Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion

A R Barker,1 2 C A Williams,1 2 A M Jones,1 N Armstrong2

ABSTRACT

Objectives This study tested the hypotheses that (1) secondary criteria (respiratory exchange ratio (RER), heart rate, blood [lactate]) traditionally used to verify the determination of maximum oxygen uptake (VO2peak) in children can result in the acceptance of a ‘submaximal’ VO2max or falsely reject a ‘true’ VO2max and (2) the VO2peak recorded during a ramp test in children is comparable to the VO2peak achieved during supramaximal testing.

Methods Thirteen children (9–10 years) completed a ramp cycle test to exhaustion to determine their VO2peak. After 15 min of recovery, the participants performed a supramaximal cycle test to exhaustion at 105% of their ramp test peak power.

Results Compared with the VO2peak during the ramp test, a significantly lower VO2 was recorded at a RER of 1.00 (1.293 litre/min (SD 0.265) vs 1.681 litre/min (SD 0.295), p<0.001, n=12), at a heart rate of 195 beats/min (1.556 litre/min (SD 0.265) vs 1.721 litre/min (SD 0.318), p<0.001, n=10) and at 85% of age-predicted maximum (1.345 litre/min (SD 0.228) vs 1.690 litre/min (SD 0.284), p<0.001, n=13). Supramaximal testing yielded a VO2peak that was not significantly different from the ramp test (1.615 litre/min (SD 0.307) vs 1.690 litre/min (SD 0.284), p=0.090, respectively).

Conclusions The use of secondary criteria to verify a maximal effort in young people during ramp cycling exercise may result in the acceptance of a submaximal VO2max. As supramaximal testing elicits a VO2peak similar to the ramp protocol, thus satisfying the plateau criterion, the use of such tests is recommended as the appropriate method of confirming a ‘true’ VO2max with children.

Keywords Children, Aerobic Fitness, Fitness Testing, Supramaximal Exercise.

Maximum oxygen uptake (VO2max) is widely recognised as the best single measure of aerobic fitness.1 In young people, VO2max is a key outcome measure in studies investigating the development of aerobic fitness,2 trainability of the cardiorespiratory system,3 relationships between physical activity, fitness and health,4 and cardiorespiratory (dys)function in disease.5 However, the most appropriate methods to measure and interpret VO2max in this population remain controversial.6–8

The traditional paradigm for VO2max determination requires that during exercise close to exhaustion, in a well-motivated participant VO2 will no longer increase linearly with the exercise intensity but rather display a plateau.9 10 However, because only ~20–40% of children performing exercise to exhaustion display a plateau in their VO2 response,6 11 12 it has become conventional to use the term ‘peak VO2’ (VO2peak). That is, the highest VO2 recorded during an exercise test to volitional exhaustion. Because children who exhibit a plateau are indistinguishable from those who do not,5 11 these findings raise a fundamental question: has VO2peak been ‘truly’ attained? Rowland13 and Armstrong et al14 used supramaximal running to exhaustion at treadmill gradients 2.5–7.5% greater than that achieved during an initial incremental test and found no differences in the VO2peak attained across the two protocols in children aged 10–12 years. These data therefore imply that a ‘true’ VO2max had in fact been achieved during the initial incremental protocol despite the absence of a plateau in most of the participants during the incremental test.

In contrast to incremental treadmill protocols used by Rowland13 and Armstrong et al,14 a cycling protocol where power output is increased linearly with time (‘ramp’ exercise) is becoming a popular method for determining VO2max both in healthy and diseased children.5 15 16 This is because of its short test duration (8–12 min) and because other key parameters of aerobic function (gas exchange threshold, exercise economy, kinetic response time) can be determined during the test.17 However, despite it having been demonstrated that the VO2peak determined using a ramp test is as reliable in children as it is in adults, with a typical error across three tests of ~4.0%,18 it remains to be established whether the highest VO2 attained using ramp cycling exercise reflects a ‘true’ VO2max.

