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Abstract

We propose a new asymptotic approximation for the sampling behavior of non-
parametric estimators of the spectral density of a covariance stationary time series.
According to the standard approach, the truncation lag grows more slowly than the
sample size. We derive first order limiting distributions under the alternative assump-
tion that the truncation lag is a fixed proportion of the sample size. Our results extend
the approach of Neave (1970) who derived a formula for the asymptotic variance of
spectral density estimators under the same truncation lag assumption. We show that
the limiting distribution of zero frequency spectral density estimators depends on how
the mean is estimated and removed. The implications of our zero frequency results are
consistent with exact results for bias and variance computed by Ng and Perron (1996).
Finite sample simulations indicate that the new asymptotics provides a better approx-
imation than the standard asymptotics.
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1 Introduction

Spectral density estimation is an important and well established area of time series analysis.
Much of the original work done on this topic was published in seminal papers going back over
50 years. Priestley (1981) provides an excellent review and discussion. This paper adds to the
now very large literature on nonparametric spectral density by extending ideas first proposed
by Neave (1970). A well-known class of nonparametric spectral density estimators takes the
form of weighted sums of sample autocovariances. Asymptotic theory for these estimators
has been developed under the assumption that a truncation lag parameter, M (sometimes
called a bandwidth) increases at a rate slower than the sample size, T'. Asymptotic normality
of nonparametric spectral density estimators has been established under this assumption (see
Grenander and Rosenblatt (1953)). In practice, a specific truncation lag must be chosen and
the value of b = M/T is positive. Although this asymptotic theory requires that b go to
zero as 1" increases, in practice b is greater than zero and can be nontrivially different from
zero. Therefore, the traditional asymptotic theory can be labeled as “small-b” asymptotics.
Neave (1970) argued that a more accurate asymptotic variance formula could be developed
by treating b as a fixed constant as 7" increases, thus mimicking the fact that b is not zero in
small samples. Neave (1970) derived asymptotic variance formulae based on this “fixed-b”
assumption.

In this paper we adopt the assumption that b is a fixed constant as 7" increases. We
generalize the results of Neave (1970) and derive asymptotic distributions of nonparametric
spectral density estimators. The distributions we obtain are nonstandard but can be ex-
pressed as functionals of standard Wiener processes. One interesting result we find is that
asymptotic distributions of zero-frequency spectral density estimators depend on whether
the data has been mean-corrected or detrended. This contrasts with the standard asymp-
totics where mean correction or detrending has no effect on the first order asymptotics at
frequency zero. Our zero frequency results are qualitatively similar to exact results for bias
and variance computed by Ng and Perron (1996). Because the fixed-b asymptotic approxi-
mation captures much of the bias in zero frequency estimators when b is not close to zero,
it is a particularly useful result for serial correlation robust tests that use zero frequency

spectral density estimators as standard errors. Capturing the bias reduces the tendency of



serial correlation robust tests to over-reject when serial correlation in the errors is strong;
see Kiefer and Vogelsang (2005).

The paper is organized as follows. In the next section the model is given and estimators
are defined. Section 3 reviews well known asymptotic results under the standard small-b
approach. Section 4 presents the new fixed-b asymptotic results. This section contains the
theoretical contributions of the paper. Inference regarding the spectral density is briefly
discussed in Section 5, and Section 6 presents a selection of Monte Carlo simulations that
compare the accuracy of the small-b and the fixed-b asymptotics. All proofs are given in the

appendix.
2 The Model and Estimators
Consider the time series process
Y = dy + uy, t=1,2,....T (1)

where u; is a mean-zero covariance stationary time series process with autocovariance func-
tion

v; = cov(ug, up—j).

The component d; represents the deterministic part of y,. Important examples include d; = 0
(a mean-zero time series process), d; = p (a time series process with mean p) and d; = p+ St
(a trending time series process). Let w € [0, 7] denote frequencies and define the spectral

density of u; as

f@) = 5

w0t S cos(wj>] .

Jj=—00
It is assumed that 0 < f(w) < co.

