)dEPR-based FEM.

S, Max. In-Plane Principal

| 859402
30316403
-2.203e+02

S, Max. In-Plane Principal
(Avg: 75%)

(b)

Figure 5.27: Distribution of max principal stress obtained from

(a) MCC-FEM (b) EPR-FEM
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In addition, the settlement of the footing at i&htre is presented in Figure 5.28. In this
figure the surface settlements obtained from tlaedd#rd FEM using MC and MCC

models are compared with those obtained from tHe-EEM. The settlement due to the
gravity load is not considered in this graph. THBREFEM has predicted a larger
settlement compared with the other two methods M@ has especially provided a

small deformation. This can be explained by the faat MCC model underestimates
the deformation for heavily over-consolidated s¢ens & Potts, 1988; Mita et al.,

2004) while EPR material model is providing a migalistic prediction (see chapter 4
section 4.3.4). For this reason it can be clainied the results of EPR-FEM are more
reliable than MCC-FEM especially for heavily ovemsolidated soils as the EPR

models are trained directly with raw data.
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Figure 5.28: Comparison of the settlement of the footing olgdifrom standard finite
element and EPR-FEM
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5.4.1.4 Example4: Settlement of a 3D shallow foundation

This example involves analysis of a square shallowndation subjected to applied
pressure of 150 kPa. Due to symmetry only a quaftehe domain is modelled and

analysed. The geometry of the foundation and thiéefielement mesh are shown in
Figure 5.29.

Figure 5.29: Dimension and finite element mesh of a quartehefsquare shallow

foundation

The finite element mesh includes 576 eight-nodenetds and 810 nodes. The aim of
the analysis is to calculate settlement of the 3m>®undation on a 12m thick
homogeneous layer of a soil, using Mohr-Coulomb BRIRCM based finite element
method. The foundation is situated at a depth ®in2from ground level. It is assumed

that the soil material is same as the one usdtei2D shallow foundation example.

Figure 5.30 shows the pressure-settlement cureeshe centre of the foundation

predicted by standard finite element analysis usivg Mohr-Coulomb elasto-plastic
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model as well as the EPR-based finite element ndettmothe initial elastic zone, the
predictions of the two models are almost the safizeloading progresses, inelastic
deformations start and differences appear in thedigtion of pressure-settlement

behaviour of the foundation.

Pressure (kPa)

0 20 40 60 80 100 120 140 160
0
~
=~ ~
-0.01 - ~
~
~
~

-0.02 - S
—_ N
£ N
E \
g -0.03 - > S
9 N\
§ N\

\
-0.04 -
\
MC-FEM S
\
-0.05 | == == EPR-FEM *

-0.06 -

Figure 5.30: Comparison of the results for foundation settlenodrtained from MC-
FEM and EPR-FEM

In addition the contours of vertical stresses do¢tgxl for both MC-FE and EPR-FE in
Figure 5.31. Despite the difference between tlsalte of the two different methods,
their pattern is similar. It can be concluded tiint developed EPR-model can be used
to analyse three dimensional problems despiteabethat they have been constructed
using data from a triaxial apparatus. It shows thatresults of the EPR-based FEM are
reliable and provide reasonable predictions (clmseonventional methods) for 3D

boundary value problems.
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Figure 5.31: Vertical stress distribution in (a) MC-FEM (b) EFFEM
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5.4.1.5 Example5: Behaviour of soil under cyclic loading

In this example, the behaviour of soil is studiedtiiaxial tests under cyclic axial
loading. The test data for this example were geéedran chapter 4 section 4.3.5 by
numerical simulation of triaxial experiments. Thengrated data were used to train,
validate and develop EPR-based material modelsafems 4.68 and 4.69). The
developed models are incorporated in the EPR-bfasiéel element model to represent
the soil behaviour under cyclic loading. The reswit the EPR-based FE analyses are
compared with those attained using conventionaltefinelement method. The
performance of the EPR-FEM is evaluated for twoasafe cases of loading where the

soil is subjected to (i) regular and (ii) irregutaiclic loading and unloading conditions.

