“A Biomechanical Assessment of Gait Patterns and Risk of Associated Overuse Conditions among Mature Female Runners.”

Submitted by Kim Louise Lilley to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Sport and Health Sciences In February 2012.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature: ……………………………………………………………………………….
ABSTRACT

Due to a proliferation of health and social advantages, the popularity of running among the more mature members of the female population is expanding steadily. However, with both age and gender acting as possible risk factors, the incidence of running related injuries and associated conditions is high among this group. With the predominance of debilitating conditions such as knee joint osteoarthritis acting at the knee joint, knowledge of lower limb biomechanics during running will provide insight into possible risk factors and potential management strategies. Three biomechanical and one magnetic resonance imaging study focussed on the specific running gait of mature females and the effect of footwear on lower limb joint kinematics and loading. The biomechanical studies used synchronised ground reaction force and lower extremity kinematic data to provide three dimensional running data and knee moments for each female. The long term study objectives were to 1) determine whether the running gait of mature females could be a predisposing factor to injuries and conditions at the knee joint, and 2) determine if changes in footwear could modify biomechanical variables associated with the development of injuries and overuse conditions among this group.

In Study One, a direct comparison of mature and young female running gait was used to identify any biomechanical movement characteristics specific to the mature group that could predispose to injuries and debilitating conditions. It was found that rearfoot eversion, ankle dorsiflexion, knee internal rotation, and knee external adductor moment that are associated with increased loading of the lateral knee joint and possible medial knee joint osteoarthritis development, were significantly higher among the mature females compared to the younger group (p<0.05).
A common management strategy for running related conditions is the adaption of footwear. Therefore Study Two investigated the effect of a motion control running shoe on the running gait of young and mature females, with a specific focus on the variables associated with knee joint injury and osteoarthritis development. The results showed a motion control shoe to reduce certain biomechanical variables (rearfoot eversion and knee internal rotation) associated with mature female runners. However, one variable (knee external adductor moment) commonly associated with increased medial knee loading and osteoarthritis development, remained high among the mature females.

One specific method used to reduce the knee external adductor moment, is the implementation of a lateral wedge in running shoes. Therefore, Study Three assessed the singular effects of a medial wedge, a lateral wedge, and then the effect of an orthotic combining both interventions on the running gait of mature females. Results demonstrated non significant changes in any kinematic variable with the medial or lateral wedge, although the lateral wedge was shown to reduce the knee external adductor moment. The orthotic intervention however produced significant reductions in rearfoot eversion, knee internal rotation, and knee external adductor moment previously found to be high among mature female runners.

Although all mature females studied had previously been characterised as free from symptoms of knee injury or osteoarthritis, a final investigation was undertaken to assess the condition of the knee joint (Study Four). Magnetic resonance imaging scans of the knee were taken for ten of the mature females. Results indicated that eight out of the ten females had early stage osteoarthritis present, with an average 79% of features presenting on the medial side of the knee joint. Additionally, there was a strong positive correlation between knee osteoarthritis and the knee external adductor moments measured in the ongoing biomechanical study (Study Three).
These studies have shown that the running gait of mature females is significantly different to that of younger female runners, and could predispose the mature group to injury and knee osteoarthritis development. The trends in kinematic adaption to a motion control shoe have shown promising results, and indicated the potential for footwear to reduce rearfoot eversion and knee internal rotation among mature female runners. However, a specific orthotic, incorporating both medial and lateral support has been found to reduce biomechanical features of gait associated with overloading at both the medial and lateral knee joint. The positive correlation between the knee adductor moment and signs of osteoarthritis for an asymptomatic population suggests that the knee adductor moment may be a useful predictive tool for identifying female runners at risk of osteoarthritis development.
CONTENTS PAGE

<table>
<thead>
<tr>
<th>CONTENTS PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>5</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>11</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>13</td>
</tr>
<tr>
<td>PUBLICATIONS AND PRESENTATIONS</td>
<td>19</td>
</tr>
<tr>
<td>LIST OF DEFINITIONS</td>
<td>20</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>22</td>
</tr>
</tbody>
</table>

