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Abstract

Over the past 40 years, coral cover has reduced by as much as 80%. At the same time,

Coral Reefs are coming under increasing threat from hurricanes, as climate change is

expected to increase the intensity of hurricanes. Therefore, it has become increasingly

important to understand the effect of hurricanes on a coral population.

This Thesis focuses on the reef-building coral Montastraea annularis. This species

once dominated Caribbean Coral Reefs, but is fast being replaced by faster growing

more opportunistic species. It is important that the underlying dynamics of the decline

is understood, if managers stand any chance of reversing this decline.

The aim of this Thesis is to investigate the effect of hurricane activity on the dynamics

of the reef-building coral Montastraea annularis. To achieve this the Integral Projection

Model (IPM) method was adopted and the results compared to those produced using the

more traditional method of Population Projection Matrix (PPM) method.

The models were fitted using census data from June 1998 to January 2003, which

described the area of individual coral patches on a sample of ramets on Glovers Reef,

Belize. Glovers Reef is a marine reserve that lies 30km off the coast of Belize and 15km

east of the main barrier reef. Three hurricanes struck Glovers Reef during the study:

Hurricane Mitch (October 1998), Hurricane Keith (September 2000) and Hurricane Iris

(October 2001).

The data have been divided by two different methods in order to test two research

questions, firstly if the initial trauma following a hurricane affects the long term dynamics

of a population and, secondly, if the dynamics exhibited during a hurricane varied with

hurricane strength.

In this Thesis five main results are shown:

1. All models for all divisions of data are in long term decline.

2. As initial trauma increased, the long term growth rates decreased, conversely the

short term extremes increased.

3. Fragmentation is more likely as patch size increased and more likely under stronger

hurricanes.

4. Integral Projection Modelling painted a similar picture to Population Projection

Matrix models and should be a preferred method of analysis.
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5. Interaction of the IPMs can be used to model the changing occurrence of hurricanes

under climate change. It is shown that with increased intensity, the population

could become extinct 6.3 years sooner.

This research is the first step in modelling coral patch populations by the IPM

method. It suggests possible functional forms and compares the results with the PPM

method. Further research is required into the biological functions which drive fragmen-

tation, the method by which large patches divide into groups of smaller patches. The

conclusions from this Thesis add to the growing body of knowledge concerning the re-

sponse of coral species to hurricanes, focusing on the importance of understanding patch

dynamics, in order to understand colonial dynamics.
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Chapter 1

Introduction

1.1 Research Background

1.1.1 Coral Reefs

Coral Reefs are diverse and complex ecosystems (Knowlton, 2001) that occupy

under 1% of the world’s oceans (VanOppen and Gates, 2006). They are formed

through the excretion of calcium carbonate from reef-building corals, which pro-

vides the structure that other species can live off of (Spalding et al., 2001).

To exist coral reefs require a sea surface temperature of between 18 and 36oC,

with an optimum range of 26 to 28oC (Hubbard, 1997). This means that most

coral reefs are located between the Tropics of Cancer and Capricorn (Sheppard

et al., 2009) (see Figure 1.1). Most coral reefs are located on the eastern shores of

continents, due to the upwelling of cold water on the western sides of continents

(Glynn and D’Croz, 1990).

It is estimated that for every square kilometre of a coral reef the economic value

is between $100, 000 and $600, 000 every year (UNEP-WCMC, 2006). This comes

from the value of commercial fisheries, tourism and other benefits from the reefs.

The value of tourism to the reefs can make up over 1
3

of the foreign earnings of

small countries like the Seychelles and the Maldives (Sheppard et al., 2009). In

the USA it was estimated that commercial fisheries contribute $100 million dollars

per year to the American economy, whilst tourism in the Florida Keys from the

22
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Figure 1.1: The global locations of coral reefs, where a red dot indicates a coral
reef. Source: NOAA

visitors to the reefs is estimated to be $1.2 billion per year (NOAA, 2011). As well

as this obvious economic contribution, reefs also provide a vital source of food to

millions of people (Birkeland, 1997). A coral reef may provide natural breakwaters

to coastal communities from storms such as hurricanes.

Between 1 and 9 million species live in association with coral reefs, making coral

reefs as diverse as terrestrial rainforests (Knowlton, 2001). This means that coral

reefs contribute substantially to global diversity (Sheppard et al., 2009), despite

only occupying 1% of the worlds oceans (VanOppen and Gates, 2006). However

much of this diversity does not come from the corals themselves but instead from

the species that are living in association with them (Knowlton, 2001).

1.1.2 Montastraea annularis

Montastraea annularis is a reef-building coral, which once dominated the Caribbean

reefs (Jackson, 2001). This species has been in decline, being replaced by faster

growing opportunistic species (Jackson, 2001). This decline is significant as reef-

building species are more resistant to hurricanes, but reef-building corals have

low recruitment and low growth rates (Hughes, 1994). As a reef-building coral

Montastraea annularis has contributed to the reef-framework over the past 20

million years (Szmant, 1991).

A colony of M. annularis is made up of columnar structures known as ramets
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Figure 1.2: A colony of Montastraea annularis, circled is an individual ramet.
Source: Nicola Foster.

(Graus and Macintyre, 1982) (Figure 1.2). These ramets vary in size and range

from 2 to 763cm2 in this data set, with the mean size of 37.7cm2. Live tissue is

restricted to the upper surface of these ramets, known as coral patches. On the

upper surface coral patches compete with algal patches for both space and light

(Nugues and Bak, 2006).

1.1.3 Hurricanes

Hurricanes are intense tropical storms, where strong winds rotate around an inner

‘eye’. If wind speeds exceed 33ms−1 then the tropical storm is classified as a

hurricane (Eichler, 1996). Hurricanes are classified according to the Saffir-Simpson

scale by the maximum wind strength. This ranges from a Category 1 hurricane for

wind speeds between 33 and 42ms−1, to a Category 5 hurricane for wind speeds

greater than 70ms−1. Hurricanes can last for between 7 and 10 days (Lugo et al.,

2000) and can move between 16 and 24 km per hour (Barry and Chorley, 2003).

Each year there are around 80 tropical storms of which 10 are found in the

North Atlantic basin (Lugo et al., 2000). Of these 10 on average 6 develop into

hurricanes (Lugo et al., 2000). Over 80% of hurricanes in the Caribbean occur
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Figure 1.3: The location of Glovers Reef (Wildlife Conservation Society, 2011).

between August and October.

Hurricanes form where there are sustained sea surface temperatures of over

26oC (Lugo et al., 2000). This means that hurricanes form near the equator, and

recurl poleward (Lugo et al., 2000). This means that the location of hurricanes and

coral reefs directly intersect.

1.1.4 Data Set

Glovers Reef is one of seven marine reserves on the Belize Barrier Reef. Glovers

Reef lies 30km off the coast of Belize and 15km east of the main Barrier Reef (Figure

1.3). The Belize Barrier Reef extends from Mexico in the North to Guatemala in the

South (United Nations Educational and Organisation, 2011) and it is dominated

by the coral Montastraea annularis.

Between June 1998 and January 2003, three hurricanes passed close to Glovers

Reef. Namely Hurricanes Mitch, Keith and Iris. Hurricane Mitch which occurred

in October 1998, was the strongest as a Category 5 hurricane which left 2.7 million

people homeless and a death toll of 19,325. Hurricanes Keith and Iris were Cate-

gories 3 and 4 respectively which occurred in September 2000 and October 2001.
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Time Step Date

1 June 1998
2 October 1998
3 December 1998
4 June 1999
5 June 2000
6 May 2001
7 May 2002
8 January 2003

Table 1.1: The dates at which the colonies were monitored on Glovers Reef.

An alternative measure of hurricanes is the Hurricane Index (HI) (Allison et al.,

2003). This is a measure of the maximum wind speed alongside the distance that

it passes from a given location, in this case Glovers Reef, where W is the mean

wind speed and d the distance from Glovers Reef then the HI is calculated as:

HI =
∑ W 2

ln(d)
. (1.1)

The measures for Glovers Reef were given in Mumby et al. (2005) for the total

hurricane activity for each year of the study. This resulted in a HI for Hurricane

Mitch of 2781, Keith of 2678 and Iris of 1557. In comparison in 1999 the HI was

69 and for both 2002 and 2003 of 0.

The data set was collected by the Marine Spatial Ecology Lab at the University

of Exeter in particular Prof. Peter Mumby and Dr. Nicola Foster. They monitored

two sites at Glovers Reef, Long Cay and Middle Cay, where 20 colonies were selected

at random and they monitored growth, fragmentation and extinction of patches on

existing, upright colonies of M. annularis. They were sampled at 8 non-uniformally

spaced times over a 4.5 year period (Table 1.1). At each time step the colonies

were videoed and analysed to determine the live area of coral and algal patches

(see Mumby et al. (2005)). In this Thesis, 262 ramets were randomly selected

from a total of 30 colonies, whilst the majority came from 3 colonies this did not

significantly alter the results.
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1.2 Aims and Objectives of Thesis

The aim of this Thesis is to investigate the effect of hurricane activity on the

dynamics of the reef-building coral Montastraea annularis. In order to achieve

this, three research objectives were determined. Firstly, to develop the modelling

techniques which are used to model coral populations and apply these to the given

data set. Secondly to analyse these models in order to investigate two questions:

1. If the initial trauma following a hurricane determines the long-term dynamics

of a coral patch population.

2. If the dynamics exhibited during a hurricane varied with strength.

The final objective aimed at investigating the impact of climate change on the pro-

jection models, in particular investigating the impact of changing hurricane activity

due to climate change. These three objectives were selected as they investigated

both the modelling techniques as well as the future behaviour that could be exhib-

ited on the reef. Each objective is further broken down into a total of ten research

questions which will be answered in this Thesis (see Figure 1.4).
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Research Question Chapters answering the question

RQ1: What are the current techniques used to 2, 3, 4 and 7
apply projection models to coral populations
RQ2: How can Montastraea annularis be 2, 3, 4, 5 and 7

modelled by projection models?
RQ3: What modelling issues arise from applying 2, 3, 4, 5, 6 and 7

projection models to Montastraea annularis
RQ4: How well do the results of different 3, 5 and 6

projection models compare?
RQ5: What current methods of analysis exist? 3

RQ6: Does initial trauma following a hurricane 4, 5 and 6
effect the dynamics of a population?

RQ7: Do the dynamics exhibited during a 7 and 10
hurricane vary with hurricane strength?

RQ8: What are the best management strategies 8 and 10
for a Montastraea annularis population

RQ9: How does a change in hurricane activity 9 and 10
effect projection of population dynamics?

RQ10: Will management improve the projected 9 and 10
population dynamics under climate change?

Table 1.2: A summary of the research questions tackled in this Thesis and the
Chapters that tackle each question.

1.3 Structure of Thesis

This Thesis is broken down into four main parts. Part I, which contains the first

three Chapters, include this introduction, a literature review and the mathematical

background to the models built in this Thesis. In Part II of this Thesis, the question

of whether Population Projection Matrices or Integral Projection Models are better

at modelling the M. annularis data set is answered. In Part III, three Integral

Projection Models are built in order to investigate the impact of changing hurricane

activity on the reef as a result of climate change. The final part draws conclusions

on the research carried out in Parts I, II and III in order to answer the research

questions set out in Figure 1.4.

Table 1.2 shows which chapters tackle the different research questions asked in

Figure 1.4. Each Chapter in this thesis contributes in a different way to investigate

the research aims.
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A literature review was carried out to motivate this Thesis and its research

aims. It is divided into three sections reflecting the three different research ob-

jectives of this thesis. It investigates the current analysis of coral populations in

response to hurricanes and will introduce two types of projection models: The

Integral Projection Model (IPM) and the Population Projection Matrix (PPM).