() Multiple regular cycles

In the first case, the EPR-based FE model was tsesimulate a triaxial test on a
sample of the soil subjected to multiple and regajales at a confining pressure of 250
kPa which was an unseen case for EPR during itsriga(chapter 4, section 4.3.5). The
loading cycles involved the application of a taalal strain of 8% in ten loading and

unloading cycles.

The results of the EPR-FEM are compared with traissned using the conventional
FE simulation in Figure 5.32. It is seen that tasults of the EPR-FEM are in close
agreement with those of the conventional FE simanatit can be seen from the figure
that, the EPR-based FE model is capable of solvigndary value problems involving

cyclic loading with a good accuracy.
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Figure 5.32: Comparison between the results of the EPR-FEMcangentional FE for

multiple regular loading cycles (a) deviator strégsvolumetric strain
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(i) Irregular loading cycles

In the first case, all the simulations (includitg$e used for training and testing of the
EPR) were performed with a regular loading pattamolving regular induced
displacements in the cycles. This case is setooexamine if the EPR-based FE model,
trained with regular cyclic loading data, would &kle to generalise the training to
predict the behaviour of the soil for irregular dogy patterns that are different from
those used for training of the EPR model. Althodigh loading pattern was different
from that used for training of the EPR, the imposg@ins (and loads) used in the
simulation were kept within the ranges of valuegdus$or training so as to avoid
extrapolation.

In this case, the EPR-FEM was used to simulateb#teaviour of the soil with an

irregular cyclic loading pattern as shown in Figr@&3. The test was simulated at
confining pressure of 250 kPa that was not intreduto the EPR during training. The
test involved the application (and removal) of k@taial strains of 1.6% and 4% in the

first and second cycles respectively.

In Figure 5.33, the results of the EPR-FEM are garad with those obtained using the
conventional FE simulation (using MCC model) of Hane irregular pattern. From the
figure, it can be seen that the results of the BB&d FE simulation are in a very good
agreement with those obtained using the convertiBaThe results are also compared
with those obtained for a regular 5-cycle patterthwmposed strains of 0.8, 1.6, 2.4,
3.2, and 4 percent in cycles 1 to 5 respectively lams been depicted in Figure 5.34.
Comparison of the results shows that, althoughetPR was only trained with data from
regular cyclic loading tests, the EPR-FEM was ablpredict the behaviour of the soill
under irregular loading patterns. It can be conetlthat the EPR-FEM is also capable
of generalising the behaviour of the soil for cgdibading with different loading and
unloading patterns. This further illustrates thieustness of the proposed EPR-FEM and
shows the excellent capability of the method inteapg the underlying constitutive
relationships for the material from raw data andegelising it to predict different

conditions not introduced to the EPR during tragnin
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Figure5.33: Comparison between the results of the EPR-BER#conventional FE for

two irregular loading cycles (a) deviator stregsvd@umetric strain
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Figure 5.34: Comparison between the results ofBRR-FEM for 2 irregular loading

cycles and the original cycle loading data usedtfaming (a) deviator stress (b)
volumetric strain.
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Chapter

CONCLUDING REMARKS

6.1 Summary

In this thesis a novel approach is presented for material modelling in general and
modelling the behaviour of soilsin particular, using evolutionary polynomial regression
(EPR). EPR is a hybrid data mining technique that searches for symbolic structures
using a genetic algorithm and estimates the constant values by the least squares method.
Stress-strain data from experiments were employed to train EPR and develop EPR-
based material models. The developed models were compared to the existing
conventional constitutive material models and their advantages were highlighted. It was
also shown that the developed EPR-based material models can be incorporated in finite
element (FE) analysis. Different examples were used to verify the developed EPR-based
FEM. The results of the EPR-FEM were compared with standard FEM where
conventional constitutive models were used to model the behaviour of materials. These
results showed that EPR-FEM can be successfully employed to analyse different
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structural and geotechnical engineering problems. The following are the achievements

of this research in presenting a new framework for constitutive modelling in FEA:

A total stress-strain strategy was introduced for developing EPR-based material
models and a procedure was described to expand the data from a single
experimental test on isotropic materials.