A well known class of estimators of f(w) is the nonparametric class which takes the form

N 1 T-1 .
Fy =5+ Y kA cos(w))] 2)
j=—(T-1)



where

T
~ -1 ~
/YJ =T utut—j7
t=7+1

Ut:yt—dm

and c/l; is an estimate of d;. Estimators of the form given by (2) were first proposed (in a
slightly more general form) in the time series literature by Grenander and Rosenblatt (1953).
The function k(z) is a weighting function, or kernel, that typically downweights high lag
sample autocovariances. k(x) is an even function with £(0) = 1 and k(x) declines to zero
as © — o00. Well known kernels have been proposed by Bartlett (1950), Daniell (1946),
Parzen (1961) and Tukey (1949), among many others. See Priestley (1981) for a general
discussion. The truncation lag, M, controls the amount of downweighting that is applied

to the high order sample autocovariances. Consistency of f(w) requires that M — oo and

M/T —-0asT — oc.

3 Asymptotic Normality

~

It has been shown that, under suitable regularity conditions, f(w) has an asymptotically
normal distribution. Sufficient regularity conditions for obtaining such a result are that d;
is a linear polynomial in ¢, u; = 3 7° ¥;e;; where {&;} is an i.i.d. process with E(e;) = 0,
Ele}] < o0, Elej] < oo and 22 |4;] < 0o (see Anderson (1971)). Under these conditions
it follows that

-~

= (F@) - 1w)) —* N0,V (w), 3)

where
Viw) = 2f3(w) [T K (z)dr for w=0,7
(w) = fw) [ K (z)de for 0<w<m °

4 Fixed-b Asymptotic Approximation

~

In this section an alternative asymptotic approximation for the sampling behavior of f(w) is
developed. The approach taken here is in the spirit of Neave (1970) who argued that while
the assumption that b = M /T — 0 is convenient mathematically and ensures consistency

~ ~

of f(w), a more accurate approximation for the sampling variance of f(w) can be obtained
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under the assumption that M = [0T] where b € (0, 1]. Under this alternative assumption for
M, Neave (1970) proved that

. T ~ B 212(w) fi{l;b K*(z) (1 —blz|)dr for w=0,7
oo Mvar(f(w)) | ) f_lil;b B(x)(1—=blz))de for 0<w<m

and these expressions become the standard formulae for b = 0. It is important to note that
this result by Neave (1970) does not apply to mean-corrected or detrended data for w = 0.
Part of Neave’s proof follows a proof by Parzen (1957) and there appears to be a mistake (or
typesetting error) on page 340 of Parzen (1957) that does not affect Parzen’s proof but affects
Neave’s proof. Specifically, to show that mean-correcting or detrending have no asymptotic
effects on f(O), Parzen (1957) requires a term involving the scaled integral of the kernel,
k(x), to be o(1). See the third equation on page 340 of Parzen (1957). Parzen argues that
this term is bounded from above by a constant times T~° where ¢ > 0 is a fixed constant.
The error is that the bound should be proportional to (7°/M)~¢ not T¢. Obviously, under
the standard small-b asymptotics, T/M — oo as T — oo in which case (/M) = o(1)
and Parzen’s proof goes through as argued. The problem for Neave’s proof is the claim on
page 72 of Neave (1970) that formulae given by his equation (2.5) follow from arguments in
Parzen (1957) and do not depend on the condition that M /T — 0. This claim is true for
w # 0, whereas for w = 0 it is only true if the data is know to be mean zero (d; = 0). It does
not hold for w = 0 if the data is mean-corrected or detrended.

The appeal of Neave’s approach is that it provides an approximation that reflects the
fact that M /T > 0 in finite samples. The limitation of Neave’s result is that it only provides
a formula for the variance and it does not address bias of f(w) or indeed the distribution
of f(w) Building on the approach of Kiefer and Vogelsang (2005) who focused only on the
case of w = 0 for mean-corrected data, it is possible to extend Neave’s result to the entire
distribution of f(w).

A first order asymptotic distribution theory for f(w) can be developed under fairly general

regularity conditions. Define the partial sum processes
t t
Si(w) = cos(wiluy,  Si(w) = sin(wj)u;.
j=1 j=1

The key requirement for our results is that the following functional central limit theorems
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hold for these partial sums:

[rT]

T_l/QS[rT] 1/2 Z U = \/ 27Tf W (4)

)

TS () = T2 (1) = 2R F R (), 5)
T_I/QSTT] w) = Vrfw)Wi(r), 0<w<m, (6)
T_I/ZSiT](w) = /7Tf(w)Wa(r), 0 <w<m, (7)

where W (r), W*(r), Wi(r) and W(r) are standard independent Wiener processes, [r7] is
the integer part of T with r € (0, 1] and = denotes weak convergence. Note that it trivially
follows that 7~ 1/2S[STT]( ) =T" 1/25[57,T]( 7) = 0 because sin(0) = sin(7t) = 0. A sufficient
condition under which (4) - (7) hold is that w, = » 77 v;e;—; where {e;} is i.i.d. with
E(e) = 0, Elef] < oo, Elef] for some x > 4 and 7 7 < co. See Theorems 1 and 2 of
Boutahar (2006). These regularity conditions are similar to the regularity conditions used
in the standard approach, see Priestley (1981, p.469).