Whilst the literature review motivates the need for this research, Chapter 3 gives

the mathematical background to the models and their methods of analysis, which

underpin the rest of the Thesis. The methods for parameterizing the models are

described in this chapter, alongside a discussion of methods of analysis. These

techniques will be used in Chapters 4, 5 and 7.

The aim of Chapter 4 was to investigate if initial trauma following a hurricane

affected the dynamics of a coral population (RQ6). This chapter builds on work

started in a MMath project (Burgess, 2008) and although the same hypothesis is

tested, the PPMs have been re-parameterized using more sophisticated techniques

and re-analyzed. The PPMs parameterized in Chapter 4 are used in Chapter 5 to

compare the results with parameterized IPMs. The data were divided according

to the relative decline following Hurricane Mitch (Figure 1.5). In this case three

PPMs (Chapter 4) and three IPMs (Chapter 5) were built for three selections of

data (ISevere, IWeak and IMild) to compare the dynamics for different levels of decline.

A discussion of the results and of the different methods used is found in Chapter

6. In this it is concluded that, where possible, Integral Projection Models should

be used to model M. annularis populations.
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The aim of Part III is to investigate the impacts of climate change on the fre-

quency and intensity of hurricanes. This required three IPMs to be built, Chapter

7 gives the behaviour of the coral patches over different hurricane periods found

between October 1998 and January 2003 (AStrong, AWeak and ANo) (Figure 1.5).

It was not possible to use the IPMs parameterized in Chapter 5, as these take an

average of the behaviour from the five time steps post Hurricane Mitch. Instead,

this alternative method of dividing the data allows the projection of the population

under differing hurricane scenarios in Chapter 9.

In addition to building three IPMs in Chapter 7 in order for them to be used

in Chapter 9, this chapter also investigates RQ7. This investigates if the dynamics

exhibited during a hurricane is different when the strength of the hurricanes vary.

In Chapter 8, the Integral Projection Models built in Chapter 7 are used to

suggest possible management strategies, which could be used to increase the growth

rate of coral patches on the reef in periods when there are no hurricane activity.

This is in order to investigate RQ8 on what the best management strategies are

for M. annularis.

It is important to understand the effect that climate change could have upon a

coral population. Chapter 9 investigates how a change in hurricane activity could

directly impact the reef. This is achieved through the use of the Integral Projection

Models built in Chapter 7. The second part of Chapter 9 combines the projections

from the first part of the chapter with the management strategies suggested in

Chapter 8 in order to investigate RQ10, whether under management the forecasted

effect of climate change on the population would change. Chapter 10 discusses

these results, giving possible ways in which these management strategies could be

achieved, and the implications of the extinction times on the reef.

Finally Chapter 11 concludes this thesis by answering all ten research questions

from Figure 1.4, as well as highlighting the main research contributions.



Chapter 2

Literature Review

2.1 Introduction

This chapter contains a literature review that motivates the research aim of this

Thesis, namely:

To investigate the effect of hurricane activity on the dynamics of the reef-building

coral - Montastraea annularis.

It is broken down into two main sections, the first section looks at coral reefs

and hurricanes and the second section investigates the current methods of analysis

adopted to look at the impacts of hurricanes on coral populations. It then goes

on to introduce the Population Projection Matrix (PPM) and Integral Projection

Model (IPM) methods. This chapter concludes by showing how this leads to the

three research aims given in Figure 1.4.

2.2 Coral Reefs and Hurricanes

2.2.1 Montastraea annularis

Montastraea annularis is a reef-building massive coral consisting of large dome-

shaped colonies that are often over 1 m in diameter. Each of these colonies consist

of large columnar shaped branches known as ramets. The live tissue on these

33
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ramets is restricted to the upper surface, known as coral patches. M. annularis is

a slow-growing coral with colony growth rates estimates varying from 0.37cm/year

to 1.6cm/year (Foster et al., 2007). The majority of studies focus on the dynamics

of colonies of this species (for example Hughes (1984) and Edmunds and Elahi

(2007)). The reason for this is because with any large scale destruction of these

colonies, as in disturbances like hurricanes, it may take decades for the colonies to

recover as a result of their slow growth rate. The live coral exists on the upper

surface of the ramets, if there is no live coral located on top of the ramet there is

no way for that ramet or indeed the colony to grow. Therefore, it is vital to gain

an understanding of these small-scale dynamics, as understanding the dynamics on

a patch scale will give a better understanding of the long-term health of a colony.

It is at the patch scale where there is interaction between coral and algal patches.

Coral and algal patches compete on ramets for space and light (Nugues and Bak,

2006). When coral is healthy and unstressed it inhibits the growth of algae and

coral is the dominant species on the reef (McCook et al., 2001). However, when

coral is unhealthy and stressed it cannot inhibit algae growth and reefs are instead

increasingly being dominated by algae (Mumby et al., 2007). There has been a

documented change from reefs being coral-dominated to being algae-dominated

(Hughes, 1994). It is unclear if left untreated what long-term effect this would

have on a reef.

An abundance of colonies of M. annularis is vital to the healthiness of reefs,

but with increasing intensity and frequency of disturbances these colonies are be-

ing replaced by quicker growing branching corals (Jackson, 2001). This decline is

significant to the long-term structure of the reef. Particularly as these reef builders

have low recruitment and low growth rates meaning it could take many decades for

M. annularis colonies to recover to its abundance of 40 years ago (Hughes, 1994).

2.2.2 Coral Reefs

Over the past 40 years, coral cover on worldwide reefs has reduced by up to 80%

(Gardner et al., 2005). It is now thought that 20% of reefs have been destroyed and
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not recovered (Spalding et al., 2001) a further 24% are under immediate threat and

26% under long-term threat (VanOppen and Gates, 2006). It is vital to understand

both the reasons behind this decline and also to be able to forecast behaviour over

the next few decades. The decline has slowed, compared to the rate in the 1980s,

but there is still significant decline on already depleted reefs (Gardner et al., 2003).

The decline in coral reefs has been attributed to the increasing stress that they

face, for example from overfishing (Hawkins and Roberts, 2004; Hughes et al.,

2003); the Diadema antillirum die-off (Lessios et al., 1984; Lessios, 1988; Mumby

et al., 2006b); coral bleaching (Muller and D’Elia, 1997) and hurricanes (Hughes,

1984, 1994). Coral reefs are important to local communities as they provide both

a source of food as well as economic provision (Johannes, 1997; McManus et al.,

2000). However, since the 18th and 19th century, reefs have been overfished as

the demand for food sources have increased and, more recently, as the ability to

export food sources has improved (Hughes, 1994; Jackson, 1997; Pandolfi et al.,

2003). By removing key grazers from the reef it increases the growth of algal

patches (Mumby et al., 2006a), which can cause algal blooms and ultimately result

in algal-dominated reefs (Hughes et al., 2007; Szmant, 2002).

A key transition on Caribbean reefs occurred during the Diadema antillirum

die off in 1983. D. antillirum is a herbivorous sea urchin that inhabits coral reefs

(Lessios et al., 1984) and played a critical role in keeping algal cover low (Carpenter,

1988; Ogden et al., 1973; Sammarco, 1982). From January 1983, more than 93%

of the Caribbean population died in 13 months (Lessios, 1988). The result was an

increase over the next four years in algal cover on Jamaican reefs by 95% and a

coral cover decline of 60% (Hughes et al., 1987). It is said to have played a key role

in reducing the ability of reefs to remain healthy and coral dominated (McManus

and Polsenberg, 2004).

Coral bleaching, caused by an increase in sea surface temperatures of 1− 2oC

above the seasonal average (Brown, 1997), is the releasing of the symbiotic zooxan-

thallae by the host coral. This leaves the white calcium carbonate structure visible,

hence the name attributed to it (Brown, 1997; Glynn, 1993; Hughes et al., 2003;
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Lesser, 1997). Corals can survive for weeks and sometimes months when bleached,

but it affects the structure of the reef (Muller and D’Elia, 1997). Bleaching events

have been observed since the early 1900’s (Edmunds, 1994), but climate change is

believed to have increased the intensity, frequency and distribution of these events

(Brown, 1997; Edmunds, 1994; Hoegh-Guldberg, 1999, 2004).

Coral reefs are now under constant stress from coral bleaching; the D. antillirum

die off and overfishing to name a few. When a reef is then struck by a further dis-

turbance, like a hurricane, the already present stresses described above inhibit the

ability of the reef to recover following this disturbance.

2.2.3 Hurricanes and Climate Change

Hurricanes are an intense tropical storms formed in areas where the sea surface

temperature (SST) rises above 26oC for at least the upper 50m of the sea surface

(Lugo et al., 2000). They are low pressure systems with central pressures of between

980mb and 920mb. They generally form between 5o and 30o from the equator with

87% forming no further than 20o from the equator (Henderson-Sellers et al., 1998).

This area gives SSTs high and far enough from the equator so that the Coriolis

force is non-zero and hurricanes can form (NOAA, 2011).

A tropical storm is classified as a hurricane when wind speeds peak above

33ms−1 (Simpson and Riehl, 1981). A hurricane is classified by the Saffir-Simpson

scale according to the maximum wind speeds. Category 1 hurricanes have a peak

wind speed of between 33 and 42ms−1, whilst Category 5 hurricanes have maximum

wind speeds above 70ms−1.

In the North Atlantic there are on average 9-10 tropical storms annually, with

5-6 of these reaching hurricane status (Henderson-Sellers et al., 1998). The main

hurricane season lies between August and October with the peak activity between

late August and September (Neumann et al., 1985) when sea surface temperatures

are at their peak.

Over the past 35 years there has been an observed increase in the proportion and

number of strong hurricanes (Webster et al., 2005, 2006). In fact since 1970 there
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has been a 75% increase in the number of Category 4 and Category 5 hurricanes

(IPCC, 2007). Climate scientists forecast that this trend of increasing intensity will

continue (IPCC, 2007), with an increase in mean maximum wind speed expected

to be between +2% and +11% globally (Knutson et al., 2010). Although there is

some disagreement in the effect of climate change on the frequency of hurricanes.

It is mainly accepted that the global hurricane frequency will remain the same

(Webster et al., 2005), but there are some who believe that the overall frequency

will decrease (IPCC, 2007). Oouchi et al. (2006) predict that there will be an

overall decrease in global frequency of 30%, but with an increase of 34% in the

North Atlantic, whilst Knutson et al. (2010) believe there is evidence for between

a −3% and −34% change in frequency globally.

An accepted effect of climate change is that hurricane intensity will increase

(Webster et al., 2005). This is seen in the observed increase in the Power Dissipation

Index (PDI) since the mid 1970s (Emanuel, 2005). This is equivalent to the increase

in duration and peak intensity of hurricanes. If the frequency of hurricanes remain

the same alongside the increase in intensity this is equivalent to an increase in

frequency of strong hurricanes balanced by a decrease in frequency of weaker less

intense hurricanes (IPCC, 2007).

2.2.4 Hurricane Impacts on Coral Reefs

For thousands of years coral reefs and hurricanes have co-existed (Glynn, 1993).

The presence of modern day reefs suggest that the impacts as a result of a hur-

ricane have not always led to decline (Gardner et al., 2005). Instead hurricanes

have helped build these diverse ecosystems (Connell, 1997), by removing abundant

species at regular intervals from reefs, creating space for colonization by different

species aiding diversity (Bythell et al., 1993; Connell, 1978; Hughes and Connell,

1999).

The damage which hurricanes can cause to coral reefs fall into two categories:

mechanical and biological. Primarily there is mechanical damage, where waves

caused by hurricanes break off pieces of coral causing partial or colonial mortality



CHAPTER 2. LITERATURE REVIEW 38

(Adey, 1978; Darwin, 1842). Sedimentation of material dislocated by a hurricane

can bury colonies blocking their light source or can abrade the upper surface of

these colonies (Brown, 1997). The increase in rainfall reduces salinity near the

reef, which can also damage the reef (Harmelin-Vivien, 1994), as well as increas-

ing the number of nutrients in the water encouraging algal growth resulting in

eutrophication (McCook, 1999). The majority of mechanical damage will effect

branching corals, who are particularly vulnerable due to their structure (Woodley

et al., 1981; Lugo et al., 2000), with reef building corals like M. annularis less

likely to experience this fragmentation of colonies (Woodley et al., 1981). As al-

ways there are some extreme cases with large areas of reef building corals destroyed

by this mechanical action (Hubbard et al., 1991).