As children rarely exhibit a VO2 plateau, paediatric researchers rely on subjective indicators of intense effort (eg, facial flushing, sweating, unsteady gait, hyperpnoea) and secondary ‘objective’ criteria (eg, respiratory exchange ratio (RER), blood [lactate] and heart rate thresholds) to verify a ‘maximal’ response.6 19 20 However, recent studies of healthy adults have questioned the validity of using secondary criteria during ramp exercise, as RER, heart rate and blood lactate criteria can underestimate VO2max by 30–40% or falsely reject a valid VO2max measure.21 22 As previous maximal exercise studies of children have documented a large interindividual variation in RER (range 0.95–1.15), heart rate (range 185–215 beats/min) and blood [lactate] (range 3–12 mM) at exhaustion,6 13 19 it is plausible that the use of such secondary criteria is equally inappropriate in young people.

The aims of this study are to test the following hypotheses: (1) that commonly used secondary
criteria to verify a $V_{\text{O}2\text{max}}$ in children can result in the acceptance of a submaximal $V_{\text{O}2\text{max}}$ during ramp cycling exercise or falsely reject a ‘true’ $V_{\text{O}2\text{max}}$ and (2) that the $V_{\text{O}2\text{peak}}$ recorded during a ramp incremental test in children is comparable to the $V_{\text{O}2\text{peak}}$ achieved during supramaximal testing, thus satisfying the plateau requirement for a true $V_{\text{O}2\text{max}}$.

METHODOLOGY

Participants

Thirteen 9- to 10-year-old children (eight boys and five girls) volunteered to take part in the study. The participants’ mean body mass and stature were 33.8 kg (SD 5.71) and 1.375 m (SD 0.077), respectively. All children and their parent(s) or guardian(s) provided informed assent and consent to partake in the project, which was approved by the institutional ethics committee. The children were healthy, recreationally active and showed no contraindications to exercise to exhaustion.

Ramp and supramaximal exercise

All tests took place on an electronically braked cycle ergometer (Lode, Groningen, The Netherlands), with appropriate adjustments made to the ergometer seat, handlebar and pedal cranks for each participant. After a 3-min period of cycling at 10 W, a ramp incremental test to exhaustion was undertaken with power output increasing by 10 W/min. Participants cycled at ~75 rpm throughout the test. Exhaustion was defined as a drop in cadence below 60 rpm for five consecutive seconds. Immediately after exhaustion, power output was lowered to 10 W and the participant cycled at this intensity for 10 min followed by 5 min of rest. Subsequently, the participant performed a supramaximal exercise bout consisting of 2 min of pedalling at 10 W and a ‘step’ transition to 105% of the peak power achieved during the ramp test. Participants cycled at this intensity with a pedal rate of ~75 rpm until exhaustion, as defined above. Power output was then returned to 10 W until heart rate recovered to ~120 beats/min.

Experimental measures

Breath-by-breath changes in gas exchange and ventilation were measured and displayed using an online system (EX671; Morgan Medical, Kent, UK). Gas fractions of O_2 and CO_2 were drawn continuously from a low dead space (90 ml) mouthpiece-turbine assembly and determined by mass spectrometry. Expired volume was measured by a turbine flow meter (VMM-401; Interface Associates, Laguna Niguel, California, USA). Gas exchange responses were interpolated to 1-s intervals and averaged every 15 s.

Heart rate and cardiac output (Q) were determined every 15 s using a non-invasive thoracic bioimpedance device (PhysioFlow PF-05; Manatec Biomedical, Paris, France). The reliability of using this technique to determine Q in 10- to 11-year-old children during maximal exercise has a typical error score of 9% over three repeat cycle tests. Arterial-venous O_2 content difference ($C_{(a-v)}O_2$) was estimated via rearrangement of the Fick equation:

$$C_{(a-v)}O_2 = \frac{V_{O2}}{Q}$$

A fingertip capillary blood sample was taken within 30 s after the ramp test and analysed for [lactate] (YSI 2300; Yellow Springs, Ohio, USA).