Also an incremental strategy was presented and a set of actual experimental data
on samples of a soil from a triaxial apparatus was considered to develop EPR
models to predict the soil behaviour using this strategy.

Volume change was modelled using EPR in order to predict volumetric
behaviour of soils.

A strategy was introduced to examine the developed EPR models using a point
by point prediction of the entire stress paths.

The implementation of the developed EPR models in commercia finite element
software (ABAQUS) was presented.

A model for smulating the behaviour of soil under cyclic loading was
developed using EPR. It was shown that EPR can learn the behaviour of the
material under complex and cyclic loading conditions taking into account the
stress history of the soil.

A methodology was introduced to incorporate the developed EPR models in
FEM. It was shown that it is possible to construct the material stiffness matrix
(also known as Jacobian) using partial derivatives of the developed EPR models.
The EPR-based Jacobian matrix was implemented in FEM and a number of
boundary value problems (including 2D and 3D problems as well as monotonic

and cyclic loading conditions) were used to verify the methodol ogy.

6.2 Conclusions

The following conclusions are drawn from the results of thisthesis:

The EPR has al the advantages of ANN and in addition it provides the user with
transparent and practical mathematical equations.
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*  When modelling using EPR it should be noted that different EPR types and
functions and their combinations should be explored to find the best model.

* The main benefits of using EPR-based material models are that it provides a
unified approach to constitutive modelling of al materias (i.e., all aspects of
materia behaviour can be implemented within a unified environment of an EPR
model); it does not require any arbitrary choice of the constitutive
(mathematical) models.

* In EPR-based material models there are no material parameters to be identified
and the model is trained directly from experimental data. It should be noted that
identifying the material parameters from material tests can be a difficult and
subjective process. This presents another disadvantage of conventional material
models in comparison to EPR-based material models where there are no material
parameters to determine. EPR is capable of learning the materia behaviour
directly from raw experimental data; therefore, EPR-based material models are

the shortest route from experimental research (data) to numerical modelling.

* Another advantage of EPR based congtitutive model is that as more
experimental data become available, the quality of the EPR prediction can be
improved by learning from the additional data, and therefore, the EPR model can
become more effective and robust.

» A trained EPR-based model can be incorporated in a FE code in the same way as
aconventional constitutive model. It can be incorporated either as incremental or
total stress-strain strategies. An EPR-based FE method can be used for solving
boundary value problemsin the same way as the conventional FEM.

* The incorporation of an EPR-based constitutive model in FE procedure avoids
the need for complex yielding/plastic potential/failure functions, flow rules, etc.;
there is no need to check yielding, to compute the gradients of the plastic

potential curve or to update the yield surface.
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It should be noted that, for practical problems, the data used for training EPR,
should cover the range of stresses and strains that are likely to be encountered in
practice. Thisis due to the fact that EPR models are good at interpolation but not
so good at extrapolation. Therefore, any attempt to use EPR-based FE method
for loading conditions that may lead to stresses or strains outside the range of the

stresses and strains used in training of the EPR may lead to unacceptable errors.

EPRCMs are especially useful for materials that their constitutive models are not
well developed (e.g., biomaterias).

6.3 Recommendationsfor futureresearch

Although it was shown that it is possible to develop constitutive models for
materials in general and in particular soils with both linear and non-linear
behaviour using EPR; its application to materials with more complex behaviour

(e.g., unsaturated soils) can be the subject of future works.

In chapter 4 a strategy was introduced to extend and enrich data from a single
laboratory experiment. However as it was mentioned there, the strategy was only
applicable if the material under consideration was isotropic. The strategy should
be extended to non-isotropic materials, as some materials like wood or some

composites demonstrate orthotropic or non-isotropic behaviour.

All the examples presented in chapter 5 are static and dynamic problems are not
studied in this thesis. The capability of EPR to capture the behaviour of material
under dynamic (e.g., earthquake) loading can be investigated. Appropriate
boundary value examples that involve dynamic analysis should be used to
validate the EPR-based FEM.
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