The biological effects of hurricanes include the disruption of reef structures

(Woodley et al., 1981; Dollar, 1982; Grauss et al., 1984). The main damage comes

through the coral cover reduction, with the reefs instead being dominated by algae.

The transition from coral-dominated to algal-dominated reefs has been particularly

observed on Caribbean reefs (Done, 1992; Hughes, 1994; Knowlton, 1992). This

may occur following a hurricane, but the roots of this phase shift comes from

the degradation of a reef prior to a hurricane (Hughes, 1994; Lugo et al., 2000;

Knowlton et al., 1981, 1990).

The more recent decline change following a disturbance has been attributed to

an increase in other stressors on the reef (Knowlton et al., 1981, 1990). Meaning

coral cover cannot recover prior to the next disturbance. This additional stress

is thought to come mainly from human induced sources such as: overfishing, eu-

trophication and sedimentation (Aronson and Precht, 2006; Hughes and Connell,

1999; Nystrom et al., 2006). These can reduce the ability of a reef to regenerate

and recover from more frequent and intense storms (Gardner et al., 2005; Rogers

et al., 1997, 1991).

There are some benefits for corals during a hurricane. Coral bleaching, the

release of the symbiotic algae due to increased sea surface temperatures, is negated

by the passage of a hurricane, with documented cases of recovery from coral bleach-
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ing alongside hurricane damage (Manzanello et al., 2007). Another benefit comes

from the release of resources, in particular space on the reef for growth and re-

cruitment (Rogers, 1993; Treml et al., 1997; Hughes and Connell, 1999). This

also prevents the monopolization of the reef by one particular species (Hughes and

Connell, 1999), with undisturbed reefs suffering from overcrowding. This reduces

recruitment rates when there is limited free space, due to pre-emption or shading

from other species (Hughes and Jackson, 1985; Fisk and Harriott, 1993).

The damage of a hurricane on a coral reef is not always felt immediately. For

example, there is an increased incidence of disease on damaged corals (Knowlton

et al., 1981, 1990). Damaged corals are also more likely to be eroded and further

damaged, which can result in delayed mortality (Knowlton et al., 1981, 1990). Also

the community structure on a reef can change after a hurricane due to the differing

speeds of recovery. For example, branching corals can recover in as little as five

years, due to their high growth rates (Shinn, 1972; Rogers et al., 1979), whilst reef

building corals can take between 10 and 25 years (Gardner et al., 2005).

Coral reefs and hurricanes have existed alongside each other for about 5000-6000

years (Glynn, 1973; Donnelly and Woodruff, 2007). This indicates that reefs are

able to recover following a hurricane (Lugo-Fernandez and Gravois, 2010). However,

this recovery is becoming less common, with many studies of interaction between

coral reefs and hurricanes reporting decline (Knowlton et al., 1981, 1990; Hughes,

1989, 1994; Liddell and Ohlhorst, 1993). In fact the main study that indicates

recovery is of a branching coral (Shinn, 1972), rather than a reef-building coral.

Recovery rates are indicated to lie somewhere between 10 and 25 years, but there

are some studies that claim recovery could take as long as a century (Glynn, 1973;

Woodley, 1992; Sorokin, 1995; Pandolfi and Jackson, 2007; Gardner et al., 2005;

Grauss et al., 1984; Harmelin-Vivien, 1994).

Recovery occurs when surviving corals can grow, both through the attachment

and growth of new fragments of partially damaged corals, and through colonization

of new corals (Lugo et al., 2000). Historical recovery of coral reefs has shown

that conditions experienced on reefs following a hurricane should be conducive
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to re-growth and recovery (Lugo et al., 2000) and yet most studies now record an

increased decline following a hurricane. The reasons suggested for this surround the

issue that there has been an increase in chronic disturbances from anthropogenic

factors. This compromises the ability of the reef to recover (Lugo et al., 2000). In

Jamaica the overfishing of the reefs and then the D. antillirum die-off in 1983,

lead to a lack of recovery following Hurricane Allen (Hughes, 1994; Hughes and

Connell, 1987; Hughes, 1994). This lack of recovery resulted in an increase in

phase shifts to an algal-dominated reef (Bellwood et al., 2004; Done, 1992; Hughes,

1994; Knowlton, 1992). It is not known how stable this alternative state is and if

coral reefs can again be dominated by coral (Knowlton, 1992; Scheffer et al., 2001;

Petraitis and Dudgeon, 2004).

2.3 Adopted Modelling Techniques

Despite the introduction of Population Projection Matrices (PPMs) to coral colony

population modelling in 1984 (Hughes, 1984), an abundance of models still use

coral cover as the measure of population dynamics (Gardner et al., 2003, 2005;

Graham et al., 2011; Hughes and Connell, 1987). Coral cover is measured as the

percentage of a reef which contains coral as opposed to algae, sponges or free space.

Coral cover is used to model the response of populations to hurricane events by

looking at the percentage change of cover (Gardner et al., 2005). It is claimed that,

following a hurricane, populations will follow one of four trajectories according to

their percentage growth rate (Gardner et al., 2005). The reliance on coral cover

percentages does not give the underlying dynamics of the observed results. It is

also only possible to carry this analysis out retrospectively, and does not allow the

forecast of behaviour.

Coral cover models have also been used to calculate the recovery rates fol-

lowing tropical storms, bleaching events or crown-of-thorns outbreaks (Graham

et al., 2011; Sheppard et al., 2008; Naim et al., 2000; Halford et al., 2004), but

the definition of recovery in these studies is unclear. The clearest definition takes

into account all dynamics following a disturbance. Normally the term ‘recovery’
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is restricted to either the time until at least half the amount of cover lost in the

disturbance is restored (Naim et al., 2000), or by a positive growth rate, which

takes the population back to the position is would have been in if the disturbance

had not occurred (Gardner et al., 2005).

Coral cover studies provide a simplistic description of the behaviour seen on

a reef, they fail to take into account the underlying dynamics that explain these

observations. In fact it must be questioned whether coral cover is even the best

metric to measure healthiness of the reef. If, for example, there was an abundance

of small colonies following a disturbance, coral cover percentages could mask the

loss of large colonies that are required if a population is going to withstand future

disturbances. These models contribute understanding to the behaviour observed,

but fail to project the population into the future to try and explain what future

behaviour may occur.

A better alternative to the percentage coral cover models are the size-frequency

distribution models. In these models the structure of the populations are observed

over time to understand the changing structures of the reefs (Hughes and Jackson,

1985; Gilmour, 2004). These models can be used to monitor the relative abundance

of small or large colonies (Hughes and Jackson, 1985) or the structure of reefs

following disturbances (Gilmour, 2004). They provide a greater understanding of

the dynamics than percentage coral cover models can provide. However, they fail

to account for the processes, which link these censuses through time. They are

useful, like coral cover, for historical analysis in relation to particular events, but

they fail to provide information about future population structures beyond broad

statements about what may occur.

Over time populations change, sometimes for the good of the population and

other times to the detriment of the population. The focus for management of pop-

ulations is to understand past behaviour and to predict future behaviour (Caswell,

2001). Understanding the behaviour of one individual can give vital insight into

a population, but often it is more beneficial to get an overview of the complete

population (Caswell, 2001). This is achieved through population modelling, taking
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data describing the behaviour of the population and transforming it into a coher-

ent model that takes into account how the population changes over time (Caswell,

2001). This allows projection into the future and understanding of the past.

Population models, like the Population Projection Matrix (PPM) and Integral

Projection Model (IPM), are used in a range of settings from pest control (Smith

and Trout, 1994; Shea and Kelly, 1998; Hastings et al., 2006; Dudas et al., 2007;

Miller et al., 2009) to harvesting (Cropper Jr. and Di Resta, 1999; Souza and Mar-

tins, 2006), from conservation (Price and Kelly, 1994; Esparza-Olguin et al., 2002;

Linares et al., 2007) to understanding the effect of disturbances (Hughes, 1984).

They can be used to understand the behaviour of endangered species (Easterling

et al., 2000) and to understand evolutionary strategies adopted by populations

(Hesse et al., 2008; Kuss et al., 2008; Rees and Rose, 2002). This makes them an

ideal fit to model coral patch dynamics.

2.3.1 The Population Projection Matrix

The PPM was first conceived by Leslie in 1945 . PPMs have been used in population

modelling ever since (Caswell, 2001). Since the seminal paper by Leslie, methods to

analyze and parameterize PPM models have been well developed (for an excellent

summary see Caswell (2001)). The PPM describes the transition of a population

from one time step to another. It does this by dividing the population into a

given number of groups and calculating the transition probabilities of moving from

one group to another. Initially PPMs were only used in modelling populations

characterised by age, but the PPM structure has now been developed to include

models determined by developmental stage (Lefkovitch, 1965) and size (Hughes,

1984). For a mathematical introduction to these models see Chapter 3.

Population Projection Matrices for coral populations were first used in 1984

(Hughes, 1984), where a size-structured PPM was introduced as an adapted Leslie

matrix (Leslie, 1945). This was to allow not only additional stasis entries, but also

all growth and shrinkage entries. In Hughes (1984) paper a population of Agaricia

agaricites was modelled over time to capture the effect of storms on the dynamics
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of the population. This was achieved through creating a ‘storm’ matrix and a ‘calm’

matrix from the data. These PPMs were projected with varying storm occurrence

rates to investigate extinction time under differing scenarios.

Caribbean coral reefs have declined dramatically in the past three decades with

a decline of nearly 80% coral cover (Gardner et al., 2005). As a result, PPMs have

been applied to coral populations in the Caribbean with the aim to understand

this decline (Lasker, 1991; Hughes and Tanner, 2000; Edmunds and Elahi, 2007).

2.3.2 Benefits of Using the Population Projection Matrix

on Coral Populations

In order to fully understand the dynamics on a reef, projection models must be

used, because not only do they explain what was observed in the data, they also

project future behaviour (Caswell, 2001). By assuming current conditions will

remain unchanged, the population structure and size can be calculated (Hughes and

Tanner, 2000). However, coral populations are subject to repeated disturbances and

so these projections are often unrealistic. In Hughes (1984) the use of two different

matrices for two different environmental years (Storm and Calm) allows projection

over time with varying storm occurrences in order to compare recovery rates and

population sizes. This interweaving of environments is a more realistic projection

for coral populations. PPMs have also been used to project populations under

differing strategies of recruitment (Edmunds and Elahi, 2007). In this case three

different recruitment strategies were used in order to compare overall population

size 50 years into the future. This can aid understanding about a particular aspect

of a population and can also fill gaps in missing data providing a range of possible

responses.

The main benefit of the PPM is the intuitive nature by which the life cycle of a

population can be turned into a PPM. Why is it intuitive? Because each connection

of the life-cycle is directly transferable to an entry in the PPM (Caswell, 2001).

For example, growth transitions are placed on the lower triangle of the PPM, stasis

entries on the diagonal and shrinkage and reproduction are on the upper triangle
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(Leslie, 1945; Lefkovitch, 1965; Hughes, 1984). This makes it easy to interpret the

significance of different types of behaviour in the PPM.

The PPM is mathematically simple (Caswell, 2001). Not only is it relatively

easy to approximate probability estimates from data, but the standard analysis

tools are relatively simple to calculate using matrix analysis (Caswell, 2001). This

makes them attractive to ecological modellers and makes the PPMs very popular

with hundreds published in literature (Stott et al., 2010b).