Criteria for establishing maximal oxygen uptake

A plateau in the V_{O2} profile during the ramp test was identified using the methods described by Day et al. Briefly, a linear regression was plotted over the ‘linear’ portion of the V_{O2} response, defined as data points lying after the initial 2 min of exercise and 3 min before exhaustion. The profile of V_{O2} at exhaustion was characterised by extrapolating the linear regression function to exhaustion and examining the last 60 s of the residuals against the extrapolated line (fig 1). A negative residual indicated a deceleration in V_{O2} against power output and was considered a ‘plateau’ if the magnitude of the residuals was $\geq 5\%$ of the projected V_{O2} (ie, V_{O2} was $\leq 95\%$ of the project V_{O2}). Conversely, a positive residual $\leq 5\%$ of the projected V_{O2} represented an acceleration of V_{O2} close to exhaustion (ie, V_{O2} was $\geq 105\%$ of the projected V_{O2}). Positive or negative residuals $<5\%$ of the peak power output projected V_{O2} was classified as a linear response (V_{O2} was $>95\%$ but $<105\%$ of the projected V_{O2}).

Figure 1 Analysis of the V_{O2}–power output responses during ramp exercise. The solid line represents the linear regression function that was fitted from 2 min (30 W) to 3 min before exhaustion occurred (boundaries demarcated by vertical dotted lines). The extrapolated regression fit is extended following the second vertical line to end exercise, where in A, B and C a linear, plateau and accelerated V_{O2} response is shown, respectively. The residuals from the regression model are plotted on the horizontal line.
The secondary criteria used to verify a VO\textsubscript{2max} were taken from key texts and recent publications in paediatric exercise physiology.6,19,20,24 These included an RER of 1.00, a heart rate of 195 beats/min and within 85% of age-predicted maximum (220−age) and a blood [lactate] of ≥6 mM.

Statistical analyses

Boys’ (n=8) and girls’ (n=5) data were grouped (n=13) to form a single data set for analysis. Paired-samples t tests were used to examine mean differences between outcome variables, with the Bonferroni correction applied when multiple comparisons were performed. Limits of agreement analyses were used to establish the mean bias and 95% confidence limits between outcome variables.25 The null hypothesis was rejected at an α level of 0.05. Analyses were performed using SPSS V15.0 (Chicago, Illinois, USA) and GraphPad Prism (GraphPad Software Inc., San Diego, California, USA).

RESULTS

Ramp validation criteria

Table 1 presents the individual physiological responses during the ramp exercise in accordance with the validation criteria.

Oxygen uptake

The mean duration for the ramp test was 656 s (SD 88), which corresponded to a peak power output of 120 W (SD 15). The ramp test elicited a mean VO\textsubscript{2peak} of 1.690 litre/min (SD 0.284), which was not significantly different from the VO\textsubscript{2peak} predicted from peak power output using the linear VO\textsubscript{2}–power output relationship (1.721 litre/min (SD 0.304), p=1.0). The mean goodness of fit (R2) for the linear function was 0.90 (SD 0.07). Analysis of the individual VO\textsubscript{2} output profiles revealed a range of responses at exhaustion. Four participants (one boy, three girls) were characterised by a linear VO\textsubscript{2} profile. Seven participants (five boys, two girls) were characterised by a linear VO\textsubscript{2} profile at exhaustion, showing only a small fall in VO\textsubscript{2} from the extrapolated linear regression by −0.173 litre/min, consistent with a plateau-like profile. Seven participants (five boys, two girls) were characterised by a linear VO\textsubscript{2} profile at exhaustion, showing only a small fall in VO\textsubscript{2} from the predicted value (mean −0.034 litre/min). Finally, two participants (two boys) exhibited an acceleration in VO\textsubscript{2} near to exhaustion, with a mean increase in VO\textsubscript{2} of 0.098 litre/min from the linear extrapolation.

Respiratory exchange ratio

At exhaustion the mean RER was 1.11 (SD 0.06, range 0.99–1.20). A single boy failed to reach the RER criterion. In the 12 participants who satisfied this criterion, the VO\textsubscript{2} recorded at an RER of 1.00 (1.293 litre/min (SD 0.265)) significantly underestimated the VO\textsubscript{2} recorded at exhaustion (1.681 litre/min (SD 0.295), p=0.002), representing 77% of the latter. The limits of agreement showed the RER criterion to underestimate VO\textsubscript{2max} by a mean bias of −0.388 litre/min (95% confidence limits: −0.911 to 0.136 litre/min, fig 2).

