Glass Poly-Vinyl-Phosphonate Cements with Reactive Aluminium Hydroxide Coated Sub-micron Anatase Filler

Paul Alexander Brookbank

June 30th, 2011

Submitted by Paul Brookbank, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Engineering, June 2011.

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University

(Paul Alexander Brookbank)
Abstract

The current generation of Glass Ionomer Cements (GICs) have many advantageous properties over other dental restorative materials but lack the compressive strength of these other materials. The aim of this project is to increase the compressive strength of conventional Glass Poly-Vinyl-Phosphonate cement by inclusion of reactive sub-micron filler particles.

The setting characteristics, chemical reactivity and cement strength have been found using oscillating rheology, infrared spectrometry, nuclear magnetic spectrometry, transmission electron microscopy, potentiometer analysis, laser diffractometry and mechanical analysis.

The addition of sub-micron filler particles in direct weight by weight replacement of aluminosilicate glass of a control material has increased the ultimate compressive strength of the new cement from 206MPa (control) to 250MPa after 365 days of aging. The strength of the new filler enhanced cements were comparable with the control material after 3 hours. The setting chemistry of the filler enhanced cements follows the same order as the control cement but at a decelerated rate.

Theoretical modelling found that a large volume of sub-micron filler could fit into interstitial spacing in formed cement however the alteration of the aluminosilicate glass to polyelectrolyte ratio has been found to drastically alter the cement setting time. The use of cubic and polyhedral shaped filler particles as supposed to spherical particles may increase the cement strength further as greater packing densities are achieved.

The formulation of a Glass Ionomer Cement with increased compressive strength may find use as a posterior restorative or as a better material for restoration of lesions and cavity liners.
Acknowledgments

I would like to express my gratitude to my supervisors Dr Oana Ghita, Dr Michele Barbour and Professor Ken Evans for firstly giving me the opportunity to undertake this research and their continued support and guidance during this research project.

This research has been funded by the Great Western Research fund and Associated Dental Products (Kemdent, Swindon). I would like to thank Tony Cook of Kemdent for his knowledge of quality control for water based dental cements and providing me with materials to perform my research.

A special thank you is extended to Mr Ian Moon and Mr Peter Jerry for their skill, hard work and technical guidance provided when producing parts and supervising myself in the workshop environment; their tuition has evolved into a firm friendship.

My love goes to my partner Ailichia and daughter Lilly for all their unwavering encouragement, motivation and patience without which, none of this would have been possible.
Content

Chapter 1: Introduction ... 1
Chapter 2: Literature Review ... 3
 2.1 Introduction ... 3
 2.2 Dental Restorative Cements .. 4
 2.2.1 Glass Polymethacrylate Cements (Glass Ionomer Cements) 5
 2.2.2 Composite Resins .. 25
 2.2.3 Resin Modified Glass Ionomer Cement (RMGIC) ... 28
 2.2.4 Polycrystalline Composite Resin (PMCR) ... 31
 2.2.5 Conclusion ... 32
 2.3 Cement forming Metal Oxides ... 33
 2.4 Particle Packing in Cement and Resin Based Materials .. 34
 2.4.1 GIC Porosity .. 34
 2.4.2 Packing Optimization ... 35
Chapter 3: Materials & Method ... 37
 3.1 Introduction ... 37
 3.2 Coating Procedure .. 38
 3.2.1 TiO₂ Suspension .. 39
 3.2.2 Aluminium Hydroxide Precipitation ... 39
 3.2.3 Separation of Coated Particles ... 40
 3.3 Diamond Carve Cement ... 40
 3.3.1 Diamond Carve Manufacture .. 41
 3.3.2 Cement Preparation .. 41
 3.4 Titanium Filler Incorporated Cement (TiGIC) ... 43
 3.4.1 TiGIC Manufacture .. 43
 3.4.2 TiGIC Preparation ... 44
 3.5 Coating Reactivity .. 44
 3.5.1 Titanium Dioxide .. 45
 3.5.2 Coated TiO₂ (9% w/w) .. 46
 3.6 Glass and Filler Size Characterisation .. 48
 3.7 Coating Reactivity .. 50
 3.7.1 Rossett-Rice Reactivity ... 51
 3.7.2 Al(OH)₃ Titration .. 53
Chapter 4: Rheological Analysis of TiGICs ... 55
 4.1 Introduction ... 55
 4.2 Experimental Methods .. 55
 4.2.1 Wilson Rheometer ... 56
 4.2.2 Advanced Rheometer ... 57
 4.2.3 Data Analysis (Wilson Rheograms) .. 58
 4.3 Results and Discussion .. 60
 4.3.1 Wilson Rheometer .. 60
 4.3.2 Advanced Rheometer ... 62
 4.4 Conclusion ... 70
Chapter 5: Compressive Strength .. 71
 5.1 Introduction ... 71
 5.2 Method .. 71
<table>
<thead>
<tr>
<th>Chapter 8: Theoretical Modelling of Filler Enhanced Glass Ionomer Cements</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>127</td>
</tr>
<tr>
<td>8.2 Method</td>
<td>128</td>
</tr>
<tr>
<td>8.2.1 Unit Cell(s)</td>
<td>128</td>
</tr>
<tr>
<td>8.2.2 Interstitial Gaps</td>
<td>131</td>
</tr>
<tr>
<td>8.2.3 Computer Simulated Random Packing</td>
<td>134</td>
</tr>
<tr>
<td>8.3 Results</td>
<td>135</td>
</tr>
<tr>
<td>8.3.1 Idealised Modelling (Packing)</td>
<td>135</td>
</tr>
<tr>
<td>8.3.2 Simulated Random Packing (MacroPac)</td>
<td>140</td>
</tr>
<tr>
<td>8.3.3 Control Cement System</td>
<td>149</td>
</tr>
<tr>
<td>8.3.4 Optimisation of the Diamond Carve System</td>
<td>153</td>
</tr>
<tr>
<td>8.4 Discussion / Conclusions</td>
<td>157</td>
</tr>
<tr>
<td>8.4.1 Idealised Packing</td>
<td>157</td>
</tr>
<tr>
<td>8.4.2 Random Packing Simulations</td>
<td>158</td>
</tr>
<tr>
<td>8.4.3 General Discussion</td>
<td>159</td>
</tr>
</tbody>
</table>

Chapter 9: Conclusion

<table>
<thead>
<tr>
<th>Chapter 9: Conclusion</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>160</td>
</tr>
<tr>
<td>9.2 Discussion</td>
<td>160</td>
</tr>
<tr>
<td>9.3 Conclusion</td>
<td>165</td>
</tr>
</tbody>
</table>

Chapter 10: Further Work

<table>
<thead>
<tr>
<th>Chapter 10: Further Work</th>
<th>166</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>166</td>
</tr>
<tr>
<td>10.2 Chemical Alteration</td>
<td>166</td>
</tr>
<tr>
<td>10.3 Filler Effects on Cement Rheology</td>
<td>167</td>
</tr>
</tbody>
</table>
10.4 Particle Packing Optimization ... 167
10.5 Coatings and Coating Medium ... 168
Bibliography ... 170
Appendices .. 203
A1: Materials .. 205
A2: Rheology .. 213
A3: Infrared Investigation of Cure ... 237
A4: Theoretical Modelling .. 265