CHAPTER TITLE

1. **INTRODUCTION**
 2. **REVIEW OF LITERATURE**
 2.1 **Running: An ability, a sport, a risk.**
 2.1.1 Human gait and the ability to run
 2.1.2 Incidence of running related injuries and debilitating conditions
 2.1.3 Location of running related injuries and debilitating conditions: the knee joint.
 2.1.3.1 *Anatomy of the knee joint.*
 2.1.4 Conditions affecting the knee joint.
 2.1.4.1 *Knee joint osteoarthritis*
 2.2 **Mature Female Runners**
 2.2.1 Age related changes of the musculo-skeletal system.
 2.2.2 Age related changes to gait
 2.2.3 Gender differences in gait and injury risk
 2.2.4 Influence of hormones and menopause
 2.3 **Analysis of Human Gait**
 2.3.1 Human Movement
 2.3.2 Three dimensional gait analysis
 2.3.3 Smoothing and filtering kinematic data
 2.3.4 Errors in kinematic assessment
 2.3.4.1 *Reliability, repeatability and accuracy*
 2.4 **Kinematic Movement Data**
 2.4.1 Assessment of joint centres and angles
 2.4.2 Ankle motion: Dorsiflexion/Plantarflexion
 2.4.3 Subtalar joint motion: Eversion and inversion
 2.4.4 Motion of the foot: Abduction/adduction
 2.4.5 Knee Joint Motion
 2.4.5.1 *Sagittal plane movements: flexion/extension*
 2.4.5.2 *Frontal plane motion: Knee abduction/adduction*
 2.4.5.3 *Transverse plane motion: Knee internal rotation*
 2.5 **Kinetic Analysis**
 2.5.1 The ground reaction force
 2.5.2 Force platform accuracy and targeting
 2.6 **Joint Moments**
 2.6.1 Anthropometry
 2.6.2 Joint Forces
 2.6.2.1 *In-vivo measurements*
 2.6.2.2 *External measurement of joint forces*
<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.3</td>
<td>Joint moments</td>
<td>75</td>
</tr>
<tr>
<td>2.7</td>
<td>Knee Joint Stiffness</td>
<td>78</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Introduction to stiffness</td>
<td>78</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Knee contribution to overall leg stiffness</td>
<td>80</td>
</tr>
<tr>
<td>2.8</td>
<td>Muscle Strength</td>
<td>82</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Skeletal muscle structure and function</td>
<td>82</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Quadriceps Femoris Muscle</td>
<td>83</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Muscle strength</td>
<td>85</td>
</tr>
<tr>
<td>2.9</td>
<td>Footwear</td>
<td>87</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Shoe design and function</td>
<td>87</td>
</tr>
<tr>
<td>2.10</td>
<td>Summary of literature review and general thesis rationale</td>
<td>89</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Long term study objective</td>
<td>90</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Scope and boundaries of the study</td>
<td>90</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Study Overviews</td>
<td>91</td>
</tr>
<tr>
<td>2.10.3.1</td>
<td>Study One</td>
<td>91</td>
</tr>
<tr>
<td>2.10.3.2</td>
<td>Study Two</td>
<td>91</td>
</tr>
<tr>
<td>2.10.3.3</td>
<td>Study Three</td>
<td>91</td>
</tr>
<tr>
<td>2.10.3.4</td>
<td>Study Four</td>
<td>92</td>
</tr>
</tbody>
</table>

3. **A BIOMECHANICAL COMPARISON OF THE RUNNING GAIT OF MATURE AND YOUNG FEMALES.**

3.1 **Introduction**

3.1.1 Running and the Risk of Injury | 93 |
3.1.2 Mature Female Runners and Injuries	94
3.1.3 Biomechanics of Motion and Injury Risk	95
3.1.3.1 Ground reaction force variables and injury risk	95
3.1.3.2 Subtalar joint motion and injury risk	97
3.1.3.3 Sagittal plane ankle motion and injury risk	99
3.1.3.4 Knee internal rotation and injury risk	101
3.1.3.5 Q-angle and injury risk	102
3.1.3.6 The knee external adductor moment	104
3.1.4 Study One Intentions and Hypotheses	105