2.3.3 Drawbacks of the Population Projection Matrix

There are issues surrounding the selection of size class boundaries (van der Meer,

1978; Moloney, 1986). When a PPM is created using age or stage classes these

boundaries are biologically motivated (for example (Leslie, 1945; Lefkovitch, 1965),

but when the PPM is created using size classes there is no biological relevance to

these size class boundaries (for example (Edmunds and Elahi, 2007)). Instead they

are selected through the application of an algorithm (van der Meer, 1978; Moloney,

1986). This creates a weakness in the analysis and the dynamics within the size

classes are not accounted for. This issue is known as the problem of discretization

of the size class boundaries.

The PPMs created for coral populations (Hughes and Tanner, 2000; Edmunds

and Elahi, 2007; Lasker, 1991; Hughes, 1984) often choose size class boundaries

somewhat arbitrarily. For example, in Lasker (1991) and Hughes and Tanner (2000)

small, medium and large classes are used whilst in Edmunds and Elahi (2007) they

are in 50cm intervals. However, there are often no biological reasons for these

boundaries and so these can break the assumption that all individuals within a

given size class will exhibit the same behaviour. To correct this, the van der

Meer and Moloney algorithms (van der Meer, 1978; Moloney, 1986) (see Section

3.1.3) need to be used in order to minimize the errors that are created by this

discretization.

Coral populations are often best described by size (Hughes, 1984). However,

there is some discussion on the need to include age within size classes, (Hughes
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and Jackson, 1985) as small old colonies will behave differently from small young

colonies. As was stated in their paper, in order to calculate the age of coral, damage

to the coral is necessary. Hence many data sets provide only size as an indicator

(Hughes and Jackson, 1985).

The success of size-determined plant populations being modelled by IPMs (East-

erling et al., 2000; Childs et al., 2003, 2004; Rose et al., 2005; Ellner and Rees, 2006;

Hesse et al., 2008; Kuss et al., 2008) should encourage the use of IPMs in coral pop-

ulations. As far as I am aware, there are currently no coral populations modelled

using the Integral Projection Model despite the obvious advantage of the model

being continuous in size.

A secondary flaw of the PPM is that when the state-classes are poorly selected

this can lead to issues of missing transitions, either due to the data being missing

in the data sets or due to poorly selected boundaries. This issue is discussed in

more detail in Section 3.1.3.

2.3.4 The Integral Projection Model

The IPM was first introduced into ecological modelling by Easterling et al. in 2000.

Following just over 10 years of development these models have been developed

to include a wide range of applications. The IPM is a form of integrodifference

equation and was introduced to population modelling in order to deal with the

problem of discretization of size (Easterling et al., 2000). For a mathematical

background to the IPM see Chapter 3.

The main focus of the original IPM for Aconium noveboracense was to model

a given set of data and show how methods of analysis for a PPM can be transferred

to IPMs, particularly focusing on sensitivity analysis (Easterling et al., 2000). Sen-

sitivity is an area considered vital in population ecology in the analysis of PPMs

as it captures the contribution of each entry to population growth (Caswell, 2001).

The ease with which IPMs deal with delayed reproduction was shown by popula-

tion models of Oenothera glazionviana (Rees and Rose, 2002) and Campanula

thyrsoides (Kuss et al., 2008). Stochastic variation in parameters due to environ-
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mental variations was introduced for a Carlina vulgaris IPM (Rose et al., 2002),

which was then further developed by Childs et al. (2003; 2004) and for Carduus

nutans by Jongejans et al. (2011) as a method for measuring spacial spread. The

theory behind stochastic IPMs was laid out in two papers by Ellner and Rees (Ell-

ner and Rees, 2007; Rees and Ellner, 2009). Invasion of a species was modelled by

a Cirsium canescens IPM (Rose et al., 2005), as well as being used to measure

the effect of an invasive species on the growth rate of a native species (Williams

and Crone, 2009).

A population is said to experience complex demography when the population

dynamics are determined by two or more biological factors. For example the dy-

namics of Onopordum illyricum were determined by both age and size (Ellner and

Rees, 2006). Complex demography could also include quality of offspring or flow-

ering probabilities as well as any other factors that affect the population (Ellner

and Rees, 2006). This shows the ability of an IPM to accommodate both discrete

and continuous state factors.

The majority of models in literature are density independent. This is not nor-

mally a problem as many populations modelled are decreasing or are at densities

well below carrying capacity. However, IPMs have been developed to include den-

sity dependence, for example, when modelling an invasive species or when certain

parameters are restricted by density (Ellner and Rees, 2006). The effect of different

habitats on a population can be modelled as in the case of V eratrum album (Hesse

et al., 2008); this paper also promoted the ease with which two or more IPMs can

be compared.

The modelling of tree populations by IPMs overcame some of the problems of

fitting PPM models to these populations caused by high sensitivity of the growth

rate to size-class width. By eradicating the need to select size classes the IPM

resolved this issue (Zuidema et al., 2010). However Zuidema et al. (2010) claim

that the numerical integration method adopted by the majority of IPMs for plant

populations cannot be directly transferred to tree populations, this is in spite of the

use of the mid-point rule by Metcalf et al. (2009). Instead of the mid-point rule,
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for numerical integration, they suggest the use of the ‘Integration’ method. This

method assumes a uniform size distribution in each mesh point instead of assuming

all individuals lie at the mid-point of the mesh. The cost of additional complexity

is out-weighed by the additional benefits of using this method for slow-growing

populations as the integration method prevents individuals from passing through

size-class unrealistically quickly (Zuidema et al., 2010).

The interaction between a tree Cholla cactus (Opuntia imbricata) and herbivore

attacks were modelled by Miller (2009). This was achieved by a comparison between

a control population and one under attack. This is a popular method in population

modelling to quantify the effect of predators on a population and shows the ability

of the IPM to facilitate this analysis. Environmental factors, other than herbivore

attacks, can affect the parameters fitted in an IPM and thus in turn, the population

growth rates (Dahlgren and Ehrlen, 2009).

Transient analysis is a relatively new phenomena to the Integral Projection

Model, but is becoming increasingly popular in Population Projection Matrices

(Stott et al., 2010a; Townley et al., 2007; Townley and Hodgson, 2008). However,

it is thought that the ability to capture transients is determined by the dimen-

sions of the models (Stott et al., 2010a; Tenhumberg et al., 2009), the IPM should

be better at capturing the transients (Eager et al., In Press). Eager et al. (In

Press) have begun a discussion of possible transient methods by comparing popu-

lation structures at each time step to the previous time step in order to measure

attenuation and amplification.

Whilst most developments in Integral Projection Modelling have occurred due

to a need to model a particular population, there are a few papers which give

theoretical background and understanding to the methods employed. This is par-

ticularly the case in the application of stochastic IPMs (Ellner and Rees, 2007;

Rees and Ellner, 2009), where a theoretical underpinning to the stochastic IPMs

produced was given. These papers present both the theory for analyzing IPMs

and further details on how they are parameterized. These details for deterministic

IPMs were restricted to Appendices in Easterling et al. (2000) and Ellner and Rees



CHAPTER 2. LITERATURE REVIEW 48

(2006).

2.3.5 How the Integral Projection Model Solves the Prob-

lems of the Population Projection Matrix

The IPM is continuous in state. This makes IPMs ideally suited to modelling

populations whose state is determined by size (Easterling et al., 2000; Ellner and

Rees, 2006). The IPM does not require discretization of sizes to form size classes

and the errors introduced by these methods in PPMs are not introduced to IPMs

(van der Meer, 1978; Moloney, 1986). By avoiding discretization, IPMs have greater

realism, whilst analysis methods are simple enough not to prevent usage.

The estimation of parameters in an IPM is carried out through statistical curve

fitting, that is taking a range of possible parameters and selecting the parameters

with the best fit (Easterling et al., 2000). In comparison, estimation of probabilities

in the PPM does not use this best fit technique. Instead, probabilities are estimated

directly from data (Caswell, 2001). There has been some effort to correct this

(Gross et al., 2006), but the complexity of these methods suggests that the IPM

should be used ahead of the PPM.

Construction of a PPM from data requires a trade-off between biological realism

and uncertainty in estimation of the parameters (Doak et al., 2005). Especially if

the data set is sparse or if the population is complex or if a stochastic model is being

fitted. An analysis of the data requirements to accurately estimate parameters was

completed by Fiske, Bruna and Bulker (2008). With a lack of data, estimates

may be biased, which in turn biases the analysis of the matrices (Doak et al.,

2005). For a PPM of size n × n there are up to n2 parameters to be fitted. If

the PPM is stochastic and is calculated for m different years then there are up to

n2m parameters to be fitted. PPM models, especially stochastic PPMs are data

hungry. In comparison an IPM may be fitted by much fewer parameters (Ramula

et al., 2009) and stochasticity may be included with the addition of only a few

extra parameters (Rees and Ellner, 2009). However, an analysis of the minimum

data amounts required to accurately fit an IPM has not yet been carried out.
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Only recently has the discussion on the effect of data limitations on both pa-

rameter estimates and their analysis been carried out (Fiske et al., 2008; Doak

et al., 2005; Ludwig, 1999; Ellner et al., 2002; Fieburg and Ellner, 2001). Doak

et al. (2005) state that if data has less that 5 sampling points in time it is best

to produce a deterministic PPM rather than a stochastic one. This is because the

benefits of a more complex model are out-weighed by parameter uncertainty.

A drawback of IPMs compared to PPMs is that the transfer from the life-cycle

to the model is not as easily achieved in the IPM. In an IPM the life-cycle influences

the selection of functions to be fitted (Rose et al., 2002). However, instead of a

direct translation, all growth must be grouped together, along with all survival and

all reproduction. These functions must then be further broken down into factors

that influence them. This makes the IPM less easily interpretable.

2.3.6 The Issues Surrounding Analysis of Projection Mod-

els

The main measure of population dynamics is the population growth rate (Caswell,

2001; Godfray and Rees, 2002). The calculation of this rate is easy for PPMs with

standard code available in R or Matlab, with the growth rate being calculated as

the dominant eigenvalue of the system (Caswell, 2001). However, for large numer-

ical approximations of the IPM, this can be costly and often only the dominant

eigenvalue is calculated rather than the entire spectrum of eigenvalues (Easter-

ling et al., 2000). This makes the convergence to asymptotic dynamics difficult to

calculate for IPMs.

The growth rate is useful as it gives a single measure for the population which

takes into account all the parameters that build the model. As parameters change

the measure changes in response to this, this one measure can then be compared

for a variety of parameter values (Lasker, 1991). However, questions about the

suitability of relying on this indicator are being asked (Godfray and Rees, 2002;

Townley et al., 2007; Townley and Hodgson, 2008). This is especially the case when

populations are disturbed (Townley and Hodgson, 2008). It is now thought that it
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is more important to understand these transient dynamics as populations often

do not reach the asymptotic dynamics because populations are periodically hit by

disturbances. For PPMs, these methods are well developed to include maximum

amplification and attenuation (Townley et al., 2007), Kreiss bounds (Kreiss, 1962),

Reactivity (Caswell and Neubert, 2007) and transient time bounds (Townley and

Hodgson, 2008). These bounds help create an overall picture of the possible dy-

namics which a population may experience. Transient bounds for IPMs are in their

infancy, with methods still in development (Eager et al., In Press).

2.4 Conclusion

In this chapter, the benefits of both the PPM and IPMs have been discussed. Also

discussed has been the application of these models to coral populations. It has

been shown that PPMs are a tool used in coral colony modelling, but their use

is not widespread. Instead, the use of percentage coral cover models is preferred.

However the benefits in understanding the dynamics underlying the population

mean that where the data exists, projection models should be fitted to this data.

Although the data is of patch dynamics, many of the processes described in PPM

modelling for colonies should be readily transferable.