Heart rate

Mean heart rate at exhaustion was 202 beats/min (SD 7, range 191–214). All children satisfied the 85% of their age-predicted maximum criterion (equivalent to ~179 beats/min). Three children failed to reach the 195 beats/min criterion despite a clear plateau-like profile in VO\textsubscript{2} at exhaustion in two of these participants (see table 1). In the participants who satisfied the heart rate criteria, the VO\textsubscript{2} recorded at 85% of their age-predicted maximum (1.345 litre/min (SD 0.228)) and at 195 beats/min (1.556 litre/min (0.265)) significantly underestimated the VO\textsubscript{2} recorded at exhaustion (1.690 litre/min (SD 0.284) and 1.721 litre/min (SD 0.318), respectively; p<0.002), representing 80% and 90% of the latter. The limits of agreement analyses revealed the 85% age-predicted maximum and 195 beats/min criteria to underestimate VO\textsubscript{2max} by a mean bias of −0.345 litre/min (95% confidence limits: −0.612 to −0.079) and −0.165 litre/min (95% confidence limits: −0.339 to 0.010 litre/min), respectively (fig 2).

Blood [lactate]

Mean blood [lactate] after ramp exercise was 6.7 mM (SD 2.1, range 4.2–12.1). Six children (four boys, two girls) satisfied the blood [lactate] criterion of ≥6 mM. Of the seven participants who had a blood [lactate] <6 mM, two had a plateau in their VO\textsubscript{2} profile at exhaustion (see table 1).

Ramp and supramaximal responses

The physiological responses during the ramp and supramaximal exercise tests are presented in table 2. The mean time to exhaustion during the supramaximal bout was 91 s (SD 26) at a mean power output of 127 W (SD 16). Using the linear extrapolation from the ramp test, this power output corresponded to a target VO\textsubscript{2peak} of 1.799 litre/min (SD 0.295).

<table>
<thead>
<tr>
<th>Participant</th>
<th>Sex</th>
<th>Ramp VO\textsubscript{2peak} (litre/min)</th>
<th>VO\textsubscript{2} plateau</th>
<th>VO\textsubscript{2} at RER ≥1.00 (litre/min)</th>
<th>VO\textsubscript{2} at 195 beats/min (litre/min)</th>
<th>VO\textsubscript{2} at 85% age-predicted heart rate (litre/min)</th>
<th>Blood [lactate] ≥6 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>1.213</td>
<td>No</td>
<td>1.002</td>
<td>1.203</td>
<td>0.921</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>1.972</td>
<td>Yes</td>
<td>1.733</td>
<td>1.879</td>
<td>1.507</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>1.649</td>
<td>No</td>
<td>1.319</td>
<td>1.469</td>
<td>1.354</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>1.802</td>
<td>No</td>
<td>Not achieved</td>
<td>1.622</td>
<td>1.357</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>1.326</td>
<td>No</td>
<td>1.154</td>
<td>1.154</td>
<td>1.006</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>1.673</td>
<td>No</td>
<td>0.982</td>
<td>Not achieved</td>
<td>1.603</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>1.908</td>
<td>No</td>
<td>1.755</td>
<td>1.618</td>
<td>1.478</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>2.042</td>
<td>No</td>
<td>1.280</td>
<td>1.830</td>
<td>1.586</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>1.598</td>
<td>Yes</td>
<td>1.357</td>
<td>Not achieved</td>
<td>1.411</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>1.416</td>
<td>Yes</td>
<td>1.047</td>
<td>1.364</td>
<td>1.047</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>1.724</td>
<td>No</td>
<td>1.552</td>
<td>1.532</td>
<td>1.430</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>2.158</td>
<td>No</td>
<td>1.200</td>
<td>1.891</td>
<td>1.563</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>1.494</td>
<td>Yes</td>
<td>1.137</td>
<td>Not achieved</td>
<td>1.222</td>
<td>No</td>
</tr>
</tbody>
</table>