The asymptotic distribution of ]/‘\(O) depends on c/l\t We consider three cases for d; and
d,. Case (i): dy =0, d, = 0. Case (ii): di = p, dy=7y=T" Z:;F:l y;. Case (iii): dy = p + St,
d; = i+ Et where 11 and B are the least squares estimates from a regression of y; on (1,1).
The limiting distribution of f(O) can be expressed in terms of mean-corrected and detrended

W (r) which we denote by W(r) and is defined as follows. For case (i) W(T) = W(r). For

cases (ii) and (iii)
| staw)

W)= wo) ([ s ) ([ atspatoyas)

where g(s) = 1 for case (ii) and g(s) = [1, s]' for case (iii). Note that /W(l) = 0 for cases (ii)
and (iii).
Define

-1

K(1) = lim [(k(1) — k(1 — ) /A].

h—0
i.e. k' (1) is the derivative of k(z) from the left at = 1. The following theorem provides

the main results of the paper. The proof is given in the appendix.



Theorem 1 Let y; be given by (1) where uy is a mean zero stationary process that satisfies

(4) - (7) and suppose that 0 < f(w) < oco. Let M = bT with b € (0,1]. The following hold
asT — oo :

forw=m:
%:——/ / k( — ) *(r )W*(s)drder%W*(l)/Ol k,(l;r) W (r)dr+W*(1)%,
forw=20:

b [

— )A( )/W(s)drds—l—%/W(l)/ K (1; )W(T)dr+W(1)2~

0

2. If k(z) is continuous, k(x) = 0 for |z| > 1, and k(x) is twice continuously differentiable
everywhere except for possibly |x| = 1, then for 0 < w < 7:
-~ 2 1-b
1 — 2
f_ 1 Z {__ / (r S) Wi (r)W;(s)drds + —k;'_(l)/ Wi(r)W(r + b)dr]
f 2 i=1 |r—s|<b b 0
1 2 ! 1—7
- “Wi(1 K (r)d (1)?
+2;{bwz< )/1b ( ; )Wm r o+ Wi(1) }
forw=m:

% N _% //Tﬂgb 1 (r ; S) W*(rYW* (s)drds + %k’_(l) /Ol_b W*(r)W*(r + b)dr

. %W*(l) /11b L (1 - 7") W (r)dr + W*(1)?,

and for w = 0:

% N _b_12 / /| LK (T - 8) W (r) W (s)drds + %k’_(l) /0 W bir

+ %W(l) /1:, K (1 ; T) W (r)dr + W (1),




3. If k(x) =1 — |z| for |x| <1 and k(z) = 0 otherwise, i.e. k(x) is the Bartlett kernel,
then for 0 < w < 7:

forw=m:
-~ 1 1-b 1
% = %/0 W*(r)zdr_%/o W*(T)W*(Nrb)dr_%w*(l) /1—b W*(r)dr+W*(1)?,
and for w =0:
B =1 [ Wera 3 [ WOWernar - Tww) [ W war

~

The theorem shows that limiting distribution of f(w) is proportional to f(w) under the
assumption that M = bT. Similar to the standard asymptotics, different limits are obtained
for w = 0 compared to w # 0. Unlike in the standard approach, the limits in the w = 0 case
depend on the estimated deterministic trend, c?t

The limiting distribution theory for w = 0 was used by Kiefer and Vogelsang (2005) for
mean-corrected data and by Bunzel and Vogelsang (2005) for detrended data to obtain a

more accurate asymptotic theory for tests that use f(O) when constructing standard errors.
When fA(O) is used to estimate an asymptotic variance, consistency of fA(O) is usually the
approximation used when determining how the sampling behavior of ]?(0) affects the ultimate
test. Thus, f(0) is approximated by f(0). Because f(0) can exhibit severe downward
bias, using the random variables in Theorem 1 to approximate ]?(O) yields a more accurate

~

asymptotic approximation since some of the bias and sampling variability in f(0) is captured
by the fixed-b asymptotics. A formal result along these lines has been established by Phillips,
Sun and Jin (2005)a for the case where d; = 1 and w; is Gaussian.

