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Abstract

In this thesis the properties of graphene are studied via the various aspects of the

quantum transport: doping of the graphene surface with organic molecules, flicker noise

and transport in the quantum Hall regime.

First, it was shown that certain molecules (toluene, aniline and water), which pos-

sess such common properties as non zero dipole moment and ability to undergo the

electrochemical reaction, have a peculiar doping effect on graphene. The effect of

toluene doping was studied in detail and is explained by the electrochemical reaction,

which takes place in the vicinity of the graphene and results in a gate voltage dependent

doping.

Second, the flicker noise in graphene and its relation to the scattering mechanisms

were studied. The flicker noise as a function of the carrier concentration was demon-

strated to be sensitive to the scattering potential determining the resistance of the

graphene. Therefore, as it was suggested, the flicker noise can be used as a tool for

determining the dominant scattering mechanism in graphene, although it was found

that the resistance and noise can originate from different scattering potentials.

Also, the flicker noise spectrum was shown to decompose into individual lorentzians

at low temperatures (below ∼ 25K), where the fluctuations of the resistance is sup-

posedly coming from the random jumps of electrons between the conductive channel

in the graphene flake and the nearby impurity states.

Third, the transport properties of the bilayer/trilayer graphene structure were stud-

ied at different temperatures and different magnetic fields including the quantum Hall

regime. Bilayer and trilayer parts of the sample revealed the signatures of the quantum

Hall effect predicted theoretically. The transport through the interface between bilayer

and trilayer parts was also investigated. Signatures of the interface resistance were

seen, although the observed behaviour is not explained. Under high magnetic fields

the properties of the interface longitudinal resistance were described qualitatively by

the classic transport equations.
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