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Abstract

Open cell micro-architectures are used in a large number of applications, ranging

from medical, such as bone scaffolds, to industrial, such as heat transfer struc-

tures. Traditionally these structures are manufactured using foaming processes,

however advances in additive manufacturing (AM) now allow such structures to

be designed computationally and fabricated to a high degree of precision.

In this thesis image-based methods are developed for the purpose of generating

periodic micro-architectures based on implicit representations. The algorithms

developed are shown to be efficient and robust, allowing for the creation of both

surface and volume meshes. Methods are presented for the creation of functionally

graded structures allowing for arbitrary variations in density between specifiable

volume fractions. These algorithms are further extended for domain conforming

applications as well as for internal structures in CAD models. By utilising a hy-

brid approach, imaging techniques can be exploited for the generation of internal

structures in CAD models without de-featuring the original external geometry.

The structures of interest are also shown to be manufacturable via selective laser

melting (SLM).

The issue of characterisation, for linear elastic properties, is addressed through

the use of a novel homogenisation technique. Large multi-scale problems in irreg-

ular domains are divided into smaller sub-volumes using established tetrahedral

volume meshing techniques. By performing a series of virtual tests on these

macroelements their effective properties can be computed and subsequently used

in macro-simulations. The technique is shown to yield results in excellent agree-

ment with the often used kinematic uniform boundary conditions (KUBC). It is

also shown how these properties may be used for visualising the distribution in

properties over a domain.
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Chapter 1

Introduction

Porous lattice structures have a wide range of potential applications ranging from

industry to medine. Their unique properties, such as a high surface to volume

ratio and high energy absorption, coupled with the ability to be manufactured to

create custom materials, often make them highly desirable. Recent advances in

prototyping and manufacturing techniques now allow these structures to be com-

putationally designed and realised with a precise geometry, whereas traditional

manufacturing methods rely on stochastic foaming processes. However, due to

their complexity, these structures are often difficult to generate using existing

CAD packages. Once an appropriate structure has been generated it is often

required that some aspect of its properties be evaluated, such as its bulk stiff-

ness or permeability. One possible method for doing so is to first fabricate the

structure and physically test it, however, this approach tends to be expensive,

particularly for multiple structures. More commonly, computational simulations

are performed using finite element analysis. This in itself, however, introduces fur-

ther complications. As the structures are often both complex and highly porous
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(i.e. low volume fraction) the number of elements, and hence the computational

resources required, to produce accurate models often make the simulations unfea-

sible. To overcome this, various approximations are often used, such as a reduced

number of degrees of freedom, the use of beam elements, idealizing the structure,

and homogenisation.

The objective of this research is to better address the complications in the

generation and characterisation of porous lattice structures and to fully exploit

the recent advances in additive manufacturing processes. This thesis will present

advances in the generation of domain conforming periodic lattice structures and

a novel approach to the homogenisation of linear elastic properties. More specif-

ically this research encompasses the following activities:

1. To develop image-based algorithms for the efficient generation of periodic

lattice structures, focusing on the ease of both volumetric and surface mesh-

ing.

2. To develop methods and algorithms for the generation of lattice structures

with functional and arbitrary grading variations so that custom properties

may be achieved.

3. To develop robust algorithms for the purpose of introducing internal lattice

structures in CAD models.

4. To characterise the effective properties of periodic lattice structures through

analytical models, computational simulations and mechanical testing.

5. To develop a method for generating approximate models of large multi-scale

problems using a novel approach to homogenisation.
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This thesis is structured as follows.

Chapter 2 presents a more detailed background into the applications of micro-

architectures, their creation and evaluation.

Chapter 3 develops a number of new image-based algorithms for the purpose

of generating micro-architectures from periodic implicit functions. A number of

different algorithms are compared. Methods for generating graded structures with

customised mechanical properties are developed in Chapter 4. These methods are

then extended in Chapter 5 for micro-architectures conforming to a given domain

or within a shell.

Chapter 6 reviews existing techniques for the evaluation of the mechanical

properties of micro-architectures. This includes analytical models, computational

simulations and physical testing. A number of lattice structures, generated using

the methods developed in Chapters 3 to 5 are characterised using finite element

analysis and mechanically tested. This chapter also looks at the fabrication of

the structures and their possible use as supporting structures in additive manu-

facturing processes.

In Chapter 7 a novel approach to homogenisation is developed for the purpose

of creating approximate models of large multi-scale problems. This new approach

is shown to yield results comparable to well-established existing methods.

Chapter 8 presents conclusions.

Chapter 9 presents recommendations for future research.
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Chapter 2

Background

The term micro-architectures, sometimes also referred to as micro-structures or

meso-structures, can be considered to loosely refer to “small-scale structures”.

While the terms themselves imply a length-scale they are often used informally

to describe structures on a variety of length-scales, from micro to macro. They

may also be used to describe a wide range of different types of structure. Such

structures may be further classified as; porous (including both open and closed

cell), multi-phase, fibrous, stochastic or regular/uniform, natural or synthetic.

Example structures include, but are in no way limited to; honeycombs, cancellous

bone, particle-reinforced composites and Voronöı mosaics.

Of most interest to this work are the micro-architectures which fall into the

classification of ‘open cell porous’. Open porous structures are now manufactured

from a range of materials including polymers, ceramics and metals are used in a

number of different applications.

Open porous polymer foams can be found virtually everywhere, including in

the home, due to their good energy absorption and relatively low cost. While
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naturally occurring polymer foams, such as sponges, have been known for a long

time, synthetic polymer foams have only been available since the 1950’s (Eaves

[2004]). These foams are often used in packaging and seating (both vehicle and

home) as their mechanical properties make them very suitable for padding. They

may also be found in other applications such as floatation devices, insulation,

sound proofing and ear protection. More complex polymer foams, known as

‘memory foams’, are often used in bedding, particularly in hospitals, where they

prevent pressure sores.

Open porous metal foams can be manufactured by replicating an existing

open cell polyurethane foam. The polyurethane foam is used as a template in

investment casting to create a negative mold (i.e. the porous space around the

foam) from which it is then burned out (Queheillalt et al. [2004]). This leaves a

mold from which metal foams can be cast. Open cell metal foams are used in a

variety of applications including compact heat exchangers, where their material

properties and high surface to volume ratio make them highly suitable. Their

high stiffness, in comparison to other polymeric open cell foams, also makes them

suitable for multi-functional applications. For example, when used in sandwich

structures they can function both as a supporting structure and aid heat dissi-

pation due to the ability for fluids to pass through the pores (Lu et al. [1998],

Queheillalt et al. [2004]). Open cell metal structures are now also finding uses

in medical applications. Some commercially available metal implants utilise a

porous metal foam, with properties similar to that of bone, to encourage new

bone ingrowth and ultimately aid osseointegration (Zim [2011]). Metal lattice

structures may also be used as internal structures within implants to control or

reduce their stiffness so that stress shielding effects can be reduced.
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Open porous ceramic foams are used in a wide range of applications including

fluid filters, catalyst supports, burners, gas diffusers and flame barriers (Jayas-

inghe & Edirisinghe [2002]). Open cell hydroxyapatite (a calcium phosphate

ceramic) structures are also becoming more frequently used as tissue scaffolds,

bone substitutes and to aid osseointegration of implants (Heise et al. [1990], Starly

[2006]).

The structures described thus far are, for the most part, manufactured us-

ing various foaming techniques resulting in stochastic structures. However, with

advances in additive layer manufacturing (ALM), and the technologies this en-

compasses, structures with specific geometries can be designed and fabricated.

This allows for the computational generation and fabrication of structures with

specific cell sizes and rib thicknesses. In particular this allows open cell structures

with functionally graded properties to be realised. Another major advantage of

this process is that the computational generation can itself include an optimisa-

tion process. This has recently been exploited for the purpose of creating optimal

scaffold structures. Most notable is the work by Hollister et al. (Hollister et al.

[2002], Hollister [2005], Hollister & Lin [2007]) where unit cells are optimised

for both mechanical loading and mass transport. Additive layer manufacturing

technologies can be used to fabricate these structures from a variety of different

materials including polymers, ceramics and metals, some of which are biocom-

patible.

The computational generation of micro-architectures is a non-trivial task.

Traditional CAD packages have been shown to be unsuitable for the creation of

these complex structures, due to the potentially large number of Boolean opera-

tions required (Wang et al. [2005]). Many methods have been developed recently
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to address this issue, some of which are application specific and others more

generic. Voxel based methods are often used to model unit cells in optimisation

processes due to their simple representation and the ease with which they can

be modified (Hollister et al. [2002]). More recently implicit representations have

been exploited to generate complex micro-architectures with functional gradings

(Gabbrielli et al. [2008] and Pasko et al. [2010]). These implicit methods have

been shown to be a highly flexible way of modelling micro-architectures. These

methods, and ones similar (such as that in Chen [2007a]), have also been used to

incorporate micro-architectures within a shell of an existing CAD model. These

so-called internal structures are used to create lightweight components, act as

heat transfer structures and aid in fabrication.

When dealing with micro-architectures, either those computationally gener-

ated or through foaming processes, it is often desirable to model these compu-

tationally to determine effective properties. For the case of those manufactured

through foaming processes various imaging modalities (MRI, micro-CT, etc. . . )

can be used to acquire the micro-architecture’s geometry, which may then be

meshed using well established methods. Similarly, image-based algorithms can be

applied to generate volume and/or surface meshes for computationally generated

lattice structures. This allows computational modelling such as finite element

(FE) or computational fluid dynamic (CFD) simulations to be performed on the

structures. Such simulations can be used to non-destructively evaluate a variety

of properties of a structure without the costs involved with fabrication. These

properties may be local effects, such as stress concentrations, or bulk properties,

such as stiffness.

However, when dealing with multi-scale structures these simulations can soon
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become highly impracticable. This is due to the size of the models required to

sufficiently represent the geometry at both the macroscopic and microscopic scale.

It is therefore often only feasible to model such structures at the macroscopic

scale. For example, when simulating the mechanical behaviour of a stainless steel

component the steel itself is modelled as a homogeneous material, despite being

composed of a complex microstructure (as shown in Figure 2.1).

Figure 2.1: The granular microstructure in stainless steel (Source: Ste [2011])

The separation of length-scales present allows the steel to be modelled as a

continuum. In the case of steel the effective homogeneous properties are well-

established and are widely used in finite element simulations. Where there exists

this clear separation of length-scales it is often the case that one or more length-

scales can be replaced with an equivalent homogeneous material. The process

of determining this equivalent material is known as homogenisation. Homogeni-

sation can be performed computationally using a number of different methods.

There are, however, a number of issues to address when attempting to determine

a micro-architecture’s effective properties, such as the boundary conditions to

apply and the size (or representativeness) of the sample, both of which are well-

studied. Homogenisation is useful not only for multi-scale modelling, but also for
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providing feedback as to the bulk properties of a micro-architecture, which may

in turn be used to visualise out-of-plane properties (Marmier et al. [2010]).

The objective of this research is to better address the complications in the

generation and characterisation of porous micro-architectures and to fully ex-

ploit the recent advances in additive manufacturing. This research focuses on

the development of image-based methods and algorithms for the efficient and ro-

bust generation of periodic and functionally graded micro-architectures. A novel

approach to the homogenisation of linear elastic properties for large multi-scale

problems is also developed.
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Chapter 3

Micro-Architecture Generation

This chapter describes the computational generation of micro-architectures. It

concentrates exclusively on micro-architectures generated from triply periodic

implicit functions, extending the work in Gabbrielli et al. [2008]. Image-based

algorithms have been developed to efficiently generate periodic lattice structures

and represent them with accurate volumetric and surface meshing. A review of

existing micro-architecture generation and surface representation techniques is

first given to illustrate the advantages and disadvantages of each.

Implicitly defined micro-architectures have been chosen for further study due

to the simplicity of their representation in comparison to other more complex

methods. Notably these include the explicit boundary representations used in

modern CAD (Computer Aided Design) packages. The mathematical equations

which define the micro-architectures of interest also provide great flexibility. By

introducing functional variations, structures with tailored properties can be gen-

erated. This work looks at the generation of functionally graded structures as

well as methods for introducing more complex variations. The methods devel-
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oped provide a good foundation for use in future optimisation schemes where

parametrised models of density variations will be useful.

One of the main prerequisites for performing optimisation using physics based

simulations, such as FEA or CFD, is the ability to robustly and efficiently gen-

erate volume meshes. The ability to perform various simulations on the micro-

architectures also allows the mechanical and fluid properties of the structures to

be fully characterised. Previous work (Jung & Torquato [2005]) has explored the

fluid properties of triply periodic implicit surfaces. The mechanical properties of

the structures are studied in Chapters 6 and 7.

While computational models have many advantages when dealing with the

design and testing of micro-architectures, there will ultimately be a need to fab-

ricate a final design to obtain a physical model. Due to their complexity, the

models cannot be fabricated using traditional manufacturing methods and so

we utilise AM (Additive Manufacturing) to realise the generated models. These

manufacturing systems rely on the model’s geometry being defined by a sur-

face triangulation, using the standard STL (“Stereolithography”) file format. To

meet the meshing requirements an image-based approach is taken so that the

advantages of image-based meshing can be exploited for both volume and surface

meshes.

As in Gabbrielli et al. [2008], the structures of interest in this work are based

upon the primitive, diamond and gyroid surfaces as well as Neovius’ surface.

Variations on these surfaces will also be created and used later in this thesis.
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3.1 Literature Review

Recent advances in additive manufacturing (AM) processes, also known as addi-

tive layer manufacturing (ALM), rapid manufacturing (RM) and rapid prototyp-

ing (RP), have allowed for the creation of complex geometries to a relatively high

level of precision. These manufacturing processes are particularly well-suited to

fabricating computationally generated micro-architectures and have allowed for

the recent development of methods for doing so.

As with the design of the vast majority of components that are to be manu-

factured, micro-architectures have previously been created using traditional com-

mercial CAD packages. However these packages have proven to be unsuitable for

potentially large complex micro-architectures due to the vast number of Boolean

operations required, as shown in Wang et al. [2005]. To overcome the difficul-

ties in using generic CAD packages Wang et al. [2005] developed a hybrid ge-

ometric modelling method for conformal truss structures. Their method was

demonstrated to be able to create large triangulated surfaces of repeating unit

cells, such as the tetrahedron and Kelvin Foam structures. By using open-ended

cylinders for trusses and ‘sealing’ joins with spheres, repeatable unit cells were

generated. This, however, relied on the use of a solid modeller (ACIS) to perform

the Boolean operations on the trusses and spheres. While this does considerably

reduce the number of Boolean operations required, the solid modelling stage was

observed to make-up a large percentage of the total processing time. These meth-

ods were further developed in Chen [2006] to remove the need for a solid modeller

by developing methods for handling the tessellation of truss-sphere intersections.

Combined with the elegant algorithms for Boolean operations developed in Chen
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[2007b], these methods were further extended for the purpose of creating internal

structures within CAD models (Chen [2007a]). This work also allowed for the cre-

ation of internal structures with functional variations through the use of warping

functions. The functions were used to displace truss’ nodes such that specified

regions increased in density while others decreased, without influencing the truss

thickness. Although this does create regions with different stiffnesses, it has the

disadvantage of causing some cells to become stretched, therefore changing their

effective properties.

Voxel modelling is an alternative approach to the generation of micro-architec-

tures and is often used in the creation of scaffold architectures. While high resolu-

tion images or volumes are normally required to sufficiently represent geometries

using voxels, they have the advantage of being particularly straightforward to

modify, particularly when using Boolean operations.

A relatively simple image-based approach to the generation of conforming

scaffold architectures is presented in Starly [2006]. In this work Starly slices the

bounding geometry, as defined using a CAD model, into a number of equally

spaced binary images. By using Boolean operations on each slice a number of

simple unit cells are then introduced into the geometry. The unit cells themselves

are typically solid cubes with spherical or cuboidal voids, thus ensuring they re-

main stackable. This slice-based approach avoids the need to handle triangulated

surfaces for the creation of an STL file. However, this is likely limited to 3D

printing where image-based slices may be used. As with any purely voxel-based

method, it also results in a poorly defined geometry at the boundaries.

Voxel-based methods are also widely used in topology optimisation. Most

notable are the works of Bendsøe and Sigmund. Bendsøe & Sigmund [2003]
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presents a review of past works based on the SIMP (solid isotropic material with

penalisation) model for general topology optimisation. In his approach Bendsøe

takes the topology problem as being one of optimal material distribution (Bendsøe

[1989]). Rather than considering voxels as either solid or void, intermediate (or

grey-scale) values are permitted and a density-stiffness function is used. In the

case of the SIMP model:

E(ρ) = ρpE0 (3.1)

where E0 the base material stiffness, E(ρ) the stiffness for an element with a

density ρ and p is the penalisation exponent, typically between 2 and 3. The

penalisation exponent is used to discourage the use of grey-scale voxels in the op-

timisation process as it is often desirable that the final solution be a binary volume

due to their obvious physical interpretation. However, as noted in Rodrigues et al.

[2002], these intermediate values can be interpreted as being homogenised micro-

architectures on a smaller length-scale. An example of this is show in Figure 3.1.

Figure 3.1: Interpreting intermediate voxel values and homogenised micro-
architectures. (Source: Rodrigues et al. [2002])
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These micro-architectures may then be realised by solving the so-called ‘in-

verse homogenisation’ problem (Sigmund [1994]). This problem has been ad-

dressed using the same optimisation methods with the SIMP model in Rodrigues

et al. [2002]. A more general approach to generating optimal unit cells given a

set of macroscopic stresses is developed in Guedes et al. [2003], which again uses

the SIMP method.

Hollister & Lin [2007] have also used the SIMP method for the purpose of

creating optimal unit cells for tissue scaffolds. However, in order to meet the

biological requirements for scaffold structures, the unit cells need not only to

have similar mechanical properties to bone, but also a similar porosity. To achieve

this a two step optimisation process was developed. In the first step a number of

iterations were performed using the SIMP model to optimise the elastic properties

of the unit cell. The second stage then uses a small number of iterations of

the ESO (evolutionary structural optimisation, Lin [2005], Steven et al. [2000])

algorithm to optimise the fluid phase. This process is repeated iteratively to

ultimately yield unit cells with properties similar to that of bone.

Many more similar voxel based approaches have been taken for the optimisa-

tion of unit cells (e.g. Lin et al. [2004], Sanz-Herrera et al. [2009], Hollister [2005]

and Adachi et al. [2006]). It has been shown that, through the use of these meth-

ods, mechanical properties close to the upper elastic limits can be achieved. This

includes the creation of unit cells with customised properties, such as a negative

Poisson’s ratio (Lin et al. [2004]).

Another less frequently used approach to the generation of micro-architectures

is through the use of implicit functions. This is the approach taken in the works
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by Gabbrielli (Gabbrielli et al. [2008] and Gabbrielli [2009]) and more recently

by Pasko (Pasko et al. [2010] and Pasko et al. [2011]).

Gabbrielli uses a set of periodic implicit functions, such as the Schoen Gyroid

(Schoen [1970]), to create porous micro-architectures to be used as bone substi-

tutes. By introducing functional variations to the equations Gabbrielli was also

able to create functionally graded micro-architectures. However, there were no

methods given for precisely controlling the grading, such as the minimum and

maximum volume fractions. Additionally, while there were methods for creat-

ing conforming micro-architectures they were limited to geometries with implicit

representations, such as spheres.

The works by Pasko take a similar approach using periodic implicit functions

(Pasko et al. [2010]). However the functions differ to those used by Gabbrielli

as they are based on the implicit representation of rods. By taking the union of

three rods, one along each axis, a simple grid structure was created. A simple

blending function was employed to produce a filleting effect at the intersection of

the rods. Pasko also demonstrated the creation of functional graded and warped

structures. Furthermore, Pasko showed how, using the implicit representation of

an object, internal structures can be introduced using Boolean operations on the

implicit functions.

The works by both authors demonstrate the flexibility of using implicit rep-

resentations for the purpose of generating micro-architectures with customised

properties. In comparison to other techniques these methods provide a compact

representation of the complex structures and, through the use of an appropriate

iso-surfacing algorithm, a straightforward way of producing triangulated surfaces.
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3.2 Surface Representations

When dealing with solid 3D objects it is often convenient to only model the

object’s boundaries using a mathematical representation of the surfaces. The

choice of surface representation is particularly important for the computational

modelling of 3D objects as each has its own advantages and disadvantages. These

include the availability and complexity of operations that can be used to manip-

ulate the surface (e.g. smoothing, Boolean operations) as well as the efficiency of

the representation. Each representation also has an impact on how models are

visualised and ultimately realised (e.g. via rapid manufacturing).

The most common representations can be classified as one of the following

forms: explicit, parametric or implicit.

A brief overview of these representations follows – a more in-depth comparison

of these forms can be found in Zheng [2008].

3.2.1 Explicit Surfaces

In explicit surface representations points which lie exactly on the surface are

explicitly stored. The most common type of explicit surface is a mesh of polygons,

typically these are triangles or quadrilaterals although others can be used. These

polygons are often stored as an order list of vertex indices – the order being used

to define the direction the polygon is facing (i.e. the surface normal).

For example a sphere can be defined by a surface triangulation composed of

many triangles and a shared vertex list (Zheng [2008]):

G =< v, f > (3.2)
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where v is a set of vertices and f is a set of triangle faces, each specified as a list

of vertex indices: fi = {< i1, i2, i3 > |ij = 1, 2, . . . , N}.

Clearly the accuracy of this representation is dependent on the number of

polygons used to discretise the surface. While increasing this number will produce

smoother, more accurate surfaces, the inefficiency of storing points explicitly soon

becomes notable. Despite this, explicit surfaces are widely used in computer

graphics and game platforms as they are relatively easy to visualise.

Explicit surfaces also become difficult to manage for a variety of operations,

most notably Boolean operations, as extra care must be taken to ensure the mesh

topology remains ‘valid’. That is, the mesh should, under any operation, remain

manifold so as to properly represent the boundary of a solid object. A manifold

surface mesh is defined as one enclosing a finite volume, allowing any point to

be unambiguously defined as either inside out outside of the surface. Therefore

surface meshes with holes or gaps are considered non-manifold.

3.2.2 Parametric Surfaces

Unlike explicit surfaces, parametric surfaces do not store points on a surface. In-

stead, points on a parametric surface are expressed as a function of the parametric

variables (u, v), which can be generalised to lie on the unit square [0, 1] × [0, 1]

(Zheng [2008]).

Non-Uniform Rational B-Spline (NURBS) surfaces are a form of parametric

surface commonly used in CAD packages due to their compact representation,

smooth surfaces and easy of manipulation. Other forms of parametric surfaces

exist, such as Rational Gaussian (RaG) surfaces (Goshtasby [1993]) and Fourier
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Shape Descriptions.

For some applications it is necessary to generate an explicit surface to ap-

proximate the parametric surface. This may be for visualisation or increasingly

commonly for producing an STL (Stereolithography) file for rapid manufacturing

– although methods for processing NURBS surfaces directly have been developed

(Starly et al. [2005]). The conversion process to an explicit surface is known as

polygonisation and is relatively straight-forward.

Parametric forms use control points to allow local finite control of surfaces

(Zheng [2008]), providing accurate and intuitive ways to model objects. Complex

objects can be modelled using multiple surfaces, or patches, joined together.

The parametric representation of a sphere is given below in Eq. 3.3. In

comparison to the explicit form this is an extremely efficient representation as it

accurately represents the surface with minimal storage.

P = [x(u, v), y(u, v), z(u, v)] (3.3)

where,

u ∈ [−r, r]

v ∈ [0, 2π]

x(u, v) =
√
r2 − u2cos(v)

y(u, v) =
√
r2 − u2sin(v)

z(u, v) = u
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3.2.3 Implicit Surfaces

Implicit surfaces are define as an isosurface of some function f . In 3D the surface

is defined by a set of points p ∈ R3 satisfying the equality:

f(x, y, z) = 0 (3.4)

where f : R3 7→ R.

As with parametric forms, implicit surfaces provide a compact representation

for potentially complex surfaces. They also offer a number of advantages, notably

their flexibility (as will be demonstrated later in this work) and well-defined

Boolean operations. However, unlike parametric forms they offer little local shape

control and manipulating them can be unintuitive.

Implicit forms also make visualisation and polygonisation challenging. Unlike

both explicit and parametric forms points on the surface are not stored, nor are

they expressed as a function of some other terms. The implicit function f provides

a way of verifying if a point (x, y, z) lies on a given isosurface and some measure

of distance from the point to the surface. Thus in order to create an approximate

explicit surface from an implicit form, the function f must be sampled over some

domain. Typically the function is sampled at regular intervals so that a volume

image can be constructed. This volume is then isosurfaced using an algorithm

such as the marching cubes (Lorensen & Cline [1987], described in §3.3) (or one

of the volumetric extensions (Young et al. [2008])), marching tetrahedra (Treece

et al. [1999]) or dual contouring methods (Ju et al. [2002]). The sampling of the

implicit function can be performed in parallel and the marching cubes algorithm

is an efficient method for creating an explicit surface.
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The implicit formulation of a unit sphere is given below:

f(x, y, z) ≡ x2 + y2 + z2 − 1

= 0
(3.5)

In this instance the implicit form is not only more compact, but potentially

more useful as the sign of the function can be used to designate points as either

inside or outside the surface. For this purpose the following convention is adopted:

Condition Interpretation

f(x, y, z) = 0 On surface
f(x, y, z) < 0 Inside
f(x, y, z) > 0 Outside

Table 3.1: Implicit surface in/out convention

The function can also be used to describe multiple surfaces by iso-surfacing

the function at various values. In the case of the sphere, this results in multiple

spheres of differing radii.