3.2 **Methods**

3.2.1 Participation Selection | 106 |
3.2.2 Motion Analysis and Data Capture	107
3.2.3 Kinematic and Kinetic Variables	111
3.2.3.1 Joint moment calculation	113

3.3 **Results**

3.3.1 Participant information and analyses of KOOS assessment | 114 |
3.3.2 Assessment of biomechanical variables during running gait	117
3.3.2.1 Standing Q angle assessment	118
3.3.2.2 Ground reaction force variables	119
3.3.2.3 Rearfoot eversion angle	120
3.3.2.4 Knee internal rotation Angle	122
3.3.2.5 Peak ankle dorsiflexion angle	124
3.3.2.6 Correlation of Koos Scores with kinematic data	126
3.3.2.7 Knee joint moments throughout the stance phase of running gait	127

3.4 **Discussion**

3.4.1 Aims and Hypothesis | 129 |
3.4.2 KOOS Results
3.4.3 Kinetic Variables: Peak impact force and loading rates
3.4.4 Kinematic Variables and Risk of injuries and overuse conditions
 3.4.4.1 Standing Q angle data
 3.4.4.2 Kinematics during running
3.4.5 Knee joint moments
3.4.6 Limitations

3.5 Conclusion

3.6 Progression and further research
 3.6.1 Summary of background

4 THE INFLUENCE OF MOTION CONTROL SHOES ON THE RUNNING GAIT OF MATURE AND YOUNG FEMALES
4.1 Summary of previous study findings and conclusions
4.2 Introduction and review of literature
 4.2.1 Incidence of Running Injuries among mature females
 4.2.2 Excessive rearfoot eversion, knee internal rotation and loading rates during running
 4.2.3 Knee flexion and injury risk
 4.2.4 Knee abduction angle and injury risk
 4.2.5 Knee joint stiffness
 4.2.5.1 Laxity
 4.2.5.2 Joint stiffness
 4.2.5.3 Methods of assessing stiffness
 4.2.5.4 Knee joint stiffness, osteoarthritis and injuries
 4.2.6 Quadriceps Strength
 4.2.6.1 Factors influencing muscle strength
 4.2.6.1.1 Gender
 4.2.6.1.2 Age
 4.2.6.2 Quadriceps strength, gait and injury
 4.2.6.3 Assessing Quadriceps Femoris strength
 4.2.7 The Influence of Footwear
 4.2.7.1 Cushioning properties in footwear
 4.2.7.1.1 Footwear and Loading rates
 4.2.7.2 The motion control effect
 4.2.7.3 Footwear and the Knee External Adductor Moment
 4.2.7.4 The comfort of footwear
 4.2.8 Aims and Hypotheses
4.3 Methods
 4.3.1 Participants and KOOS
 4.3.2 Test Running Shoes
 4.3.3 Motion Analysis and Force Plate Assessment
 4.3.4 Static Assessment
 4.3.5 Analysis of Running Gait
 4.3.5.1 Knee joint moment arm assessment
 4.3.5.2 Knee joint stiffness
 4.3.5.3 Muscle strength assessment
4.4 Results
 4.4.1 KOOS results
 4.4.2 Kinematic results
4.4.2.1 Significant Kinematic Results 189
4.4.2.1.1 Rearfoot Eversion 191
4.4.2.1.2 Knee Internal Rotation 192
4.4.2.1.3 Knee Abduction Angle 192
4.4.2.2 Non-significant Kinematic Results 192
4.4.3 Kinetic Results 194
4.4.4 Peak Knee External Adductor Moment and Moment Arm 196
4.4.5 Knee Joint Stiffness 199
4.4.6 Quadriceps Muscle Strength 201
4.4.7 Summary of results and overall findings 203

4.5 Discussion 204
4.5.1 Hypothesis One: A controlled neutral shoe 205
4.5.1.1 Kinematic differences in the running gait of mature and young females in a controlled neutral footwear condition 205
4.5.1.2 Kinetic differences in running biomechanics between mature and young females 211
4.5.1.3 Biomechanical similarities between mature and young female runners 213
4.5.1.4 Knee joint stiffness 216
4.5.2 Hypothesis Two: A motion control shoe 218
4.5.2.1 Effectiveness of a motion control shoe to alter kinematics during running 218
4.5.2.2 Additional factors influencing the effectiveness of a motion control shoe 222
4.5.3 Hypothesis Three: The knee external adductor moment 223
4.5.4 Hypothesis four: Muscle strength 225

