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Abstract

Sentiment analysis aims to use automated tools to detect subjective information such
as opinions, attitudes, and feelings expressed in text, and has received a rapid growth
of interest in natural language processing in recent years. Probabilistic topic models, on
the other hand, are capable of discovering hidden thematic structure in large archives of
documents, and have been an active research area in the field of information retrieval. The
work in this thesis focuses on developing topic models for automatic sentiment analysis of

web data, by combining the ideas from both research domains.

One noticeable issue of most previous work in sentiment analysis is that the trained
classifier is domain dependent, and the labelled corpora required for training could be dif-
ficult to acquire in real world applications. Another issue is that the dependencies between
sentiment /subjectivity and topics are not taken into consideration. The main contribu-
tion of this thesis is therefore the introduction of three probabilistic topic models, which

address the above concerns by modelling sentiment /subjectivity and topic simultaneously.

The first model is called the joint sentiment-topic (JST) model based on latent Dirich-
let allocation (LDA), which detects sentiment and topic simultaneously from text. Unlike
supervised approaches to sentiment classification which often fail to produce satisfactory
performance when applied to new domains, the weakly-supervised nature of JST makes
it highly portable to other domains, where the only supervision information required is
a domain-independent sentiment lexicon. Apart from document-level sentiment classifi-
cation results, JST can also extract sentiment-bearing topics automatically, which is a

distinct feature compared to the existing sentiment analysis approaches.

The second model is a dynamic version of JST called the dynamic joint sentiment-
topic (dJST) model. dJST respects the ordering of documents, and allows the analysis
of topic and sentiment evolution of document archives that are collected over a long time
span. By accounting for the historical dependencies of documents from the past epochs
in the generative process, dJST gives a richer posterior topical structure than JST, and
can better respond to the permutations of topic prominence. We also derive online infer-
ence procedures based on a stochastic EM algorithm for efficiently updating the model

parameters.



The third model is called the subjectivity detection LDA (subjLDA) model for sentence-
level subjectivity detection. Two sets of latent variables were introduced in subjLDA. One
is the subjectivity label for each sentence; another is the sentiment label for each word
token. By viewing the subjectivity detection problem as weakly-supervised generative
model learning, subjLDA significantly outperforms the baseline and is comparable to the

supervised approach which relies on much larger amounts of data for training.

These models have been evaluated on real world datasets, demonstrating that joint
sentiment topic modelling is indeed an important and useful research area with much to

offer in the way of good results.
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