Implicit surfaces are commonly defined using polynomial expressions, for pur-

poses such as surface fitting. These functions take the form:

f(x, y, z) =
∑

0≤i,j,k,i+j+k≤n

aijkx
iyizk (3.6)

However, the implicit functions of interest to this work are the set of infinitely

periodic surfaces, the most notable of which are those discovered by Schoen [1970]

and Schwarz [1890]. In addition to being infinitely periodic these surfaces are also

approximations of minimal surfaces, that is, the surfaces have a mean curvature
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of zero. Using a combination of trigonometric functions in the form given in Eq

3.7 a number of periodic surfaces can be generated (Gabbrielli et al. [2008]).

3∑
i=1

n∏
j=1

cos(xi) + k = 0 (3.7)

The simplest triply periodic (or dual periodic in 2D) function in this form is

the Schwarz Primitive, Figure 3.2 shows a plot of this function.
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Figure 3.2: Plot of the implicit function cos(x) + cos(y) + 1

Figure 3.3 shows a selection of triply periodic unit cells, including those from

Schoen [1970], Schwarz [1890] and The Scientific Graphics Project ([Sci, 2010,

The Scientific Graphics Project]). The implicit functions describing these surfaces

may be found in Appendix A.
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(a) Schwarz Primitive (b) Schoen Gyroid

(c) Schwarz W (d) Schwarz D

(e) Schwarz Primitive (Pinched) (f) Neovius’ Surface

Figure 3.3: A selection of triply periodic level set surfaces
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3.3 The Marching Cubes Algorithm

Implicit representations are generally more difficult to visualise, as well as realise,

than explicit forms. Due to this fact, it is often desirable to produce an explicit

representation from a given implicit representation, such as an implicit function or

image data. One popular algorithm for doing so is the marching cube algorithm by

Lorensen & Cline [1987]. The marching cubes algorithm is a sequential-traversal

method for generating a polygonal mesh of an iso-surface from a regular scalar

volumetric data set. The algorithm was originally developed for the efficient

visualisation of medical data, such as CT and MRI scan data, but has since

been applied to a wide range of fields (Newman & Yi [2006]). Since it was

first published in 1987 a number of corrections and variations to the algorithm

have been made by other authors. These include modifications to remove the

ambiguities in the original algorithm and to create multi-part conforming iso-

surfaces. A survey of these algorithms is presented in Newman & Yi [2006]. The

following described the algorithm as originally described in Lorensen & Cline

[1987].

The marching cubes algorithm operates by sequentially traversing its input

data set and considering the “cubes” formed by adjacent voxels (or sample

points). The eight voxel centres each become a vertex of a cube. Depending

on how the iso-surface intersects a cube one of a set number of pre-defined in-

tersection topologies is chosen to form the polygonal mesh at that point. The

intersection of the iso-surface with each cube is determined by the scalar values

at each of its vertices. Vertices are marked as either inside or outside of the

iso-surface if their value is below or above the iso-value. As there are eight ver-
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tices this leads to 28 = 256 possible intersection cases. However, by taking into

consideration rotational and reflective symmetries this can be reduced to 15 base

cases, as shown in Figure 3.4.

Figure 3.4: The 15 base cases for the marching cubes algorithm. Image source:
http://en.wikipedia.org/wiki/Marching_cubes.

To improve the accuracy of the iso-surface reconstruction the iso-surface-edge

intersect locations (i.e. the polygon vertices), are approximated using linear in-

terpolation of the edge vertices.

3.4 Mesh Generation

Accurate and robust mesh generation is an important step towards an optimisa-

tion process where many lattice structures will be generated and evaluated. The

work presented in this section looks at methods for generating image volumes rep-

resenting the implicit functions so that both volume and surface meshes can be

constructed. An entirely image-based approach is taken to exploit the advantages

of image-based meshing.
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Methods previously used in Gabbrielli et al. [2008] relied upon the generation

of a floating-point volume which was then iso-surfaced (as implemented in [K3d,

2010, K3dSurf]). While this method is straight-forward, simply requiring that

the function be sampled at regular intervals, it becomes difficult to generate a

volume mesh and integrate with other image data.

To overcome these difficulties we require that the generated volumes’ data-

type matches that used by +ScanFE. In the C programming language this is

unsigned char, an 8 bit integer. By using this data-type the generated volumes

can easily be combined with data from other sources, such as medical imaging

devices and meshed with +ScanFE.

3.5 Method I: Binary Volume

The most straight-forward translation to image-space that can be made from an

implicit function is the generation of a binary volume. By evaluating the function,

f , over a range of values voxels can be determined to be either inside or outside

and their value set accordingly.

Before evaluating the function it is important that a high enough resolution

is chosen for the binary volume in order to sufficiently represent the unit cells.

Assuming the function we wish to evaluate is periodic over 2π (i.e. Eq. 3.8

holds true), the range of values over which the function is to be evaluated is

determined by the desired number of unit cells in each direction.

f(x′, y′, z′) ≡ f(2πnx + x′, 2πny + y′, 2πnz + z′), nx, ny, nz ∈ Z+ (3.8)
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where nx, ny, nz are the number of unit cells along each axis in the generated

volume. Given this, we now have defined a ‘function-space’ coordinate system

in which the ideal representation of the lattice structure exists. We also have a

voxel-space coordinate system which is used to define the target volume.

In order to evaluate the function at a given voxel we must define a map-

ping between the discrete voxel-space, measured in pixels, and the continuous

function-space (unit-less) coordinate systems. This mapping (Eq. 3.9) rescales

the voxel-space coordinates x, y, z to the corresponding position in the function-

space, x′, y′, z′.

mi : Z+ 7→ R+ (3.9)

A point (x, y, z) in voxel-space can now be mapped to the corresponding

point in the function-space, (x′, y′, z′) using a linear rescaling (Eq. 3.10). To

simplify the mapping we choose x′min = z′min = y′min = 0 since we also have

xmin = zmin = ymin = 0.

(x′, y′, z′) = (mx(x),my(y),mz(z))

=

(
x

xmax

× 2πnx,
y

ymax

× 2πny,
z

zmax

× 2πnz

) (3.10)

By iterating over the target volume and mapping each point to the function-

space the following rule can be applied to generate the binary representation of

the implicit function.

Vx,y,z =


V min f(x′, y′, z′) > 0,

V max f(x′, y′, z′) ≤ 0

(3.11)
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where Vx,y,z is the voxel value at (x, y, z), and V max, V min the maximum and

minimum possible voxel values respectfully. In practice the unsigned char (8

bit) data-type is often used to store pixel values, leading to the following:

V max = 28 − 1 = 255

V min = 0
(3.12)

Algorithm 1 describes the process of generating the binary volume. Two addi-

tional functions, GetCurrentPosition() and MoveToNextVoxel(), are used to

query the current position in a volume and to move on to an unvisited voxel. The

order in which voxels are visited does not affect the algorithm. xmax, ymax, zmax

define the size of the target volume in voxels.

Algorithm 1: Binary volume generation

Input: f, nx, ny, nz, xmax, ymax, zmax

Output: BinaryVolume
while not all voxels visited do

(x, y, z)← GetCurrentPosition(BinaryVolume)

(x′, y′, z′)←
(

x

xmax

× 2πnx,
y

ymax

× 2πny,
z

zmax

× 2πnz

)
if f(x′, y′, z′) ≤ 0 then

BinaryVolume[x, y, z]← 255
else

BinaryVolume[x, y, z]← 0
end
MoveToNextVoxel(BinaryVolume)

end

The efficiency of this algorithm can be greatly improved by exploiting the

equality in Equation 3.8. Currently the function f is evaluated for every voxel

in the target volume, a computationally expensive process. From Equation 3.8

we know that the function need only be evaluated over the range required to
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generate a single unit cell; x′, y′, z′ ∈ [0 : 2π]. Any position in the target volume

has an effective and equivalent position within this range. By generating a volume

for a single unit cell and repeating it throughout the target volume the function

will be evaluated a minimal number of times. However, to accommodate this

improvement the way in which the target volume is specified must be changed.

Currently the algorithm takes as an input the dimensions, in pixels, of the target

volume (xmax, ymax, zmax) and fits the generated structure within this domain.

For cases where the number of cells does not fit wholly into the domain (e.g.

xmax mod nx 6= 0) there no longer exists a unique unit cell. The effect is most

pronounced at low resolutions where single voxel changes can cause a notable

change in geometry as shown in Figure 3.5.

Figure 3.5: Binary volume representing the implicit function cos(x) + cos(y) +
cos(z) = 0 for 3× 3× 3 cells at z = 7 px with a domain of 20× 20× 20 px

This effect is caused by the discretisation of the space into voxels. Since

the ideal number of voxels per cell is non-integer the alignment between the

sampling points and the function’s iso-surface becomes inconsistent. With voxels

being considered either inside or outside a small misalignment can change the

representation of some cells as shown in Figure 3.6.

The improved algorithm relies on the existence of a repeatable unit cell in
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Figure 3.6: The misalignment of the ideal surface and sampling points

order to improve efficiency. As shown, when the size of the target volume is

specified this cannot be guaranteed. The solution to this problem is to determine

a suitable size for the target volume by specifying the number of cells in each

direction as well as the size of a single cell. Given this, the size of the target

volume becomes trivial to compute. The steps remaining in the process are simply

to generate a single cell and repeat it throughout the target volume. Algorithm

2 details the entire process.

3.5.1 Implementation

Both algorithms were implemented in C++ using the Insight Toolkit (ITK) ITK

[2009]. ITK is an open-source, cross-platform image processing framework pri-

marily designed for image segmentation and registration. The framework is heav-

ily templated making it easy to handle images of different dimensionality and

data-types. ITK’s main strength comes from its pipeline-based architecture. The

majority of components within the framework can be classified as either a source,

a filter or an output. Pipelines are constructed by joining a number of components
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Algorithm 2: Improved binary volume generation

Input: f, nx, ny, nz, α
Output: BinaryVolume
BinaryVolume ← GetNewVolume(αnx, αny, αnz)

CellVolume ← GetNewVolume(nx, ny, nz)

/* Generate the volume for a unit cell */

while not all voxels visited do
(x, y, z)← GetCurrentPosition(CellVolume)

(x′, y′, z′)←
(
x

nx

× 2π,
z

nz

× 2π,
z

nz

× 2π

)
if f(x′, y′, z′) ≤ 0 then

CellVolume[x, y, z]← 255
else

CellVolume[x, y, z]← 0
end
MoveToNextVoxel(CellVolume)

end

/* Repeat the cell throughout the volume */

for p=1 to nx do
for r=1 to ny do

for s=1 to nz do
while not all voxels visted do

(x, y, z)← GetCurrentPosition(BinaryVolume)

β ← CellVolume[x+ αnxp, y + αnyr, z + αnzs]
BinaryVolume[x, y, z]← β
MoveToNextVoxel(CellVolume)

end

end

end

end
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together; usually a source, a number of filters and an output.

As well as providing the framework for multiple filters, ITK provides a large

number of image processing filters, file writers and segmentation and registration

algorithms.

Algorithm 1 This algorithm was implemented as a single-threaded source,

inheriting from itk::ImageSource. The class is templated over the pixel data-

type and dimensional allowing 2D images to also be generated.

Algorithm 2 Given the nature of this algorithm it was possible to re-use the

source filter from the implementation of Algorithm 1 to generate the single unit

cell. The remainder of the algorithm was implemented using ITK’s image iterators

which provide methods to iterate through an image without needing to take into

consideration its dimensionality.

3.5.2 Performance

To measure the performance of both algorithms a test was devised such that the

resulting generated volume for both algorithms was the same number of voxels.

Each test involved generating the volume 100 times to ensure the times measured

represent the actual runtime of each algorithm. Each test was run 3 times to

produce an average time. For the purpose of these tests the generated volume

was not saved to disk.

The parameters for both algorithms were as follows:

• Unit cells: 20× 20× 20

• Target volume: 200× 200× 200 px
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The implicit function used is shown in Eq. 3.13 which describes the Schwarz

Primitive.

f(x, y, z) ≡ cos(x) + cos(y) + cos(z) = 0 (3.13)

Table 3.2 shows the performance increase achieved by using the improved

algorithm over the original. By computing the representing volume for only

a single unit cell the improved algorithm was able to generate the volume in

approximately one tenth of the time of the original. The tests were performed

on a PC with an Intel Core 2 Duo 2.66 GHz CPU and 8 GB of RAM running

Ubuntu Linux 10.04.

Run Original (s) Improved (s)

1 145.02 13.69
2 144.17 14.00
3 145.07 13.85

Avg. 144.75 13.85

Table 3.2: Comparison of runtime for the original and improve binary volume
generation algorithms

3.5.3 Remarks

The algorithm described in Algorithm 2 provides a computationally efficient

method of generating a binary volume representing an implicit function. No-

tably, it ensures each cell in the generated volume has an identical representation,

leading to a consistent surface reconstruction. This is clearly shown in Figure 3.7.

However, despite its efficiency we must consider the accuracy of the recon-

structed surface. By this we mean how far the reconstructed surface deviates

from the ‘ideal’ surface, as defined by the implicit function. Based purely on
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(a) Original algorithm

(b) Improved

Figure 3.7: Comparison of reconstructed surfaces from binary volumes
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empirical measurements, it is clear that the binary volumes lead to a very poor

surface reconstruction. The surfaces visible in Figure 3.7 lack the curvature seen

in Figure 3.3(a), instead being composed of regions of large facets with the same

orientation.

3.5.4 Quantifying Reconstruction Accuracy

One of the advantages of using an implicit representation is that it not only

defines where the surface of a cell is but also provides us with additional infor-

mation about any point in the domain. For example, where f(x, y, z) 6= 0 we

can determine if the point (x, y, z) is inside or outside (or ‘solid or void’) by the

sign of the value. More importantly the value itself can be used as a measure of

distance from the surface. This can then be exploited as a method for measuring

the accuracy of a surface reconstruction.

We know that for an ideal surface reconstruction each point on the triangu-

lated surface should have a value of 0 when evaluated with the implicit function.

Points which do not lie on the ideal surface will have a non-zero value, increasing

in magnitude with distance. Thus, for a point p on the triangulated surface we

can say that:

Quality(p) ≡ |f(p)| (3.14)

To produce a single value representing the accuracy of the entire tessellation

one of two possible methods could be used. First, the average value of the quality

of all points could be taken (Eq. 3.15). This would provide a measure of how far

the reconstructed surface deviates from the ideal. However, this may not neces-

sarily represent how close the morphology of the reconstructed surface matches
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the ideal. For example, if we were to take an ideal surface representation and

erode (or contract) it by a small amount then the average point quality would

be poor. Yet we may still wish to consider this contracted surface as being a

reasonably accurate representation, since, based on visual inspection, it will have

the same morphology as the ideal surface. For this the standard deviation of

point quality is likely to provide a more meaningful measure (Eq. 3.16).

Q1 =

∑N
i=0Quality(pi)

N
(3.15)

Q2 =

√√√√ 1

N

N∑
i=0

(Quality(pi)−Q1)2 (3.16)

As both Q1 and Q2 provide different measures of surface accuracy both should

be considered independently when measuring the accuracy of a surface reconstruc-

tion. Lower values of Q1 and Q2 indicate a more accurate reconstruction with

Q1 = 0 and Q2 = 0 for a perfect reconstruction.

3.5.5 Results

Using the binary volume algorithm (Algorithm 2) a single cell of the Schwarz

Primitive was generated within a 20 × 20 × 20 px volume. To generate the

reconstructed surface the marching cubes algorithm was used without any form

of capping. This is important to ensure accurate results since points on the caps

(which are not part of the ideal surface) will have spuriously poor qualities. To

ensure a suitable number of points were evaluated on the surface, and that points

lying on facets were also considered, a linear subdivision filter was applied a
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number of times to increase the number of points in the tessellation.

For this surface Q1 = 0.0569 and Q2 = 0.0323. Figure 3.8 shows a plot of

the point qualities on the surface. The blue lines visible on the surface (which

are a result of the colour mapping) indicate where the surface intersects the ideal

surface.

To increase the accuracy of the surface reconstruction a typical technique used

in imaging is to increase the number of sampling points and hence the resolution of

the volume. Table 3.3 shows the effect of increasing the target volume’s resolution

on the quality metrics Q1 and Q2.

Resolution Q1 Q2 Elements

10 0.1669 0.0915 2,396
20 0.0569 0.0323 14,276
30 0.0379 0.0221 38,208
40 0.0307 0.0183 77,100
50 0.0225 0.0139 133,984
100 0.0115 0.0072 ∼ 800,000

Table 3.3: The effect of increasing resolution on surface accuracy for the Schwarz
Primitive

As would be expected, increasing the volume’s resolution decreases the values

of both Q1 and Q2. However, the increased surface accuracy comes with a signif-

icant increase in the number of elements once the volume is meshed. Increasing

the resolution beyond 20×20×20 px results in a small increase in surface accuracy

for a disproportionately large increase in the number of elements. To generate

even a moderately sized lattice structure with a ‘good’ surface representation

using a binary volume would require a large number of elements. The result-

ing mesh would therefore have a large number of degrees and freedom and any

finite element simulations would likely require excessive amounts of computing
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resources.

Figure 3.8: Accuracy of a binary surface reconstruction using 20× 20× 20 px

3.6 Method II: Binary Volume With Smoothing

In the previous section (§3.5) a basic binary volume algorithm was developed

which was able to efficiently generate a volume representing an implicit function.

However, as was shown, the surface reconstruction from a binary volume lead

to a poor final representation of the function. By using only binary data the

interpolation points generated by the marching cubes algorithm will always been

exactly half-way between neighbouring voxels, and unlikely to lie on the ideal

surface.

A more appropriate method for generating these volumes would be to consider

the partial volume effect when greyscale values are used. Partial volume infor-

mation is recorded in various imaging techniques such as Computed Tomography

(CT) where voxels intersect the boundary of the scanned object. In these cases,

where a voxel is clearly neither fully in nor out, its value reflects that is it only

partially inside the object. This is represented in the volume by a greyscale value.
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These greyscale values, when used with the marching cubes algorithm, cause the

interpolation points to vary depending on how much of the voxel is determined

to be inside the object. By varying the interpolation points in this manner the

marching cubes algorithm can produce smoother, more accurate surface recon-

structions.

An 8-bit (1 byte) volume allows for 256 interpolation points between voxels,

whereas a binary volume only allows for 1. Increasing the voxel’s storage to 16-bit

(2 bytes) increases this number to 65,536.

3.6.1 Rationale

This section looks briefly at methods for artificially introducing partial volume

information to a binary volume by utilising existing smoothing algorithms. The

rationale behind this method is that by smoothing a binary volume we know that

greyscale values will be introduced which will greatly improve the smoothness of

the final surface. By using the algorithm developed in §3.5 and combining it with

various image smoothing filters available in ITK we are able to easily test the

effectiveness of different algorithms for this purpose.

3.6.2 Test Case

A binary volume of 20×20×20 pixels, representing a single unit cell of the Schwarz

Primitive, was generated to test each smoothing algorithm. Each algorithm was

then applied to an individual volume and the surface reconstructed using the

marching cubes algorithm. The accuracy of the reconstruction was again mea-

sured by the metrics Q1 and Q2. For comparison we know that Q1 = 0.0569 and
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Q2 = 0.0323 when no smoothing is applied.

3.6.3 Gaussian Smoothing

Gaussian smoothing is a widely used smoothing algorithm in image processing.

The algorithm updates voxel values by taking a weighted average of neighbouring

values in order to produce the smoothing effect. The size of the neighbourhood

and the voxel weightings are determined by a convolution matrix seeded with

a Gaussian distribution. The amount of smoothing performed is specified by

σSD, the standard deviation of the Gaussian distribution. While in theory the

Gaussian function is non-zero for each point in the image, values beyond 3σSD

are small enough to ignore.

An interesting property of the Gaussian smoothing is that it is linearly separa-

ble. That is, the process can be applied with a one-dimensional matrix separately

in the x, y and z axis to achieve the same effect as applying a three-dimensional

matrix once. By doing so the computational efficiency of the algorithm can be

improved.
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Results

Kernel Size (px) σSD Q1 Q2

0.5 0.165347 0.0499 0.02746
0.75 0.248021 0.0378 0.02298

1 0.330694 0.0336 0.02296
1.25 0.413368 0.0330 0.02352
1.5 0.496041 0.0353 0.02276
1.75 0.578715 0.0407 0.02258

2 0.578715 0.0478 0.02245

1.2 0.578715 0.0326 0.02331

Table 3.4: The effect of Gaussian smoothing on a binary volume

3.6.4 Mean Smoothing

As with Gaussian smoothing, mean smoothing is also based on averaging neigh-

bouring voxel values within a given region. Unlike Gaussian smoothing however,

neighbouring values are prescribed a weighting equal to
1

n
for a neighbourhood of

n voxels. Hence, as the name suggests, voxel values are replaced with the mean

value from the neighbourhood. A notable disadvantage of this filter compared

to Gaussian smoothing is that the size of the neighbourhood must be an integer

number of pixels. This constraint can mean that in some cases, particularly with

low resolution images, one must settle for either too much or too little smoothing.

Whereas the value of σSD in Gaussian smoothing provides fine control over the

amount of smoothing.
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Results

Size (px) Q1 Q2

1 0.0281 0.0225
2 0.0266 0.0182
3 0.0427 0.0216
4 0.0681 0.0426

Table 3.5: The effect of Mean smoothing on a binary volume

3.6.5 ‘Pre-Smoothing’

Up to this point the smoothing algorithms which have been examined have been

relatively basic algorithms. Given the same parameters they perform exactly the

same operations regardless of the volume they are being applied to. This lack

of adaptivity means that the algorithms cannot ensure that they are topology

and volume preserving. To address these issues an anti-aliasing algorithm was

developed for smoothing volumes prior to meshing in the commercial software

package, ScanIP. The algorithm was originally implemented in such a way that it

could be used as a “black box” component in the meshing pipeline. By preserving

both topology and volume the user had no need to interact with the filter. The

algorithm itself remains proprietary and unpublished.

Results

For each of the tests performed the part-change feature of the anti-aliasing fil-

ter, which allows voxels to change between solid and void in order to improve

smoothing, was disabled.
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Iterations Q1 Q2

5 0.0493 0.02658
10 0.0352 0.02276
20 0.0324 0.02051
40 0.0321 0.01762
80 0.0270 0.01650
160 0.0227 0.01591

Table 3.6: The effect of pre-smoothing on a binary volume

3.6.6 Discussion

The three smoothing algorithms tested have clearly shown that the marching

cubes algorithm benefits greatly from greyscale image data. Even relatively small

amounts of smoothing produce much smoother surfaces in comparison to the

binary volume.

Despite not taking into consideration the contents of the volume, the tests

showed the two ‘simple’ (Gaussian and Mean) smoothing algorithms were actually

able to increase the accuracy of the reconstruction. However, once the size of

the convolution matrix (in both cases) reached approximately 2 pixels the de-

featuring nature of the algorithms becomes apparent with the values of Q1 and Q2

steadily increasing. In contrast to this, we see the pre-smoothing filter continues

to decrease these values as the amount of smoothing is increased to the point

where is it producing much more accurate representations.

The surfaces in Figure 3.9 show the best results achieved with each smoothing

algorithm. We can see that the two non-volume preserving algorithms share the

same worst quality point, shown in red on Figures 3.9(a) and 3.9(b), where the

surface has contracted due to the smoothing. Many smoothing techniques tend to

result in loss of volume, reflected in this case by an increase in Q1. Interestingly,
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the anti-aliasing filter produced the most accurate results in this same region.

Overall the anti-aliasing filter produced the most accurate representation. By

considering features in the image and preserving its volume the algorithm’s results

were surprisingly accurate given the input image. Not surprisingly, however, is the

fact that this accuracy does come at a cost. The complexity of this filter means

that it is much more computationally demanding than either the Gaussian or

Mean filters. The filter required a large number of iterations (compared to the

recommended 20 iterations ([Sca, 2011, ScanIP Manual]) before the values of Q1

and Q2 dropped below those for the Mean filter with a neighbourhood size of 2

pixels.

In light of these results, applying the Mean filter (2 pixels) to a binary volume

seems a good trade-off of accuracy and computational requirements.

3.7 Method III: Distance Functioned Volume

In the previous section we saw that by introducing greyscale values into a binary

volume the resulting surfaces were much smoother and better resembled the ideal

surfaces. The greyscale values were introduced in a small region around the object

as the result of smoothing algorithms and as such were not aimed specifically at

improving the surface reconstruction. By using these values it is possible to

control where the interpolation points for the marching cubes algorithm will lie,

and hence, where exactly the reconstructed surface will be.

As the name suggests, voxel values in this region should reflect their distance

from the surface. Voxels which are closer to the surface should have a value close

to the iso-surface value, as this is where the reconstructed surface will be. Voxels
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(a) Gaussian smoothing with σSD = 0.330694 (1.2
voxels)

(b) Mean smoothing with a radius of 2 voxels

(c) 160 iterations of pre-smoothing

Figure 3.9: Comparison of different smoothing algorithms on a binary volume
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further away from the surface should vary in intensity linearly with the distance

from the surface, to either solid or void depending on whether or not they are

inside or outside the object.

Depending on the original representation of the object, measuring the distance

to the surface can be computationally expensive. For example, it may be desirable

to convert a CAD model (boundary representation or ‘b-rep’) into an image in

order to combine it with an existing image, such as an implant with CT-scans

of a patient. The first stage in the process is to define the resolution at which

the CAD is to be voxelised, rather than specifying this in pixels, real-world units

are used to define the voxel spacing (the distance between adjacent voxels). The

volume, which must be large enough to contain the bounding box of the object,

can then be divided into four regions of interest as shown in Figure 3.10(a). Each

voxel in the volume must then be evaluated to determine which region it belongs

to and ultimately its value.
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The value of each voxel can then be computed:

IsoSurface =
V max + V min

2

V alueOf(Outside) = V min

V alueOf(Inside) = V max

V alueOf(Inwards) =
|Dist(p)|

MaxDistance
× IsoSurface+ IsoSurface

V alueOf(Outwards) = V max − V alueOf(Inwards)

(3.17)

Where V max and V min are the maximum and minimum possible voxel values,

Dist(p) is the signed distance that point p is from the object’s surface (in real-

world units) and MaxDistance the maximum distance a voxel can be from the

surface before it is considered as either fully in or out. Figure 3.10(b) shows an

example image generated using this scheme.