4.6 Conclusion and future direction 228
4.6.1 Future Research and Intervention shoe 228

5. THE EFFECT OF A LATERAL WEDGE AND ARCH SUPPORT ORTHOTIC ON THE RUNNING BIOMECHANICS OF MATURE FEMALES 231
5.1 Introduction and Review of Literature 231
5.1.1 Review of previous study findings and conclusions 231
5.1.2 Rearfoot eversion, knee internal rotation and forefoot abduction 231
5.1.3 The knee external adductor moment, medial knee joint loading and osteoarthritis. 233
5.1.4 The effect of footwear on the knee external adductor moment 235
5.1.5 Aims and Hypotheses 238
5.2 Methods 239
5.2.1 Pilot Study 239
5.2.2 Participant Selection and KOOS 240
5.2.3 Test Conditions 241
5.2.4 Experimental Procedure for Assessment of Running Gait 244
5.2.4.1 Marker Placement and Static Trial 245
5.2.4.2 Gait Analysis 245
5.2.5 Three-Dimensional Data Analysis 246
5.3 Results 248
5.3.1 KOOS Scores and Somnio Line-Up Assessment Outcomes 248
5.3.1.1 KOOS Results 248
5.3.1.2 Somnio Line Up Device Results 251
5.3.2 Kinematic results during stance phase of running gait

5.3.2.1 Ankle/Subtalar joint
5.3.2.1.1 Rearfoot eversion
5.3.2.1.2 Foot abduction
5.3.2.1.3 Ankle Dorsiflexion

5.3.2.2 Knee joint
5.3.2.2.1 Knee Flexion
5.3.2.2.2 Knee Abduction (varus)
5.3.2.2.3 Knee Internal Rotation

5.3.3 Knee Moments: the external knee adductor moment and moment arm
5.3.3.1 Regression analysis between moment and moment arm length

5.4 Discussion

5.4.1 Initial Assessments: KOOS and Somnio Line-Up Device
5.4.1.1 KOOS Outcome
5.4.1.2 Arch height and pronation: Somnio Line up device

5.4.2 Biomechanical movement patterns during running
5.4.2.1 Selection of medial and laterally inclined wedge height
5.4.2.2 Medial wedge
5.4.2.2.1 Ankle/Subtalar joint kinematics
5.4.2.2.2 Knee joint kinematics and moments
5.4.2.3 Lateral wedge
5.4.2.3.1 Ankle-Foot complex
5.4.2.3.2 Knee joint kinematics and moments
5.4.2.4 Orthotic footwear condition; lateral wedge and medial support
5.4.2.4.1 Orthotic induced kinematic changes at the ankle/subtalar joint
5.4.2.4.2 Orthotic induced changes in kinematics at the knee joint
5.4.2.4.3 Effect of orthotic intervention on the knee external adductor moment

5.5 Conclusion: Positive effect of combined medial and lateral support

6 BIOMECHANICAL INDICATIONS OF MEDIAL KNEE OSTEOARTHRITIS AND EVIDENCE OF BONE CHANGES ON MAGNETIC RESONANCE IMAGING

6.1 Introduction and Review of Relevant Literature
6.1.1 Longitudinal changes to biomechanics for six consistent mature female participants.
6.1.2 Osteoarthritis; a debilitating condition of the knee joint
6.1.2.1 The Knee Joint and Articular (Hyaline) Cartilage
6.1.2.2 Knee Joint Osteoarthritis Development
6.1.3 Epidemiology of Osteoarthritis
6.1.4 Biomechanical alignment associated with knee osteoarthritis
6.1.5 Magnetic Resonance Imaging as a method to identify early stage osteoarthritis
6.1.6 Aims and Hypotheses