A recent paper by Phillips, Sun and Jin (2005)b develops an asymptotic theory analogous
to the results in Theorem 1 for the case of exponentiated kernels. Specifically, Phillips et al.

(2005)b consider estimators of f(w) where in (2) k(<) is replaced with k(£)” where 7 is a

positive real number. Increasing v places less weight on higher-order sample autocovariances

in much the same way as does smaller values of M. Holding v fixed as T" increases leads



to an asymptotic theory that is analogous to fixed-b asymptotics. In addition to providing
fixed-y asymptotic results, Phillips et al. (2005)b also derive a more traditional asymptotic

normal approximation under the assumption that v increases with 7" but at a slower rate.

5 Finite Sample Comparison of the Normal and Fixed-b Asymptotic Approxi-
mations

One standard metric by which to judge an asymptotic approximation is how well the as-
ymptotic distribution approximates the sampling distribution of the statistic. Suppose for a
given sample of size T, a particular value of M is used to construct f(w) The question is
then which asymptotic approximation, the normal approximation based on standard small-b
asymptotics or the new fixed-b asymptotics, is more accurate.

We performed a simple Monte Carlo simulation study to compare the accuracy of the
two asymptotic approximations. The data is assumed to have unknown mean so that the

data is mean-corrected before estimating f(w) (this is case (ii) from above). We consider

the data generating process

Y= H + Ug, (8)
Up = puy—1 + & + 01,
& ~ 1id N(0,1),

where ug = £ = 0. The spectral density for y; is given by

1 (1+20cos(w) + 6?)
21 (1 —2pcos(w) + p?)’

fw)

~ ~

Data was generated according to (8) and f(w) was computed using (2). Because f(w) is
exactly invariant to p, we set ;o = 0 in all the simulations. Using R = 5,000 replications we

computed the empirical cumulative distribution function, Prob(z) of f(w)/f((w) using
R ~
5 1 fiw)
Prob(r) = — 1 <z,
-z (i <)

where ﬁ(w), ﬁ(w), oo fR (w) are the simulated realizations from f(w) and 1(+) is the indicator

function. We obtained results for large range of values for M, w, p, # and a group of well

known kernels that includes the Bartlett, Parzen, Daniell and quadratic spectral (QS) kernels.
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We report results for AR(1) errors with p = 0.0,0.4, —0.4, for the frequencies w = 0.0, 0.57,
and b = M/T = 0.04,0.2,0.5. Plots of the empirical CDF's for 7" = 50,100, 200 are given in
Figures 1.1-4.18. The figures are organized first by kernel: Bartlett (Figures 1.1-1.18), Parzen
(Figures 2.1-2.18), Daniell (Figures 3.1-3.18), QS (Figures 4.1-4.18) and then by frequency:
w = 0 (Figures x.1-x.9) and w = 0.57 and (Figures x.10-x.18). Each figure also provides
plots of the CDF's given by the normal asymptotic approximation from (3) and by the fixed-b
approximation from Theorem 1. The CDFs of the asymptotic random variables in Theorem
1 were accurately estimated using simulation methods. The standard Brownian motions
were approximated by scaled partial sums of 7.i.d. standard normal random variables using
1,000 increments and 50,000 replications.

Figures x.1-x.3 provide results for i.i.d. errors at frequency zero. When a small bandwidth
is used (b = 0.04) as in Figures x.1, we see that the finite sample empirical CDF's are similar
for all three sample sizes and are close to the fixed-b asymptotic CDF. The asymptotic
normal CDF, on the other hand, is obviously different between the 0.1 and 0.9 percentiles.
In situations where larger bandwidths are used as in Figures x.2 (b = 0.2) and x.3 (b = 0.5),
the fixed-b asymptotic CDF remains very close to the empirical CDFs whereas the asymptotic
normal CDF systematically becomes a less accurate approximation. When the data has serial
correlation as is the case in Figures x.4-x.6 (p = —0.4) and Figures x.7-x.9 (p = 0.4), the
fixed-b asymptotic approximation remains accurate for b = 0.2, 0.5 whereas the asymptotic
normal approximation exhibits substantial inaccuracy. For b = 0.04, neither asymptotic
approximation is accurate for 7" = 50. But, the fixed-b asymptotic approximation improves
as T' increases whereas the asymptotic normal approximation remains less accurate. It is
interesting to note that for b = 0.2,0.5 the CDF for the asymptotic normal approximation
is strictly positive at the origin. Thus, the asymptotic normal approximation attributes
negative values to f(w) /f((w) with positive probability even though fA(w) /f((w) is positive
by construction for the four kernels considered here. This problem does not arise with the
fixed-b approximation.