3.7.1 Distance Functions and Implicit Surfaces

In Section 3.5.4 the implicit functions were exploited to provide a measure of

distance from the ideal surface, by using this idea again it is possible to substitute

Dist(p) in Equation 3.17 with the implicit function f(p). A consequence of

this is that the value of MaxDistance must be unit-less, since f(p) is, and an

appropriate value needs to be chosen. The size of the greyscale region in the
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Void ('outside')

Solid ('inside')

Greyscale (inwards)

Greyscale (outwards)

(a) Regions of interest

(b) Slice from the final volume

Figure 3.10: Voxelising a CAD model
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volume should ideally be 2 to 4 pixels; there would be no gain from a larger

region and a smaller region would lead to a ‘near binary’ volume exhibiting the

same poor surface as in Figure 3.8. For the Schwarz Primitive example used thus

far we chooseMaxDistance = 0.6. Repeating the test case, as specified in Section

3.6.2, leads to a reconstructed surface with Q1 = 0.003763 and Q2 = 0.003051.

Figure 3.11 shows the surface accuracy plot using this method.

Figure 3.11: Surface accuracy for the ‘distance-functioned’ volume

3.7.2 Choosing MaxDistance

When producing an image volume from a CAD model the value of MaxDistance

is straightforward to compute. Since the CAD model is specified using real-world

units, usually millimetres, the spacing of the volume is known and an appropriate

value for MaxDistance can be determined. However, for the case where an

implicit function is being treated as a distance function the values obtained are

not distances measured in real-world units.

To further complicate the issue, the value for MaxDistance is dependant on

the implicit function being used. In the previous example we choseMaxDistance =

0.6 for the Schwarz Primitive, whereas for the Schoen Gyroid a value of 8 is more
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appropriate to generate a greyscale region of the desired size. This issue is caused

by the difference in the gradient on the ideal surface of the two functions. As

the value of f(p) changes more rapidly with the distance from the ideal surface

(i.e. where f(p) = 0) the effective ‘distance’ of voxels in the greyscale region also

increases, thus requiring a larger value of MaxDistance.

Solution By measuring the change in value of f(p) over a voxel on, or close, to

the ideal surface the gradient magnitude at that point, hence the effective spacing

for that region, can be computed. The gradient at a voxel can be calculated as

follows:

gi =
f(p0

i−)− f(p0
i+)

2
(3.18)

where p0
i is a voxel on the ideal surface and p0

i− and p0
i+ are the two neighbouring

face-connected voxels along axis i.

From Eq. 3.18 the gradient magnitude can be calculated:

|g| =

√√√√ d∑
i=0

g2
i (3.19)

where d is the dimensionality of the image.

With the gradient magnitude at the surface now known, a suitable value for

MaxDistance can now be computed:

MaxDistance = |g| ·GreyScaleSize (3.20)

where GreyScaleSize is the desired size of the greyscale region in pixels. A value

of 2 px is appropriate given the nature of the marching cubes algorithm.
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3.7.3 Algorithm

The process of generating the distance functioned volume from an implicit func-

tion can be split into two parts. First a volume represented by real values (e.g.

float) is generated by sampling the function at each voxel, Algorithm 3. Follow-

ing this the rules in Eq. 3.17 can be applied to the volume to produce the final

distance functioned volume. See Algorithm 4.

By dividing the process into these two stages it is possible to find a candidate

voxel for p0 efficiently since the values of the function are only computed once

per voxel. While it is likely that p0 will not lie exactly on the ideal surface, any

sufficiently well resolved volume will contain voxels whose close proximity to the

surface makes them suitable candidates.

Algorithm 3: Floating-point volume generation

Input: f, nx, ny, nz, xmax, ymax, zmax

Output: FloatVolume

while not all voxels visited do
(x, y, z)← GetCurrentPosition(FloatVolume)

(x′, y′, z′)←
(

x

xmax

× 2πnx,
y

ymax

× 2πny,
z

zmax

× 2πnz

)
FloatVolume[x, y, z]← f(x′, y′, z′)
MoveToNextVoxel(FloatVolume)

end

3.7.4 Summary

This section has examined various methods of generating image volumes from

implicit functions so that they may later be integrated with other image data, or

meshed directly with +ScanFE.
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Algorithm 4: Distance functioned volume generation

Input: FloatV olume, isoSurface, f, nx, ny, nz, xmax, ymax, zmax

Output: DistVolume

/* Find the gradient magnitude on the surface */

p0 ← GetSurfaceVoxel(FloatVolume)

gm← 0
for i=0 to 3 do

gm← gm+

(
f(p0

i−)− f(p0
i+)

2

)2

end
gm← √gm

/* Generate the final volume */

MaxDistance← 2 · gm
while not all voxels visted do

(x, y, z)← GetCurrentPosition(DistVolume)

v ← FloatVolume[x, y, z]
av ← |v|
if av > maxDist then

if v ≤ isoSurface then DistVolume[x, y, z]← V min

else DistVolume[x, y, z]← V max

else

α← av

MaxDistance
× isoSurface+ isoSurface

if v ≤ isoSurface then
DistVolume[x, y, z]← α

else
DistVolume[x, y, z]← (V max − α)

end

end
MoveToNextVoxel(DistVolume)

end
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The most straightforward algorithms presented, which generated binary vol-

umes, proved to be the most efficient but at the cost of the accuracy of the

surface reconstruction. Surfaces from these algorithms bear little resemblance to

the smooth surfaces expected from the trigonometric functions. The introduction

of greyscale values through the use of smoothing algorithms improves the surface

smoothness, but at the cost of both accuracy and computational resources. The

most accurate representations were generated by treating the implicit functions

as distance functions and setting voxel values accordingly. Surfaces reconstructed

using this algorithm conformed closely to the ‘ideal’ surface. Although more com-

putationally demanding than the binary algorithms, the algorithm presented is

an efficient and robust method for generating the desired volumes.

3.8 Volume Fraction Calibration

It is desirable to be able to generate micro-architectures using the methods de-

scribed in the previous section with a prescribed volume fraction. The volume

fraction of a micro-architecture is calculated as the ratio of solid, VS, to total

volume, VT :

Volume fraction =
VS
VT

(3.21)

Porosity is also commonly used to describe the solid to void fraction in micro-

structures:

φ =
VV
VT

(3.22)

where VV is the volume of the void.

The volume fraction of a micro-architecture will influence a number of dif-
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ferent physical properties related to the bulk behaviour of the structure. For

example, one would expect an increase in volume fraction to lead to an increase

in Young’s modulus, while at the same time decreasing the pore size and the

structure’s permeability. The target application of the micro-architecture will

dictate the volume fraction; structures used for bone scaffolds are chosen so that

their bulk properties match that of bone (Hollister et al. [2002]), whereas internal

support structures for aerospace components are chosen to maximise stiffness and

minimise weight.

3.8.1 Calibration by Re-Iso-Surfacing

Gabbrielli et al. [2008] demonstrated a method of controlling the volume fraction

of a structure generated by an implicit function by choosing different iso-surface

values. Increasing or decreasing the iso-surface value has the corresponding effect

on the volume fraction of the structure. However, the work by Gabbrielli does

not allow for precise control of the volume fraction – for example a structure with

a 17% volume fraction cannot be generated without guessing an appropriate iso-

surface value through trial and error.

For an iso-surface value of k the ideal surface is defined as:

f(p) = k (3.23)

However, it is more convenient to always use an iso-surface value of 0:

f ′(p) ≡ f(p)− k

= 0
(3.24)
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In order to achieve a certain volume fraction an appropriate value for k

needs to be determined. It is known that this value must lie within the range

Min(f ′(p, k)) < i < Max(f ′(p, k)), as any value outside of this range cannot

satisfy the expression f ′(p, k) = 0 and hence the volume fraction will be 0. Using

the bisection method (similar to a binary search algorithm using real numbers)

a value for k can be found which minimises the difference between the computed

and desired volume fraction, within a given tolerance. The algorithm is as follows:

Algorithm 5: Bisection algorithm

Input: targetV F, F loatV olume
Output: isoSurface

min← MinOf(FloatV olume)
max← MaxOf(FloatV olume)
range← (max−min)
offset← range× 0.5
isoSurface← (min+ offset)
actualV F ← GetImageVolumeFraction(FloatV olume, isoSurface)

while |targetV F − actualV F | > ε do

offset← offset ∗ 0.5
if actualV F > targetV F then

isoSurface← isoSurface+ offset
else

isoSurface← isoSurface− offset
end

end

The algorithm makes use of an additional function, GetImageVolumeFraction(),

which returns the volume fraction of a floating point volume using a given iso-

surface value. An approximation of this value can be computed efficiently by

taking the ratio of ‘inside’ voxels to the the total number of voxels. A voxel is
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considered inside if its value is less than the iso-surface value.

Volume fraction approximation =
Number of inside voxels

Total number of voxels
(3.25)

Since this approximation disregards the partial volume effect, sub-voxel changes

may not always results in a change in volume fraction. Although it is clearly de-

sirable to be able to measure such changes, the computational cost in doing so

outweighs the gain.

When used in combination with Algorithms 3 and 4 a pipeline can be es-

tablished which allows the generation of lattice structures with specific volume

fractions.

The bisection algorithm, as presented, may not be the most efficient algorithm

for finding the desired iso-surface value. In some cases the algorithm may require

a large number of iterations to meet the criteria to terminate, depending on the

value of ε. Certain values of ε may also cause the algorithm to aim for a degree of

accuracy unobtainable when using the inside/outside method of computing the

volume fraction – also causing an excessive number of iterations. These issues

could be addressed by using a fixed number of iterations in the algorithm.

There also exists a number of algorithms for finding the root of a function (i.e.

finding x such that f(x) = 0) which may be applicable to this problem. However,

as the function used to calculate the volume fraction is discontinuous it may not

always be possible to rely on its derivative or gradient, as required in Newton’s

method, the secant method and the false position method. As with the bisection

method, these algorithms are iterative processes which progressively find better

approximations to the root of the function. The main difference between these
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algorithms and the bisection method is that they use the rate of change of the

function to more efficiently approach its root.

Alternatively, the efficiency of the bisection algorithm may be increased by

choosing more appropriate initial values for min and max. One possible method

for choosing these values is to first compute a histogram for the volume FloatV olume

using an appropriate number of uniform bins. Using this histogram it would then

be possible to find a bin with a corresponding volume fraction closest to the

target volume fraction. The upper and lower values used by the bin can then

be used to seed the bisection algorithm. Depending on the accuracy required,

a histogram with a large number of bins may also be able to provide a suitable

iso-surface value without the use of the bisection algorithm, or any other iterative

approximating algorithm.

3.8.1.1 Examples

Figure 3.12 shows a single unit cell of the Schoen Gyroid at 15%, 33% and 50%.

(a) 15% (b) 33% (c) 50%

Figure 3.12: Volume fraction calibrated unit cells
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3.8.2 Calibration by Erosion/Dilation

Another possible technique for controlling the volume fraction of an implicitly

defined structure is though the use of morphological erosion and dilation. Rather

than choosing different iso-surface values in order to achieve different volume frac-

tions a single iso-surface is chosen as a starting geometry. Using the algorithms

developed in this chapter the corresponding volume image can be generated.

Morphological erosion and dilation may then be performed on the volume us-

ing an appropriately sized kernel to achieve the desired volume fraction. Figure

3.13 shows how this method can be used to generate different unit cells from the

starting cell.

(a) 12% calibrated (b) 50% calibrated (c) 50% dilated from
12%

(d) 12% eroded from
50%

Figure 3.13: Unit cells generated to specific volume fractions using different tech-
niques

The disadvantage of this method is the computational resources required to

perform large morphological operations, which are considerably greater than that

required to generated a volume from a different iso-surface. It also becomes more

difficult to target a specific volume fraction using erosion or dilation and would

require additional computation in order to find an appropriate kernel size.

This method may be better suited for smaller changes in volume fraction

using sub-voxel morphological operators so that precise volume fractions can be
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achieved.

3.9 Summary

This chapter has focused on the development of image-based algorithms for the

generation and representation of lattice structures from periodic implicit func-

tions. A number of different algorithms were examined including their effects

on the surface reconstruction accuracy. As may have been expected, the binary

algorithms proved to be the most efficient but at the cost of surface accuracy.

The introduction of greyscale values significantly improves surface accuracy, with

the most accurate reconstruction being produced from the distance functioned

algorithm developed in §3.7.3. Through the use of a bisection algorithm the

micro-architectures may be generated to a specific volume fraction, allowing the

creation of micro-architectures with different properties (i.e. stiffness and poros-

ity).
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Chapter 4

Functionally Graded Structures

Functionally graded structures (FGSs) are similar in principle to functionally

graded materials (FGMs), a relatively recent development whereby a mixture

of two or more materials (with differing properties) is varied spatially to create

a new material with customised properties. By choosing specific materials and

mixing them with a certain gradient, new materials can be created with properties

tailored for a specific application. This may include customising the mechanical,

thermal and/or electrical properties of the material. The creation of custom

materials can ensure that the specific requirements of an application are met,

rather than relying on an existing homogeneous material to fulfil the requirements.

Functionally graded structures are typically micro-architectures composed of

two or more phases, where one phase may be void. Each phase is typically made

of a homogeneous material. As with functionally graded materials there is a

spatial variation over the structure which in-turn introduces variations in various

properties across the structure. To introduce this variation some aspect of the

structure’s geometry, such a cell density, cell size, or topology is altered.
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Torres-Sanchez & Corney [2009] demonstrated that functionally graded struc-

tures could be produced from polyurethane by exposing the substance to various

ultrasound signals during the foaming process. In comparison to the computa-

tional approaches, when combined with additive manufacturing (AM), the use

of ultrasound in the foaming process provides considerably less control over the

functional grading in resulting structure. In both Gabbrielli et al. [2008] and

Chen [2007a] methods for the computational generation of FGSs are presented

which rely on AM to realise designs, allowing for precise control over the final

geometry.

4.1 Generation

It has been shown that the value at which the implicit function is iso-surfaced

directly controls the final structure’s volume fraction. Gabbrielli (Gabbrielli et al.

[2008]) exploited this fact to produce functionally graded structures by effectively

iso-surfacing the implicit functions with a non-constant value. The result of which

can be expressed as follows:

f(x, y, z)− Φ = 0 (4.1)

where Φ is the grading function, dependant on any number of different possible

parameters. An example of a linearly graded structure is given in Gabbrielli et al.

[2008] where the grading function varies linearly between two values, k1 and k2

over the z-axis. How these values where determined and the volume fractions

there correspond to were not explained.
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Using algorithm 5 it becomes possible to choose values for k1 and k2 which

would result in a functional variation between two specific volume fractions. The

following is an example of how Φ may be constructed such that the resulting

structure varies in volume fraction linearly from 10% to 50% over the z-axis.

k1 = CalibratedIsoSurface(f, 0.1)

k2 = CalibratedIsoSurface(f, 0.5)

Φ(x, y, z) =
z

zmax

× (k2 − k1) + k1

(4.2)

where the function CalibratedIsoSurface represents the process defined by

algorithm 5.

4.1.1 Apparent Non-Linearity

In Gabbrielli [2009] it is noted that while the iso-surface value, k, is proportional

to the structure’s volume fraction, the relationship is non-linear. However, on

investigation it appears that, within a certain range, the relationship may be de-

scribed as quasilinear. Figure 4.1 shows the relationship between the iso-surface

value and volume fraction for four implicit functions. From this plot there ap-

pears to be some non-linearity at the higher (> 75%) and lower (< 20%) volume

fractions. However, this is almost certainly due to the effects of resolution where

small features are not sufficiently represented. This is clear from the Neovius’

Surface which is the most complex and also exhibits the greatest non-linearity.
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Figure 4.1: The relationship between iso-surface value and volume fraction for
selected implicit functions

4.2 Specific Density Variations

Certain desired or perhaps optimal density variations are likely to have highly

complex, or non-obvious, mathematical representations leading to difficulties in

defining the grading function, Φ. For example, an engineer designing a micro-

architecture may wish to manually specify denser regions throughout the struc-

ture in order to meet the required mechanical properties. The need for arbitrary

density variations becomes more apparent when an optimisation process is consid-

ered. Typically size and shape or topology optimisation is used to create optimal

micro-architectures or unit cells. At the highest level these optimisation processes

can be considered an iterative process wherein an initial guess is continually mod-

ified to minimise or maximise a given criterion. For this process to work there

must be methods available which allow quantitative modification of some aspect
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of the structure’s geometry. In this instance the density of the structure’s cells is

the modified parameter.

To facilitate the creation of such structures we introduce the concept of a

density map.

A density map is a representation of the desired relative densities of a micro-

architecture throughout the domain. The map itself is represented in image-space

(either 2D or 3D) at a resolution equal to that of the micro-architecture, ensuring

a one-to-one voxel mapping. The voxel values can be encoded using various data

types, such as unsigned char or float, with the maximum and minimum values

representing the maximum and minimum desired volume fractions. Intermediate

values are interpolated linearly between these two values. In the same manner

as with functionally graded structures these values are used to determine the

iso-surface value, k.

Using the CalibratedIsoSurface function (Algorithm 5) the iso-surface val-

ues corresponding to the target minimum and maximum volume fractions, φmin

and φmax, can be found.

kmin = CalibratedIsoSurface(f, φmin)

kmax = CalibratedIsoSurface(f, φmax)

krange = |kmax − kmin|

(4.3)

However, as the final function will be iso-surfaced using a single value it must

be updated to introduce the desired variations. This is achieved by linearly re-

scaling the density map to the range [0 : krange]. That is, the range of values in

the density map must be equal to the range of target iso-surface values. This

re-scaling is required to ‘normalise’ the density map such that when the values
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are added to the implicit function the resulting volume can be iso-surfaced using

the minimum target iso-surface value, kmin. Voxels corresponding to those in the

density map with the minimum value will not be increased as the re-scaled value

will be 0 and hence when the final volume is iso-surfaced will produce the desired

minimum volume fraction. Similarly, voxels corresponding to those in the density

map with the maximum value will be offset by krange and hence will produce the

desired maximum volume fraction.

Using the rescaled density map the grading function can be defined:

Φ(x, y, z) ≡Mx,y,z − kmin (4.4)

where Mx,y,z is value of the voxel at (x, y, z) in the density map and kmin is the

iso-surface required to achieve the minimum desired volume fraction.

The implicit function now becomes:

f(x′, y′, z′)− Φ(x, y, z) = 0 (4.5)

The values in the density map could be specified in any number of different

ways. In 2D (or 3D with a prismatic variation) painting techniques, similar to

those used for image segmentation, can be used to manually specify variations.

In 3D this becomes more difficult, although it is not impossible to imagine some

3D input device, such as a haptics device, being used to paint in 3D.

While intended for arbitrary variations, the use of a density map does not

exclude the use of functional variations. Although it may appear unnecessary

and inefficient to generate a density map for a functional variation, rather than
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using the function directly, it can be useful for visualisation. Once generated,

structures with a large number of cells can easily exceed 100 million polygons,

making interactive visualisation computationally expensive. By using various

volume rendering techniques or by reducing the density map’s dimensionality

(i.e. by taking a slice of the volume), it becomes possible to visualise the density

variations across the domain.

There are also additional benefits to using a density map: its image-based

representation means that image processing techniques can be applied to it. In-

particular image smoothing filters, such as Gaussian or mean smoothing, can be

applied to ensure smooth transitions between areas of different densities. This is

particularly desirable to avoid step transitions, where the density changes sud-

denly between regions, which can lead to stress concentrations in the structure.

4.2.1 Example

Examples of the specific density variations are best shown in 2D where the entire

structure can be seen in a static image, as in Figure 4.2.

4.3 Non-Specific Geometrical Variations

In the previous sections techniques for generating lattice structures with density

variations were developed for the purpose of controlling the bulk response of the

structure. In these structures the cell size (the physical dimensions over which the

function is periodic) remains constant. An alternative method for achieving this

has been demonstrated in Chen [2007a] whereby the cell size is varied throughout

the domain to create regions of different densities. This section will look briefly
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(a) Density map (b) Generated micro-architecture

Figure 4.2: Example usage of a relative density map

at how this technique can be applied to the methods used in this chapter.

In comparison to the methods described in this chapter, Chen uses a more

simplified strut-based representation for micro-architectures (Chen [2007a]). Unit

cells are defined by a set of struts connecting a set of vertices with their topology

chosen from a library consisting mainly of polyhedra. The simple representation

of the structure allows the use of a space warping function to displace the cell

vertices. The space warping function can be defined such that cell size decreases,

hence density increases, with either an existing function or discrete values from

finite element analysis.

Applying the same technique directly to a surface or volume mesh of a micro-

architecture generated using the techniques described, would cause undesirable

results. If applied to a surface mesh, the warping function would likely cause the

structures ribs to appear stretched, resulting in a loss of accuracy. For the case

of a volume mesh the warping would likely have a negative effect on the overall
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mesh quality due to the distortion elements would undergo - in-turn causing a

loss of accuracy in any finite element or CFD simulations.

Alternatively given a space-warping function Θ it is possible to warp the space

the implicit function is evaluated over:

f ′(x′, y′, z′) ≡ f(Θ(x, y, z)) (4.6)

As an example we choose the space-warping functions developed in Bùi Xuân

[2008]. These functions allow the placement of ‘morphing spheres’, each of which

has a stable zone and a transition zone. In the stable zone the space is expanded

effectively increasing the unit cell size. The transition region is, as the name

suggests, the region over which the space is compressed back to the original size.

An example is given in Figure 4.3.

Figure 4.3: Lattice structure generated using a space-warping function

However, as is to be expected with the use of space-warping functions on
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this type of lattice structure, the functions cause a ‘squashing’ of ribs. For the

functions used in Figure 4.3 this effect is limited to the transition region.

4.4 Hybrid Functions & Transition Cells

In the previous sections methods for generating lattice structures with varied

mechanical properties were examined. The principle technique for achieving this

was the introduction of density variation throughout a fixed topology structure.

Previous studies have achieved custom and varied properties through the use of

multiple unit cells of different topologies (Starly [2006], Hollister & Lin [2007]).

As the topology of a unit cell can have a considerable influence on its effective

properties, such as bulk stiffness or porosity, structures with spatial variations in

topology (either discrete or continuous) are able to achieve custom properties.

Introducing topological variations in a structure can prove problematic. As

previously stated, it is highly desirable to maintain a continuous structure - any

two points chosen at random should be connected. With density variations this

is ensured using upper and lower bounds. For the case of topological variations

regions composed of different unit cells must be joined or bridged. Assuming the

interface between the two regions, R1 and R2, is a plane then there will exist

two corresponding sets of nodes N1 and N2. In some instances it may be the

case that N1 ∩N2 6= ∅, that is, the two regions share nodes. For such structures

it is possible to take advantage of this relationship and join the two regions by

merging the coinciding nodes as in Figure 4.4.

However, for any two arbitrarily chosen unit cells in 3D it is more likely that

we will have N1 ∩ N2 = ∅ and are not able to directly join the two regions. To
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R1

R2

Figure 4.4: Joining unit cells of different topologies in 2D, without the need for
a transition region

resolve this we introduce a transition region which has the sole purpose of bridging

the two interfaces. This method is used in the commercial software NetFabb Net

[2009].

When dealing with beam-based micro-architectures the creation of an appro-

priate ‘sub-structure’ to bridge different unit cells can be achieved simply by

introducing additional beams. Usually without the need to introduce additional

nodes.

4.4.1 Implicit Transition Cells

The advantages of using a simplified representation of a micro-architecture, such

as beams, are clear when we wish to bridge regions of different unit cells. However,

the type of structures discussed in detail in this chapter (those with an implicit

representation) cannot be treated as a collection of beams and nodes. Instead

more complex representations are required to join or bridge cells. In this section

we take a novel approach to modelling the region of transition implicitly.
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As with beam-based structures there may be cases where different unit cells

can be joined directly to form a continuous structure. The criteria for this is

dependent on the contact area between the two faces at the interface. For the

implicitly defined unit cells the existence of a contact surface can be proved

formally. Assuming the unit cells are periodic over 2π and the interface region

is a plane perpendicular to the z-axis, then the intersection of the two implicit

functions on the plane must yield a value greater than or equal to the iso-surface

value. This can be expressed formally by Equation 4.7.

∃x, y(min[f1(x, y, z), f2(x, y, z)] ≥ 0), z = 2π (4.7)

Since the move to image-space requires a discretisation of the implicit func-

tion Equation 4.7 should be evaluated over the discretised domain to ensure any

topological changes are accounted for.

In cases where there exists a notable contact area it is possible to create a

greyscale volume by taking the union of the two volumes generated using Algo-

rithm 4. Figure 4.5 shows how this can be used to join two different unit cells,

the Pinched Primitive and the Schoen Gyroid. From the slice of the generated

volume (Fig 4.5(a)) it is clear that in this case the contact area between the two

cells is minimal, consequently this interface region would likely become a point

of failure when loaded.

It is clear that joining different unit cells directly as previously described is

not an appropriate or robust solution to the problem. Instead the need for a

transition layer for implicitly defined unit cells is apparent.

Using space-time blending methods as described in Pasko et al. [2004] it is
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(a) Slice (b) Reconstructed surface

Figure 4.5: Joining implicitly defined cells of different topologies

possible to morph an object with an implicit representation into another over

time. This is achieved by taking a weighted average of the two functions and

varying the weighting over time. The equation below shows this with a linear

variation.

f ′(x, y, z) ≡ tf1(x, y, z) + (1− t)f2(x, y, z)

2
, t ∈ [0 : 1] (4.8)

Figure 4.6 shows the transformation between the Pinched Primitive and Schoen

Gyroid unit cells. The transitional states show the new unit cell (f ′) maintains

its continuity – a property required of a transition layer.