The application of Integral Projection Modelling to coral populations is yet to

be explored. It is believed that coral populations are ideal candidates for use in

IPMs as the best descriptors of dynamics is size. It is thought current frameworks

should be adaptable to ensure accurate fits of the population.

Projection of PPMs (and IPMs) with data from hurricane and non-hurricane

years has been carried out previously. These methods, once adapted, will be carried

out to the data in order to determine what would happen under varying hurricane

occurrences.

Transient analysis is becoming commonplace in PPM modelling as this allows

understanding of the dynamics following disturbances. Transient analysis in IPMs

is relatively new, with many of the techniques not yet transfered from the PPM

methods.
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This chapter has highlighted the need to investigate the effects of hurricanes

on coral populations. It has highlighted the increased decline in coral cover in

the Caribbean and climate change only increases the urgency of understanding

the underlying dynamics. Where coral cover percentages have previously been

used, the benefits of using projection modelling have been shown, in particular the

benefits of using the IPM have been highlighted. This chapter has helped develop

the aim of this Thesis into three different areas, namely:

OBJ 1. Modelling. To investigate current projection modelling techniques. To de-

velop methods to allow their application to Montastraea annularis.

OBJ 2. Analysis. To understand and develop analysis techniques of projection mod-

els, in order to understand how hurricanes affect the dynamics of a population.

OBJ 3. Climate Change. To understand the effect of climate change on hurri-

cane activity and hence explore how this could affect population dynamics of

Montastraea annularis.

These objectives will be investigated through the remaining chapters of this Thesis.



Chapter 3

An Introduction to Projection

Modelling

Population models can be derived from two different sources; data and biological

processes. The first rely completely upon data to look at the dynamics of the

population, for example percentage coral cover models (Gardner et al., 2003, 2005;

Graham et al., 2011; Hughes and Connell, 1987). These models do not account

explicitly for the biological reasons for these changes. In contrast, there are models

defined by biological processes, which do not include any data, but instead attempt

to understand the dynamics of populations purely from what is expected to occur.

For example, differential equation models can be analysed to understand the dy-

namics without the application of data. These two types of models require different

frameworks; one needs a biology-defined state and the other a data-defined state.

Where data and biological processes meet is Projection Modelling. They take

known biological information about the population to form the skeleton of a model

and then require the application of data to parameterize the populations’ dynamics.

Two projection models, which model discrete time populations, are the Population

Projection Matrix (PPM) model and the Integral Projection Model (IPM) (Caswell,

2001; Easterling et al., 2000). In this chapter, methods for formulation and analysis

of these models are discussed. The methods for analysis are broadly similar, there-

fore this chapter will firstly describe the parameterization of each model, followed

52
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by a discussion of Asymptotic and Transient Analysis of these models.

3.1 The Population Projection Matrix

The Population Projection Matrix (PPM) describes the behaviour of a population

over time (Caswell, 2001). They are discrete in both time and state and capture

the transition probabilities between states over two time periods (t and t + 1).

Specifically, given a population at time t, the population at time t+1 is determined

by the projection equation (3.1) (Leslie, 1945),

x (t + 1) = Ax (t) . (3.1)

The vector x (t) is a population vector whose components describe the number of

members in each state class at a given time t. The PPM A = (ai j), is a matrix

containing the transition probabilities the population is subject to between two

time steps, where:

aj,i = number of individuals in j at time t+1 | one unit is in i at time t+1. (3.2)

If there are n state classes then x (t) ∈ R
n×1 and A ∈ R

n×n.

The state classes of a population can be defined by age, stage, size or a com-

bination of these. The state class boundaries of a PPM are determined by this

and classes are divided accordingly. The PPM A can be analyzed using matrix

algebra techniques giving asymptotic and transient results, e.g. asymptotic growth

rate (Caswell, 2001) or transient time bounds (Townley et al., 2007; Townley and

Hodgson, 2008).

3.1.1 Assumptions Used in Constructing a Population Pro-

jection Matrix

The fitting of data to a prescribed model, such as the PPM, requires a number of

assumptions to be made. Some of these are necessary for the model to reflect the
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data, whilst some are necessary due to data collection methods. These assumptions

are:

1. Members of a population that begin within the same state class ex-

hibit the same behaviour throughout the entire time period studied

(Caswell, 2001).

This can also be stated as within size class information is irrelevant. The re-

sults from a PPM are often sensitive to the width of the state classes selected,

due to this assumption. This assumption is reasonable when state classes are

defined by natural biological processes, for example age or stage. However, a

populations’ dynamics are often described by size meaning that discrete size

class boundaries are artificial (van der Meer, 1978; Moloney, 1986). These

boundaries are determined from data by a reduction in errors, both sampling

and distributive, rather than by biological processes. A numerical solution

to this problem was suggested by Van der Meer (1978) and developed by

Moloney (1986) to minimize both types of error (See Section 3.1.3 for further

detail). However, this method can only reduce modelling errors, not eradicate

them. It can result in two individuals being placed in the same state class

which exhibits very different behaviour, and this may skew the results.

Another consequence of this assumption is that if too few size classes are used,

then individuals are able to pass through the size classes at an unrealistic

speed. This is not the case for age or stage classes, where individuals will

pass through at their natural speed.

2. For deterministic PPMs the parameters estimated are time-invariant

(Caswell, 2001).

This means that the parameters do not change with time and is a necessary

assumption for parameterizing the probability transitions. This assumption

is of particular importance when calculating and analyzing asymptotic re-

sults. For example, this is a key assumption when the PPM is projected over

time to calculate the population’s asymptotic rate of geometric growth, the
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expected population size and state-structure (Caswell, 2001). If this assump-

tion is broken then a stochastic PPM must be parameterized.

3. A sample of a population is sufficient to describe the dynamics of

an entire population (Fiske et al., 2008).

Often a PPM is calculated with a relatively small amount of data, so that

parameter estimates are fitted using only a sampled population rather than

the entire population, due to experimental costs and restrictions. Through

the re-sampling of data, a confidence interval can be calculated for each of

these estimates. There has also been analysis carried out to determine the

minimum required data for confidence in these parameters (Fiske et al., 2008).

These assumptions are necessary in order to fit a PPM, but some of these

assumptions are not biologically realistic or can introduce errors into the model.

For example, the size-class boundaries are artificially determined and can introduce

distribution errors to the model. This can be corrected through the use of IPMs.

3.1.2 Parameterization of a PPM

Prior to parameterization of a PPM, the biological structure of the model must be

determined. This is achieved firstly by selecting the type of state classes; secondly

the number of state classes must be decided; thirdly the boundaries of these state

classes are chosen and only then can the generic matrix structure be selected ac-

cording to the known behaviour of a population. Once the structure of the PPM is

determined, then the parameters can be estimated. In the following sections each

of these steps are described.

Biological information of a population must be used in order to determine which

state-classes should be used to model a given population. Traditionally there are 3

main types of state-classes used: age, developmental stage and size. It is possible

to use a combination of these, however the simplest PPMs use just one.

If a population’s dynamics are determined by age or stage then there are natu-

ral biological boundaries to the age or stage-classes. In the case of age the bound-
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aries are yearly, whilst for developmental stage they may, for example, be: pre-

reproduction, reproduction and post-reproduction stage classes. If a population’s

dynamics are determined by size then the boundaries must be estimated from data.

This can be achieved by following the Van der Meer (1978) algorithm, which was

updated by Moloney (1986).

The Role of the Generic Population Projection Matrix

The dynamics of different species are often determined by different biological fac-

tors. In animal populations age is often the main factor used in describing the

dynamics, for example as in the case of a Cheetah (Crooks et al., 1998), Chinook

Salmon (Kareiva et al., 2000) and Peregrine Falcon (Wootton and Bell, 1992).

Some species are best modelled by stages in its life cycle, for example reproduc-

tive stages. This is the case for the Loggerhead Turtle (Crouse et al., 1987) and

the Desert Tortoise (Doak et al., 1994), as well as for some tree populations, like

Californian Conifers (Van Mantgem and Stephenson, 2005). Finally, size can also

describe a population, as in the case of Coral (McFadden, 1991), Savannah Grasses

(O’Connor, 1993) and Herbs (Valverde and Silvertown, 1998). It is vital that the

structure of these populations is reflected in the PPM that is used to model them.

This forces the PPM into a particular generic structure with some entries being

forced to zero if that transition is impossible. These structures are called the

Generic PPMs (Table 3.1), which inform which parameters need to be fitted. It is

often found that in addition to those entries biologically forced to zero there are

some other entries that are numerically zero, as in this Thesis. This could be due

to missing data where that transition is not occurring in the time period of the

study.
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Parameter Estimation

There are a variety of methods, which can be applied in order to estimate the

parameters of a PPM (Caswell, 2001; Gross et al., 2006). In this Thesis, the method

suggested by Caswell (2001) is followed. The following assumes size classes are used,

but this method could be used for stage or age classes as well. This method uses

the following steps:

1. Data is divided into different transitions.

2. Each individual at time t is labelled by their size class i and each individual

at time t + 1 is labelled by their size class j.

3. Label the nature of each transition:

(a) if the individual has formed new individuals label as Fj,i,

(b) if i > j the individual has shrunk (Rj,i),

(c) if i < j the individual has grown (Gj,i),

(d) if i = j the individual has remained the same (Si,i).

4. Collate data and sum the total number of all types of transitions.

5. Sum how many individuals are in each size class i at time t.

6. Calculate the transition probability by:

p(Xj,i)=
total number of Xj,i

total number of individuals in size class i
.

7. Enter these probabilities into the generic matrix.

3.1.3 Parameterization for Montastraea annularis

To demonstrate the parameterization of a PPM, this following section fits a model

for one transition in the data set. Transition 4 (June 1999 to June 2000) was
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selected as a variety of behaviour was exhibited in this transition and it will test

the ability of a PPM to accommodate this in the model.

Biological Processes

The life cycle for M. annularis is given in Figure 3.1. With each increment in time

a coral patch will undergo one of a number of processes, a patch can either:

1. Remain in the same size class, i, (Stasis) represented by Si,i. These entries

are found on the diagonal of the generic PPM (3.3).

2. Grow from stage class i to size class j where j > i (Growth). This is repre-

sented by Gj,i in the generic PPM (3.3), these entries are found on the lower

diagonal.

3. Shrink from size class i to size class j where j < i (Shrinkage). These entries

are found in the upper triangle of the generic PPM (3.3) and are represented

by Rj,i.

4. Fragment into more than one patch, where the original patch is of size i and

the new patches formed are size j. These are represented by Dj,i and are

found on the upper triangle and diagonal.

5. Become extinct.

It was decided to use a Lefkovitch, matrix (Lefkovitch, 1965) as the generic

matrix in order to incorporate all the possible processes (Table 3.1). This resulted

in the generic matrix of the form:

A =





S1,1 + D1,1 D1,2 + R1,2 D1,3 + R1,3 D1,4 + R1,4 D1,5 + R1,5

G2,1 S2,2 + D2,2 D2,3 + R2,3 D2,4 + R2,4 D2,5 + R2,5

G3,1 G3,2 S3,3 + D3,3 D3,4 + R3,4 D3,5 + R3,5

G4,1 G4,2 G4,3 S4,4 + D4,4 D4,5 + R4,5

G5,1 G5,2 G5,3 G5,4 S5,5 + D5,5





. (3.3)
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Figure 3.1: The life-cycle of Montastraea annularis. The circles, or nodes, define
a size class and the arrows the possible transitions. Gj,i represents growth, Dj,i

fragmentation, Sj,i stasis and Rj,i shrinkage, where j is the size class the arrow
points towards and i where is originates.
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This is an adapted Lefkovitch matrix, due to the inclusion of fragmentation rather

than fecundity. Under fragmentation, a patch can produce fragments of any size

smaller than itself. It is not restricted to producing patches in the first size class.