Now consider the frequency w = 0.57. As Figures x.10-x.18 illustrate, the differences
between the normal and fixed-b approximations are smaller than for w = 0 although the
patterns are similar. For b = 0.04 the CDF's of the two asymptotic approximations are very

close to each other and they are reasonably close to the empirical CDF's for T = 100, 200.



For T' = 50 and p # 0 neither asymptotic approximation is adequate. For b = 0.2,0.5 the
fixed-b asymptotic approximation is good for all three sample sizes and all three values of p
whereas the asymptotic normal approximation is much less accurate.

The overall picture that emerges from the figures is that the fixed-b approximation can
be systematically better than the asymptotic normal approximation regardless of the kernel
being used. The next section provides some calculations that can shed some light on patterns

exhibited in the simulations.
6 Asymptotic Bias and Variance

Many of the patterns seen in the simulations can be intuitively explained by examining the as-
ymptotic bias and variances implied by fixed-b asymptotics in comparison to the asymptotic
normal approximation. We continue to focus on the case where the data is mean-corrected
and the for the sake of concreteness we isolate attention on the Bartlett kernel. In a recent
paper, Hashimzade, Kiefer and Vogelsang (2005) formally calculated the following results

under fixed-b asymptotics. For 0 < w <7

o bias | 1) _
Tlgrolo bias _m_ =0,

lim var _M_ = b/l/b(l — blz|) K*(z) do = b/l (1 —b|z|)(1 — |z|)*dx
T=oo _f(w)_ B ~1/b o

Note that this variance formula exactly matches the formula obtained by Neave (1970). For

w = 0, the formulae are given by

. . (w) o 1,
zlgrgobws m ——b—i-gb

, Fw)] 4 7, 14, 2, 1 . 1
1 L S Sh— L B b — —— (26— 1) 1(b > ).
e T I S LA TAR 502 1> 3)

This variance formula differs from 4b (3 — 5b) , the formula given by Neave (1970), because
Neave’s zero frequency variance formula is only valid when the data has mean zero and the
data is not mean-corrected. Neave’s variance formula and the fixed-b variance are the same

at frequency zero when the data is mean zero and is not mean-corrected.
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It is instructive to compare these bias and variance formulae with the well known standard

formulae for the Bartlett kernel which are given by

lim bias M =0,

T—o0 _f(w)_
o Tw)] 2
Th_r}r;()b var fo)| =3

for 0 <w < 7and

lim bias M =0

T—o0 _f(w)_
o Tw)] 4
Tll_rgob var fo)| =3

~

for w = 0. Under the standard approach, var(f(w)/f(w)) is approximated by 2b and 3b re-
spectively and these quantities match the first terms in the variance approximations given by

fixed-b asymptotics. Because b = 2%, both asymptotic theories approximate var(f(w) /f(w))

M

with a polynomial in 7. The standard approximation is a first order polynomial whereas

the fixed-b approximation is a higher order polynomial with the same first order term. When
% is small, we would expect the higher order terms to be relatively small and this suggests
the standard and fixed-b approximations will be similar at least with respect to bias and
variance. In light of this observation, it not surprising that the cdfs of the two asymptotic
approximations are very close to each other in the figures for b = 0.04. When % is not close
to zero, the higher order terms in the fixed-b approximations matter and we would expect the
approximations to be different. This is precisely what we see in the figures for b = 0.2, 0.5.

While the above bias and variance formulae help explain the differences between the
accuracy of the normal asymptotic approximation and the fixed-b asymptotic approximation,
they do not explain the relative accuracy of the fixed-b asymptotic approximation across
different values of b and T'. To provide an explanation, it is useful to examine the well-
known spectral bias formulae derived by Parzen (1957). For the Bartlett and Daniell kernels
the Parzen bias is given by —f()(w)/M and —f® (w)72/(6M?) respectively where

(o)

F®(w) = % lz 171" cos(wj)] .

j=—00
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Because under both the normal asymptotic approximation and the fixed-b asymptotic ap-
proximation, M — oo as T — oo, the Parzen bias is o(1) and does not appear in the
asymptotic approximations (at least to first order). The behavior of the Parzen bias term
can explain why the fixed-b approximation improves as b increases when the data is not ..d.
especially for T' = 50. Given T, as b increases, M increases thus reducing the Parzen bias
and improving the approximation. This is why in Figures 6 and 9 (b = 0.5) we see that the
T = 50 cdf and the fixed-b cdf are close whereas in Figures 4 and 7 (b = 0.04) the T' = 50
cdf and the fixed-b cdf are not close. The Parzen bias also explains why, for a given value of
b, the fixed-b approximation improves as 7' increases. With b fixed, as T' increases, so does