Temporal transition between unit cells, while interesting, have no direct prac-

tical use for mechanical applications and hence Equation 4.8 should be modified

to provided a spatial transition. For the transition layer we desire a transition be-
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(a) t = 0 (b) t = 0.125 (c) t = 0.25

(d) t = 0.375 (e) t = 0.5 (f) t = 0.625

(g) t = 0.75 (h) t = 0.875 (i) t = 1

Figure 4.6: Space-time blending of the Pinched Primitive and Schoen Gyroid unit
cells

tween two unit cells over some region and that the layer interfaces appropriately

with both types of cell. The size of a single transition cell is chosen, arbitrarily,

to be equal to one unit cell (2π).

f ′cell(x, y, z) ≡ 1

2

[
t

2π
f ∗1 (x, y, z) +

(
1− t

2π

)
f ∗2 (x, y, z)

]
, t ∈ [0 : 2π] (4.9)

where f ∗1 and f ∗2 are the implicit functions normalised such that when iso-surfaced

at 0.5 they produce a structure with the desired volume fraction. The two func-

tions can represent unit cells of different volume fractions. Figure 4.7 shows an
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example transition cell using the Pinched Primitive and Schoen Gyroid unit cells,

the value of t is varied over the z-axis.

Figure 4.7: Transition cell for Pinched Primitive and Schoen Gyroid unit cells

By further extending Equation 4.9 to use a piecewise linear variation and eval-

uating f ′ over a larger range a structure demonstrating the use of the transition

cell can be created. Figure 4.8(a) shows an example structure where a transition

cell is used to two regions composed of the Pinched Primitive and Schoen Gyroid

unit cells. This method may also be used to join regions composed of the same

type of unit cell but with differing unit cell size or density, as shown in Figures

4.8(b) and 4.8(c).

The transition region may also be extended further than a single unit cell to

produce more interesting structures, as shown in Figure 4.9.
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(a) (b) (c)

Figure 4.8: Example uses of transition cells

Figure 4.9: Blending unit cells of different sizes over a large region

4.4.2 Discussion

Transition cells, or regions, as blends of two implicit functions appear to be a

suitable solution for bridging regions of differing topology or cell size. However,

the resulting structures will likely have complex mechanical properties. The tran-

sition region will also have properties differing to those of the two topologies it

bridges – an unavoidable consequence of bridging different unit cells.
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4.5 Non-Periodic Functions

Up to this point we have focused exclusively on implicit modelling with periodic

functions that are not true distance functions. The implicit representations of

simple geometries, such as cylinders, are often used to construct more complex

geometries in a process known as constructive geometry solid (CGS). This process

is worthy of mention as the same techniques developed can be applied to CGS

for lattice structures.

By taking the union of three cylinders, one along each axis, a simple unit cell

can be constructed. The implicit equation for a cylinder of infinite length along

the z-axis, with a radius r, is as follows:

f3(x, y, z) ≡ x2 + y2 − r2 (4.10)

Similarly, cylinders along the x (f1) and y (f2) axes can be generated by

substituting the variables x and y appropriately. The union of the three cylinders

is straightforward to compute:

f∪ ≡ min(f1, f2, f3) (4.11)

Unlike the functions studied thus far, f∪ is clearly non-periodic. The resulting

iso-surface will be the union of the three cylinders intersecting at the origin. Pe-

riodic functions are particularly useful for space-filling applications, as previously

demonstrated. It would be possible to extended f∪ to the union of many, offset,

cylinders such that they created a lattice structure. Doing so, however, would be

inefficient as it would require evaluating Eq 4.10 many more times. Instead it is
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possible to introduce periodicity through the use of the mathematical operator

modulo:

x′ =
(x mod 2π)− π

2π
(4.12)

with similar expressions for y′ and z′. The modified coordinates scale the unit

cell to the range [−0.5 : 0.5] so that the intersection of the cylinders occurs in the

centre of the cell. With the modified coordinates the function in Eq 4.11 can be

used as a periodic function in any of the algorithms developed in this chapter.

Figure 4.10: Periodic lattice structure generated from the union of three cylinders

Another possible method for generating lattice structures based on an implicit

form is to first start with an explicit form. Lattice structure are often represented

using beams, or simple polylines. These simple representations can be easily

‘distance-functioned’ to produce a volume which implicitly defines their geometry.

The open source framework VTK provides the functionality to do so.

There are a number of advantages to using traditional distance functions,

such as that in Eq 4.10 or distance functions from explicit forms. In both cases

we assume that the beams have a radius of zero (for the cylinder we simply use
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r = 0). For explicit forms the generation of a distance function volume is greatly

simplified as a signed distance is not required, removing the need to determine

which points are inside and which are outside. The resulting volumes also have

a useful property not found with the periodic functions previously used; the iso-

surface values represent the radius of the beams. For example, to generate a

structure with beams 0.2 units in radius the volume is simply iso-surfaced at

0.2 and similarly for any radius greater than the sampling size. The distance

functioning also removes the need to perform any special processing where beams

meet, such as complex triangulation or introducing fillets (as in Chen [2007a]).

The generated volumes can also be modified in the same manner as previously

described to introduce variations in density throughout the structure. An example

is given in Figure 4.11.

(a) Unit cell (b) Linearly graded structure

Figure 4.11: Distance functioned unit cell and lattice structure
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4.6 Summary

The use of implicit modelling has been demonstrated to be a highly flexible way of

modelling functionally graded micro-architectures with customised properties. A

new method was developed to allow the creation of micro-architectures with arbi-

trary density variations. This method enables the creation of micro-architectures

with complex, well-defined, variations as will likely be required for optimisation

or applications such as bone scaffolds. The variations in density were introduced

by effectively iso-surfacing with a non-constant value, referred to as the grading

function, Φ. This grading function can be defined using a mathematical expres-

sion or through the use of a density map. By using a density map arbitrary

variations in density can be easily introduced into the structure.

Novel methods have also been developed to mix unit cells of different topolo-

gies to create structures with varied properties. This was achieved by adapting a

space-time blending function such that a transition region between two otherwise

uniform lattices could be formed.

The methods developed in this chapter were also shown to be applicable to the

creation of lattice structures based on the distance functions of beams, allowing

the creation of more ‘regular’ unit cells.
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Chapter 5

Domain Conforming

Micro-Architectures

The previous chapters have concentrated on the generation of micro-architectures

within a cuboidal domain, in particular the domain defined by the Cartesian grid

discretisation. For the majority of real-world applications there will exist a pre-

defined geometry which will define the domain for the micro-architecture. This

geometry may be specified using any number of methods, including CAD models,

non-invasive medical imaging or implicit representations. Methods allowing for

the generation of micro-architectures conforming to domains of arbitrary com-

plexity are presented in this chapter.

Another application which has proven to be of considerable interest recently

is internal architectures. Internal architectures are typically open cell lattice

structures generated within a shell. The external geometry of this shell is designed

to match that of an existing CAD model. In effect, the creation of the internal

structure involves hollowing a CAD model and filling the void with a lattice
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structure. Internal architectures can be considered a form of biomimicry design

as they closely simulate the naturally occurring structures in many biological

structures (e.g. bone, plant stems). That is, a spongy structure (cancellous bone)

enclosed in a much denser shell (cortical bone). The purpose of mimicking this

arrangement is to reduce the weight of components while maintaining stiffness.

Internal structures may also bring further advantages, such as being able to act

as a supporting structure in certain manufacturing processes. Novel methods for

generating internal architectures in CAD models are presented in this chapter.

Methods for generating domain conforming micro-architectures are required

to fully utilise additive manufacturing processes (e.g. SLM, SLS, FDM, etc...).

Subtractive methods have previously been used for the same purpose, for ex-

ample in the Mandible Reconstruction Project (Jamison et al. [2010]) a block

of hydroxyapatite with a lattice structure was milled to match the geometry of

a CAD model. Using subtractive methods to achieve an external geometry for

structures which can be produced using additive manufacturing is clearly not an

efficient use of material or time.

This chapter looks at methods for generating domain conforming micro-architectures

for two applications, bone scaffolds and internal structures for CAD models.

5.1 Bone Scaffolds

Scaffold architectures should be designed such that their external geometry matches

that of the defect site they are to occupy. The defect site will be either a region

of void or of poor quality bone. Using non-invasive medical imaging techniques,

such as MRI or CT scans, it is possible to acquire a voxel-based representation
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of the defect site.

It is possible to bound the micro-architecture by the geometry defined by the

defect site by taking the intersection of the two solids, as shown in Figure 5.1.

Figure 5.1: Domain conforming micro-architecture using Boolean intersection

This could be achieved using a number of different approaches, separated here

into CAD based and image based.

CAD Based In this process the Boolean operation (intersection) is performed

on the two triangulated surfaces (i.e. STL files). Such operations are not well-

defined and results can vary depending on the CAD package used. In the worst

case the operation may fail to complete. In cases where the operation is successful

the result may suffer from poor quality triangles at the interface between the two

solids and may require re-meshing in order to produce a volume mesh for FEA

or CFD simulations. There are, however, advantages to performing Boolean

operations in CAD space. Most notably that the operation is not lossy, that is,

that it does not degrade the geometry of the involved CAD models. The two

triangulated surfaces may also be generated from different sources, for example

one from a CAD package and the other from image-based meshing.
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Image Based The image based approach to model construction from med-

ical imaging data is usually based on either the marching cubes (Lorensen &

Cline [1987]), volumetric marching cubes (VoMac, Müller & Rüegsegger [1995])

or extended volumetric marching cubes algorithm (EVoMac, Young et al. [2008]).

Following the segmentation of the image data using techniques such as thresh-

olding, level set methods or manual painting, the segmented volume is processed

using the appropriate algorithm – marching cubes for a surface mesh or volumet-

ric marching cubes for a volume mesh. The marching cubes algorithm provides

a very efficient and robust solution to surface and volumetric image meshing. Its

usage in the mesh generation process is shown in Figure 5.2.
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Figure 5.2: The process of data acquisition and processing for mesh generation

As the micro-architectures are generated in image-space it is desirable to

also perform the intersection in image-space, where Boolean operations are well-

defined, robust and very efficient. The only constraint on this process is that the

two volumes must have the same discretisation, that is, the discretisation of both

domains must be at the same resolution and extent. The resolution of image
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data acquired from medical MRI or CT scans will typically be far too coarse to

sufficiently represent a scaffold micro-architecture. To ensure the two volumes

have the same resolution the defect volume can be re-sampled, typically using

linear interpolation, to a resolution suitable for the micro-architecture. The final

resolution will depend on how the data will be processed following the intersec-

tion. For rapid prototyping/manufacturing a lower resolution, 10×10×10 px per

unit cell, may be desired in order to maintain a manageable number of triangles.

For computational simulations a higher resolution may be required.

With both the defect and micro-architecture volumes at the same resolution

the intersection can be computed:

V∩ = min(V1, V2) (5.1)

where V1 is a voxel value from the defect volume, V2 the corresponding voxel in

the micro-architecture volume and V∩ the voxel resulting from the intersection of

V1 and V2. Unlike a binary Boolean operation, this operation preserves greyscale

values ensuring no loss in surface smoothness. Figures 5.3(a) and 5.3(b) show

an example domain conforming micro-architecture within the defect site1 of a

mandible.

1In this instance the defect site has been artificially introduced during segmentation
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(a) (b)

Figure 5.3: Example scaffold conforming to defect site geometry

5.2 Internal Architectures for CAD Models

This section looks at the generation of internal architectures for CAD models, in-

particular methods for shelling an existing geometry. The architectures used in

this section will the same as in previous sections, although referred to as internal

architectures as no length-scale is implied for this application.

Parts of the work in this section form a patent application, the details of which

are presented in Appendix B.

As with bone scaffolds one of the key objectives of generating internal archi-

tectures is the generation of a domain conforming architecture. However, this

domain had previously been defined by the external geometry of a given vol-

ume in image-space. For internal architectures the domain of interest is defined

as a proper subset of the volume enclosed by the CAD model. This is due to

the requirement that the internal structure be enclosed by a shell, the external

geometry of which should match that of the original CAD model.

The first stage of the process is to explicitly define the domain for the internal

architecture by creating the solid shell from the CAD model. This can be achieved
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using a traditional CAD package and an offsetting operation. Offsetting the CAD

model’s original surface creates a new inner surface which is a given minimum

distance from the original; that is, no two points on the surfaces will be closer

than the minimum. When the hollow CAD model is exported as an STL file the

outer and inner surfaces will be composed of triangles with opposing normals, thus

defining a solid shell enclosing a void. With the hollow STL model the appropriate

Boolean operations could be performed with an STL file of a lattice structure to

produce the final STL file. However, as previously discussed, there are potential

issues with performing Boolean operations on triangulated surfaces. Similarly,

the offsetting operation for triangulated surfaces involves complex operations to

re-mesh the original surface as in Chen [2007b].

The novel solution to these problems is to perform all of the required oper-

ations in image-space, as was done in the previous section with bone scaffolds.

As in this case the external geometry is defined by a CAD model it will need

to be converted into an equivalent representation in image-space. The conver-

sion to image-space can be performed using +ScanCAD from Simpleware which

produces a ‘distance functioned’ volume as described in Section 3.7. Figures

5.4(a) and 5.4(b) show a CAD model and slice from the equivalent voxel volume,

voxelised with a spacing of 1 mm.

Before the introduction of an internal structure the region of void must be

defined. As the external geometry is represented in image-space at this stage

the offsetting operation used in CAD packages cannot be used. In image-space

morphological erosion can be considered an equivalent operation to offsetting.

Greyscale morphological erosion, as with other morphological operators, uses

a kernel, defined in R3 in this instance. Unlike binary erosion, greyscale erosion
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(a) (b)

Figure 5.4: CAD model voxelised at 1 mm

preserves the surface values of the volume and therefore the partial volume effect.

This is of particular importance as the voxelisation process in +ScanCAD uses the

partial volume effect to achieve sub-voxel accuracy, resulting in a better surface

representation.

The radius of the kernel dictates the amount of voxels which are effectively

removed from the surface of the volume. The dimensions of the kernel can be

chosen such that the operation erodes the surface by differing amounts in each

direction. To maintain a constant erosion the kernel dimensions must be at the

same ratio as the volume’s spacing. For convenience this is kept cubic and hence

a cubic kernel is always used.

When using standard greyscale erosion the erosion depth must be an integer

number of voxels (i.e. a multiple of the volume spacing) due to the constraint that

the kernel dimensions must be in whole voxels. For example a volume discretised

at 1 mm cannot be eroded by 0.5 mm. It would, however, be possible if the

volume had been discretised at a resolution which was a multiple of the desired

erosion depth, in this case 0.5 mm. The disadvantage of this solution is that it

87



requires the domain to be voxelised at a resolution higher than would otherwise

be necessary, dramatically increasing the total number of voxels and importantly

the time taken to both voxelise and erode the volume.

A more efficient solution can be constructed by extending the greyscale erosion

to provide sub-voxel accuracy. As previously noted, +ScanCAD achieves sub-

voxel accuracy by using greyscale values to simulate the partial volume effect.

A small layer of voxels on the surface of the volume are given greyscale values

which reflect their distance to the original surface. These values are interpolated

linearly by the marching cubes (and volumetric marching cubes) algorithm in

order to place the reconstructed surface with a sub-voxel accuracy. In a similar

fashion it is possible to modify the surface greyscale values in a volume such that

the reconstructed surface is displaced by an amount less than one unit spacing.

To achieve a sub-voxel erosion with an effective kernel size greater than a

single voxel an erosion must be performed using the integer part of the kernel

radius. For example, if an erosion of 2.5 voxels is required then the erosion would

be 2 voxels using a 5 × 5 × 5 voxel matrix1. However, rather than replacing the

voxel value at the centre of the matrix with the minimum value, the minimum

value is scaled linearly by the non-integer part of the kernel radius. This allows

for more efficient erosions of arbitrary depth.

Using the sub-voxel greyscale erosion it is now possible to erode the voxelised

CAD model to define a region of void within a shell of arbitrary thickness. The

resulting volume defines the domain for the internal structure. However, unlike

the scaffold structures in §5.1, the internal structure cannot be generated by

taking the intersection of the void domain and the lattice volume. Doing so would

1The radius excludes a central voxel in the matrix, hence the matrix is 5×5×5 not 4×4×4.
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yield a volume which when iso-surfaced produced a lattice structure bounded by

the non-existent shell as shown in Figures 5.5(a) and 5.5(b).

(a) (b)

Figure 5.5: Internal structure without a shell

A shell could be added to this volume following a series of Boolean operations.

Firstly, the creation of the shell:

S = C − E (5.2)

where S is the shell volume, C the voxelised CAD model and E the eroded

volume. Combining this with the internal structure volume above:

I = S ∪ (E ∩ L) (5.3)

where I is the final volume and L the lattice volume. Figure 5.6(a) shows a slice

from the volume I using the example CAD model.

It is clear from the reconstructed surface in Figure 5.6(b) that the external

geometry of the CAD model is not sufficiently represented at this resolution.

While increasing the resolution at which the CAD model is voxelised would better
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(a) (b)

Figure 5.6: Poor surface reconstruction of a CAD model and internal structure

resolve the CAD model’s features, the voxelisation is inherently a lossy process

and can never exactly represent the CAD model. For this reason an entirely

image-based approach cannot be taken as with the scaffold structures.

While the image-based approach is not sufficient for the CAD’s external ge-

ometry it is suitable for the internal surface, which need not exactly reflect the

external surface. Features on the external surface should be reproduced exactly,

whereas on the internal surface a loss of small features is acceptable. In some

instances this may be beneficial as the voxelisation will effectively smooth sharp

angles and potentially reduce stress concentrations in the shell. The requirement

of a shell ensures that the two surfaces remain disjoint and can therefore be han-

dled independently. By taking advantage of this, the internal surface may be

modelled in image-space and the external surface in CAD-space (i.e. a triangu-

lated surface). The two datasets may then be simply appended to produce the

final model.

As the external surface is required to remain unaltered only the internal sur-

face need be considered at this stage. The internal surface must be composed of
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the inner surface of the shell as well as the internal structure and be constructed

such that it may be appended to the external surface to produce the final model.

From these requirements it is clear that the volume produced by Eq. 5.3 is not

suitable as it explicitly defines the shell, whereas the shell is to be defined implic-

itly as the volume between the internal and external surfaces. A suitable volume

can be constructed using Boolean operations on the same volumes, however. In

a similar fashion to the model in Figures 5.5(a) and 5.5(b) the eroded volume

is used to bound the lattice volume. However, by first taking the inverse of the

eroded volume and combining the result with the lattice volume using a union

the inner surface of the shell is produced.

I∗ = E−1 ∪ L (5.4)

where −1 indicates the inverse of a volume. Figure 5.7(a) shows a slice from the

volume I∗ and Figure 5.7(b) shows the surface reconstructed using the marching

cubes algorithm.

(a) (b)

Figure 5.7: Internal surface volume and reconstructed surface
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The inversion of the eroded volume causes the marching cubes algorithm to

generate triangles with inverted normals as they are generated in the direction of

the gradient. These flipped triangles are coloured pink to indicate the backfaces

are visible – as in Figure 5.7(b). As the reconstructed surface is actually an

internal surfaces in the final model, this effect is desirable to ensure every triangle

is correctly orientated. The surface visible in Figure 5.7(b) is the backside of the

shell’s inner surface, hence the triangle normals are facing inwards to the centre

of the geometry.

Following the generation of the internal surface, the final stage of the process

is to append the external tessellation to produce the final model. As the two

surfaces cannot intersect no complex Boolean operations are required and the

two datasets are simply appended.

Figure 5.8(b) shows the final model. For comparison Figure 5.8(a) shows

model created entirely in image-space.

The flowchart in Figure 5.9 shows the entire process of generating an internal

structure within a CAD model.

An example of a knee implant with integrated lattice structure is given in

Figures 5.10 to 5.13. The implant has been reverse engineered from physical parts

so that a lattice structure may be introduced. The purpose of doing so is to allow

bone ingrowth into the implant to ensure it remains secured. Prototypes have

been produced with the use of a high-resolution 3D printer. They are presented

purely as proof-of-concept.

The implant CAD models were created by Mr. Peter Jerrard.
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(a) Entirely image-based model. Loss of detail is clearly visible
on the external geometry.

(b) CAD-image model. The external geometry is maintained
precisely.

Figure 5.8: Cut-away comparison of the entirely image-based approach with the
mixed approach
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Original CAD
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Invert
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Lattice Volume

Marching cubes
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+
Concatenation

Final Model (cut-away view)

Figure 5.9: The process of generating an internal structure in a CAD model
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(a) Condylar implant CAD model. The inner
(pink) part is used to define the space the lat-
tice structure will occupy.

(b) Base plate. The inner (pink) part is used to define
the space the lattice structure will occupy.

Figure 5.10: Defining the lattice regions in the knee implant model
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Figure 5.11: Arrangement of implant parts. Top to bottom: Condylar implant,
shim, base plate.
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(a) Condylar implant with lattice structure

(b) Base plate with lattice structure

Figure 5.12: Base plate with lattice structure
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(a)

(b)

Figure 5.13: Comparison between original parts (grey) and prototypes (blue)
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5.2.1 Further Processing

The use of an image-based representation for the internal geometry allows existing

image processing filters, such as those available in the ITK framework, to be used

to further process the internal geometry. The regular nature of image volumes

allows for many well-defined operations to be performed, often in parallel, on

the entire domain or a specified region. In comparison equivalent operations on

triangulated surfaces, are often more complex.

To reduce the possibility of stress concentrations bevelling is often used to

smooth sharp edges in CAD models. Similar results may be achieved by applying

a smoothing filter to the eroded volume, consequently de-featuring the internal

surface and bevelling edges. The amount of smoothing applied (i.e. kernel size

or number of iterations) can be used to control the amount of bevelling. For

this reason a kernel based filter appears more suitable as the kernel size can be

measured in real-world units. The results of various sized kernels are shown in

Figure 5.14.

(a) No smoothing (b) 1× 1× 1 px (c) 2× 2× 2 px (d) 4× 4× 4 px

Figure 5.14: The effects of various kernel sizes on corner bevelling

Other common image processing filters, such as morphological closing, may

also be applied to the internal volume. The morphological closing filter (dilate

followed by a close) can be used to fill-in small voids less than or equal to the
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radius of the structuring element. When applied to the internal volume the

closing filter can be used to keep small regions solid. Due to the inversion of the

eroded volume the closing filter will effectively be operating on the void volume

and will hence have an opening effect on the final solid volume. For this reason

a morphological opening filter must be applied.

The example in Figure 5.15 demonstrates the effect of applying this filter as

well as highlighting the smoothing side-effects.

(a) Original (b) Opening filter applied

Figure 5.15: Cavity closing using morphological opening

5.3 Implementation

The algorithm for generating internal structures in CAD models, as presented in

Figure 5.9, has been implemented in the commercial software +ScanCAD. This

particular implementation is based on a ‘wizard’ interface whereby a sequence of

dialogues are presented, each allowing a small number of parameter (i.e. unit cell

size, shell thickness, etc . . . ) to be set. Screen-shots are provided in Appendix C.
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5.4 Summary

A novel, image-based, approach for the generation of internal structures within

CAD based geometries was presented in this chapter. The approach taken relies

on sampling the CAD model so that image processing techniques can be applied

to create a shell (i.e. hollow geometry). This has the advantage of allowing

Boolean operations to be performed in image-space, for the purpose of robustly

introducing an internal structure, for example. By exploiting the disjoint nature

of hollow triangulated surfaces the CAD model’s original external geometry can

be precisely preserved.

By providing a set of robust algorithms for the generation of tailored pe-

riodic domain-conforming lattice structures the work presented in this chapter

represents a strong foundation for any future optimisation work.
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Chapter 6

Analysis & Characterisation

6.1 Computational Modelling and Analysis

6.1.1 Background and Literature Review

Computational modelling is an important tool for examining the behaviour of

micro-architectures, including those acquired from various imaging modalities as

well as computationally generated structures. There are many benefits to this

type of modelling, some of which apply generally to computational modelling and

some of which are specific to the structures of interest in this work.

Non-destructive evaluation, is, as the name suggests, a general term referring

to the analysis of a specimen without causing permanent damage. While this does

not refer exclusively to computational modelling, computational modelling is an

important tool in NDE. Through the use of such modelling physical samples can

be imaged and any number of virtual tests performed. Virtual testing can also

be used to test a specimen to failure multiple times, under different conditions.
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For certain specimens, applying the desired boundary conditions for testing

can be difficult. Computational models have the advantage that virtually any

boundary condition, physically permissible or not, can be easily and exactly ap-

plied.

When performing physical testing one is seldom able to exactly repeat exper-

imental results. Small changes in the experiment’s setup, such as changes in the

position of the sample or in the sample itself, cause small variations in results.

Computational modelling has the advantage that results are not influenced by

changes in the environment and can be exactly repeatable and reproducible.

Clearly, using computationally modelling alone can remove the need for a

lot of specialist testing equipment. Modern commercial multi-physics software is

capable of performing simulations for a number of physics-based problems beyond

simple solid mechanics.

When dealing with structures on the micro scale (of the order of 1 mm)

visualising and/or tracking the displacement of individual ribs can be difficult,

requiring high resolution video equipment. Computational models, on the other

hand, can be visualised using a variety of techniques as well as allowing data to

be clipped to reveal ‘internal’ displacements.

For synthetic or generated micro-architectures computational modelling is

particularly beneficial. The ability to evaluate some property of the structure

computationally reduces the need to produce physical models and allows many

structures to be evaluated iteratively without great cost.