6.2 Methods
6.2.1 Participant Selection
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Summary table illustrating the specific running gait variables for analysis.</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Presentation of mean group subject information, including KOOS scores.</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Results from a one-way ANOVA for group mean KOOS scores.</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Statistical output from regression tests between KOOS score for each subscale and age.</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Table displaying kinematic and kinetic group means for each biomechanical variable assessed during gait.</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Tabular presentation of results from a regression analysis between KOOS score and kinematic variables.</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Group means for the knee joint moments (Nm/kg) and occurrence times (s) calculated throughout the stance phase of running gait. All moments presented are normalised for body weight.</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Demographic information for the two groups, mature and young females, including KOOS scores.</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Description of key running technologies of both Adidas shoes.</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Kinematic results for both conditions among the mature and young female runners.</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Tables presenting p values from the variables showing statistically significant differences.</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Statistical output from a two-way ANOVA for the effect of age and footwear conditions.</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Mean knee external adductor moment data, displaying peak values and moment arm length.</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Mean data for knee joint stiffness for mature and young participants in the neutral footwear condition.</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Mean torque generated by the quadriceps for each participant, averaged from three trials.</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Participant information table including 10 km run times and KOOS scores.</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Summary of kinematic values produced by 20 mature female runners.</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Statistical output illustrating results from regression analyses between each variable and age.</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Summary of group means and occurrence time for peak knee external adductor moment (Nm/kg) and moment arm length (m).</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Statistical analysis of difference in knee external adductor moment (a) and moment arm length (b) between footwear conditions.</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Results from a regression analysis of peak moment and moment arm length.</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Mean rearfoot eversion and knee internal rotation angle produced by the 6 participants within each biomechanical investigation.</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Table displaying participant information, including date of birth, years of menopause, and the hormone replacement therapy.</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Tables illustrating qualitative results of the MRI scans, with the location of osteophytes (a), bone oedema (b), beaked tibial spines and (c) subarticular cysts identified for each female.</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>Table displaying quantified osteoarthritis results alongside previously obtained knee external adductor moments.</td>
</tr>
<tr>
<td>Figure 6.5</td>
<td>Results from correlation coefficient test and regression analysis tests for MRI results with age, KOOS results, and the knee external adductor moment (KEAM).</td>
</tr>
<tr>
<td>FIGURE.</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Percentage distribution of activity-related musculo-skeletal injuries isolated to the lower extremity. Adapted from Hootman et al., (2002).</td>
</tr>
<tr>
<td>Figure 2.2.</td>
<td>Anterior deep view of the knee joint. Source: Adapted from Totora and Grabowski, (2003).</td>
</tr>
<tr>
<td>Figure 2.3.</td>
<td>Effect of joint compression on articular cartilage; a) excessive compressive loading causes b) tension stress on the collagen fibres and matrix. Source: adapted from Norris, (2004).</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Illustration of the Q angle; calculated between the line of quadriceps and the vertical line through the mid point of the patella. Source: Adapted from Schumacher, (2012).</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Process of movement produced through transmission of signal from the central nervous system. Source: Adapted from Vaughn, Davis & O’Connor, (1999).</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Joint coordinate system for the knee. Source: Adapted from (Robertson, Caldwell, Hamill, Kamen, & Whittlesey, 2004, p. 52).</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Right limb illustrating the bones at the ankle joint. Source: Adapted from Totora & Grabowski (2003) p.236.</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Position of the right subtalar joint in weight bearing, showing supination (a), neutral (b) and pronation (c). Source: Adapted from Norris (2004) p.182.</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Abduction and adduction of the right foot. Source: Adapted from The Complete Foot Health Clinic, (2003).</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Illustration of the valgus and varus position of thee knee joints. Source: adapted from myorthosports.com.</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Oblique view of the femur and tibia with the tibial plateau shaded (a) and superior view of the knee joint highlighting the position of the tibial plateau (dotted line) on the condyles during flexion and extension (b). Source: Adapted from Nordin & Frankel, (1989) p.121.</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Diagram of the body during the stance phase of gait, illustrating the three components of ground reaction force (dotted line illustrates position of second leg).</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Sample running ground reaction force traces for the rearfoot striker; illustrating the three components of ground reaction force. Source: adapted from Richards, (2008).</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Free body diagram of the foot and ankle complex, illustrating the forces acting at the joint during a static position. Source: Kirtely (2006) pp.122.</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>A spring-mass model representative of a single linear leg spring, illustrating “mass” equivalent to body mass or force (σ), deformation of material (γ), and leg spring (k). Source: Adapted from Butler et al., (2003).</td>
</tr>
<tr>
<td>Figure 2.16</td>
<td>Image displaying microstructure of a single skeletal muscle fiber. Source: Hargreaves & Hawley, (2003).</td>
</tr>
<tr>
<td>Figure 2.17</td>
<td>Image of the muscles acting around the knee joint, including the main contributors of the quadriceps femoris muscle (Source: Totora & Grabowski, 2003).</td>
</tr>
<tr>
<td>Figure 2.18</td>
<td>Components of the running shoe. Source: Adapted from Norris, 2004 p. 292.</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Annotated illustration of marker placement along the right lower limb; both anterior and posterior views. Not to scale.</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Sample vertical force time history. Data taken from subject 19, trial 5.</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Quadriceps angle calculation.</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Line graph illustrating average KOOS scores.</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Graphical representation of the association between individual KOOS scores and age (mature females).</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Bar chart illustrating mean Q angle data for the two groups, including standard deviations.</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Sample vertical force ground reaction time history produced by Subject 19 (young) (FzBW).</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Sample bar graph illustrating mean peak vertical force (Fz), peak loading rate (LR), and significance (p) values for both groups. Data scaled to body weight.</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Graphical representation of the ankle inversion/eversion angle during ground contact for subject 14 performing 10 running trials.</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Bar graph illustrating significant difference in rearfoot eversion angle between the two groups.</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Bar graph illustrating significant difference in knee internal rotation angle between the two groups.</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Graphical representation of knee internal rotation angle during ground contact produced by one sample subject from each group over one single</td>
</tr>
</tbody>
</table>
running trial (Trial 5).