M and the Parzen bias shrinks.
7 Appendix: Proofs

Define the following partial sums:
R t
S (w) = Y 1 cos(wj),
j=1
N t
S;(w) = Zﬂj sin(wj).
j=1

Note that
S;(0)=S; () =0 (9)

because sin(0) = sin(7j) = 0. Consider the case where d, = 7i + Bt. Then, from simple
algebra it follows that 4, = u, — (i — p) — (B — B)t. Because TY2(ji — p) = O,(1) and
T3/2(§— B) = O,(1), it is easy to show that for 0 < w < 7,

[rT]

723" [ = 1) = (B = ] cos(wt) = O,(T)
v

TN (=) = (B = At sin(wt) = 0,(T7),

and
[rT]

TN G- ) = (B B)t| (~1) = 0,(T 7).

t=1

12



Therefore, it directly follows from (5) - (7) that

T=28¢ 4y (1) = /21 f(m)W*(r), (10)

T_1/2§[CTT} (w) = V/7f(w)Wi(r), for 0 < w < T, (11)
T_l/ngrT} (w) = /7 f(w)Ws(r), for 0 < w < 7. (12)

Obviously, the limits (10), (11) and (12) continue to hold for d; =y or d; = 0. The remaining

case is §f (0) = 22:1 uj, and this partial sum has a different type of limit because

7]
TN (i )~ (B B)t| = 0,(1).
t=1
Simple algebra gives
7] ~
1/2S[r:r] 7-1/2 Z e T-1/2 Z [ut —(p—pn)—(B— ﬁ)t}
t=1
o m
T—WZ T”? (= p) =T =B Dt
t=1

= \/27Tf YW (r (13)

Note that the limiting result (13) is a standard result that follows from (4) and simplifies in

obvious ways for c?t =7 or c@ = 0.
Proof of Theorem 1. Define the following functions:

JY _ e (t—J
s () ()

A’Kyj = (Kij — Kiji1) — (Kiv1j — Kit1j41) -

13



Simple algebra gives

-1 .
~ J ~ .
Yo + 2 Z k (ﬁ) i cos(w])]
j=1

) T T .
_ —Til ~ S
o Z > u;ujk ( T > cos [w(i — j)]

i—1 j=
= iT‘1 XT:ET:@ cos(wi) KU, cos(wy)+ (14)
2w i—1 j—1 ’
+ iT* ZT: XT: w; sin(wi) Ky, sin(wy)
2 ’ v

i=1 j=1
Rewrite the first term in (14) as the following:

T T
1 1
— 71 Z Z u; cos(wi) K;u; cos(wj) = —T Z u; cos(wi Z K;;u; cos(wy)

i=1 j=1 j=1
1
-1
= %T E aib;,
i=1
where
a; = u; cos(wi), b; = g iiUj cos(wy).

Using the identity

+ bTZaj, (15)

=1

Zalb Z[b — bit1) Zaj

we obtain, for a; and b; defined above,
T-1 /T R
Zazb = Z <Z (Kij — K1) Uy cos(wj)Ss (w ) + Z Krpju; cos(wj)ST( ). (16)
=1 7j=1 7j=1

By applying the identity (15) one more time, we obtain for the first term in (16)

N
-

T
D (K= Kiga ) W cos(wy) = > [(Kiy = Kivag) — (Kijy1 — Kig111)] 55 (w)
=1

1

<.
Il

+ (Kir — Kij1,1) 5% (w)

—

N
-

= A2KU§]C (W) + (K'LT - Ki+1,T) §% ((,d) :

1

<.
Il

14



Similarly, for the second term in (16) we obtain

T

T-1
ZKTJchos wj) :Z Krj — Krj1) S§ (w )+KTTS (w).
7j=1

7j=1

Finally, noting that K;; = K;; and Kpp = k(0) = 1, we obtain the following expression for
the first term in (14)

T T
1
— Z Z u; cos(wi) K;u; cos(wj) =

i=1 j=1
LT 1T 1T 1ZT 1/2Sc T2A2K T 1/2Sc( )
2
+2—T ET:T V28 () T (Kjp — Kjiar) T7255 (w )+%<T‘1/Q§§ (w)>2. (17)
Define