Computational modelling is clearly very suitable for the automation of certain

processes. For example, different types of composites and micro-architectures can

be computationally generated and evaluated iteratively, such as in an optimisation
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process or parametric study.

6.1.1.1 Effective and Apparent Properties

The determination of the effective properties of a multi-phase heterogeneous ma-

terial, or composite, is an important problem in modern engineering. For this pur-

pose a number of different homogenisation processes have been developed which

aim to describe the macroscopic properties of such materials. These methods

range from general theoretical bounds, to more specific semi-analytical models,

to direct numerical methods. Each of which makes specific assumptions about

the morphology, geometry or distribution of microheterogeneities in the material.

It is often more accurate to describe the macroscopic properties obtained from

homogenisation processes as being the apparent properties – i.e. given a set of

constraints and assumptions, these are what the macroscopic properties appear

to be. These may differ from effective properties which is how the sub-volume

behaves as part of a larger volume. These effective properties are usually what

one strives to obtain from homogenisation.

In this work we limit ourselves to linear elastic properties.

Theoretical Bounds In the most general case upper and lower bounds exist for

the macroscopic linear elastic properties of a composite. The most straightforward

of which are those given by Voigt [1910] and Reuss [1929], which provide the upper

and lower bounds respectively, making no assumptions as to the nature of the

structure’s geometry. The Voigt upper bound describes the limit of an effective
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elastic modulus, MV , for a composite of N phases:

MV =
N∑
i=1

fiMi (6.1)

where fi is the volume fraction of the ith phase and Mi elastic modulus of the ith

phase. Here the elastic moduli MV and Mi may be the Young’s modulus, shear

modulus or bulk modulus. Similarly, the Reuss bound describes the lower limit

of an effective elastic modulus:

MR =

(
N∑
i=1

fi
Mi

)−1

(6.2)

These bounds can be given a physical interpretation as shown in Figure 6.1

(Kassem [2009]). Each figure shows a rod, composed of multiple phases (rep-

resented by different colours) stacked either in series or parallel, under tension.

In both cases the respective bound will yield the extract solution for the given

distribution of phases. It can be shown that the Voigt bound corresponds to

the assumption that each phase experiences the same uniform strain (Kassem

[2009]). Similarly, the Reuss bound corresponds to assumption that each phase

experiences the same uniform stress.

(a) Reuss (b) Voigt

Figure 6.1: Physical interpretation of the Reuss and Voigt bounds. Different
colours represent different phases or materials.
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The Voigt-Reuss bounds provide a wide range of permissible values for an

effective elastic modulus. Another set of bounds which give the narrowest range

for an isotropic distribution of phases are the Hashin-Shtrikman bounds (Hashin

& Shtrikman [1963]).

KHS± = K1 +
f2

(K2 −K1)−1 + f1(K1 + 4
3
µ1)−1

µHS± = µ1 +
f2

(µ2 − µ1)−1 + 2f1(K1 + 2µ1)/[5µ1(K1 + 4
3
µ1)]

(6.3)

where K1, K2 are the bulk moduli of each phase, µ1, µ2 the shear moduli of

each phase and f1 and f2 the volume fraction of each phase. For the case where

K1 > K2 the values of KHS± and µHS± will correspond to the upper bounds.

Conversely, for the case where K1 < K2 the bounds correspond to the lower

bounds.

More complex, third order bounds, for random media are described by Beran

[1968] and for two-phase composites by Miller [1969], Milton [1982] and Torquato

[1991].

Semi-Analytical Methods The bounds obtained for the range of effective

elastic properties may have limited uses. Depending on the chosen bounds and

relative moduli of the phases the bounds may cover a considerable range with

lower bounds potentially reaching zero. In practise one usually desires a single

value estimate of effective elastic properties.

More direct approaches have been taken for the estimation of effective elastic
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properties of composites with some assumed geometry. For the case of sphere-

reinforced composites two independent elastic constants can be estimated using

the methods described in Mori & Tanaka [1973] (also Benveniste [1987]), Dvorkin

et al. [1994], via the self-consistent scheme (Hill [1965]) and via the differential

method (McLaughlin [1977]). Such methods have potential practical advantages

over finite element based methods, where high mesh densities are required for

spherical inclusions.

Direct Numerical Methods Finally, a different method for determining ef-

fective properties is through the use of numerical simulations on a sample of the

structure. Typically these simulations are performed using finite element analysis

and directly model the morphology of the structure. For these simulations there

are two important factors which can affect the effective properties; the size of the

sample tested and boundary conditions applied.

To ensure the computed properties reflect the actual properties of the com-

posite a sufficiently large sample of the structure is required. This sample is

referred to as a representative volume element, or RVE. A generally accepted

definition for the RVE is a volume V heterogeneous material that is sufficiently

large to be statistically representative of the composite (Kanit et al. [2003]). Typ-

ically this requires that the volume contains a statistically representative sample

of all micro-heterogeneities. While there currently does not exist a single strict

definition for an RVE, a number are given in the literature.

Drugan & Willis [1996] give the following definition:

“It is the smallest material volume element of the composite for

which the usual spatially constant (overall modulus) macroscopic con-
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stitutive representation is a sufficiently accurate model to represent

mean constitutive response.”

Hill [1963] states:

“...a sample that (a) is structurally entirely typical of the whole

mixture on average, and (b) contains a sufficient number of inclusions

for the apparent overall moduli to be effectively independent of the

surface values of traction and displacement, so long as these values

are ‘macroscopically uniform’.”

Evesque [2000] includes an important reference to macroscopic heterogeneity in

his definition. Here the term representative elementary volume (REV) is used:

“The size of this REV should be large enough with respect to

the individual grain size in order to define overall quantities such as

stresses and strains, but it should be small enough in order not to

hide macroscopic heterogeneity.”

Further definitions may be found in Gitman et al. [2007].

As shown in Kanit et al. [2003] the size of the RVE is dependent upon the

investigated morphology and physical property (i.e. elasticity, thermal, etc . . . ).

In some instances the size of the RVE may result in a model greater than may be

handled with the available computational resources. In these cases it is possible

to compute effective properties by averaging over multiple realisations of smaller

samples, providing no bias is introduced due to edge effects.

Ostoja-Starzewski [2002] notes that the RVE is ‘well-defined’ in only two cases:

1. A unit cell from a periodic microstructure
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2. Statistically representative volume containing a very large (mathematically

infinite) set of micro-heterogeneities

The required size of the RVE can also be influenced by the boundary condi-

tions applied.

There are three main types of boundary conditions: kinematic uniform bound-

ary conditions, static uniform boundary conditions and periodic boundary condi-

tions. Here we consider a volume V , having a boundary ∂V , consisting of a

heterogeneous linear elastic material.

Kinematic Uniform Boundary Conditions (KUBC) The displacement

of the entire boundary ∂V is defined as homogeneous, allowing no ‘fluctuations’

(Fritzen & Böhlke [2010]). For each point x ∈ ∂V a displacement is imposed

using a symmetric tensor E˜ :

u(x) = E˜ · x, ∀x ∈ ∂V, u(x)i = E˜ ijxj (6.4)

where u(x) is the displacement vector for the point x and the value of E˜ does not

depend on x. This implies that (Kanit et al. [2003]):

〈ε〉 ≡ 1

V

∫
V

εdV = E˜ (6.5)

The macroscopic stress tensor may then be calculated using the spatial average

of the local stresses:

Σ˜ ≡ 〈σ〉 =
1

V

∫
V

σdV (6.6)
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Static Uniform Boundary Conditions (SUBC) A traction vector t(x)

is defined at the boundary:

t(x) = σ · n = Σ˜ · n, ∀x ∈ ∂V, t(x)i = Σ˜ ijnj (6.7)

where n is a vector normal to ∂V at a point x. This implies:

〈σ〉 ≡ 1

V

∫
V

σdV = Σ˜ (6.8)

The macroscopic strain tensor is then calculated using the spatial average:

E˜ ≡ 〈ε〉 =
1

V

∫
V

εdV (6.9)

Mixed Uniform Boundary Conditions (MIX) A combination of KUBC

and SUBC may be used to more closely represent experimental setups (Jiang et al.

[2001]). This is the sometimes referred to as a displacement-traction boundary

condition.

(u(x)− E˜ · x) · (t(x)− Σ˜ · n)) = 0, ∀x ∈ ∂V (6.10)

Two other possible mixed boundary conditions are displacement-periodic and

traction-periodic. Mixed boundary conditions have the disadvantage that they

may only be realised in materials having at least orthotropic elastic symmetry

properties (Hazanov & Amieur [1995]).

Periodic Boundary Conditions (PERIODIC) For structures assumed

to be infinitely periodic appropriate boundary conditions can be applied such that

the RVE can be reduced to a single unit cell. The boundary conditions must be
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applied on parallel pairs of surfaces, denoted k+ and k− (Pahr & Zysset [2008]).

k+u(x)− k−u(x) = E˜∆kx, ∀x ∈ k∂V (6.11)

where ∆kx is a constant distance vector between the two surfaces. To use this

condition in a displacement based FE solver it is convenient to move all terms

to the left hand side, as this form is often required by commercial finite element

packages:

k+u(x)− k−u(x)− E˜∆kx = 0 (6.12)

However, there are some ‘special cases’ which are more constrained than the

majority of nodes on the cuboid’s surface. These are the nodes designated as

vertex and edges nodes, both of which are subject to different constraints, the

full details of which may be found in Li & Wongsto [2004].

Each of these boundary conditions limits the macroscopic permitted modes of

deformation of the volume. Figure 6.2 shows some, exaggerated, examples of the

permitted modes of deformation for each set of boundary conditions.

Computing Apparent Properties Given an appropriately sized RVE and

chosen boundary conditions, six required simulations can be performed (three

compressive, three shear) for the purpose of determining the apparent stiffness

matrix, Capp, and/or compliance matrix, Sapp. A number of different methods

exist for computing these values from the results of the simulations, the most

straightforward of which involves computing a set of effective macroscopic stresses

and strains (i.e. Σ˜ and E˜ for each load case). These averages can be computed
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(a) Original volume (b) Uniform boundary condi-
tions

(c) Periodic boundary condi-
tions

(d) Weakly imposed boundary
conditions

Figure 6.2: Permitted modes of deformation for various boundary conditions

(Pahr & Zysset [2008]) as follows:

Σ˜ =
1

V

∑
nIP

σijVIP , E˜ =
1

V

∑
nIP

εijVIP (6.13)

where nIP is the number of integration points and VIP is the integration point

volume. Using the sets of effective stresses and strains (where one has been

imposed on the RVE and the other computed) a system of linear equations can

be constructed to compute either Capp or Sapp, depending on the chosen boundary
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conditions.

Σ˜F =


Σ˜1

...

Σ˜6

 , E˜F =


E˜ 1

...

E˜ 6

 , M =


m1,1 · · · m1,36

...
. . .

...

m36,1 · · · m36,36

 (6.14)

where the matrix M is the coefficient matrix and Σ˜F and E˜F represent the

concatenation of the averaged stress and strain vectors respectively. For the case

of KUBC we then have:

xC = M−1 · E˜F (6.15)

where M is dependent on Σ˜F and xC is the vector of the 36 values from Capp.

Similarly, for the case of SUBC we have:

xS = M−1 · Σ˜F (6.16)

where M is dependent on E˜F and xS is the vector of the 36 values from Sapp.

From these equations it becomes apparent that KUBC can be used to di-

rectly compute the apparent stiffness matrix while SUBC yields the apparent

compliance matrix. While this method is straightforward, it soon becomes com-

putationally expensive for a large number of elements, as is often required for an

RVE. More efficient alternatives exist such as the strain energy approach (Ostoja-

Starzewski [2006]) and the master node concept (Pahr & Rammerstorfer [2004],

Pahr & Rammerstorfer [2006]).

While it is true that, in the most general case, C−1 = S, it is noted in Pahr

& Zysset [2008] that it may not be the case that (Capp
KUBC)−1 = Sapp

SUBC. However,
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for a sufficiently large RVE the apparent moduli do not depend on the type of

boundary condition applied and instead converges to the effective moduli of the

material (Sab [1992]). This leads to the following condition:

Capp
KUBC = Sapp−1

SUBC = Ceff = Seff−1, V →∞ (6.17)

For volumes which are not large enough to reach this criteria the apparent

moduli obtained from the two boundary conditions has been shown to bound the

effective moduli (Huet [1990]):

Sapp−1
SUBC ≤ Ceff ≤ Capp

KUBC (6.18)

Kanit et al. [2003] notes that PERIODIC solutions also lie within this range.

However, no relation between Ceff and Capp
PERIODIC is given.

6.1.2 Select Cell Characteristics

Using the methods described in the previous section the Schoen Gyroid has been

homogenised at a number of different volume fractions. In each case a sample of

8× 8× 8 unit cells was considered. It is acknowledged that this sample size may

not be sufficiently large to ensure complete convergence to effective properties.

However, the purpose of these simulations was to compare apparent properties of

the structure under similar conditions. This also includes the apparent properties

determined using periodic boundary conditions as they are often regarded as the

exact solution for periodic structures.

To ensure that the results achieved sufficient mesh independence a convergnce
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study was first performed. However, due to the number of elements present in an

8 × 8 × 8 unit cell structure, the KUBC simulations were limited to the highest

resolution permitted with 48 GB of memory. Thus, a convergnce study was

performed only for the PERIODIC solutions, where only a single unit cell is

required. A single apparent property, the Young’s modulus along the x-axis was

chosen for comparison at each resolution. Results are presented in Figure 6.3.

The solid phase was given the isotropic material properties E = 1 and ν = 0.3.

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0  20  40  60  80  100  120  140  160  180

E
x
x

Resolution (px)

Unit cell

Figure 6.3: Convergence of Exx for the Schoen Gyroid with periodic boundary
conditions at 60% volume fraction

From these results we see the rate of convergence is very rapid up to 40 px and

much slower for the higher resolution volumes, as may be expected. We therefore

choose a resolution of 40 px for the PERIODIC simulations.

The apparent properties of the Schoen Gyroid, as computed using KUBC and

PERIODIC, are given in Figure 6.4.
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Figure 6.4: Apparent Young’s modulus of the Schoen Gyroid at various volume
fractions. Computed from a sample equivalent to 8 × 8 × 8 unit cells. As one
phase of the structure is void both the Reuss and Hashin-Shtrikman lower (HS-)
bounds are equal to 0.

As expected we observe that the PERIODIC predictions are less stiff than

those from KUBC, although the predictions are much closer than those in Kanit

et al. [2003]. This suggests that the sample size used is approaching an RVE. It

was also observed that in both cases the predicted apparent stiffness exceeded

the Hashin-Shtrikman upper bound for volume fractions greater than 60%. This

is likely due to morphological changes in the unit cells as the volume fraction

changes, resulting in structures which may no longer be considered an isotropic

distribution of material.
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6.2 Mechanical Testing

The advantages and uses of computational modelling have been presented in the

previous section. These types of models are often based on a number of assump-

tions, such as the distribution of microheterogeneities or boundary conditions. It

is therefore important to perform physical testing for the purpose of validating

any computational models.

In this section a number of lattice structures have been fabricated and me-

chanically tested to determine their effective bulk moduli. A number of internal

structures with simple geometries were also tested. The results are compared to

the computational models presented previously.

6.2.1 Fabrication

The fabrication of computationally generated micro-architectures is important

not only so that we may validate our computational modelling but also so that

we may use the structures in real-world applications. However, the potential

complexity of the structures makes them difficult, if not impossible, to manufac-

ture using traditional processes. To fabricate these structures we rely on additive

manufacturing (AM).

As is suggested by their name, additive manufacturing processes are able to

create solid parts by continuously adding material one layer at a time. This is in

contrast to the more traditional subtractive manufacturing processes, like CNC

(computer numerical control) milling, where material is continuously removed

from a solid block until the desired geometry remains.

By constructing geometries layer-by-layer AM processes are able to overcome
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many of the limitations of traditional manufacturing processes and fabricate com-

plex geometries. However, many AM processes introduce their own constraints,

particularly with respect to overhanging surfaces and supporting structures. For

example, metal powders are unable to support large amounts of overhanging sur-

faces. To overcome this additional supporting structures are introduced. While

this does allow more complex geometries to be built, the supporting structures

themselves consume additional material and require removal once the build has

completed. The amount of overhang permitted is dependent on many factors

including the material being processed, the overhang angle and the object’s ge-

ometry (Thomas [2009]). In contrast, when processing a polymer like nylon in

an SLS (selective laser sintering) system structures with any amount of overhang

can be fabricated. The unsintered powder on the bed is able to support the solid

geometry as it is formed.

In order to fabricate a part using an AM process the desired geometry must

be specified in a format which can be translated into a series of instructions

required to perform the build. The vast majority of AM system use the STL file

format for this purpose. STL files are a basic file format, allowing the definition

of triangulated surfaces with little constraint. For example, surfaces need not be

manifold. These triangulated surfaces are then contoured at regular intervals, a

process known as slicing, so that each layer of the build may be defined.

6.2.1.1 Facet Overhang

Before attempting to fabricate a structure from metal (via SLM, Selective Laser

Melting) it is often necessary to first ensure that there are no overhanging surfaces,

or to add supporting structures to such facets. In this instance the parts are to be
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fabricated from stainless steel (316L) using an MCP Realizer; for this combination

facets are considered to be overhanging if the angle between the facets and build-

plane is below 40 degrees.

For the case of the internal structures it is highly desirable that the lattice

structure be manufacturable without the need to introduce supporting structures,

as they will be impossible to remove. Thus we now examine a select number of

unit cells in order to try and evaluate their suitability for the chosen process. To

do so we consider the total surface area considered to be overhanging.

The overhang of a facet can be calculated from the angle between the facet’s

normal and the plane defining the base of the build:

θf = 180−
(

p · nf ×
180

π

)
(6.19)

where p is the vector defining the build plane, nf the facet normal and θf the

overhang angle in degrees. The facet normal is defined by the order of the facet’s

vertices, according to the right hand rule. Using Eq 6.19 we may mark facets on

a model as overhanging or not. Figure 6.5 shows an example of this.

Figure 6.5: Overhanging facets (red) for the Schoen Gyroid at 15% volume frac-
tion. Viewed in the direction of the build (i.e. towards z =∞).
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Using this method it is possible to perform an exhaustive search to determine

the orientation at which the total overhang surface area is minimised. Doing

so will likely yield the most suitable orientation for fabrication of the structure.

The search is performed by rotating the plane p rather than each vertex at each

orientation. The surfaces used are non-manifold to ensure the closing ‘caps’ do

not influence the results.

Min Max
Unit Cell Rotation Overhang Rotation Overhang

Gyroid (356.4, 180) 1630 (0, 313.2) 3167
Diamond (349.2, 187.2) 2981 (225, 180) 3643
Neovius’ (207, 10.8) 3582 (181.8, 136.8) 4256
W (300.6, 144) 1698 (226.8, 100.8) 2171
Pinched Primitive (289.8, 316.8) 1540 (248.4, 194.4) 2371

Table 6.1: Orientations for minimising and maximising total overhang area for
various unit cells. Rotations are given as a roll-pitch pair, in degrees. Overhang
is the total overhang area measured in units2.

From the results presented in Table 6.1 it is clear that none of the selected

unit cells have an orientation at which none of their facets are considered over-

hanging. This, however, does not preclude them from being fabricated. While

overhanging surfaces are generally avoided small amounts of overhang are accept-

able. Furthermore, facet overhang itself does not completely dictate whether or

not a part will build successfully without additional support or not. To be certain

the structures are suitable for this process we must attempt to fabricate samples.

It is highly desirable that the structures be manufacturable at all orientations,

without support. Parts are often rotated for optimal positioning in the build, to

minimise the amount of supporting structures required or to improve the surface

finish (Xu et al. [1999]). Thus, it is useful if the internal structure in a part does
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not in anyway limit or hinder the build in this respect. To test this we attempt

to fabricate a number of unit cells at the orientation at which the total overhang

area is maximised. The purpose of doing so is that if they build successfully at

this orientation, they will likely build at all other orientations. The results are

presented in Figure 6.6. The samples were fabricated in stainless steel (316L)

by Dr. Chunze Yan using an MTT SLM Realiser with the following process

parameters:

Parameter Value

Laser power 95 W
Scan time per point 250 µs
Point distance 40 µm
Scan spacing 75 µm
Layer thickness 75 µm

Table 6.2: SLM process parameters

From these results it is clear that each of the chosen unit cells has successfully

built using this process. While not definitive evidence that the structures will

build at all orientations (for the chosen cell size), the results are very encouraging.

Further samples of each unit cell at various orientations, volume fractions and

cell sizes would need to be fabricated to ensure more definitive results. The vast

number of possible combinations precludes a more exhaustive set of experiments

from being performed.

6.2.1.2 Use as Supporting Structures

As the lattice structures have been shown to be manufacturable on their own we

must now verify that they can support a surface. This is important as when the

structures are used as internal structures it is highly desirable to avoid supporting
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(a) Gyroid (b) Diamond

(c) Neovius’ (d) W

Figure 6.6: Fabricated lattice structures. Each sample measures 25×15×25 mm
(W ×H ×D), with 5 mm unit cells at 15% volume fraction. Each unit cell has
been orientated to maximise the total overhang surface area.
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structures not only on the lattice but also the inner surface of the shell. In this

situation the lattice structure would itself be acting as a supporting structure for

the shell.

A number of small samples have been fabricated to verify the supporting

capabilities of the lattice structures. A 3 mm thick plate is added to the top of

each structure to act as the shell of a component. As a small amount of overhang,

0.8 to 1 mm, is permitted unit cells of different sizes have also been tested. These

samples are shown in Figure 6.7. The samples were designed and fabricated in

stainless steel (316L) by Ahmed Hussein using an MTT SLM Realiser with the

process parameters given in Table 6.2.

The chosen lattice structures, at the specified cell sizes and volume fractions,

are clearly capable of acting as basic supporting structures. This is particu-

larly advantageous as it means the internal structures can become truly multi-

functional. The structures can therefore serve different purposes, such as both to

increase a component’s stiffness and to act as internal support to aid in fabrica-

tion.

As these lattice structures are able to function as internal supporting struc-

tures another obvious application worth consideration is their use as external

supporting structures. The generation of external supporting structures is a non-

trivial task due to the many different cases encountered, and is not an objective

of this thesis. However, simple external support structures are essentially domain

conforming lattice structures. Thus, the methods developed in this thesis may

be applied once an suitable domain is established. An example is presented in

Figure 6.8. For this example the domain for the lattice structure has been con-

structed by ‘casting down’ from overhanging surfaces to either another point on
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(a) Samples of the Gyroid, W, Diamond and Neovius’ structures with 2 mm cell
sizes supporting a thin plate. Unit cell volume fraction is 15%.

(b) Left to right: Diamond, Magics support structure, W, Gyroid, Neovius’. Unit
cell size is 3 mm, with a volume fraction of 15%. Each sample is 70 mm long, with
two 30 mm cantilevers.

Figure 6.7: Fabricated supporting structures.
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the surface or the base of the build (i.e. z = 0).

6.2.2 Mechanical Testing – Internal Structures

The main purpose of introducing an internal lattice structure within a geometry

is to try improve the general stiffness of the part. Clearly for a specific set of

loading conditions there will exist a more appropriate internal structure where

material is distributed along the direction of loading paths (as would result from

topology optimisation), compared to the generally isotropic distribution seen in

the lattice structures of interest. There may, however, be additional applications

for internal lattice structures, as previously noted.

To test the effect of introducing an internal lattice structure three geometries

are considered; a sphere, a box and a cylinder. For each geometry an internal

structure version and equal volume hollow part is generated. Figure 6.9 shows

these parts. Dimensions of the parts are given in Table 6.3.

Component Dimensions (mm) Shell thickness (mm)

Box 75× 75× 37.5 3.1
Sphere r = 25 2.9
Cylinder r = 30, l = 65 4.6

Table 6.3: Dimensions of the hollow components

Each internal structure version of the components has a 2 mm shell. The

lattice structure chosen is the Pinched Primitive at 15% volume fraction with a

cell size of 1 cm. As is clear in Figure 6.9, the cylinder is open-ended so that when

loaded along its length the end faces would not become the supporting element

in the structure.

The six components where fabricated using SLS and made from nylon-12.
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(a) CAD model with solid support structure.

(b) CAD model with lattice supporting structure.

Figure 6.8: CAD model with supporting structures. Support is added to any
facet with an overhang of less than 40 degrees.
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(a) Hollow box (b) Box with internal structure

(c) Hollow cylinder (d) Cylinder with internal
structure

(e) Hollow sphere (f) Sphere with internal
structure

Figure 6.9: Clipped view of the chosen geometries, both hollow and with an
internal structure, for testing

127



Each component was subjected to uniaxial compression using a Lloyd Instruments

20kN EZ20. Images of the experimental setup may be found in Appendix D.

6.2.2.1 Results

To ensure the displacement measured for each component was not spurious each

loading was repeated ten times and an average was taken. The results of the

physical testing are given in Table 6.4. A comparison of these results to those

obtained via finite element analysis is given in Figure 6.10. The mechanical

testing was performed by Dr. Chunze Yan.

Component Applied force (N) Displacement (mm)

Box (hollow) 20 0.148
Box (internal structure) 20 0.073
Sphere (hollow) 40 0.101
Sphere (internal structure) 40 0.121
Cylinder (hollow) 40 0.188
Cylinder (internal structure) 41 0.130

Table 6.4: Results from mechanical testing

6.2.3 Discussion

From the results presented in the previous section is it clear that, in the majority

of cases, the components with an internal structure were stiffer than their hollow

equivalent. However, it is also clear that there is large discrepancy between

the finite element analysis and physical models. This discrepancy includes the

absolute displacements as well as the relative displacements (i.e. the ratio of

the displacement of the hollow component to the internal structure version). In

the worst case it is observed that, during the physical testing, the hollow sphere
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Figure 6.10: Maximum displacement of loaded test parts. A comparison of the
finite element and physical model results.

proved to be consistently stiffer than the equivalent internal structure version.