Where M and F denote male and female respectively. See Results section for further analyses.
The main findings from the current study are that during ramp cycling exercise in a group of healthy 9- to 10-year-old children, (1) a plateau (or deceleration) in the \(V_{\text{O}2} \) profile at exhaustion is an infrequent phenomenon, occurring in ~30% of children; (2) adherence to commonly used secondary criteria to validate a maximal effort in young people can result in either a submaximal \(V_{\text{O}2_{\text{max}}} \) or a rejection of a participant’s \(V_{\text{O}2_{\text{max}}} \) score despite a plateau being evident; (3) supramaximal testing at 105% of the power output achieved during ramp exercise did not increase the \(V_{\text{O}2_{\text{peak}}} \) achieved compared to the ramp test, thus suggesting the achievement of a true \(V_{\text{O}2_{\text{max}}} \) during the initial ramp test; and (4) the changes in the components of the Fick equation, that is maximal \(Q \) and \(O_{2} \) extraction (\(C_{(a-v)}O_{2} \)), were similar during ramp and supramaximal exercise, further supporting the notion that a true \(V_{\text{O}2_{\text{max}}} \) was recorded during the ramp test.

The findings from the present study are consistent with the well-documented finding that a plateau in a child’s \(V_{\text{O}2} \) profile during incremental exercise is not commonplace. However, the absence of plateau is not exclusive to young people. A recent study by Day et al23 determined \(V_{\text{O}2_{\text{max}}} \) in 71 adults using a ramp cycling protocol and reported a plateau in ~20% of the participants, a value similar to the current investigation. Interestingly, these authors and others22 26 have observed an appreciable rise in \(V_{\text{O}2} \) at exhaustion in ~30% of their participants, with the remaining \(V_{\text{O}2} \) responses (~50%) being linear. Such profiles for \(V_{\text{O}2} \) are consistent with the data presented in the current study, indicating the plateau issue is equally problematic when testing children and adults during a ramp-based cycling exercise protocol.

Given the rare occurrence of a \(V_{\text{O}2} \) plateau in young people, in addition to the presence of subjective indications of intense effort, secondary criteria have been adopted, either in isolation or in combination, to verify a \(V_{\text{O}2_{\text{max}}} \) measure. In the present study, we have taken commonly used secondary criteria from the scientific literature19 20 and demonstrated that their use can underestimate a child’s \(V_{\text{O}2_{\text{max}}} \) score by 10–22% on average. Specifically, an RER of 1.00 was the least robust criterion to verify a \(V_{\text{O}2_{\text{max}}} \), followed by the heart rate criterion of attaining 85% of an age-predicted maximum. The Bland–Altman plot (fig 2) indicates that an underestimation of \(V_{\text{O}2_{\text{max}}} \) score by ~10% is possible for the RER and 85% age-predicted maximum heart rate criterion measures, respectively. Attaining a heart rate of 195 beats/min was found to be the most robust secondary criterion to verify a \(V_{\text{O}2_{\text{max}}} \) score, although its application is limited as only three participants achieved a \(V_{\text{O}2} \) within 5% of their measured \(V_{\text{O}2_{\text{max}}} \) (fig 2), which is considered as the typical within-subject diurnal variation of \(V_{\text{O}2_{\text{max}}} \) in children18. Moreover, the Bland–Altman plot indicates that for a given individual, an underestimation of

DISCUSSION

The main findings from the current study are that during ramp cycling exercise in a group of healthy 9- to 10-year-old children.

![Figure 2](image-url)
Figure 2 Bland–Altman plots for the secondary criteria. Plots show the mean bias (floating solid line) and 95% confidence limits (floating dotted lines) for the \(V_{\text{O}2} \) at an RER of 1.00 (top), a heart rate at 85% age-predicted maximum (middle) and at 195 beats/

![Figure 3](image-url)
Figure 3 Bland–Altman plots showing the agreement between the \(V_{\text{O}2} \) recorded at exhaustion during ramp and supramaximal testing. Plots show the mean bias (floating solid line) and 95% confidence limits (floating dotted lines) for the \(V_{\text{O}2} \) at exhaustion during ramp and supramaximal exercise in absolute terms (A) and as a percentage difference (B).