DTT(T):T{k* ([’“T]T“)—k (@)}
pigt =12 [ (b () e (VD)) - (i (M0 e (MTLEEYY]

Notice that T (Kj17 — Kjr) = Dip(r) and T?A?K,; = —Dj;. (L) which enables us to
write (17) as

T T
1 . N~ .
—T1 E E u; cos(wi) K;u; cos(wj) =

=1 j=1
/ / T_1/2S[TT] 57 (1 —5) _1/2§fsﬂ (w)drds

2— T2 1 (w) Dip(r)T~255 (w) d L (128 () 18
+ [rT] 17(7) 7 (w)dr + o (W) - (18)

If £”(x) exists and is continuous, then

Jm Diy(r) = () (19)
Jim Dip(r) = K(r) (20)

by definitions of the first and second derivatives. Because (18) is a continuous function of

T-Y QS\E;T] (w), Dip(r) and Djp(r), its limit can be obtained using the continuous mapping

15



theorem (Billingsley (1968, Theorem 5.1) along with (19), (20) and the appropriate limit of
T_l/Q:S’\[CTT] (w). For w > 0 the limit of T‘1/2§E3TT] (w) follows from (11) for w < 7 and from
(10) for w = w. For w = 0, (17) simplifies using the fact that S (0) = 0 and the limit of
Y 2:5’\[CTT] (w) follows from (13). The second term in (14) is identical to (17), with S¢ (w)
replaced by S (w) and for 0 < w < 7 the limit follow using analogous arguments. For
w = 0,7 the second term vanishes because of (9). This completes the proof of part 1 of the
theorem.

If k(z) is not everywhere twice continuously differentiable, we cannot apply (20) and
(19) directly. The leading cases are kernels that truncate, i.e. kernels that put zero weight
on sample autocovariances with lag greater than M. Suppose k(x) = 0 for |z| > 1, k(x)
is continuous, and k(z) is twice continuously differentiable everywhere except for possibly
|z| = 1. We rewrite the sums in (17) to reflect the truncation in k(x). For the first term in

(17) we have:
T_l § ( )A2KU§]C (Cd) =

TS S (W) A28 @) + TS SF (w) AZKSE (w)

li—j|<bT i—j=bT
2 1 2
YOS (w) ATK S (W) + T Y S (w) ATKSE (w)  (21)
i—j=—bT |i—j|>bT

By the assumptions listed above, k(z) is continuous and twice continuously differentiable in

the range of the first sum and is zero in the range of the last sum. Hence, the limit of the

first term follows from the arguments used in the proof of part 1 and the last term vanishes.
For the second term we have

770 )" S8 (w) A2KG;SE (w) =

i—j=bT
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T S5 (W) [(Kjsiry — Kiwrgat) — Kjreng — Kjarene1)] S5 (W)

_ TlTAblT 5 () Kk; (1) — & <1 - b%)) - (k: (1 n biT) y (1))] S

1 - AC 1 - C
=T Z T 1/2*9]' (w) 1 )T 128 +bT( w).

By definition of the derivative from the left it follows that,

O kl(l i) _ K (1). (22)

bT

lim

T—o0

Similar manipulation with the third term in (21) yields
T—bT 1
C C e 1 + el - k (_1)
YT S (w) ATKSE (w) = — Z 771258 (w k(= bi) 771288 ().

i—j=—bT oT

By definition of the derivative from the rlght, it follows that

T s bATl) —kCED K(—1).

T —_
— T

By symmetry of k(z) around = = 0, it follows that &, (—1) = —&’ (1). Hence, second and
third terms in (21) are equal and can be combined into one. Now consider the second term

n (17):

T
- Z j Kjr — Kjr) St (w) (23)
j=1
T—bT—1 T-1
=T > S (W) (Kjr — Kjr) S5 (w) +T70 Y 85 (w) (Kjr — Kjpar) S5 (w)
j=1 j=T—bT
The first term in (23) vanishes because for 1 < j < T — bT' — 1 we have ]b—TT < —1 and
+b1T T < —1, and therefore K;r = Kj11r =0. The second term in (23) can be expressed as
T-1 R
1Y § W) (K — Kyer) S5 (@)
J=T—bT
Z SC Kjir) S5 (w)
j=T-bT
j+1— i
Z T 1/25«c k( bT )1 k( ) 1/250( )
G=T—bT b7

17



By definition of the first derivative,

) —k(j—T)

jH1=T
T

F(

lim
T—o00

(24)

X

where the last equality follows from the symmetry of k(z). Collecting all terms in (21) and
(23) into (17), adding corresponding terms with S ? (w) in place of §]c (w), and using (22) and
(24) along with (10), (11), (12), (13) and (9) (as needed depending on w) establishes part 2
of the theorem.