Therefore Dj,i is located in all upper triangular and diagonal entries. This generic

matrix is for a PPM with 5 size classes, but it can easily be expanded for a greater

number of size classes. In order to calculate the fragmentation transitions, Dj,i,

the total number of fragments in size class j at time t + 1 were divided by the

number of patches in size class i that are fragmenting at time t (Renken et al.,

2010). Following a fragmentation event the resulting coral patches were treated

independently. All estimates of Gj,i, Rj,i and Sj,i are probability estimates, based

on a sample of the population, and therefore lie between zero and one. If there was

no fragmentation each column of the matrix would sum to a maximum of one; if

there was no mortality then the columns would sum to exactly one. Reproduction

of M. annularis occurs at the colonial scale and not at the patch scale (Szmant,

1991), therefore reproduction was not included in the PPM.

Size Class Selection

In this section a varying number of size classes will be selected in order to demon-

strate the issues surrounding selection of the correct boundaries. Between June

1999 and June 2000 there are 272 pieces of data, of which there are 16 growth

events, 91 stasis events, 15 fragmentation and 107 shrinkage events. Coral patches

in June 1999 ranged from 1cm2 to 426cm2. Three examples are given below which

demonstrate the problems and the benefits of different methods.

The first method is to create a PPM with 2 size classes. The boundary of

these size classes were chosen so that there was approximately an equal number of

patches in each size class in June 1999, but ensured all patches of the same size

were placed in the same size class, this method is the same used by Gardner et al.

(2005). This gave the size classes: (I) 1− 14cm2 and (II)15− 426cm2, resulting in

the PPM:

A1 =



 0.874 0.154

0.016 0.955



 . (3.4)
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This PPM over-estimates the stasis values, whilst underestimating growth and

shrinkage. Only 2 growth events and 6 shrinkage events were captured by the

model, compared to 16 and 107 observed in the data. The benefit of this model is

the low sampling error in the parameter estimation, with 272 pieces of data used

to fit 4 parameters.

As a PPM with a small number of size classes under-estimated growth and

shrinkage events, a larger number of size classes will be used in the second model

to try and capture these transitions. In this case, 10 size classes will be used

and are chosen by dividing the entire range of sizes into 10 equal size classes to

the nearest cm2, as suggested by Edmunds and Elahi (2007). This gave the size

classes: (I)1− 43cm2 (II)44− 86cm2 (III)87− 129cm2 (IV)130− 172cm2 (V)173−
215cm2 (VI)216−258cm2 (VII)259−301cm2 (VIII)302−344cm2 (IX)345−387cm2

(X)388− 426cm2, which forms the PPM:

A2 =





0.933 0.375 0.409 0 0 0 0 0 4 0

0 0.708 0.136 0 0 0 0 0 0 0

0 0 0.727 0.167 0 0 0 0 0 0

0 0 0 0.833 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1





. (3.5)

The abundance of zero-entries in this PPM shows the problem of choosing too

many size classes as well as bad selection of size class boundaries. The increase

in the number of size classes failed to capture the growth transitions as growth

has been classified as stasis in this case, due to the poor selection of size class

boundaries. The presence of ai,j = 1 entries showed that the sampling error is high

in estimating these parameters. Only one piece of data approximates each of these
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transitions and therefore skews the parameter estimates. This example showed the

problem of too many size class boundaries and the problem of selecting size classes

failing to take into account the initial structure of the data.

In comparison a 10 × 10 PPM is created using a different method to select

the size class boundaries. In this case, the method suggested by Gardner et al.

(2005) is used. The size classes were selected to contain a similar number of data

in June 1999, in this example approximately 25 coral patches. This resulted in the

size classes: (I)1 − 2cm2 (II) 3 − 5cm2(III)6 − 7cm2 (IV)8 − 9cm2 (V)10− 14cm2

(VI)15−21cm2 (VII)22−31cm2 (VIII)32−56cm2 (IX)57−106cm2 (X)107−426cm2

and the PPM:

A3 =





0.63 0.09 0 0 0.04 0 0 0.08 0 0

0 0.68 0.10 0.07 0.15 0 0.04 0 0.04 0.08

0 0.05 0.81 0.27 0.04 0.04 0 0.04 0 0

0 0 0.05 0.7 0.07 0.13 0 0.04 0 0.04

0 0 0 0 0.63 0.08 0 0.08 0 0.08

0 0 0 0 0.07 0.71 0.25 0.08 0.04 0.21

0 0 0 0 0 0.04 0.63 0.2 0.12 0.04

0 0 0 0 0 0 0.04 0.56 0.08 0.04

0 0 0 0 0 0 0 0 0.81 0.13

0 0 0 0 0 0 0 0 0 0.75





. (3.6)

In this case, selecting the size classes differently captured more growth and stasis

events than A2. This showed the benefit that can come from a greater number of

size classes, however there are still some transitions missing which are biologically

probable, in particular G2,1, G5,4, G9,8 and G10,9. This shows that these transitions

may be missing in the data set or that a greater number of size classes are needed to

capture these in the model. This model also shows the problem of a high sampling

error, there is low confidence in these parameter estimates as 272 pieces of data

has been used to fit at most 100 parameters. In fact only 45 entries were non-zero

in this model, but this is still only on average 6 pieces of data per parameter, this
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could lead to high inaccuracies in parameter estimation.

These three examples show the problems of selecting too few or too many

size classes as well as the issue of selecting the wrong method to determine the

size class boundaries. It is for this reason that the Van der Meer and Moloney

algorithm described in the following section is used. This balances the width of the

size classes against the amount of data to estimate the parameters.

Selection of Size Classes - the Van der Meer and Moloney Method

To select size class boundaries two errors are minimized. In doing this errors in the

predicted dynamics due to the selection of boundaries is reduced. The two errors

of interest are:

1. Sampling Error (SE): caused by a lack of data in each size class. In reducing

the sampling error, size classes are restricted to a width that ensures sufficient

data is present to accurately estimate parameters.

2. Distribution Error (DE): caused when size classes are too wide and informa-

tion on movement between size classes is lost. Through narrowing the width

of the size classes this error is reduced.

The widths of the size classes are optimized to reduce both the sampling and

distribution errors. This is achieved by the minimization of the total error (TE)

given by

TE = SE + DE. (3.7)

It is assumed that the two errors, SE and DE, are equally important to minimize,

but one could be weighted in the analysis if it is more important.

To calculate these two errors we first need to define some variables. The data

are sampled at times t = 1, ..., T , for individuals i = 1, ..., N where N is the total

number of individuals. The size of an individual i at time t is mi(t), and the change

in size from time t to t + 1 is given by di = mi(t + 1) −mi(t). The size interval,

Ω, of a given size-class, is defined as Ω = [Mmin, Mmax], where Mmin is the lower
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boundary of size-class Ω and Mmax is the upper boundary of Ω. The mid-point of

this interval is Mmid = Mmin+Mmax

2
.

Two indicators are calculated; firstly for each i ∈ N to determine if an individual

i starts in Ω, si(t), and secondly if an individual which starts in Ω remains in Ω,

ri(t):

si(t) =





1 if mi(t) ∈ Ω

0 otherwise
, (3.8)

ri(t) =





1 if si(t) = 1 and mi(t + 1) ∈ Ω

0 otherwise
(3.9)

The probability, P , that an individual starts in Ω and remains in Ω is P̂

(Moloney, 1986):

P̂ =

∑
t

∑
i

ri(t)

∑
t

∑
i

si(t)
, (3.10)

and the probability of an individual starting in Ω and then leaving Ω is Q̂ = 1− P̂ .

When the distribution error is zero, P̂ is independent of Ω.

If it is assumed that all individuals in Ω begin at size Mmid, then an individual

i at time t + 1 will have size m∗
i (t + 1) = Mmid + di(t). In this case indicator (3.9)

is re-defined to be:

r∗i (t) =





1 if si(t) = 1 and m∗

i (t + 1) ∈ Ω

0 otherwise
, (3.11)

and the probability of an individual starting at Mmid and remaining in Ω is:

P̂mid(t) =

∑
i

r∗i (t)

∑
i

si(t)
. (3.12)

Again the probability that an individual starts at Mmid and leaves Ω is Q̂mid(t) =

1− P̂mid(t).
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Given (3.10) and (3.12), Moloney (1986) states that the Distribution Error is

calculated as:

DE =
1

T − 1

∑

t

1

2




(

P̂mid(t)− P̂

P̂

)2

+

(
Q̂mid(t)− Q̂

Q̂

)2


 . (3.13)

The calculation of the Sampling Error is more involved. It requires a random

sample of individuals with replacement to be taken from those individuals which

start in Ω, i.e. for those individuals where si(t) = 1. Then the size of an individual,

i, from the kth random sample at time t+1 is m†
ik(t+1). Then r†ik(t) is those which

remain in Ω at time t + 1 from the sample k:

r†ik(t) =





1 if si(t) = 1 and m†

ik(t + 1) ∈ Ω

0 otherwise
(3.14)

For sample k, the probability that a patch starts and remains in Ω, is defined

as:

P̂ †k (t) =

∑
i

r†ik(t)

∑
i

si(t)
, (3.15)

and Q̂†
k (t) = 1− P̂ †k (t). The Sampling Error is then defined by Moloney (1986) as:

SE =
1

K(T − 1)

T−1∑

t=1

K∑

k=1

1

2




(

P̂ †k (t)− P̂

P̂

)2

+

(
Q̂†

k(t)− Q̂

Q̂

)2


 . (3.16)

In calculating both the Distribution Error (3.13) and Sampling Error (3.16) the

Total Error is calculated. As the width of Ω decreases the DE will approach zero

and the SE will increase. As the width of Ω increases the SE will approach zero

and the DE will increase. To calculate the size-class boundaries, the minimum size

in a size class is selected, Mmin, and the TE is calculated for all possible Mmax

values and the Mmax which minimizes the TE is chosen. The algorithm is then

re-run with a new Mmin which is slightly larger than the previous Mmax in order

to determine the next size class. This method is used whilst creating a PPM for

the reef-building coral Montastraea annularis in Chapter 4.
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The van der Meer and Moloney algorithm was applied to all data from June 1998

to January 2003. For the most accurate parameterization of PPMs this analysis

should be carried out for each PPM created, as this would ensure the capturing

of as many growth and shrinkage transitions as possible. However, this would not

allow the comparison of results between PPMs, which is the focus of the analysis

in Chapters 4 and 5. Therefore, it was decided to choose one set of size classes to

be used in the parameterization of all PPMs in this Thesis. Five size classes were

selected through the minimization of errors and are used in all PPMs in this Thesis

(Table 3.2).

Size Class Boundaries (cm2)

I 1-3
II 4-12
III 13-48
IV 49-153
V ≥ 154

Table 3.2: Size Classes for the PPMs, as determined by the van der Meer and
Moloney algorithm.

Using the size class boundaries selected by the van der Meer and Moloney

algorithm, for data between June 1999 and June 2000, leads to the PPM:

A4 =





0.658 0.062 0.039 0.042 0

0.026 0.901 0.158 0.083 0

0 0.012 0.852 0.188 0.571

0 0 0 0.833 0

0 0 0 0.021 0.857





. (3.17)

This PPM captures 3 of the growth transitions, but confidence in the parameters

is higher than in A3, as only 25 parameters were fitted as opposed to 100. There

are some missing transition estimates, which could be because of a lack of data on

these transitions or because of the selected boundaries. There are two solutions

to this problem. Firstly, a PPM of size 426x426 could be estimated with 1cm2

size classes, but a lack of data would result in uncertain parameter estimates. The
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second solution is to use an Integral Projection Model. In this latter method, fewer

parameters need to be estimated and statistical curve fitting can solve the problem

of missing transitions. This method is described in more detail in the next section.