Table 2
Peak physiological responses during the ramp and supramaximal tests

<table>
<thead>
<tr>
<th>Variable</th>
<th>Ramp</th>
<th>Supramaximal</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{O}2_{\text{peak}}}) (litre/min)</td>
<td>1.690 (0.284)</td>
<td>1.615 (0.307)</td>
<td>0.09</td>
</tr>
<tr>
<td>Heart rate peak (beats/min)</td>
<td>202 (7)</td>
<td>196 (8)</td>
<td><0.001</td>
</tr>
<tr>
<td>RER peak</td>
<td>1.11 (0.06)</td>
<td>1.07 (0.13)</td>
<td>0.23</td>
</tr>
<tr>
<td>Cardiac output peak (litre/min)</td>
<td>15.10 (4.82)</td>
<td>14.64 (4.51)</td>
<td>0.12</td>
</tr>
<tr>
<td>Oxygen extraction peak (ml/min per 100 ml)</td>
<td>12.61 (2.57)</td>
<td>12.28 (2.50)</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Data are reported as mean (SD).
~20% is possible using the 195 beats/min criterion. It is also pertinent to note that three participants failed to attain a heart rate of 195 beats/min despite the presence of a plateau in two of these participants. A similar situation was found for two participants using the blood [lactate] criterion of 6 mM. That is, based on the criterion adopted, these participants would be falsely rejected from a study sample because of their failure to achieve an arbitrary criterion imposed by the researcher. Conversely, if a researcher was to use a less robust criterion, that is, a heart rate of 85% predicted maximum, which most of the participants are likely to satisfy, the consequence will be a submaximal and therefore invalid VO2max measurement.

The results from this study suggest that researchers should discontinue the use of secondary criteria to validate a VO2max score in young people. Indeed, given the large variability that is observed for RER (<0.94–1.20), heart rate (<190–215 beats/min) and blood [lactate] (<3–14 mM) at exhaustion in young people, this limited application of a ‘one size fits all’ criterion (or multiple criteria) to verify a VO2max is not surprising. A key question, however, is how can test procedures be standardised to provide a valid and practical measurement of VO2max in young people within a single testing session?

The answer to this question potentially has its origins in the seminal work by Taylor et al19 who outlined the protocol and criteria needed to determine VO2max. Specifically, participants were required to run to exhaustion on a series of 3-min constant-speed treadmill tests at increasing gradients (2.5% increments) on separate days, until a point (gradient) was reached where the rise in VO2 was less than that expected (<2.1 ml/kg per minute) when compared to the previous gradient. This ‘leveling off’ (the plateau) of VO2 with increasing exercise intensity was taken as evidence that VO2max had been attained.9

In keeping with the use of constant-load exercise, Rossiter et al26 had participants perform, after a 5-min rest to recovery from a standard ramp test, a constant-load exercise bout to exhaustion at 105% peak power output (supramaximal exercise). No significant increase in VO2 was noted during the supramaximal bout when compared to the ramp test. Therefore, the composite VO2 profile from the ramp and supramaximal tests can be used to reveal the plateau criterion within a single testing session, despite the plateau not being evident in the initial ramp test.

The current investigation extended this work to children and found no mean differences in VO2peak between the ramp and supramaximal protocols. This was despite the latter being at a 5% higher power output in an attempt to drive VO2 to a greater amplitude. This finding therefore suggests that the final VO2 achieved during the ramp test, irrespective of whether a plateau was observed, does represent a true VO2max in children. However, as cautioned by Day et al23 without performing the additional supramaximal test ‘one cannot be certain’ that VO2max has been attained. Indeed, the Bland–Altman plot in fig 3 is consistent with this, as one participant was able to elicit a 6% rise in VO2 during the supramaximal bout. For this participant, an additional constant-load test, perhaps on a separate day or after ~30 min rest, at 110% peak power would be required to confirm their VO2max. However, because most of the participants (92%) in the current study failed to increase their VO2 during the supramaximal test, a single constant-load test is likely to be sufficient in most cases.