Figure 3.13 Ankle dorsiflexion angle throughout the stance phase of gait. Mean data for subject 5 (mature) and subject 9 (young).

Figure 3.14 Dorsiflexion angle traces produced by participant 7 (mature).

Figure 3.15 Bar graph illustrating individual mean data for peak ankle dorsiflexion angle throughout the stance phase of gait.

Figure 3.16 Correlation between KOOS score and rearfoot eversion angle (a), and knee internal rotation angle (b) among mature females.

Figure 3.17 Correlation between KOOS score and knee external adductor moment.

Figure 3.18 Knee external adductor moment acting on the right knee joint. Source: Adapted from Riskowski, Dufour & Hannan, Current Opinion in Rheumatology, (2011).

Figure 4.1 Load (R) acting through the centre of the knee joint in a neutrally aligned knee. Source: Maquet, (1984).

Figure 4.2 Image of knee joint stiffness in the sagittal plane of movement. Torsional stiffness calculated as the gradient of the best fit line through the moment-angle curve, from maximum flexion moment to extension moment. Graph created from sample data.

Figure 4.3 Illustration of the foot-ankle complex at heel strike, indicating the ground reaction force acting posterior to the ankle joint, and the action of the tibialis anterior muscle. Image adapted from Kirtley (2006).

Figure 4.4 Diagram of the knee external adductor moment acting as a combination of the ground reaction force and the distance to the knee joint centre. Adapted from Russell et al., 2010.

Figure 4.5 Lateral wedge added to decrease moment arm length at the knee joint, and reduce the knee external adductor moment. Adapted from Russell et al., 2010.

Figure 4.6 Image of testing laboratory including force platform, timing gates, and the cameras in view.

Figure 4.7 Diagram of the components for moment arm calculation at the right knee. Image of the lower leg adapted from Hunt et al., (2006).

Figure 4.8 Illustration of the lower limb positioning during running, and the components of knee joint stiffness.

Figure 4.9 Sample moment graph illustrating the sagittal plane knee moment over the stance phase of gait (subject 10, mature).

Figure 4.10 Sample graph illustrating the knee angle throughout the stance phase of...
running gait (mean data, subject 6 mature).

Figure 4.11 Illustration of a participant seated on the dynamometer, indicating knee extension movement.

Figure 4.12 Bar graphs illustrating difference in rearfoot eversion (a), knee internal rotation (b) and knee abduction angle (c) between mature and young females in both footwear conditions.