This is in direct contrast to the results predicted in the FE simulations. The

discrepancies observed in the results may be due to a number of possible sources

such as variability in the fabrication process or incorrect assumptions made in

the FE models. It is well known that there exists a degree of variability in ALM

processes which may cause parts to be built with varying material properties

or geometry, depending on many factors such as build position. While such

variations may affect the outcome of the experiments it is not expected that their

influence would be sufficient to cause the observed discrepancies.

In order to validate the finite element modelling it is possible to use an analyt-
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ical model to determine the maximum displacement of the component. For this,

the model developed in Young [2003], originally for modelling blunt head impacts,

is chosen. The model combines Hertzian contact stiffness and shell stiffness to

determine an effective stiffness for a thick shell.

Reissner [1947] gives the stiffness for a shell, ksh, as follows:

ksh = 2.3
Eshh

2

Rsh(1− ν2
sh)1/2

(6.20)

where Esh and νsh are the Young’s modulus and Poisson’s Ratio of the shell and

Rsh and h are its radius and thickness.

The Hertzian contact stiffness (Hertz [1882]), kH , is calculated as follows:

kH =
4

3
R∗1/2E∗ (6.21)

where R∗ is the radius of the shell and E∗ its Young’s modulus. In this instance

R∗ = Rsh and E∗ = Esh.

From Young [2003] we can now determine the effective stiffness, keffective:

keffective =

(
1

ksh
+

1

k
2/3
H F 1/3

)−1

(6.22)

where F is the applied force. Substituting the appropriate values into Eq 6.22 we

find keffective = 8.799× 105 N/m. Using Hooke’s law the maximum displacement

of shell can be calculated:

∆x =
F

keffective

(6.23)

where F = 40 N. This gives ∆x = 0.045459 mm. In comparison the FE sim-
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ulations predicted ∆xFEA = 0.045731 mm. The good agreement between the

analytical and FE solutions suggests that some of the assumptions made in the

FE modelling, such as boundary conditions, are suitable and that the simulations

are valid at least for the linear range.

One possible explanation is that for these very small displacements (where ∆x

is of the same order of magnitude as the nylon particle size) we are only seeing

the deformation of the surface layer of particles. As such, it may no longer be

appropriate to consider the material as homogeneous, as in the FE simulations.

It is, however, more likely that the discrepancies observed are due to plastic

deformation. In the case of the two curved surfaces (the cylinder and sphere) the

contact area between the load cell and object will have initially been small and

grown as the load was applied. With a small load area there is the possibility

that the resulting stresses were greater than the yield limit of the material. This

theory is supported by the good agreement between the analytical solution for

the hollow sphere and FE results, both of which modelled the nylon as purely

elastic.

6.3 Conclusions

In this chapter we have reviewed the techniques currently used to determine the

apparent properties of sub-volumes or, as in this instance, large samples or lat-

tice structures. We have observed the influence of different boundary conditions

on the apparent properties of the Schoen Gyroid and obtained results in agree-

ment with observations found in literature. That is, that the kinematic uniform

boundary conditions not only required large samples to overcome edge effects, but
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also over-predicted the stiffness of the structures in comparison to the periodic

boundary conditions. Clearly, for the structures studied in this thesis periodic

boundary conditions are by far the most appropriate method of determining ap-

parent properties.

The suitability of additive manufacturing processes for fabricating these lattice

structures in a variety of different materials has also been demonstrated. We have

shown how these periodic lattice structures are manufacturable at any orientation,

allowing them to not only be used as an internal supporting structure (for hollow

parts), but potentially also as external supporting structures. The work presented

in this thesis for this purpose represents only the initial findings and more research

into this application is certainly required. In particular, how variations in the

external supporting structure’s density can ensure certain areas are stiffer than

others to better support a given part while ensuring the structure is removable.

A number of simple geometries with internal structures were fabricated and

mechanically tested. The results were compared to finite element simulations

of the same geometries and found to be in poor agreement. By comparing the

finite element predictions of one geometry, the hollow sphere, we were able to

validate the consistency of the models under the assumptions made. However,

further work is required to ensure the finite element predictions better match

those measured experimentally.
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Chapter 7

Homogenisation

7.1 Concept Overview

When dealing with micro-architectures one issue likely to eventually arise is the

analysis of the mechanical properties of macroscopically inhomogeneous multi-

scale structures. Structures of this class may be naturally occurring, such as

bone, or computationally generated using methods such as those described in

Chapter 3. The generated micro-architectures are an obvious target for numerical

optimisation due to their flexibility. The optimisation of these structures will

inevitably introduce macroscopic inhomogeneities at some stage in the process.

The bulk response of these structures can be determined by performing ‘full’

finite element analysis, that is with the entire geometry discretised at a resolution

high enough to ensure mesh independence. However, these full models may easily

exceed hundreds of millions, potentially billions, of degrees of freedom. A problem

only exacerbated by the fact that the number of degrees of freedom grows with

the cube of the resolution. Solving problems of this magnitude is possible with
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the use of super computing facilities, although they will likely require hundreds

of hours of CPU time. For a very limited number of simulations this may be an

acceptable solution, with the added advantage of also capturing localised effects.

However, in an iterative optimisation process where the ‘performance’ of the

structure may be evaluated thousands of times the use of full FEA simulations

becomes highly impractical. When the performance of a structure is evaluated

in an optimisation process typically only some aspect of the bulk response, such

as deflection, is considered. For such properties full FEA simulations model the

problem may be excessive. Thus, there is a need for a method to approximate

the models in order to reduce the time required to evaluate the structure.

For many applications where the micro-architecture is macroscopically homo-

geneous there will exist a representative volume element (RVE) which may be

tested using appropriate boundary conditions to determine the effective prop-

erties, as demonstrated in Chapter 6. These effective properties may then be

assigned to the elements in an appropriately coarse discretisation of the domain.

For example, when modelling the deformation of polyurethane seating it would

be highly impractical, if not impossible, to attempt to include all local defor-

mations. Instead an approximate model consisting of a few hundred thousand

elements can be used.

This chapter presents a novel method for the generation of such a model.

The approach taken is based on creating a coarse tetrahedral discretisation of the

domain using traditional volume meshing techniques and assigning appropriate

material properties based on the homogenisation of the tetrahedrons’ contents.

A similar approach is taken in medical imaging with some natural struc-

tures, such as bone, where the Young’s modulus is expressed as a function of
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the Hounsfield value (a measure of radiodensity) from the image data. The rela-

tion between the two values is commonly determined through mechanical testing.

However, this approach is limited to isotropic material properties and even for

the well-studied femur there are considerable variations in the relation in the

literature (e.g. Heymans et al. [1977] and Rho et al. [1995]). This method also

requires some prior knowledge of the behaviour of the structure.

The approach taken in this work is based on treating sub-volumes of the

structure as actual elements and, through a series of tests, inferring appropriate

effective material properties.

7.2 2D

To demonstrate the proposed homogenisation technique we first concentrate on

developing it for 2D problems. While there may not be demand for producing 2D

approximate models, as very large 2D linear problems can be solved with modest

hardware requirements, the simplicity of 2D problems provides a good starting

point for explaining the proposed technique. There are, however, other possible

uses for this technique which may be useful in 2D, as will be shown later in this

chapter.

7.2.1 Constitutive Matrix Recovery from a 3 Noded Tri-

angle Element

To highlight the basic principle of the proposed homogenisation method this

section demonstrates how the material properties of a simple 3-node element can

be recovered by way of virtual testing. This in itself has little to no direct practical
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use, but the principle is fundamental to the proposed homogenisation method.

The Constant Strain Triangle (CST) element for plane stress, as shown in

Figure 7.1, is chosen due to its simplicity.

Figure 7.1: A 3-node constant strain triangle element. Nodes are numbered anti-
clockwise

We know that the material matrix and element geometry determine the be-

haviour of the element. This is clear from how the element’s stiffness matrix is

formed:

K = tABTDB (7.1)

whereA is the area of the triangle, D the constitutive (or stress/strain) matrix and

t the thickness of the element (assumed to be equal to 1 hereon in). The B matrix

is constructed from the element’s shape functions, a set of linear displacement

functions.

Area of a triangle Twice the area of the triangle can be computed using the

following determinant:

2A =

∣∣∣∣∣∣∣∣∣∣
1 xi yi

1 xj yj

1 xm ym

∣∣∣∣∣∣∣∣∣∣
(7.2)
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Constitutive matrix The constitutive matrix describes the relationship be-

tween stress and strain in the element:

σ = D · ε (7.3)

For the case of plane stress, an isotropic material in 2D is defined as:

D =
E

1− ν2


1 ν 0

ν 1 0

0 0
1− ν

2

 (7.4)

where E is the Young’s modulus and ν the Poisson’s ratio. Due to symmetry in

the matrix there are only six independent components and hence six unknown

values to find for the case of general anisotropy.

B Matrix The matrix B is constructed as follows:

B =
1

2A


βi 0 βj 0 βm 0

0 γi 0 γj 0 γm

γi βi γj βj γm βm

 (7.5)

where

βi = yj − ym, βj = ym − yi, βm = yi − yj

γi = xm − xj, γj = xi − xm, γm = xj − xi
(7.6)

In this problem we have a triangle element of known geometry consisting of

an unknown (assumed) homogeneous material. As previously stated, the aim

of this exercise is to demonstrate that the material properties of the element
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can be recovered using a series of virtual tests. The only tests which can be

performed using the finite element method in this instance involve either applying

displacements or forces to nodes.

We know that applying a displacement to one of the element’s nodes will

result in a force, as described by Hooke’s Law:

f = K · u (7.7)

where u is the displacement vector. As this is more straightforward than applying

forces to nodes (K−1 need not be computed) the virtual tests will described in

terms of nodal displacement. With a known displacement vector the only values

which remain unknown are those in the constitutive matrix D, as expected. Thus,

it is possible to express the nodal forces in terms of D. For this we use the notation

in Eq 7.8 to indicate the forces f are a function of the constitutive matrix D and

the displacement vector u. While the forces are clearly also a function of B and A

(i.e. the element’s geometry), we omit these expressions in favour of compactness

as they remain invariant throughout this section.

fn(D,un) (7.8)

Here subscript n indicates the test number. Using the symbolic computing fea-

tures in the commercial CAS (computer algebra system) package Maple (Map

[2011]) it is possible to determine the full expression for the term in Eq 7.8. How-

ever, even with this simple 2D element the full expression is far too long to be

given here.
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We know that the value of fn must be equal to the force vector Fn measured

from the virtual tests. Thus we have:

fn(D,un) = Fn(un) (7.9)

where Fn(un) is the vector of measured forces for the displacements un. The

expression in Eq 7.9 will provide a system of linear equations with a set of un-

knowns. However, by evaluating the expression in Eq 7.8 symbolically with a

simple displacement vector it becomes clear that the forces are not a function of

all the values in the constitutive matrix D. The table below shows a selection of

displacement vectors and the corresponding constitutive components which effect

the resulting forces.

Test Number Displacement Vector Constitutive Components

1
[

1 0 0 0 0 0
]T

D11,D21,D31,D32,D33

2
[

0 1 0 0 0 0
]T

D21,D22,D31,D32,D33

3
[

0 0 1 0 0 0
]T

D11,D21,D31,D32,D33

Table 7.1: Single DOF displacements and the involved constitutive components.
Displacement vector are ordered as follows: [xi xj xm . . . zm]T .

From this table it is clear that a single virtual test is insufficient to recover

the full set of constitutive components. It may therefore be tempting to assume

that the addition of test number 2 is sufficient as all constitutive components

would then be involved. However, it can be shown that resulting system of linear

equations contains linearly dependant equations and therefore remains an under-

determined system.
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7.2.1.1 Linear Dependence in Tests

The Rouché-Capelli theorem states that a system of linear equations with n

variables has a unique solution if the rank of the coefficient matrix is equal to n.

The rank of the matrix is equal to the number of independent equations in the

system.

By constructing a matrix of the coefficients of the constitutive components

we can test for linear dependence by computing the rank of the matrix. If the

rank of the matrix is less than the number of variables then the system is likely

under-determined. As the full expressions for these terms are far too long to be

given here the example below is based on a scalene triangle.

D11 D12 D13 D22 D23 D33

f1(D,u1)1 0.20 0 0.60 0 0 0.45
f1(D,u1)2 0 0.30 0.20 0 0.45 0.30
f1(D,u1)3 -0.40 0 -0.70 0 0 -0.15
f1(D,u1)4 0 -0.10 -0.40 0 -0.15 -0.60
f1(D,u1)5 0.20 0 0.10 0 0 -0.30
f1(D,u1)6 0 -0.20 0.20 0 -0.30 0.30
f2(D,u2)1 0 0.30 0.20 0 0.45 0.30
f2(D,u2)2 0 0 0 0.45 0.60 0.20
f2(D,u2)3 0 -0.60 -0.40 0 -0.15 -0.10
f2(D,u2)4 0 0 0 -0.15 -0.70 -0.40
f2(D,u2)5 0 0.30 0.20 0 -0.30 -0.20
f2(D,u2)6 0 0 0 -0.30 0.10 0.20

Table 7.2: Coefficient matrix

The table above show the values from the coefficient matrix for the first two

tests in Table 7.1. Each value in the matrix is the coefficient of the constitutive

component at the top of the column for the force component given at the begin-

ning of the row. For example, if the full expression for the third component of

the force vector, given the displacement vector u1, (i.e f1(D,u1)3) were given the
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coefficient of D1,3 would be −0.70.

By computing the rank of this matrix it becomes apparent that there are

only 5 linearly independent equations in the system. Since there are 6 unknowns,

the system is under-determined and hence has no exact solution. In order to

find an exact solution additional, linearly independent, equations must be added

to the system. The only way to introduce more equations in this instance is to

perform an additional test – Test 3 in Table 7.1. With the addition of this test the

coefficient matrix becomes 18× 6 with a rank of 6. Thus there exists a solution

for the system.

It may at this stage be tempting to displace additional degrees of freedom in

one or more tests in order to try and reduce the total number of tests required.

However, it can be shown that more complex displacement vectors do not intro-

duce any additional independent equations. For this reason we can determine

that three virtual tests are required to recover the full constitutive matrix from

a 3-node triangle element.

To find the actual values of the constitutive matrix the following system must

be solved:

M · d = F (7.10)

where M is the coefficient matrix, d the vector of unknowns (i.e. D1,1, . . . ,D3,3)

and F the vector of measured forces. As the system is overdetermined (i.e. con-

tains more equations than unknowns) the coefficient matrix is non-square and

hence the value of d cannot be computed by d = M−1 · F. To solve this system

it is possible to use the method of least squares.
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7.2.1.2 Least Squares Method

For an overdetermined system of linear equations Ax = b the least squares

method can be used to find an approximate solution which satisfies:

min
x
‖Ax− b‖ (7.11)

That is, the set of values which minimise the error in the system r = b − Ax.

Conveniently this solution can be expressed as (Anton & Rorres [2005]):

x = (ATA)−1ATb (7.12)

The matrix (ATA)−1AT is known as the pseudo inverse of A. Using this equation

it is possible to find a solution for the system in Eq 7.10:

d = (MTM)−1MTF (7.13)

7.2.2 Worked Example

This section presents a brief worked example demonstrating how the constitutive

matrix for a triangle element can be recovered using multiple virtual tests. The

element shown in Figure 7.2 is used in this example. The element was given

isotropic material properties with E = 1 and ν = 0.25 – the values which are

recovered.
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Figure 7.2: Example 3-node triangle element

7.2.2.1 Forward Problem

The forward problem involves computing the nodal forces for each test case. This

is achieved by constructing the element’s stiffness matrix and using Hooke’s Law.

Twice the area of the triangle is computed using Eq 7.2:

2A =

∣∣∣∣∣∣∣∣∣∣
1 xi yi

1 xj yj

1 xm ym

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 7 4

1 26 19

1 36 10

∣∣∣∣∣∣∣∣∣∣
A = 160.5 units2

(7.14)

The B matrix can be constructed using Eq 7.5 and 7.6:

βi = −9, βj = 15, βm = −6

γi = −10, γj = −19, γm = 29
(7.15)
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B =


−0.028 0.0 0.047 0.0 −0.019 0.0

0.0 −0.031 0.0 −0.059 0.0 0.090

−0.031 −0.028 −0.059 0.047 0.090 −0.019

 (7.16)

The element’s stiffness matrix, K, may then be constructed by Eq 7.1:

K =



0.1969 0.0935 −0.1059 −0.0224 −0.0910 −0.0710

0.0935 0.2166 0.0442 0.2316 −0.1377 −0.4482

−0.1059 0.0442 0.5987 −0.2959 −0.4928 0.2517

−0.0224 0.2316 −0.2959 0.7400 0.3184 −0.9715

−0.0910 −0.1377 −0.4928 0.3184 0.5838 −0.1807

−0.0710 −0.4482 0.2517 −0.9715 −0.1807 1.4197



(7.17)

For each test case the nodal forces can be computed using Hooke’s Law:

f = K · u (7.18)

The table below shows the nodal force vector for each of the three test cases.

Displacement Vector Force Vector[
1 0 0 0 0 0

]T [
0.20 0.09 −0.11 −0.02 −0.09 −0.07

]T[
0 1 0 0 0 0

]T [
0.09 0.22 0.04 0.23 −0.14 −0.45

]T[
0 0 1 0 0 0

]T [
−0.11 0.04 0.60 −0.30 −0.49 0.25

]T
Table 7.3: Test case displacement vectors and corresponding nodal forces
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7.2.2.2 Inverse Problem

With the nodal forces measured from the virtual tests the inverse problem is

the process of recovering the element’s constitutive matrix using the methods

established in §7.2.1.

The element’s constitutive matrix can be recovered using Eq 7.13, for this

we must first compute the coefficient matrix M. The process for doing so is

described in §7.2.1.1. As the full expressions for the nodal forces in terms of D

(i.e. fn(D,un)) are too long to be given here the matrix M is computed using

the commercial CAS package Maple and given below.
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M =



0.1262 0 0.2804 0 0 0.1558

0 0.1402 0.1262 0 0.1558 0.1402

−0.2103 0 0.0327 0 0 0.2959

0 0.2663 −0.2103 0 0.2959 −0.2336

0.0841 0 −0.3131 0 0 −0.4517

0 −0.4065 0.0841 0 −0.4517 0.0935

0 0.1402 0.1262 0 0.1558 0.1402

0 0 0 0.1558 0.2804 0.1262

0 −0.2336 −0.2103 0 0.2959 0.2663

0 0 0 0.2959 0.0327 −0.2103

0 0.0935 0.0841 0 −0.4517 −0.4065

0 0 0 −0.4517 −0.3131 0.0841

−0.2103 0 0.0327 0 0 0.2959

0 −0.2336 −0.2103 0 0.2959 0.2663

0.3505 0 −0.8878 0 0 0.5623

0 −0.4439 0.3505 0 0.5623 −0.4439

−0.1402 0 0.8551 0 0 −0.8582

0 0.6776 −0.1402 0 −0.8582 0.1776



(7.19)

From this it is now possible to compute the six independent constitutive com-
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ponents using Eq 7.13:

d = (MTM)−1MTF

=



1.0667

0.2667

0

1.0667

0

0.4



(7.20)

This vector corresponds to the following constitutive matrix:

Drecovered =


1.0667 0.2667 0

1.0667 0

Sym 0.4

 (7.21)

As the original material properties the element are known it is possible to

verify the accuracy of the recovery by comparing the two constitutive matrices.

Substituting E = 1 and ν = 0.25 in Eq 7.4 we get:

D =


1.0667 0.2667 0

1.0667 0

Sym 0.4

 (7.22)

It is clear that Drecovered = D and hence that the constitutive matrix has been

accurately recovered by way of virtual testing.
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7.2.3 Multi-Scale Triangle Elements

Section 7.2.2 demonstrated how the constitutive matrix of a 3-node triangle el-

ement can be recovered by way of virtual testing. In each of these virtual tests

a single node is displaced along one axis. The resulting forces are then equated

to the nodal forces in terms of the effective constitutive matrix in order to find

the matrix values. As has been noted, this in itself has little direct practical use

since the constitutive matrix to be recovered must first be known.

For practical applications we aim to recover an effective constitutive matrix

from a sub-volume bounded by a triangle (now referred to as the macro element).

This macro element will contain smaller triangles used to discretise the sub-

volume, which we shall refer to as micro elements. To compute an effective

constitutive matrix the basic principle presented in the previous section shall be

used, with a number of changes to accommodate the micro elements.

In the previous scheme the virtual tests could be described using a simple

displacement vector as they were performed on a single element. However, in

this case the virtual tests are to be performed on the micro mesh. That is, the

mesh of smaller triangles shown in Figure 7.3. To achieve this we constrain the

displacement of the so-called ‘external micro nodes’ to the surface of the macro

element. This constraint is used so that the area discretised by the micro elements

is limited to behave as if it were the macro element. To perform the virtual tests

we must first compute the displacement of each of the external micro nodes.

Given a displacement vector u = {ui, vi, uj, vj, um, vm}T for the macro element

it is possible to compute the displacement of any point inside the element by using
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Figure 7.3: Macro triangle (bold) discretised using micro triangles

the element’s shape functions1. For the 3-node triangle:

αi = xjym − yjxm, αj = yixm − xiym, αm = xiyj − yixj (7.23)

Ni =
1

2A
(αi + βix+ γiy)

Nj =
1

2A
(αj + βjx+ γjy)

Nm =
1

2A
(αm + βmx+ γmy)

(7.24)

Using these expressions the displacement of the point can be described:

∆x = Niui +Njuj +Nmum

∆y = Nivi +Njvj +Nmvm

(7.25)

where (x, y) is the point’s original location and (∆x,∆y) the displacement vector.

1Not to be confused with the displacement of micro nodes, which for the large part remain
unknown.
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βi, βj, βm, γi, γj and γm are given in Eq 7.6.

Previously three displacement vectors were used to recover the material prop-

erties of a homogeneous triangle element. By using the displacement functions in

Eq 7.25 it is possible to map each of these vectors to a set of displacement vectors

for each external micro node. Thus, the virtual tests to be performed on the

micro elements are defined. The tests are performed by displacing the external

micro nodes and computing the resulting forces. The internal micro nodes are

unconstrained and therefore have an unknown displacement. In order to solve

this kind of problem a finite element package such as the commercial software

Abaqus or open-source CalculiX ([Cal, 2010, CalculiX]) is used.

To follow the same methodology as with the single homogeneous triangle el-

ement we must calculate the forces on the macro triangle, for each test. This

highlights a potential difficulty. In the previous situation each virtual test was

performed directly on the macro triangle and the reaction forces trivially com-

puted. For the case where the macro triangle is discretised reaction forces are

computed for each external micro node. Thus, the effective forces on the macro

nodes must be calculated. The effective forces represent the forces required to

displace the macro nodes of an identical macro element with homogeneous ma-

terial properties representing the behaviour of the micro mesh. These forces are

computed by taking a weighted sum of the micro forces using the element’s shape

functions.

For a set of micro forces fX1 . . . fXn and fY1 . . . fYn the effective macro forces are
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computed as follows:

Ft =



n∑
k=1

Ni · tfXk
n∑

k=1

Ni · tfYk
n∑

k=1

Nj · tfXk
n∑

k=1

Nj · tfYk
n∑

k=1

Nm · tfXk
n∑

k=1

Nm · tfYk



(7.26)

where n is the number of external micro nodes and t is the test number. With

these three vectors the full effective force vector can be compiled:

Feffective = [ F1 F2 F3 ]T (7.27)

Substituting F = Feffective in Eq 7.13 it is possible to find the effective consti-

tutive matrix:

deffective = (MTM)−1MTFeffective (7.28)

7.2.4 Multi-Scale Example

Using the methods developed in the previous section this example shows how the

effective properties of a discretised macro triangle can be recovered. The macro

triangle shown in Figure 7.4 and its 16 micro triangles are used for this example.
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Figure 7.4: Example discretised macro element

7.2.4.1 Homogeneous Case

This is the case where all micro elements have the same values E = 1 and ν = 0.25.

By using the three displacement vectors given in Table 7.1 the displacement

vectors for the micro nodes are computed using the macro element’s shape func-

tions. Figure 7.5 shows the displacement of the external micro nodes for each of

the three test cases. The internal micro nodes are given an approximate position

for the purpose of the figure.

Micro Element Type There exists a selection of different 3 node elements

which could be used for the finite element simulations on the micro meshes. In the

commercial package Abaqus these elements are either linear strain (i.e. element

type CPE3) or linear stress (i.e. CPS3). There also exists a constant strain

triangle (CST), on which the macroelements in this section are based, which is

not available in Abaqus. The constant strain element is commonly avoided due

to its poor approximation of the strain field. However, it has been observed that

in this application the CST element must be used in order to accurately recover

the effective properties of the micro mesh. For the case where the micro mesh is
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(a) Virtual Test 1 (b) Virtual Test 2

(c) Virtual Test 3

Figure 7.5: Comparison of original (grey) mesh and deformed mesh (black) for
each test case

homogeneous the use of Abaqus and the linear strain elements results in effective

properties not equal to the micro element properties. It is suspected that the

macro and micro elements should be of the same type to ensure accurate property

recovery. Later examples will demonstrate the accuracy of this method using CST

elements therefore eliminating the need to investigate the more complex element

types.

The finite element simulations, as described in Figure 7.5, are performed using

constant strain triangle elements. As this element is not available in Abaqus, the

simulations are performed using a Maple worksheet created by Artur Portela

([Map, 2010, Finite Elements Package]). This worksheet is suitable for the small

problems in this section, providing the displacement of internal nodes and reaction

forces for the external nodes.
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Rather than giving the force for each micro node, the results below show the

effective macro forces calculated using Eq 7.26.