3.2 Integral Projection Models

The PPM is a popular modelling tool in population ecology with at least 171

species modelled in this way by 652 PPMs (Stott et al., 2010b). There are many

problems in their formulation and parameterization, especially for species where

size determines their dynamics. The primary problem is in the discretization of

size classes and the selection of boundaries. These problems were shown in the

parameterization of a PPM for M. annularis. The selection is a balancing act

reducing sampling and distribution errors. There is also a problem in the assump-

tion that, within size class dynamics is irrelevant. This allows some individuals

to pass through multiple size classes unrealistically quickly, ignoring differences in

individuals at either end of the size class. The PPM also cannot deal with missing

transitions, this can be from missing data or through discretization. All of these

problems can be solved through the fitting of an Integral Projection Model. In

the following sections the IPM will be defined and modelling techniques will be

discussed. Finally an example of fitting an IPM will be given.

The Integral Projection Model (IPM) is a continuous-state, discrete-time model

that is an alternative to the PPM (Easterling et al., 2000). The IPM is particularly

used where populations are determined by size (Easterling et al., 2000) or by a

combination of discrete and continuous factors (Childs et al., 2003, 2004; Ellner

and Rees, 2006). In this Thesis, the population is determined by size (Chapter 1).

Hence, from here on it is assumed the IPM is a size-determined IPM.

Between time t and t + 1 a population undergoes a number of transitions in

size. These may include growth, survival, fecundity or fragmentation. In an IPM

each of these biological processes are individually estimated, as opposed to a PPM

where all biological processes in each PPM entry are estimated together. In an

IPM a function p(y, x) describes both the growth and survival of individuals in a
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population, which were size x at time t, and are now size y at time t + 1, whilst

a function f(y, x) describes the fecundity or the creation of new individuals. Thus

the equivalent projection equation of (3.1) for an IPM is:

n (y, t + 1) =

∫

Ω

[p (y, x) + f (y, x)]n (x, t) dx, (3.18)

this is more generally stated as:

n (y, t + 1) =

∫

Ω

k (y, x)n (x, t) dx. (3.19)

Here the non-negative probability density function k(y, x) is the kernel of the in-

tegral describing all transitions between sizes x at time t and y at time t + 1. The

range of possible sizes of the population is given by Ω and n(x, t) is a density

function describing the distribution of population size at time t. The number of

individuals between sizes x and x + dx at time t is n(x, t)dx.

The IPM is a form of an integrodifference equation. These, unlike the IPM,

have a long history in Mathematics. They are not only studied for their own sake

but also have applications in spatial ecology (Caswell, 2001; Kot and Schaffer, 1986;

Kot, 1992; Kot et al., 1996; Neubert et al., 1995). In the case of spatial spread the

model is firstly divided into the difference equation describing the spread of each

individual member, and secondly the integration of these difference equations over

the entire spatial area. These model the dispersion of a population over a given

area (Neubert et al., 1995). The IPM is the discrete time form of the continuous-

time integrodifference equation where the spatial re-distribution is replaced by size

re-distribution.

3.2.1 Assumptions of the Integral Projection Model

Many of the assumptions required to model populations with an IPM are similar to

those required in modelling PPMs: vital rates are assumed to be time-invariant and

samples are assumed to accurately model an entire population (Easterling et al.,

2000). Some assumptions need to be tighter for an IPM than a PPM, for example
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it is assumed that two individuals that start at the same state will exhibit the same

behaviour throughout the study (Easterling et al., 2000). This is a more realistic

assumption than the PPM, where two individuals in the same state class exhibit

the same behaviour, but it still fails to account for genetic differences between two

individuals.

3.2.2 Parameterization of an IPM

The life-cycle of a population determines the functional forms of k(y, x). These

functions are then fitted using well accepted statistical methods (Easterling et al.,

2000). Prior to fitting, assumptions about the error structure in the data must

be made. Each of these functions are fitted and combined in a pre-selected form

to parameterize the IPM. Each stage of this process is described in the following

sections.

Functional Forms

The kernel, k(y, x) is divided primarily into p(y, x), the survival-growth element

of the populations dynamics, and f(y, x), the function which describes how new

individuals are formed, such that k(y, x) = p(y, x)+ f(y, x). They describe how an

individual x at time t becomes size y at time t + 1.

These functions in turn are further subdivided. How this is achieved varies from

population to population. Often there are some similarities in the forms that these

functions take. In the case of the survival-growth function it is common (Easterling

et al., 2000; Ellner and Rees, 2006; Kuss et al., 2008) to state that:

p(y, x) = s(x)g(y, x), (3.20)

where s(x) is a probability density function describing the survival of individuals,

the probability that an individual of size x at time t will survive to time t+1. The

change in size of an individual is described by the growth function g(y, x), this takes

an individual of size x at time t and gives the size y at time t + 1. This function
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does not only take into account growth of individuals (where y > x) but also the

negative growth of individuals (where y < x). As an individual that survives must

have a size then
∫

Ω
g(y, x)dx = 1. Alternatively, if reproduction is fatal:

p(y, x) = s(x)(1− pf (x))g(y, x), (3.21)

is a popular selection (Hesse et al., 2008), where pf (x) is a probability density func-

tion describing the probability that an individual of size x at time t will reproduce.

There is a greater variety in the functional forms of f(y, x) due to the differing

strategies used by species to produce new individuals (Table 3.3 summarizes the

published forms). Although there are some differences in structure, many contain

similar elements, for example the probability that a new offspring is produced, the

number of offspring produced and the distribution of these offspring occur in all

models. This can help inform the structure of the function for a population, but it

must be noted that these are for varying plant populations and other species, like

coral, may require further functions to be fitted.

Parameter Estimation

Assumptions on the shape of the selected functions can aid parameter estimation.

These assumptions come from the data structure alongside information from pre-

vious studies where certain functions typically follow particular probability density

functions. Estimation of parameters is achieved through the following steps:

1. Select which function needs to be estimated.

2. Make assumptions about error structure, both from data and from traditional

forms.

3. Fit the model using statistical analysis by:

(a) Testing for non-linearities against linear terms, as well as against dif-

ferent models with different error structures.
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f(y, x) Functions

1 f1(x)f2(x, y) f1(x): Mean number of offspring
f2(y, x): Offspring sizes

2 pes(x)pf (x)fn(x)fd(y, x) pe: Probability of establishment
s(x): Probability of survival

pf (x): Probability of flowering
fn(x): Number of seeds produced
fd(y, x): Offspring distributions

3 fn(x)c(fn)fd(y, x) fn(x): Number of flowers produced
c(fn): Relationship between flowering and recruits

fd(y, x): Offspring distribution
4 ps(x)pf (x)fv(x)fvd(y) ps(x): Probability of survival

pf (x): Probability of flowering
fv(x): Number of offspring

fvd(y): Offspring sizes
5 pes(x)pf (x)fn(x)fd(y) pe: Probability of establishment

s(x): Probability of survival
pf (x): Probability of flowering

fn(x): Number of flowers
fd(y): Offspring distribution

6 s(x)fn(x)pEfd(y) s(x): Probability of survival
fn(x): Number of flowers

pE: Number of seeds becoming seedlings
fd(y): Offspring distribution

7 fp(x)fn(x)sefd(y) fp(x): Probability of flowering
fn(x): Number of flowers
se: Seedling establishment

fd(y): Offspring distribution

Table 3.3: The varying forms which the function f(y, x) can take. 1. Easterling et
al. (2000) 2. Childs et al. (2003; 2004) 3. Williams and Crone (2009) 4. Hesse et
al. (2008) 5. Kuss et al. (2008) 6. Miller et al. (2009) 7. Ramula et al. (2009)
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(b) Selecting the model through the application of the χ2 test using 95%

significance.

4. Repeat for all functions.

Numerical Integration of an Integral Projection Model Kernel.

The IPM is an infinite-dimensional model, which requires numerical integration

in order to gain results. This creates a ‘giant’ matrix which can be analyzed

using slightly adapted methods for PPMs. In order to achieve this, the eigenvalue

equation (3.22) must be solved:

∫ U

L

k(y, x)n(y)dy = λn(x), (3.22)

by the numerical solution:

m∑

j=0

wjk(yi, yj)n(yj) = λn(yi), (3.23)

for i = 1, ...,m. This can be summarized by:

KDn = λn, (3.24)

where Kij = k(yi, yj), D = diag(w0, w1, ..., wn) and n = (n(y0), ..., n(ym))T . This

method is known as the quadrature method, where yi are the quadrature mesh

points and wj the quadrature weights. Given the range of values Ω = [L, U ], the

boundaries of the mesh points, βi are:

βi = L +
i

n
(U − L), (3.25)

where i = 0, 1, ..., n, with the corresponding mid-points:

yi =
βi−1 + βi

2
. (3.26)

If M = KD then Mij =
(U−L)k(yi,yj)

n
, for i = 1, ..., n.
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To calculate the numerical approximation of the IPM the upper and lower

boundaries [L,U] must be determined. The boundaries are determined by the size

of the observed data, where the smallest value observed is l and the largest value

observed is u. The two main methods which have been adopted are:

1. [L, U ] = [0.9l, 1.1u], this allows for both shrinkage and growth of individuals.

The restriction comes for growing populations where some larger individuals

will ultimately be larger than 1.1u (Rees and Rose, 2002).

2. [L, U ] = [l− 3σ, u + 3σ], where σ is the standard deviation of the sizes at the

beginning of the study (Easterling et al., 2000).

Another issue of numerical integration is the number of mesh points used to

integrate the kernel. This requires a balance between using a large number of mesh

points to ensure accuracy and the computational cost of a large mesh size. In

order to decide on the number of mesh points a particular asymptotic indicator

is selected, normally the population growth rate (see Section 3.3), and calculated

for varying mesh sizes. When the indicator converges to a predetermined accuracy

level then the mesh size where this is first achieved is used in the ‘giant’ matrix

approximation.

The determination of these boundaries of integration and the number of mesh

points required can lead to very different asymptotic results. These issues are

discussed in Section 7.3.1 using the example of the IPM created in the following

section.

3.2.3 Parameterization of an IPM for Montastraea annularis.

To illustrate the issues surrounding parameterization of an IPM, one is created for

M. annularis. This is created for all transitions where a hurricane did not occur,

known as the non-hurricane IPM ANo.

Biological Processes

Between two time steps, t and t + 1, a coral patch can experience:
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Function Biological Relevance

s(x) Probability of survival
g(y, x) Growth (and shrinkage) of patches
pf (x) Probability of fragmentation
nf (x) Number of fragments
fd(y, x) Fragment distribution
fs(x) Family size of fragments

fd(y, x
n
) Fragment distribution

fd(y, x, n) Fragment distribution

Table 3.4: The functions used in the construction of an IPM for M. annularis.

• Survival (A patch of size x survives between 2 time periods),

• Mortality (A coral patch of size x dies before time t + 1),

• Growth (A patch of size x grows to size y at time t + 1),

• Shrinkage (A patch of size x shrinks to size y at time t + 1),

• Fragmentation ( A patch of size x fragments into 2 or more patches sizes y1,

y2, ...),

• There is no fecundity at the patch scale, instead this occurs at the colonial

scale (Szmant, 1991).

These biological processes can be grouped together in order to form the skeleton

for the IPM. This is shown in Figure 3.2. and the functions that need to be

parameterized are given in Table 3.4.

Possible Functional Forms of the IPM

Integral Projection Models have not previously been used on coral populations,

instead they have been applied to plant and tree populations. As a result some of

the functional forms in literature (Table 3.3) are not applicable to coral populations.

As coral populations have never been fitted with an IPM five different models will

be tested and reviewed to decide which model will be used in this Thesis. These

different forms are:
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Does patch survive? 
NO 

YES 

Does the patch  

fragment? 

YES NO 

What size is the does 

the patch take? 

What is the total size 

of these fragments? 

How many fragments 

were formed? 

What sizes do these 

fragments take? 

Mortality 

X 

Σyi 

y1 

y3 

y2 

y 

Figure 3.2: A decision tree showing the differing paths a M. annularis patch could
take between two time steps.
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I. s(x)g(y, x) + pf (x)nf (x)fd(y, x)

A form similar to that for plant populations both in the survival-growth and

fragmentation form.