The present study has shown that a group of healthy children, who were initially habituated to the experimental procedures, are capable of tolerating two exhaustive exercise tests (ramp and supramaximal) within a single session, interspersed with a short recovery phase, for determination of their VO2max. This is in agreement with studies conducted with adult participants who were either well accustomed to exercise to exhaustion in the laboratory setting or of an athletic status.26 27 In the current study, we elected to use a 15-min recovery period between the ramp and supramaximal test, which is longer than the 1- to 10-min recovery periods used in adult studies.26 27 Whether children can tolerate a shorter recovery period is unknown but seems plausible given their faster recovery of metabolic markers (VO2, phosphocreatine, blood [lactate], cellular acidosis) after maximal exercise.28–30

In the current study, the intensity of the supramaximal bout was set at 105% ramp test peak power output. The mean test duration was 91 s (SD 26), which is similar to the duration of 88 s (SD 15) reported by Rossiter et al26 in adults at the same exercise intensity. Because of the characteristics of the power-duration curve, a higher power output during the supramaximal bout will result in a shorter test duration that may preclude a child from attaining their VO2max because of insufficient time for the VO2 response to fully develop. Likewise, although theoretically an individual can attain their VO2max when exercising at a submaximal intensity above critical power (severe exercise domain),31 from a conceptual viewpoint this fails to satisfy the VO2max plateau concept—a leveling off of VO2 with an increase in exercise intensity. Consequently, the intensity of the constant-load test should be above the ramp test peak power output (ie, supramaximal). Using 105% of the ramp determined peak power output therefore appears an appropriate trade-off between the intensity of the supramaximal bout and being of sufficient duration to allow the VO2 to reach its asymptote (ie, VO2max).

What is already known on this topic

- The traditional paradigm for VO2max determination requires the existence of a VO2 plateau at exhaustion, yet this is only observed in a minority of children.
- Researchers have therefore relied on the use of secondary criteria (heart rate, RER and blood [lactate]) to verify subjective criteria of VO2max determination in this population.

What this study adds

- Widely used secondary criteria underestimate a child’s VO2max score by 10–22% on average and can falsely reject a ‘true’ VO2max score.
- Researchers should abandon the use of secondary criteria to verify a VO2max in children and adopt the utility of a supramaximal exercise bout, following the initial incremental test, as the method of choice to verify a true VO2max.
In conclusion, the use of secondary criteria to verify a maximal effort in young people during ramp cycling exercise can result in the acceptance of a submaximal VO2max and should be abandoned by researchers. In contrast, as supramaximal testing elicits a VO2peak similar to the ramp protocol, thus satisfying the plateau criterion despite only being present in 30% of the initial ramp responses, it is recommended that the use of such tests should be adopted as the appropriate method of confirming a true VO2peak in healthy young people. However, further work is needed to establish whether the use of supramaximal testing is appropriate to verify a VO2peak in paediatric populations with slow VO2 kinetics or a poor ability to tolerate maximal exercise (eg, diseased children).

Acknowledgements The authors would like to thank the children and staff of Wynstreyn primary school for their time and commitment to this project. The authors also acknowledge the laboratory support provided by Rebecca Willcocks and Anushia Roberts during data collection.

Ethics approval This study was granted ethics approval from the School of Sport and Health Sciences Ethics Committee, University of Exeter.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion

A R Barker, C A Williams, A M Jones, et al.

doi: 10.1136/bjsm.2009.063180

Updated information and services can be found at:
http://bjsm.bmj.com/content/45/6/498.full.html

These include:

Data Supplement
"Test"
http://bjsm.bmj.com/content/suppl/2010/07/05/bjsm.2009.063180.DC1.html

References
This article cites 27 articles, 9 of which can be accessed free at:
http://bjsm.bmj.com/content/45/6/498.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/