Test Number Effective Macro Force Vector

1
[

0.327 0.107 −0.082 −0.188 −0.245 0.081
]T

2
[

0.107 0.786 −0.121 −0.043 0.014 −0.829
]T

3
[
−0.829 −0.121 0.346 −0.036 −0.264 0.157

]T
Table 7.4: Effective macro forces computed from micro node forces

After constructing the vector Feffective the effective constitutive matrix can be

computed using Eq 7.28. The results are given below in matrix form.

Deffective =


1.0667 0.2667 9.4353× 10−11

1.0667 −9.0836× 10−11

Sym 0.4

 (7.29)

This constitutive matrix corresponds to a homogeneous material with E = 1

and ν = 0.25 showing the method has accurately recovered the initial material

properties.

7.2.4.2 Inhomogeneous Cases

It has been clearly demonstrated that the homogenisation method can accurately

recover the constitutive matrix of a homogeneous material. However, this has

little practical uses beyond validating the technique used as the homogeneous

material properties must be known from the start. Clearly the elements in the

micro mesh need not all have the same properties nor completely discretise the

macro element (i.e. there may be regions of void). In this case, where the

sub-volume is inhomogeneous, the same method can be applied to recover the
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effective constitutive matrix. However, as there are no trivial cases in 2D with

known effective properties this will be left to be demonstrated later in 3D where

more complex structures with known properties can be homogenised.

7.3 3D

The previous sections presented the principle of the homogenisation technique

and demonstrated the accuracy of the method at recovering homogeneous mate-

rial properties in 2D. This section extends the method to 3D and the recovery of

effective material properties of inhomogeneous sub-volumes. In the previous sec-

tion the multi-scale example given had been manually constructed for a fictitious

domain conforming exactly to the macro element. However, in real-world appli-

cations where the geometry to be homogenised has been acquired (or generated)

using an imaging technique it is unlikely to conform exactly to the chosen macro

element. To address this a method for ‘cutting’ image volumes to accurately fit

macroelements is developed in this section.

As with the 2D case a simple element was a chosen to use as the macro element

for the homogenisation, the 4 node tetrahedron.

7.3.1 Constitutive Matrix Recovery from a 4 Noded Tetra-

hedral Element

Following the same format as in §7.2.1 we first aim to show the constitutive

matrix used by the 4 noded linear tetrahedron (as shown in Figure 7.6) can be

recovered by way of virtual testing.
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Figure 7.6: 4-node tetrahedral element. Nodes are labelled anti-clockwise when
viewed from the last node.

The stiffness matrix of the tetrahedral element is computed as follows:

K = BTDBV (7.30)

Volume of a tetrahedron Six times the volume of a tetrahedron can be com-

puted using the following determinant:

6V =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
(7.31)
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Constitutive matrix The constitutive matrix for an isotropic material is de-

fined as:

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

1− ν ν 0 0 0

1− ν 0 0 0

1− 2ν

2
0 0

1− 2ν

2
0

Sym
1− 2ν

2


(7.32)

where E is the Young’s modulus and ν the Poisson’s ratio. Notably this matrix

is of the order 6 × 6, compared to the 3 × 3 matrix in 2D. Thus, for the case of

general anisotropy, there are 21 unknown values to recover.

B Matrix The matrix B is constructed as follows:

B = [ B1 B2 B3 B4 ] (7.33)

where

B1 =
1

6V



β1 0 0

0 γ1 0

0 0 δ1

γ1 β1 0

0 δ1 γ1

δ1 0 β1


(7.34)
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with similar expressions for B2, B3 and B4, where:

β1 = −

∣∣∣∣∣∣∣∣∣∣
1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣∣∣∣
, γ1 =

∣∣∣∣∣∣∣∣∣∣
1 x2 z2

1 x3 z3

1 x4 z4

∣∣∣∣∣∣∣∣∣∣
, δ1 = −

∣∣∣∣∣∣∣∣∣∣
1 x2 y2

1 x3 y3

1 x4 y4

∣∣∣∣∣∣∣∣∣∣
(7.35)

and

β2 =

∣∣∣∣∣∣∣∣∣∣
1 y1 z1

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣∣∣∣
, γ2 = −

∣∣∣∣∣∣∣∣∣∣
1 x1 z1

1 x3 z3

1 x4 z4

∣∣∣∣∣∣∣∣∣∣
, δ2 =

∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x3 y3

1 x4 y4

∣∣∣∣∣∣∣∣∣∣
(7.36)

and

β3 = −

∣∣∣∣∣∣∣∣∣∣
1 y1 z1

1 y2 z2

1 y4 z4

∣∣∣∣∣∣∣∣∣∣
, γ3 =

∣∣∣∣∣∣∣∣∣∣
1 x1 z1

1 x2 z2

1 x4 z4

∣∣∣∣∣∣∣∣∣∣
, δ3 = −

∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x4 y4

∣∣∣∣∣∣∣∣∣∣
(7.37)

and

β4 =

∣∣∣∣∣∣∣∣∣∣
1 y1 z1

1 y2 z2

1 y3 z3

∣∣∣∣∣∣∣∣∣∣
, γ4 = −

∣∣∣∣∣∣∣∣∣∣
1 x1 z1

1 x2 z2

1 x3 z3

∣∣∣∣∣∣∣∣∣∣
, δ4 =

∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣∣
(7.38)

Following the same process established in §7.2.1 we displace nodes on the

macro element in order to measure a force which can then be equated to the

force in terms of the constitutive matrix. This is expressed by the following
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equality:

fn(D,un) = Fn(un) (7.39)

The following displacement vectors are used for performing the virtual tests.

An explanation of the choice of these vectors is given later in §7.3.6.

u1 = [ 1 0 0 0 0 0 0 0 0 0 0 0 ]T

u2 = [ 0 0 0 1 0 0 0 0 0 0 0 0 ]T

u3 = [ 0 0 0 0 0 0 1 0 0 0 0 0 ]T

u4 = [ 0 0 0 0 0 0 0 0 0 0 1 0 ]T

u5 = [ 0 1 0 0 0 0 0 0 0 0 0 0 ]T

u6 = [ 0 0 1 0 0 0 0 0 0 0 0 0 ]T

(7.40)

For each virtual test on the macro element the resulting forces are calculated

using Hooke’s law and the force vector F constructed. The matrix M is then

calculated and the constitutive matrix recovered using Eq 7.13.

7.3.2 Worked Example

Following the format presented in the 2D section a worked example is given

demonstrating the process of recovering the constitutive matrix from a tetrahedral

element. The element used in this section is shown in Figure 7.7.

In 2D the macro element was given simple isotropic material properties. For

this example a fictitious anisotropic constitutive matrix, given in Eq 7.41, is used
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Figure 7.7: Example tetrahedral element

to prove that the matrix can be recovered in the most general case.

D =



1 2 3 4 5 6

7 8 9 10 11

12 13 14 15

16 17 18

19 20

Sym 21


(7.41)

The displacement vectors in Eq 7.40 are used for the six virtual tests performed

on the element. The resulting forces are given in Table 7.5.

From these values the coefficient matrix M (of the order 72 × 12) can be

constructed and the vector d can recovered using Eq 7.13. This corresponds to
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Component f1 f2 f3 f4 f5 f6

1 -0.12 -1.18 0.27 -0.04 1.08 2.47
2 1.08 -5.02 -1.64 0.59 5.28 7.38
3 2.47 -7.80 -2.11 1.04 7.38 11.23
4 -1.18 5.13 1.48 -0.5 -5.02 -7.8
5 -1.33 5.97 1.82 -0.94 -6.14 -8.92
6 -2.24 8.01 2.27 -1.06 -7.77 -11.66
7 -0.27 1.48 0.57 -0.04 -1.64 -2.11
8 0.29 -0.46 -0.14 -0.32 0.27 0.5
9 -0.48 1.71 0.46 -0.17 -1.58 -2.59
10 1.57 -5.43 -1.78 0.57 5.58 7.45
11 -0.04 -0.5 -0.04 0.68 0.59 1.04
12 0.25 -1.91 -0.62 0.18 1.98 3.03

Table 7.5: Forces resulting from virtual tests

the following matrix:

D =



1 2 3 4 5 6

7 8 9 10 11

12 13 14 15

16 17 18

19 20

Sym 21


(7.42)

The actual values recovered are only ‘accurate’ when given to six decimal

places, or fewer. This is likely due to floating point precision. Despite this we

can still consider this an accurate recovery of the constitutive matrix.
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7.3.3 Multi-Scale Tetrahedral Elements

Given a macro displacement vector {u1, v1, w1, . . . , u4, v4, w4}T the displacement

of a point inside the tetrahedron is determined by the element’s shape functions:


∆x

∆y

∆z

 =


N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4





u1

v1

w1

...

u4

v4

w4


(7.43)

where

N1 =
(α1 + β1x+ γ1y + δ1z)

6V
, N2 =

(α2 + β2x+ γ2y + δ2z)

6V

N3 =
(α3 + β3x+ γ3y + δ3z)

6V
, N4 =

(α4 + β4x+ γ4y + δ4z)

6V

(7.44)

Using these expressions the boundary conditions for the micro mesh can be

established and the resulting micro forces solved for using finite element analy-

sis. Once the micro forces have been computed the effective macro forces can
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calculated, again weighted by the element’s shape functions.

Ft = [ FA
t FB

t FC
t FD

t
]T (7.45)

where

FA
t =



n∑
k=1

N1 · tfXk
n∑

k=1

N1 · tfYk
n∑

k=1

N1 · tfZk


, FB

t =



n∑
k=1

N2 · tfXk
n∑

k=1

N2 · tfYk
n∑

k=1

N2 · tfZk



FC
t =



n∑
k=1

N3 · tfXk
n∑

k=1

N3 · tfYk
n∑

k=1

N3 · tfZk


, FD

t =



n∑
k=1

N4 · tfXk
n∑

k=1

N4 · tfYk
n∑

k=1

N4 · tfZk



(7.46)

With these force vectors the full effective force vector can be constructed:

Feffective = [ F1 F2 F3 F4 F5 F6 ]T (7.47)

Substituting F = Feffective in Eq 7.13 it is possible to find the effective consti-

tutive matrix:

deffective = (MTM)−1MTFeffective (7.48)

7.3.4 Multi-Scale Example

Given the similarities between the constant strain triangle and linear tetrahedron

it is expected that a macro tetrahedron discretised exactly with micro elements
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would be able to accurately recover a constitutive matrix. Also, for practical

3D problems where the structure to homogenise is defined using image data the

sub-volume is unlikely to exactly conform to the macro element (see the follow-

ing section). For these reasons an ‘ideal’ multi-scale example is not given here.

Instead it is left for later in this work where a more realistic example can be

given.

7.3.5 Sub-Volume From Image Data

For practical applications of the homogenisation the sub-volume within the macro

element will likely be a multi-phase structure, such as a solid/void micro-architecture.

The geometry of which can be specified using image data, either generated, such

as the micro-architectures in Chapter 3, or acquired using one of the various

imaging modalities (e.g. MRI, or CT). Traditionally, for any characterisation

or homogenisation, the sub-volume of interest is cropped to fit either a cubic or

cuboidal domain. For image data, where the domain is aligned with the primary

axes, the cropping process is trivial - voxels inside the domain are simply ex-

tracted. However, when the domain is not aligned with the image data, or as in

this case is non-cuboidal, simply extracting the voxels considered inside leads to

a surface which conforms very poorly to the macro element. Figure 7.8 shows

the result of using this method to extract a tetrahedral sub-volume from a ‘solid’

(i.e. all voxel values are greater than the iso-surface value) image volume.

In this instance many of the surface nodes on the mesh shown in Figure

7.8(b) do no lie on the surface of the macro element – a requirement for the

homogenisation. To ensure the nodes lie exactly on the surface of the macro
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(a) Macro element (b) Simple cropped volume

Figure 7.8: Original macro element and volume cropped from a 25× 50× 25 px
volume

element we can modify the values of voxels near the surface in order to create a

flat iso-surface. These voxel values should reflect their distance from the closest

face of the macro element in the same way that a CAD model is voxelised.

Using the following rules a volume can be better ‘cropped’ to fit a given macro

element:

Vnew =



Vold Inside, d > dmax,

0 Outside, d > dmax,(
d

dmax
× i
)

+ i Inside, d ≤ dmax,(
1− d

dmax

)
× i Outside, d ≤ dmax, Vold ≥ i

(7.49)

where Vnew is the new voxel value, Vold the current voxel value, d the distance from

the current voxel to the nearest face of the macro element, dmax the maximum

distance from the macro element to adjust voxel values and i the iso-surface value.

Figure 7.9 shows a tetrahedral sub-volume extracted from an image volume using

these rules.

As sharp edges cannot be represented in image data the resulting sub-volume

cannot exactly conform to the macro element, as highlighted by the jagged edges

in the sub-volume. Figure 7.10 shows an example micro-architecture cropped to

165



Figure 7.9: Cropped volume using distance functions

fit a tetrahedral macro element.

Figure 7.10: Example micro-architecture conforming to a tetrahedral macro ele-
ment

After the sub-volume has been extracted a volume mesh must be generated

to act as the micro mesh in the homogenisation. The sub-volume is meshed

using +ScanFE. To ensure the mesh consists of good quality elements the “off

surface” option is used which allows nodes to deviate from the iso-surface for the

purpose of improving element quality. Consequently, when locating nodes which

lie on the macro element’s surface a small tolerance must be used. A tolerance

of appropriately 1 unit spacing appears suitable.
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7.3.6 Choice of Virtual Tests

Up to this point the virtual tests performed have been arbitrarily chosen as the

sequential displacement of single degrees of freedom. Using the Maple worksheets

developed for this chapter it is possible to easily examine the effects of various

boundary conditions.

7.3.6.1 Criteria For Tests

Some observations can be made about possible criteria for the virtual tests used

in this homogenisation method. By taking advantage of the symbolic computing

functions in Maple we can examine the effect of various displacement vectors in

the most general case, where the macro element’s geometry is defined symboli-

cally.

Up to this point the virtual tests performed have been arbitrarily chosen as

the sequential displacement of single degrees of freedom. In 2D this has proven to

be sufficient in recovering the macro element’s constitutive matrix. However, as

these were arbitrarily chosen it is worth investigating other displacement vectors

in order to try and establish a set of rules for single DOF displacement tests.

Previously the following displacement vectors had been used:

u1 = [ 1 0 0 0 0 0 ]T

u2 = [ 0 1 0 0 0 0 ]T

u3 = [ 0 0 1 0 0 0 ]T

(7.50)

With these displacement vectors the macro force vectors (i.e. f(D,u)) take the
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form:

f1(D,u1) = [ A B A B A B ]T

f2(D,u2) = [ B C B C B C ]T

f3(D,u3) = [ A B A B A B ]T

(7.51)

where

A = ξ(D1,1,D3,1,D3,3)

B = ξ(D2,1,D3,2,D3,1,D3,3)

C = ξ(D2,2,D3,2,D3,3)

(7.52)

Here ξ(. . .) is used to indicate that the force component is a function of the

given constitutive components. For these displacement vectors each value in the

constitutive matrix is involved in the macro forces. However, if we change the

second test so that u2 = [ 0 0 0 0 1 0 ]T we then get the following:

f2(D,u2) = [ A B A B A B ]T (7.53)

By changing the displacement vector such that all displacements are along the

x-axis we now lose dependence on the term D2,2 and therefore have an underde-

termined system. This is to be expected as the term D2,2 is heavily dependant on

the value of Ey for an orthotropic material. Conversely, if we consider the case

where there are only displacements along the y-axis then we lose the term D1,1

which is heavily dependant on Ex. Based on these observations we may conclude

that the tests must contains a displacement along each axis. However, with the 3

node triangle in 2D there are a limited number of unique displacement vectors on

which to base this conclusion. Using the same methods described it is possible

to explore the effects of different displacement vectors when using the 4 node
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tetrahedral element in 3D.

To test the theory that the tests must contain at-least one displacement along

each axis we choose the six tests for the tetrahedron such that there are four

displacements along the x-axis and one along each of the y and z axes.

u1 = [ 1 0 0 0 0 0 0 0 0 0 0 0 ]T

u2 = [ 0 0 0 1 0 0 0 0 0 0 0 0 ]T

u3 = [ 0 0 0 0 0 0 1 0 0 0 0 0 ]T

u4 = [ 0 0 0 0 0 0 0 0 0 1 0 0 ]T

u5 = [ 0 1 0 0 0 0 0 0 0 0 0 0 ]T

u6 = [ 0 0 1 0 0 0 0 0 0 0 0 0 ]T

(7.54)

However, this results in an underdetermined system due to linear dependence

rather than missing terms. Changing one of the displacement vectors u1, u2,

u3 or u4 such that the displacement is along either the y or z axis results in an

overdetermined system which may then be solved using the least squares method.

In this case there are a different number of displacements along each axis. By

trying different combinations of displacement vectors matching this criteria we

can come the conclusion that for single DOF displacements there must be a

different number of displacements along each axis. Based on these observations

we now have two rules for choosing displacement vectors:

1. There must not be duplicated displacement vectors

2. There must be a different number of displacements along each axis
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7.3.6.2 Equivalence of Tests

It can be shown that displacing single degrees of freedom in the virtual tests can

result in ‘duplicate tests’ depending on the geometry of the macro element. To

demonstrate this we consider the macroelements in Figure 7.11.

(a) Element A

(b) Element B

Figure 7.11: Two macroelements of differing geometry subjected to identical
virtual tests

In each of the six tests described the magnitude of the displacement is equal

to one unit.

For the first case the constitutive matrix of Element A can be accurately re-

covered using the methods described in this chapter. The set of tests chosen differ

from those previously used for the 2D elements, but still meet the requirements

described in §7.3.6.1. However, when the same set of tests are applied to Element

B the resulting system of linear equations becomes underdetermined and hence

the constitutive matrix cannot be recovered. By examining the tests in Figure

7.11(b) it is clear that the two tests displacing the i and j nodes (i.e. the two
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displacements along the y-axis) result in the same deformed element.

One possible solution to this problem is to choose the displacement vectors

specifically for each different geometry such that they do not result in duplicate

tests. In this instance the displacement vectors given in Table 7.3 would be

suitable for Element B, however they would likely result in the same issues for

other symmetrical macroelements. Alternatively, more complex displacement

vectors can be used to avoid issues with symmetry. By using a set of randomly

orientated displacement vectors we can ensure that macroelements generated by

automated meshing processes can handled without the need to choose custom

tests. While, in theory, it is possible that a set of randomly chosen vectors may

still result in duplicated tests, in practise this appears highly unlikely and so is

an acceptable solution.

7.4 Validation

It has already been shown that a single tetrahedron, exactly equal to the macro

element, is sufficient to recover a given constitutive matrix. It has also been shown

that a triangular macro element discretised exactly using triangle elements can

also accurately recover a constitutive matrix. Given the similarities between the

two types of elements used (linear triangle and tetrahedron) it is expected that a

tetrahedral macro element discretised by tetrahedrons would accurately recover

a given constitutive matrix. However, we are interested in the case where the

volume of interest is defined using image data. In this case the sub-volume may

not exactly conform to the macro element, as shown in §7.3.5.

Before attempting to compute the effective properties of a unknown struc-
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ture, we must first test the homogenisation method in cases where we know or

can compute the correct constitutive matrix. Thus, a number of tests will be

performed in this section for the purpose of attempting to validate the developed

homogenisation method. In each of these tests the domain and macro element

shown in Figure 7.12 are used. As the macro element must be a tetrahedron the

chosen element is the largest tetrahedron which will fit inside a cube, occupying

one third of the cube’s volume. Thus only one third of the original volume will

be used in the virtual tests. Due to this fact it is expected that the size of the

original volume will have to be larger than would normally be required to account

for the ‘lost’ two thirds of the cube’s volume.

Figure 7.12: Macro element (solid) within the bounding volume (dashed)

7.4.1 Homogeneous Sub-Volume

The first, and perhaps most obvious, validation test to perform is the case where

the sub-volume of interest is a homogeneous material with a known value. This
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test will differ from that performed in §7.2.4 as the micro mesh will be generated

from image data.

As with any finite element simulations a convergence study is performed to

ensure mesh independence is achieved. For this study the volume bounding the

macro element is increased in resolution from 10× 10× 10 px to 160× 160× 160

px. So that a single value may be plotted we use Exx = 1
S11

. The results are given

in Figure 7.13.
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Figure 7.13: Convergence study for a homogeneous sub-volume

In these results we see unusual convergence from below followed by the ex-

pected convergence from above. This is likely due to two competing effects; at the

lower resolutions the tetrahedron will be poorly represented causing lower than

expected values for Exx. As the tetrahedron is discretised with greater accuracy

this effect reduces as convergence to the geometry is effectively achieved. Beyond

this point the lack of degrees of freedom becomes the influencing effect causing
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an over-estimated value for Exx and the more usual convergence from above. In

this range the value of Exx is recovered with at most a 1% error.

7.4.2 Comparison to KUBC Results

To validate the developed method with more complex structures we compare the

results obtained in §6.1.2 to those obtained using the tetrahedral approach. As

this method requires a tetrahedral domain, compared to the cuboidal domain

used in the KUBC homogenisation, we must ensure the comparisons performed

are fair. To do so we use the same number of unit cells within both domains.

The results presented in Figure 7.14 show excellent agreement between the two

homogenisation methods.

7.5 Approximate Models

With the ability to determine an effective constitutive matrix for an arbitrary

tetrahedral sub-volume we can now address the issue of multi-scale problems.

Of particular interest are the set of problems having an irregular (i.e. non-

cuboidal) domain. While problems of a more regular nature may be addressed

with more conventional methods of determining effective constitutive matrices,

they are never the less addressable using the methods developed in this chapter.

Multi-scale problems featuring two or more distinguishable length-scales are

particularly computationally challenging to model exactly1. If we consider an

arbitrary irregular domain Ω then it is possible to identify a number of length-

scale or feature-lengths, as shown in Figure 7.15.

1Of course, even a ‘full’ finite element simulation is an approximation
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Figure 7.15: Length-scales present in a multi-scale irregular domain

These feature-lengths are as follows:

• Lr – Rib or strut length scale

• Lc – Unit cell length scale (may be less identifiable for natural structures)

• Lf – Macroscopic feature size

• Ld – Domain length scale

It may also be possible to identify an additional length-scale, Lg, over which

some aspect of the micro-architecture’s geometry varies. Although it is perhaps

not so clear as to how this scale is identified.

Assuming a clear separation of length-scales, it may be possible to construct

a relationship between the identified feature-lengths, as expressed by Eq 7.55.

Lr < Lc < Lg < Lf < Ld (7.55)
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However, it is possible there may be cases where Lf < Lg, that is, a small

rate of change in micro-architecture across the domain.

For many problems it is highly impractical to attempt to include all length-

scales in a finite element model, consequently it is often desirable to only capture

the coarser details. Rather than simply excluding the smaller length-scales we

aim to produce a coarse mesh with appropriate homogeneous material properties.

Thus there is a need to be able to compute the apparent properties for each

element in this coarse mesh (previously referred to as macroelements), as has

been demonstrated in §7.3. While clearly not a direct replacement for a full

resolution model, this approximate, or macro, model should prove satisfactory

for modelling the bulk response of the domain.

As with any approximation, this macro model with has some disadvantages.

Most notably the inability to capture local effects, such as displacement or stresses

in ribs. It may, however, be possible to recover these local effects by applying

the macroscopic displacements (resulting from a macroscopic simulation) to the

microscopic model. To overcome boundary effects a number of macroelements

may be required for this purpose.

Simulations performed using the macro model will also have to be limited to

small strain to ensure they stay within the linear response of the structure. This

limitation is the result of performing linear simulations in order to determine the

effective constitutive matrix of a sub-volume; the apparent properties will only

be valid for the linear response of the sub-volume.

177



7.5.1 Model Generation

To generate an approximate model from an original multi-scale dataset an ap-

propriate macro-scale mesh must first be generated. As the aim is to eventually

model the domain as homogeneous the macro-scale mesh must reflect this. The

homogeneous domain should fit the bounds of the original domain as closely as

possible, representing the result of a ‘shrink wrap’ operation. Ideally such an

operation would be automated, however for simple geometries it is possible to

manually define the homogeneous domain.

For example, when using the commercial software ScanIP the original resolu-

tion dataset would be imported and very roughly segmented in order to establish

the bounds of the geometry as in Fig 7.16(b). The resulting dataset is referred to

as a mask. Using the tools available, such as flood-fill, paint and morphological

close, the mask can be filled-in as in Fig 7.16(c).

(a) Original data (b) Rough seg-
mentation

(c) Solid mask (d) Macro mesh

Figure 7.16: Macro mesh generation steps

The solid mask generated from this process will still be at the same reso-

lution as the original volume. If a mesh were to be generated from this mask
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using a marching cubes based mesher then the resulting mesh could potentially

consist of hundreds of millions of elements. Ideally some form of mesh-based

decimation would be utilised to severely reduce the number of elements, however,

meshing and decimating such a high-resolution volume would itself be extremely

computationally demanding. An alternative solution is to re-sample the volume

to a considerably lower resolution so that the resulting mesh consists of an ap-

propriate number of elements. Typically, for the same number of elements, the

down-sampling approach will de-feature the volume more than the decimation of

a high resolution mesh. For cases where Lf ≈ Ld this may be acceptable, in other

cases a compromise can be taken by using both down-sampling and mesh-based

decimation. Figure 7.16(d) shows an example macro mesh generated using this

process.

With an appropriate macro-scale mesh generated the effective properties of

each of its elements can be computed using the methods developed in §7.3. To

do so requires an ‘accurate’ segmentation of the volume at the original resolution

which may be generated using traditional segmentation techniques. Once these

values have been established the mesh, with new material properties, can be saved

as an input file for the finite element package of choice.

7.5.2 Example

The example chosen is a simple cantilever beam composed of a lattice structure.