To prove part 3 of Theorem 1 we use the definition of Bartlett kernel:

[ J ) |7’ _.]| S bT
Ki=k|— )= o3 .
o R
Then it follows that
0, 1< j—0bT
7 Jt1=0T <1<
Ky = Kigin = —k JH1<i< 4T
0, 1>7+00+1
0, 1 <j7—=bT—-1
1 . . .
g, Jbr<i<j—1
Kipj— K1 j+1 = _% j<i<j—14bT
0, 1> 5+ 6T
and ) o
k) J =1
AN°Kjj =1 —5, i=j+bT
0 otherwise
Hence, for the first term in (17) we obtain
T-1T-1
S IABII®
=1 j=1
9 T—1 T—[bT]-1
= b_T Z (T_1/2SC > Z T—l/ SC+[bT] ( )T—l/QSJQ (Ld)
i=1
—[bT)-1
Z T=128¢ (w) T7Y/288 ) (@)
g T-1 T—[bT]-1
_ = -1/2 c -1/2 Ge -1/2Ge
_bTZ:1(T ¢ (w ) Z T28¢ (W) T288, 4y ().
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Similarly, in the second term of (17) we have

1<j<T—bT—1

0
KT,'_KT,'Jrl:{ 71 .
j j T <j<T—1

(given that j takes values from 1 to T'— 1). Hence, (17) can be expressed as

~

-1 T—[bT]-1

- Qc 2 | — - c
(TS W) =g T X TS T S @)

2

1
QbT

IIM

_ 2_T— Z T—1/2SC T—l/QSc ( ) % (T_1/2§%>2_

F=T—[bT)

An analogous expression obtains with §j (w) in place of §Jc (w) and the limit follows using
(10), (11), (12), (13) and (9) (as needed depending on w). This completes the proof of part
3 of the theorem.
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Figure 3.5: CDF Functions, Daniell Kernel, w=0, p==0.4, b=0.2
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Figure 3.6: CDF Functions, Daniell Kernel, w=0, p==0.4, b=0.5
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Figure 3.8: CDF Functions, Daniell Kernel, w=0, 0=0.4, b=0.2



1.0

S N //
o Ve
o /
sl ,/
~ /
sl /
/
ol ’
(@) /
~~ /
M oal /
~ o 4
= /
=t )/
o ’
- K — Finite T=50
S —- Finite T=100
g,./' — Finite T=200
H’_ ......... F]Xedﬁ]b
s -- Normal
0] 1 2 3 4 5 6 7 8 9
X
FMgure 3.9: CDF Functions, Daniell Kernel, w=0, po=0.4, b=0.5
L
(@)
>~ L
(@)
©l
Kool
~ O
[E
<
- — HFinite T=50
of —- Finite T=100
g,, — Finite T=200
0 . B F]Xed—b
ol -- Normal
.4 0.6 0.8 0 12 1 16 15 2.0
X

Figure 3.10: CDF Functions, Daniell Kernel, w=0.57, p=0.0, b=0.04
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Figure 3.13: CDIF Functions, Daniell Kernel, w=0.571, p=-0.4, b=0.04
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Figure 3.16: CDF Functions, Daniell Kernel, w=0.57, p=0.4, b=0.04
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Figure 3.18: CDF Functions, Daniell Kernel, w=0.57, p=0.4, b=0.5
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Figure 4.5: CDF Functions, QS Kernel, w=0, p=—0.4, b=0.2
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Figure 4.6: CDF Functions, QS Kernel,
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Figure 4.8: CDF Functions, QS Kernel, w=0, 0=0.4, b=0.2
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Figure 4.9: CDF Functions, QS Kernel, w=0, 0=0.4, b=0.5
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Figure 4.12: CDF Functions, QS Kernel, w=0.5m, 0=0.0, b=0.5
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Figure 4.14: CDF Functions, QS Kernel, w=0.57m, 0=-0.4, b=0.2
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Figure 4.15: CDF Functions, @S Kernel, w=0.57, p=-0.4, b=0.5
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Figure 4.16: CDF Functions, QS Kernel, w=0.5m, p=0.4, b=0.04
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Figure 4.18: CDF Functions, QS Kernel, w=0.5m, 0=0.4, b=0.5