Figure 4.13 Rearfoot eversion graph illustrating mean data from Subjects 6 (y) and 9 (m) in both footwear conditions.

Figure 4.14 Graph illustrating mean data for ankle dorsiflexion (a) and knee flexion (b).

Figure 4.15 Sample ground reaction force-time history for participant 19 (m) in neutral (a) and motion control (b) footwear conditions.

Figure 4.16 Sample knee external adductor moment for a mature and young female performing one running trial in the neutral footwear condition.

Figure 4.17 Sample graph illustrating mean knee abduction angle and mean knee external adductor moment trace produced by Subject 10 (mature) in the neutral condition.

Figure 4.18 Moment arm length calculated throughout the stance phase of gait for Subject 10 in the neutral condition.

Figure 4.19 Sample moment-angle graph for the knee joint during running trials performed by a mature participant (4) in the neutral condition.

Figure 4.20 Sample trace of the sagittal plane knee moment and the knee angle produced by a mature participant (10) in the neutral condition.

Figure 4.21 Scatter diagram illustrating relationship between muscle strength and age (a) and muscle strength and body mass (b) for the mature females.

Figure 4.22 Comparison of the normal and varus aligned knee during gait.

Figure 5.1 The external adductor moment acting at the knee joint (right) compared with “normal” alignment (left). View from the front.

Figure 5.2 Illustration of the trainers, foot beds and wedged inserts added to the shoes. Source: Somnio FEAT system, Inc, 2010.

Figure 5.3 Somnio Line-Up Device Procedure, as adhered to in this study. (Somnio Inc, 2010).

Figure 5.4 Annotated Image of the Somnio Line Up Measuring device and different foot beds (Somnio Inc, 2010).
Figure 5.5 Image of the orthotic intervention, incorporating arch support and lateral wedge technology. Source: Salfordinsole™

Figure 5.6 Line graph illustrating average KOOS results from the mature female runners.

Figure 5.7 Line graph illustrating KOOS scores from mature female runners over three years.

Figure 5.8 Line graph illustrating KOOS scores for the consistent 6 mature female runners over three years.

Figure 5.9 Group mean rear foot angles with changes in footwear condition.

Figure 5.10 Mean rearfoot eversion angle data for neutral and orthotic footwear conditions. Subject 10.

Figure 5.11 Scatter diagram illustrating linear relationship between peak rearfoot eversion angles and age among mature female runners.

Figure 5.12 Annotated diagram of the foot abduction angle calculated. Source (foot): Microsoft Office Clip Art (2011).

Figure 5.13 Scatter diagram illustrating positive relationship between foot abduction and age.

Figure 5.14 Mean peak dorsiflexion angle time history produced by subject 7 in all four conditions.

Figure 5.15 Line graph illustrating mean peak knee flexion angle produced by the mature female runners in all four conditions.

Figure 5.16 Knee flexion graph illustrating mean data for Subject 12.

Figure 5.17 Diagram illustrating the knee abduction angle calculated.

Figure 5.18 Line graph illustrating difference in peak knee abduction between the four footwear conditions.

Figure 5.19 Knee abduction angle line graph produced by Subject 20 in the neutral and orthotic conditions.

Figure 5.20 Line graph illustrating a significant difference between peak knee internal rotation between the four footwear conditions.

Figure 5.21 Knee internal rotation graph representing mean data for the four footwear conditions (Subject 5).

Figure 5.22 Sample knee external adductor moment graph, illustrating the peak external adductor moment. Data taken from Subject 9.
Figure 5.23 Graphical illustration of relationship between peak knee joint moment and moment arm length produced by each female in each footwear condition.

Figure 6.1 Knee external adductor moment (Nm/kg) produced by six mature participants across the three biomechanical investigations.

Figure 6.2 Adapted simplistic illustration of the right knee displaying osteoarthritic changes. Source: sportsinjuryclinic.net.

Figure 6.3 Deep anterior coronal view of the left knee joint illustrating the distinction of medial to lateral compartments of the femur and tibia. Picture (knee) taken from ClipArt, Office Word 2007

Figure 6.4 Sample MRI scan of the right knee in the sagittal plane. Diagram highlights the method of sectioning of the femur, tibia and patella, for osteoarthritis evaluation. MRI scans taken from the pilot study.