The length of the beam is 4,000 units with an aspect ratio of 1 : 10. The lattice

structure is the Schoen Gyroid at 15% volume fraction with a normalised Young’s

modulus (E = 1) and ν = 0.3 for material properties. There are 10 × 10 × 100
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unit cells within the beam. It is estimated that the full resolution problem would

require 615 million tetrahedral elements to sufficiently discretise the structure.

To generate the approximate model the domain is discretised using 580 4-noded

tetrahedral elements and processed using the methods described. The results from

this process are then converted to an input file for the open source FE solver

CalculiX. Appropriate boundary conditions are then applied, in this instance

nodes at x = 0 are fixed and those at x = 4000 are loaded with a force of 0.1 N.

The resulting deformed mesh is shown in Figure 7.17.

Figure 7.17: Displacement of an approximate model of a cantilever lattice beam

Clearly the full resolution model is too large to repeat the simulation for com-

parison without super-computing facilities. However, from the results in §7.4.2

it is clear that macroelements should contain at least 8 × 8 × 8 unit cells. In

this instance each unit cell will contain considerably fewer than 512 unit cells,

therefore causing the apparent stiffness to be over-predicted. While increasing

the size of the macro elements could potentially alleviate this effect, it will, how-

ever, cause over-stiffening due to the reduced number of DOF in the model. We

have therefore identified two, seemingly competing, sources of over-stiffening in

the modelling of this structure. It is possible to perform additional simulations

so that the influence of each of these effects can be studied independently. The
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over-stiffening due to the coarse mesh used can be measured by creating a finer

mesh such that mesh independence is achieved. This finer mesh can be created

by sub-dividing the original, with the new elements inheriting their parent’s ma-

terial properties. The influence of the second effect, the over-stiffening due to

less than representative macroelements, can be measured by using the apparent

properties established in §7.4.2 with the fine mesh. The results of performing the

simulations with these models are given in Table 7.6.

Model Num. Elements Max Displacement

Original 580 658.141
Sub-divided 83,520 728.813
RVE material 83,520 746.863

Table 7.6: Comparison of different homogenised beam models

As may have been expected, the two additional models produced progressively

less stiff responses. The introduction of additional degrees of freedom, as in

the sub-divided model, has been shown to have the greatest influence on the

stiffness of the structure. Despite this, it is clear that the over-predicted material

properties in the original model also contribute significantly to the models over-

stiffness, as seen by the difference in displacement for the ‘sub-divided’ and ‘RVE

material’ models. It should be noted that relative contribution of these two

effects, as shown here, is only valid for this specific model.

Based on these observations we may conclude that, while this size problem

does appear large, it is not sufficiently large to ensure macroscopic mesh indepen-

dence and that each macroelement is an RVE. However, from the results presented

here it is clear that the two causes of over-stiffening can be alleviated to a degree

through the sub-division of the macro mesh.
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7.5.3 Property Visualisation

Another possible use for the models produced using the approach described in

this chapter is in the visualisation of effective properties. As each element in

the macro mesh is associated with an effective constitutive matrix it is possible

to visualise the model with each element’s colour determined by this matrix. In

doing so we can visualise both relative and absolute variations of some chosen

property across the domain. To achieve this a single value from the constitutive

matrix must be chosen to be mapped to a colour. For example:

Exx =
1

S11

, Gyz =
1

S44

(7.56)

with similar expressions for Eyy, Ezz, Gzx and Gxy, where S is the compliance

matrix. Alternatively, an averaging scheme may be used to find ‘equivalent’

isotropic properties (Marmier et al. [2010]). Three possible schemes are: Voigt

[1910], Reuss & Angew [1929] and Hill [1952].

The Voigt scheme uses weighted averages from the stiffness matrix, C, to

compute the bulk modulus K and shear modulus G:

KV =
A+ 2B

3
, GV =

A−B + 3D

5
(7.57)

where

A =
C11 + C22 + C33

3
, B =

C23 + C13 + C12

3
, D =

C44 + C55 + C66

3

(7.58)

Similarly, the Reuss scheme is based on weighted averages from the compliance
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matrix S:

KR =
1

3a+ 6b
, GR =

5

4a− 4b+ 3d
(7.59)

where

a =
S11 + S22 + S33

3
, b =

S23 + S13 + S12

3
, d =

S44 + S55 + S66

3
(7.60)

The Hill scheme is the arithmetic average of the Voigt and Reuss values

(Marmier et al. [2010]).

For each scheme the equivalent Young’s modulus and Poisson’s ratio can be

calculated using the standard relationship between E, ν, K and G for an isotropic

material.

Figure 7.18 shows an example macro-scale model visualised using different

techniques.

(a) Original (b) Interpolated (c) Volumetric

Figure 7.18: Visualising the variation of Young’s modulus over a functionally
graded structure
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7.5.3.1 Out-of-Plane Properties

In addition to visualising the distribution of properties across a domain, it can

also be useful to visualise the properties of a sub-volume (or in this instance

a macro element). As shown in the previous section, the effective constitutive

matrix of a macro element can be used to extract a number of properties. These

properties correspond to the sub-volume’s current coordinate system. However,

it is possible to extract more information from the matrix by performing various

rotations in order to change the coordinate system. By doing so it is possible to

examine the effective out-of-plane properties of a sub-volume.

By visualising these properties it is possible to identify non-obvious properties

of a structure, such as orientations at which a negative Poisson’s ratio can be

observed. They may also aid in locating maxima and minima of properties,

such as directions in which the Young’s modulus in maximised/minimised. The

following gives a brief overview of how this is achieved, Marmier et al. [2010]

provides more complete details.

Using summation notation, the rotation of a compliance tensor can be ex-

pressed by:

Spqrs = rpirqjrrkrslSijkl (7.61)

where r is the orthogonal rotation matrix (following the X-Z′-X′′ convention):

r =


c2 −c3s2 s3s2

c1s1 c1c2c3 − s1s3 −c2c1s3 − c3s1

−c1s2 c1s3 + c3c2s1 c1c3 − c2s1s3

 (7.62)

Here the trigometric terms have been abbreviated. For example c2 stands for
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cos(β) and s3 is in-place of sin(γ). The three angles referred to in this matrix

are the Euler angles α ∈ (−π, π], β ∈ [0, π] and γ ∈ (−π, π]. By iterating

over these ranges with an appropriate step size the compliance matrix for all

possible orientations can be computed. From this the out-of-plane properties can

be extracted.

Simple properties such as the Young’s modulus will remain invariant through

rotations about X′′ (i.e. with γ) and so may be plotted straightforwardly using

polar or spherical plots. More complex properties, such as Poisson’s ratio, are

dependant on perpendicular stresses and therefore vary with γ. In order to plot

these properties only the minimum, maximum and mean values are considered

(Marmier et al. [2010]).

Fig 7.19 shows some example plots using the compliance matrix computed

for the Schoen Gyroid structure at 15% volume fraction, with isotropic material

properties E = 1 and ν = 0.3.

7.6 Applications

The homogenisation technique described in this chapter, while applicable to many

multi-scale applications, may be best utilised with a certain set of applications.

These are the applications in which the vast majority of macroelements contain

a spatially varying or irregular structure. In addition to this the macroelements

should each contain different representative samples of the structure.

In cases where these two conditions are not met, such as when the domain is

composed of a periodic structure, the described technique will likely require an

excessive number of virtual tests to be performed. This is due to the fact that, in
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(a) Polar plot of the mean value of S45 in the Y-Z plane

(b) Spherical plot of the minimum Poisson’s ratio

Figure 7.19: Plots of different out-of-plane properties for the Schoen Gyroid at
15% volume fraction
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3D, the six required tests are performed on each macro element to determine their

apparent properties. For the cases where there does not exist sufficient macro-

scopic variation in the structure many of the macroelements will have similar

apparent properties. Consequentially, many of the virtual tests performed would

be redundant and a more traditional RVE-based approach (as described in §6.1)

would be more appropriate.

7.7 Comparison to Superelements

The methods described in this Chapter have been developed to address large

multi-scale problems by diving them into smaller, more manageable sub-problems.

This type of strategy can be generally described as being a “divide and conquer”

approach to the problem. A similar method was developed in the 1960s (Felippa

[1986]) by aerospace engineers based on the hierarchical decomposition of a com-

plex structure into substructures. The substructures could effectively be modelled

independently of one another to produce reduced models, or superelements, which

could then be used to construct a reduced model of the original structure. For

example, an aircraft wing may be decomposed into smaller substructures, but

itself be a superelement when performing simulations on the entire aircraft.

In general superelements are constructed from a collection of elements or

other superelements. The choice of these elements is driven by two different, yet

potentially overlapping, views; bottom up or top down. When taking a bottom

up approach superelements are built up from a collection of primitive elements

to the desired size. Superelements constructed in this fashion are often classified

as macroelements. Alternatively, a top down approach can be taken whereby
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a structure is decomposed into identifiable smaller structures. For example, an

aircraft being split into fuselage and wings. These superelements are classified as

substructures.

The distinction between macroelements and substructures may not always be

a clear one. For certain applications, particularly “non-CAD” geometries such as

natural structures, there may not exist such well-defined substructures and hence

the classification of a superelement as either a macroelement or substructure

becomes difficult. As there are no set rules for such a classification, the term

‘superelement’ is generally used in both cases.

Despite the distinction made between macroelements and substructures the

process of creating the superelements in both cases is the same, regardless of the

number of elements involved. This process involves effectively eliminating all of

the displacement degrees of freedom (DOF) associated with internal DOFs using

a technique called static condensation. Internal DOFs are those which are not

connected to DOF outside of the superelement. Degrees of freedom which are

not designated internal are boundary DOFs and may be connected to additional

DOF outside of the superelement.

Felippa [1986] demonstrates how the process of static condensation eliminates

internal degrees of freedom using explicit matrix operations. The assembled stiff-

ness equations for a superelement are considered:

 Kbb Kbi

Kib Kii


 ub

ui

 =

 fb

fi

 (7.63)

where the sub-vectors ub and ui represent the boundary and internal degrees of
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freedom, respectively. Given the second equation:

Kibub + Kiiui = fi (7.64)

it is possible to solve for the internal displacements if Kii is non-singular:

ui = K−1
ii (fi −Kibub) (7.65)

Substituting Eq 7.65 into the first equation from Eq 7.63 yields the condensed

stiffness equations:

K̃bbub = f̃b (7.66)

In this equation (Eq 7.66),

K̃bb = Kbb −KbiK
−1
ii Kib, f̃b = fb −KbiK

−1
ii fi (7.67)

are the condensed stiffness matrix and force vector, respectively, of the substruc-

ture. In order to treat the superelement as a ‘regular’ element in the model, these

values are taken to be the element’s stiffness matrix and nodal force vector, re-

spectively. Following the static condensation of the internal DOF, the processing

of the model can continue without any special consideration for the superelement.

The methods developed in this chapter used multiple finite element simula-

tions to compute the effective stiffness of a macroelement. From this stiffness

matrix the effective constitutive matrix, D, is calculated. Calculating this ma-

trix, rather than the stiffness matrix alone, allows the process to be independent

of a specific solver as existing solvers will accept anisotropic material properties
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for the macroelements. In comparison, the superelement approach requires a cer-

tain degree of integration with the solver. However, it does also offer a number

of advantages in some applications. For instance, in the case where substruc-

tures are being used it may be possible to exploit repetition in the structure to

re-use superelements and hence reduce the number of static condensation opera-

tions required. This is aided by the fact that, with the superelement approach,

the division of the structure into substructures is a manual process whereas the

proposed method utilises a semi-automated meshing process. The substructure

approach can also be used to facilitate the division of labour for large models as

substructures can be developed independently, providing their interface to other

superelements remains consistent (Felippa [1986]).

Both the proposed method and the superelement approach have the advan-

tage of overcoming the computational limitations present when processing large

models. Both can be said to take a “divide and conquer” approach, however,

the way in which they achieve this differs considerably. An important difference

between the two methods lies in how the superelements are constructed. In the

case of the proposed method, the contents of each macroelement is homogenised

resulting in an approximation of its behaviour. While the superelement approach

does eliminate internal degrees of freedom, it is possible to recover them following

the completion of the simulation therefore potentially providing an exact solution.
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7.8 Conclusions

Large multi-scale problems are computationally challenging even for the simple

case of linear static simulations.

The methods developed in this chapter have shown how these problems can

be addressed through the generation of an approximate homogeneous model.

For very large linear static problems, where there exists a clear separation of

length scales, the division of the problem into many smaller disjoint problems can

result in considerably reduced computational requirements in comparison to the

construction and solving of a full model.

Such a division of the problem also brings with it a number of advantages.

Most notably is that the division creates independent sub-volumes (unlike mesh

decomposition methods used in the parallel computation of full resolution models

which require some degree of intercommunication) allowing the model generation

process to be very efficiently run in parallel either on a single computer or cluster

with MPI. Alternatively, this also allows the entire problem to be processed in

series using only a single CPU. The main limiting factor which will determine

whether or not a problem is too large to approximate is the amount of memory

required to solve the micro-scale problems for the largest sub-volume. Providing

there is sufficient main memory available to achieve this then problems of any

size may be processed either in parallel or series with very modest hardware

requirements.

From the results given in §7.5.2 it appears that the homogenisation technique

over-predicts the stiffness of a model when the macro elements contain less than

representative volumes. As the size of the macro element was increased the effec-
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tive stiffness decreased, suggesting that the macroelements should ideally contain

representative volumes. Given the need to have statistically representative vol-

ume elements with other forms of homogenisation and characterisation this is not

surprising. As a direct consequence of this the minimum size problem which can

be approximated (for the purpose of performing macro-scale simulations) dra-

matically increases. To achieve RVE macroelements it would not be sufficient

to simply increase the size of the macroelements as this would have two unde-

sirable side effects: firstly, this would further de-feature the domain and more

importantly it would also be removing degrees of freedom from the macro model,

therefore increasing the model’s stiffness. Due to this minimum size increase the

model approximation will likely now only be suitable for very large problems

where convergence can be achieved on both lengths, that is, convergence to and

RVE at the micro scale and convergence at the macro scale (i.e. mesh indepen-

dence). Consequently this may leave a set of problems which, without super

computing facilities, are too large to solve at the original resolution, but that are

also too small to achieve convergence on both length scales.

It has also been shown that the tetrahedral-based homogenisation technique

developed has potential uses for material characterisation. However, the advan-

tages of using tetrahedral sub-volumes in this case can become disadvantages. As

many samples are usually cubic or cuboidal (or easily cropped to such a shape

with minimal loss) we loose two-thirds of the volume due to the largest tetra-

hedron which can fit inside the sample. For synthetic or generated structures,

where a larger volume can be generated, this may not be an issue. For physical

samples which have been imaged there is the possibility that one-third of the

volume is no longer statistically representative. However, it may be possible to
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extend the methods developed in this Chapter to element types better suited to

cuboidal samples, such as hexahedral elements – a topic for further research.

One point of interest is that despite the different approach taken to developing

this homogenisation technique the resulting boundary conditions bear notable

resemblance to those in kinematic uniform boundary conditions (KUBC). In both

cases the boundary conditions restrict the movement of the surface nodes to the

movement of the domain. The choice of macro element in this instance also

means the displacements are imposed as a linear function of the geometry. The

results presented in §7.4.2 show good agreement between the two homogenisation

methods thus validating the developed technique.
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Chapter 8

Conclusions

8.1 Summary

Due to their high surface to volume ratio and porosity there are a wide range of

potential applications, from industrial to medical, for open cell internal micro-

architectures. The inherent topological complexity of these structures also make

them difficult to both generate and model computationally. In this thesis meth-

ods have been presented and explored to generate domain conforming lattice

structures and to model the macroscopic behaviour of such structures.

The use of implicit modelling, particularly with triply periodic functions,

has been shown to be highly flexible for the generation of open cell micro-

architectures. Several image-based algorithms were developed and evaluated and

it was clearly shown that, to achieve accurate and smooth models, the additional

computation required to generated greyscale volumes was an acceptable overhead.

By taking an image-based approach it is possible to ensure that the generation

and manipulation of the micro-architectures remains robust, despite any geomet-
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ric complexities. The image-based approach also allows the micro-architectures

to be straightforwardly integrated with existing image data, as may be required in

medical applications, such as for the generation of conforming scaffolds. However,

this method does inherit some disadvantages as a result of the use of imaging.

Notably this includes the inability to represent sharp features and the require-

ment of high resolution volumes for low volume fraction structures, resulting in

an excessive number of elements (for finite element modelling) and/or triangles

(for ALM). An issue addressable to a certain degree by the use of decimation.

The advantages, however, considerably outweigh the disadvantages.

Algorithms were developed allowing for the creation of micro-architectures

with a specified volume fraction by choosing an appropriate value at which to

iso-surface. By using a variable iso-surface value variations in density could be

introduced to a structure, either defined by a mathematical expression or through

the use of a density map. These variations in density in-turn introduce variations

in properties, such as stiffness, allowing for the creation of functionally graded

structures.

The algorithms presented were then extended for the purpose of generat-

ing domain conforming internal structures where the domain is enclosed in, or

bounded by, a shell. By sampling the external geometry it was possible to work

entirely in image-space to generate the new internal surface. While this clearly

also has disadvantages, such as de-featuring due to sampling, the vast majority of

applications will be unaffected by a de-featured internal surface. An exception to

this may be an external geometry with very small holes or insets. Although the

methods used in Chen [2007a] preserve feature edges on the internal surface, this

may not always be desirable. The methods developed (as in the patent applica-
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tion in Appendix B) allow the majority of processing to be performed in parallel

so that internal structures can be quickly introduced into CAD models.

In Chapter 6 a number of simple geometries with internal structures were

evaluated to determine the influence of introducing an internal structure. Results

obtained via mechanical testing and finite element analysis showed very poor

agreement. They did, however, agree that in the vast majority of cases the models

with internal structures were stiffer than their hollow equivalents. Further tests

also demonstrated the use of the internal structures as supporting structures in

the fabrication of metal components via ALM. This shows that the structures have

excellent multi-functional potential where their mechanical (or thermal, etc . . . )

properties are not only useful for the function of a component, but also during

its manufacturing. With increasing interest and recent advances in additive layer

manufacturing technologies multi-functional structures, and the tools for their

generation and evaluation, are likely to become increasingly popular.

As has already been stated, following the generation of a micro-architecture it

is often desirable to evaluate some property of the structure, such as its effective

properties. The methods developed in this work allow the efficient and reliable

creation of volumetric meshes using well-established meshing techniques and soft-

ware (+ScanFE in this instance). These meshes may be used to characterise the

structure using existing homogenisation techniques. However, the work in this

thesis attempts to address the issue of large multi-scale structures. In order to

do so a novel approach to homogenisation was developed utilising the concept of

macroelements, where the macroelements in this instance are tetrahedra. The

use of tetrahedra allows arbitrary domains to be divided into independent sub-

volumes, each then characterised so that a homogeneous macroscopic model can
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be constructed. The homogenisation itself was shown to yield apparent prop-

erties very close to those obtained using the frequently used kinematic uniform

boundary conditions. However, it was also shown to have similar drawbacks, in

particular that the restrictive boundary conditions mean that the RVE must be

very large to overcome ‘edge effects’. For the case where the RVE is not large

enough for this we saw over-predicted properties, as is commonly seen when us-

ing KUBC. The consequence of this is that the size of the problem required to

achieve convergence at both length scales (i.e. to effective properties and macro-

scopic convergence) is considerably larger than expected. However, the method

itself remains a valid approach to large multi-scale problems.

8.2 Research Contributions

The research contributions may be briefly summarised as follows:

1. The development of image-based algorithms for the efficient generation of

implicitly defined periodic micro-architectures. The developed algorithms

allow for functionally and arbitrarily graded structured micro-structures

with pre-specified volume fractions. The image-based approach allows for

the fast and robust generation of volumetric and surface meshes.

2. The development of algorithms for the generation of transition cells for the

purpose of bridging two implicitly defined unit cells of differing topology.

By combining unit cells of different topologies custom properties can be

achieved without the need to vary the volume fraction.

3. The development of image-based algorithms for the generation of domain
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conforming internal structures (with or without grading variations), includ-

ing a novel approach to the creation of hollow components from CAD mod-

els. This approach also allows for the robust introduction of internal struc-

tures using the developed algorithms.

4. The investigation into the mechanical properties of the Schoen Gyroid at

various volume fractions. This includes the discovery of an appropriately

sized sample to simulate when using uniform boundary conditions.

5. The discovery that, at certain cell sizes, certain lattice structures, based on

triply periodic implicit functions, can be manufactured at all orientations

via SLM. This suggests that the lattice structures can act not only as inter-

nal supporting structures, but have the potential to also be used as external

supporting structures.

6. The development of a novel approach to linear elastic homogenisation based

on non-cuboidal domains, triangles and tetrahedra (in 2D and 3D, respec-

tively) in this instance. The developed method has been shown to yield

apparent properties comparable to those obtained via the often used kine-

matic uniform boundary conditions.

7. The development of a technique for creating approximate homogeneous

models from large multi-scale linear elastic problems. By utilising the de-

veloped tetrahedral based homogenisation large problems can be processed

efficiently either in parallel or in series. Thus the method is capable of re-

ducing the computational requirements for evaluating the bulk response of

such structures. It may also be used as a tool for visualising the macroscopic
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distribution of properties over a domain.
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Chapter 9

Recommendations for Future

Work

As there is a limited amount of time in which a thesis such as this may be com-

pleted there will invariably be areas which can be developed further or explored

in greater depth. The following comprises of a number of possible research tasks

for future work. They are presented in no particular order.

Micro-Architectures

1. With the ability to generate periodic lattice structures with arbitrary den-

sity variations, either domain conforming or within a shell, an obvious ques-

tion arises: What is the optimal density variation for a given application?

As is suggested in the question, the answer will likely require an iterative op-

timisation process wherein many possible solutions are evaluated. However,

as we now know, evaluating a single micro-architecture is computationally

expensive, let alone many thousands iteratively. The optimisation problem
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itself is one of optimal material distribution, similar to that in topology

optimisation. Further research into how topology optimisation methods,

particularly those in Bendsøe & Kikuchi [1988] and Young et al. [1999],

may be adapted for this purpose.

2. This thesis has highlighted the multi-functional nature of implicitly de-

fined periodic micro-architectures, particularly when combined with addi-

tive layer manufacturing technologies. However, some aspects have only

been touched upon. Further research into the fabrication of these struc-

tures, particularly out of different metals and bio-compatible materials such

as hydroxyapatite could potentially extend their uses. Addressing practi-

cal issues, such as the removal of the lattice when used as a supporting

structure and the slicing of very large STL files, could also be beneficial.

3. The development of an algorithm to determine the feature size of a CAD

model, in order to provide an appropriate scale to voxelise it at, would

improve the efficiency of the internal structure algorithm. It would also

reduce the user interaction with the algorithm and potentially remove the

need to occasionally re-run the process at different resolutions.

4. Further exploration of implicit and constructive solid geometry modelling

for the purpose of generating lattice structures using the methods developed

in this thesis. These methods would allow unit cells to be designed using

more ‘CAD-like’ techniques.

Homogenisation

1. Currently the only types of element which have been used as macro elements
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are the simple linear triangle and tetrahedron. These elements are often

regarded as poor due to their over-stiffness and constant strain field. Future

work could examine the use the more complex high-order elements and their

effect on the apparent properties of a sub-volume. Points of interest may

include; Do the more complex displacement functions relax the boundary

conditions? and How do the additional macro nodes influence the choice of

virtual tests? There may also be benefits to using hexahedral elements.

2. The homogenisation approach taken was developed for linear elastic proper-

ties. Further research into the possible use of this approach for other prop-

erties, such as permeability, thermal, electromagnetic or even non-linear

elasticity may further extend the applications of this multi-scale approach.
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Appendix A

Unit Cell Implicit Functions

Schwarz Primitive:

cos(x) + cos(y) + cos(z)− 1 = 0

Schoen Gyroid:

10(cos(x)× sin(y) + cos(y)× sin(z) + cos(z)× sin(x))−

0.5(cos(2x)× cos(2y) + cos(2y)× cos(2z) + cos(2z)× cos(2x)) = 0

Schwarz W:

10(cos(x)× cos(y) + cos(y)× cos(z) + cos(z)× cos(x))−

5(cos(2x) + cos(2y) + cos(2z))− 14 = 0
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Schwarz W:

10(sin(x− π

4
)× sin(y − π

4
)× sin(z − π

4
) + sin(x− π

4
)×

cos(y − π

4
)× cos(z − π

4
) + cos(x− π

4
)× sin(y − π

4
)×

cos(z − π

4
) + cos(x− π

4
)× cos(y − π

4
)× sin(z − π

4
))−

0.7(cos(4x) + cos(4y) + cos(4z))− 11 = 0

Schwarz Primitive (Pinched):

−(2.25(cos(x) + cos(y) + cos(z)) +

1.25(cos(x)× cos(y) + cos(y)× cos(z) + cos(z)× cos(x))) = 0

Neovius’ Surface:

−(−sin(x)× sin(y)× sin(z) + sin(2x)× sin(y) + sin(2y)×

sin(z) + sin(x)× sin(2z)− cos(x)× cos(y) ∗ cos(z) +

sin(2x)× cos(z) + cos(x)× sin(2y) + cos(y)× sin(2z)) = 0
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Appendix B

Internal Structures Patent

Patent pending. Filed in the UK and USA.
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Appendix C

Internal Structure Wizard

As implemented in +ScanCAD.

Figure C.1: Introduction
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Figure C.2: Selection of CAD model

Figure C.3: Shell parameters
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Figure C.4: Lattice parameters

Figure C.5: Post-generation options
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Appendix D

Internal Structures Testing –

Experimental Setup

Both hollow and internal structure components are loaded in the same fashion.

Figure D.1: Loading of the box component. Not visible is a small metal disk 15
mm in diameter on top of the component.
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Figure D.2: Loading of the sphere component

Figure D.3: Loading of the cylinder component
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