Figure 6.5 (a) Sample slice (28) acquired in the sagittal view illustrating the femur, tibia and patella. Osteophyte highlighted on the posterior tibia (Participant 1). (b) Sample slice (28) acquired in the sagittal view illustrating the femur, tibia and patella. No features were identified (Participant 3).

Figure 6.6 Slice acquired in the sagittal view highlighting bone oedema on the posterior patella (Participant 1).

Figure 6.7 Sample graph illustrating the knee external adductor moment produced during one running stride. Stance phase and measured peak are highlighted.

Figure 6.8 Scatter Diagrams illustrating the relationship between osteoarthritis present at the knee joint and age (a), KOOS score (b) and the knee external adductor moment (c) among nine mature females.

Figure 6.9 Correlation of MRI scores produced on day 1 compared with a second assessment on day 2.
PUBLICATIONS AND CONFERENCE PRESENTATIONS

Publications.

Presentations.

<table>
<thead>
<tr>
<th>TERMINOLOGY</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular Velocity</td>
<td>Rate of change of angular displacement.</td>
</tr>
<tr>
<td>Calibration</td>
<td>Comparison of a measurement to a standard of known accuracy.</td>
</tr>
<tr>
<td>Gait</td>
<td>The pattern of movement of limbs during locomotion.</td>
</tr>
<tr>
<td>Ground Reaction Force</td>
<td>The force exerted by the ground on to a body.</td>
</tr>
<tr>
<td>Injury</td>
<td>Damage to soft tissue or bone of the musculoskeletal system.</td>
</tr>
<tr>
<td>Insole</td>
<td>See footbed. Can be altered to increase cushioning.</td>
</tr>
<tr>
<td>Joint Stiffness</td>
<td>Relationship between the deformation of a body and a given force.</td>
</tr>
<tr>
<td>Moment</td>
<td>A combination of the force applied to a segment, and the distance to the centre of rotation.</td>
</tr>
<tr>
<td>Motion Capture System</td>
<td>Combination of cameras and force plates used to assess human motion.</td>
</tr>
<tr>
<td>Muscle Strength</td>
<td>Propensity of a muscle to move a limb about a joint.</td>
</tr>
<tr>
<td>Orthotic</td>
<td>Orthopaedic device designed to support or alter the alignment of the limb or torso. Lateral wedge</td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td>A multifactorial degenerative joint disease.</td>
</tr>
<tr>
<td>Overuse/Debilitating Condition</td>
<td>Degeneration of the bone or articular cartilage.</td>
</tr>
<tr>
<td>Plane of Movement</td>
<td></td>
</tr>
<tr>
<td>Frontal</td>
<td>Longitudinal plane that divides the body into anterior and posterior sections.</td>
</tr>
<tr>
<td>Sagittal</td>
<td>Vertical plane that divides the body into medial and lateral sections.</td>
</tr>
<tr>
<td>Transverse</td>
<td>Horizontal plane that divides the body into superior and inferior sections.</td>
</tr>
<tr>
<td>Smoothing</td>
<td>Removal of high frequency noise from a data set.</td>
</tr>
</tbody>
</table>
Footwear Variables

Footbed Manufacturer designed lining of shoe.
Orthotic Intervention Full length lateral wedge with medial arch support.
Wedge 6mm (medial/lateral) wedge placed under footbed.

Variables of Gait

Abduction Movement of a limb away from the midline of the body (frontal).
Adduction Movement of a limb towards the midline of the body (frontal).
Eversion Lateral tilt of the rearfoot on the oblique axis of the subtalar joint (frontal).
Extension Movement of a joint causing an increased angle between two segments (sagittal).
Flexion Movement of a joint causing a decreased angle between two segments (sagittal).
Inversion Medial tilt of the rearfoot on the oblique axis of the subtalar joint (frontal).
Rotation Rotation of a segment or joint about a rotation axis (transverse).

Abbreviations

KOOS Knee Osteoarthritis Observation Survey
MRI Magnetic Resonance Imaging