II. s(x)g(y, x) + fs(x)pf (x)nf (x)fd(y, x)

As method I, but with the inclusion that the family size of the fragments is

important in determining the contribution of fragmentation to the kernel.

III. (1− pf (x))s(x)g(y, x) + s(x)fs(x)pf (x)nf (x)fd(y, x)

Assumes that a patch must not fragment in order to either grow or shrink

and also that a patch must survive if it is going to fragment.

IV. (1− pf (x))s(x)g(y, x) + s(x)fs(x)pf (x)nf (x)fd(y, x
n
)

A change in the fragment distribution from method III, where the size of new

fragments does not just depend on the size of the ‘parent’ patch but on the

average size of the ‘parent’ patch, when divided into the number of fragments

produced.

V. (1− pf (x))s(x)g(y, x) + s(x)fs(x)pf (x)nf (x)fd(y, x, n)

The fragments distribution is changed so that it is dependent on both the

parent patch size and the number of patches produced.

Parameter Estimation

Before the functions can be combined to form the kernel, each individual function

must be fitted. Below follows a description of how these functions are fitted, with

parameter estimates given in Table 3.5. It must be noted that the size of coral

patches approximately follows a log-normal distribution, as a result the statistical

models were fitted to the log-size of the coral patch.

Survival. The probability that a patch survives is estimated by a logistic regres-

sion. In order to fit the model each coral patch was assigned a value of 1 if the

patch survived to time t + 1 and a value of 0 was assigned if the patch died. If a

patch fragmented the ‘parent’ patch was assumed to have survived and assigned a

value of 1. The fitted linear model is then log
(

s(x)
1+s(x)

)
= a + bx, with quadratic
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terms being rejected (P = 0.7042). This fitted model (Figure 3.3 and Table 3.5)

gives the probability that a patch of size x at time t will survive.

Growth. The relationship between size at time t and size t + 1 needs to be

determined. The data are plotted (Figure 3.5) and show a near linear relation-

ship. This shows that there is only small scale change in size. The relationship

was fitted with a Gaussian assumption as the residuals followed a log-normal dis-

tribution (Figure 3.7). The fitted mean was linear (quadratic terms were rejected

(P=0.344)) such that µ(x) = a + bx. The variance, fitted such that σ2 = c + dx,

was dependent on the patches size at time t, but was not dependent on quadratic

terms (P=0.8827, Figure 3.6). The combination of the mean and variance in the

Gaussian distribution gives: g(y, x) = 1√
2πσ2(x)

exp
(
−(y−µ(x))2

2σ2(x)

)
.

Probability of Fragmentation. Each coral patch at time t was assigned a

value of 0 if the patch did not fragment or 1 if the patch did fragment. This was

estimated by a logistic regression and is of the form log
(

pf (x)

1+pf (x)

)
= a + bx, with

quadratic terms rejected (P=0.054). Fragmentation is rare (Figure 3.4 and Table

3.5) and so the fitted probability function is very small.

Number of Fragments. Of those patches which fragment, the number of

fragments X produced is fitted. The mean number of fragments was E(X) = 2.4,

with variance V AR(X) = 0.67. As E(X) > V AR(X), the number of fragments is

instead fitted using a Poisson distribution for a transformed variable Y = X − 2,

giving mean E(Y ) = 0.4 and V AR(Y ) = 0.67. Although V AR(Y ) > E(X) the

over-dispersion is assumed to not be a problem. This gives the fitted function

nf (Y ) = exp(a+ bY ) for the transformed variable. In this case the linear terms are

not significant (P=0.07) and so the fitted function is of the form: nf (Y ) = exp(a)

or nf (x) = 2 + exp(a) and is independent of the size of the patch which fragments

(Figure 3.8 and Table 3.5).
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Function Fitted Model

s(x) 0.2392(0.2844) + 1.0669(0.1474)x

g(y, x) −0.1198(0.0242) + 1.0129(0.0076)x
σ2 exp(−3.3197(0.1543)− 0.6000(0.0482)x)

pf (x) −5.9059(0.7673) + 0.6730(0.1867)x
nf (x) −0.9163(0.3536)

fd(y, x) −0.1527(0.5772) + 0.6439(0.1383)x
σ2 1.2683

fd(y, x
n
) 0.5721(0.4612) + 1.1439(0.2665)(x/n)

fd(y, x, n) 0.2423(0.5519) + 0.8079(0.1399)x− 0.3977(0.1361)n
fs(x) 0.2102(0.3682) + 0.8592(0.0905)x

Table 3.5: A list of the fitted parameters for ANo, standard errors are given in
brackets.

Family Size. The total area of the fragments produced from one ‘parent’ patch

is related to the size of the patch (Figure 3.9). As the ‘parent’ patch size increases

so does the total area of the fragments. This is fitted assuming a Gaussian error

structure such that fs(x) = a + bx, with quadratic terms rejected (P=0.20).

Fragment Size Distribution. The distribution of fragments could take three

different forms: The size of the fragments could depend completely on the patch

size of the ‘parent’ patch; they could depend on the size of the ‘parent’ patch

divided by the number of fragments it produced; or finally they could depend on

the number of fragments and the ‘parent’ patch size. All of these were assumed

to follow a Gaussian distribution, with the variance taken to be the variance in

fragment sizes at time t+1 (Table 3.5). However the size of the fragments increases

as the size of the parent patch increases, therefore three separate mean functions

were fitted for each of these cases (Figure 3.10). This gives the functions of the

forms: µ(x) = a + bx, with quadratic terms rejected (P=0.22), µ(x
n
) = c + d(x

n
),

with quadratic terms rejected (P=0.72) and finally µ(x, n) = e + fx + gn. Each of

these can be inserted into the fragment distribution: fd(y, .) = 1√
2πσ2

exp(−(y−µ(.))2

2σ2 )

(Table 3.5).

In order to select the functional form used in this Thesis, asymptotic indicators
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Figure 3.3: The fitted probability of survival s(x) model for the IPM ANo. Crosses
mark points from data, whilst the solid lines denote the models fitted to the data.
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Figure 3.4: The fitted probability of fragmentation model pf (x) for the IPM ANo.
Crosses mark points from data, whilst the solid lines denote the models fitted to
the data.
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Figure 3.5: The fitted mean growth model g(y, x) for the IPM ANo. Crosses mark
points from data, whilst the solid lines denote the models fitted to the data.
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Figure 3.6: The fitted variance of growth model, log(σ2(g(y, x))) for the IPM ANo.
Crosses mark points from data, whilst the solid lines denote the models fitted to
the data.
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Figure 3.7: The log-residuals from the fitted mean growth model for the IPM ANo.
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Figure 3.8: The fitted number of fragments model nf (x) for the IPM ANo. Crosses
mark points from data, whilst the solid lines denote the models fitted to the data.
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Figure 3.9: The fitted family size model fs(x) for the IPM ANo. Crosses mark
points from data, whilst the solid lines denote the models fitted to the data.
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will be used to select the model which gives the most realistic results. The asymp-

totic indicators are described in the next section and IPM selection is discussed in

Section 3.5.

3.3 Asymptotic Behaviour

Asymptotic dynamics are a particularly useful method of analysis as they are in-

dependent of the initial conditions. The asymptotic, or long-term, behaviour of a

population is observed when a population is not disturbed for a long period of time

and the vital rates are time-invariant. In analysing projection models, the most

common indicators are:

1. The population growth rate, λ1 (Section 3.3.3),

2. The stable size distribution, w1 (Section 3.3.4),

3. The reproductive value, v1 (Section 3.3.5),

4. Perturbation analysis of the vital rate (Section 3.3.10).

The combination of these gives an overall view of the long term dynamics, which

could be skewed by using only one indicator. Firstly, two other indicators will

be explained, these are the population size and the projection of the population.

These are not asymptotic indicators as they depend on the initial conditions, even

so they help describe the transition from transient to asymptotic dynamics.

3.3.1 Population Size

The structure of the population at time t for a PPM is given by the vector x(t) ∈
R

1×n and gives the number of individuals in each size class. In the case of the IPM

n(x, t), gives the distribution of sizes at time t. These size structures are used to

calculate the total size of the population. In the case of the PPM the 1-norm of

the size structure is taken, which is calculated as the sum of all the entries, written
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as |x(t)|1 = |x(t)|. In the case of the IPM the L1-norm is used and calculated as:

∫

Ω

n(x, t)dx. (3.27)

3.3.2 Projection of the Population

Projecting the population over time shows the dynamics of the population assuming

that the vital rates are time-invariant. Projection is clearly not a forecast of a

population where disturbances will occur, as then either the population structure

or vital rates are perturbed. In this case, projections can be used to look at the

interaction of different disturbances on a population, by using different PPMs or

IPMs for different environmental conditions.

Projection uses the measure of population size, but it can also use the number

of individuals in each size class or number of new individuals produced. Projection

of the population also allows extinction times to be calculated, which is when the

population decreases to a size below that of a given extinction threshold.

Given a matrix A and the population structure x(t) at time t the projection

equation to calculate the population at time t + 1 is:

x(t + 1) = Ax(t). (3.28)

Therefore given an initial population structure x(0), the population structures at

times t = 1, 2, . . . T are:

x(1) = Ax(0). (3.29)

x(2) = Ax(1) = A(Ax(0)) = A2x(0), (3.30)

... (3.31)

x(T ) = ATx(0). (3.32)

This method for PPMs can be used for IPMs, where the matrix A is the numerical

approximation of the kernel, and x(t) is an approximation of the size structure at

time t.
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3.3.3 Population Growth Rate

The population growth rate λ1 describes the long term, year on year, growth or

decline of a population. It is computed as the dominant eigenvalue of the matrix

or operator (see Section 3.3.6 for more information). Depending on the size of λ1

the population will fall into three distinct groups (Caswell, 2001). They are:

1. λ > 1, the population is in exponential growth.

2. λ = 1, the population is in stasis, neither growing nor declining.

3. λ < 1, the population is in exponential decay.

3.3.4 Stable Size Distribution

The structure of a population in asymptotic time, t >> 1, is a multiple of the

stable size distribution. This structure is calculated as the right eigenvector of A

for the dominant eigenvalue. This is determined by the right eigenvalue/eigenvector

equation:

Aw = λw (3.33)

The vector w is normalized so that
∑

i wi = 1, this gives the proportion of indi-

viduals in each size class and is therefore independent of initial size. There are

many other methods of normalizing this vector, but in this Thesis this method

is preferred as the 1-norm is used as a measure of population size. Thus for all

populations |w|1 = 1 in order to allow easy comparison. In the case of a PPM

w ∈ R
n×1. In the case of an IPM the stable size distribution is a function w(x),

approximated by w.

3.3.5 Reproductive Value

The reproductive value was first introduced by Fisher (1930) in answer to the

question: ‘To what extent do individuals at time t contribute to future generations?’

Subsequently, this was shown to be equal to the left eigenvector vT , which satisfies
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the left eigenvalue/eigenvector equation:

vTA = λvT . (3.34)

The transpose form of this equation is required as opposed to the more traditional

complex conjugate transpose form because population models are fitted with real

parameters. As in the case of the stable size distribution, the reproductive value is

normalized to sum to one, i.e.
∑

i vi = 1. The vector (or function) v (v(x)) shows

which sizes contribute the greatest amount to the production of new individuals.

Usually the reproductive value is applied in a context of population models

which include reproduction - hence its title. In the models here, where reproduction

is not included explicitly, this indicator can still be used. It measures how the

different size classes contribute to the production of new individuals, particularly

through the process of fragmentation. Therefore it might be better to refer to this

fragmentation value, a measure of the proportional long-term fragmentation of each

size class.

3.3.6 Perron-Frobenius Theorem

The Perron-Frobenius Theorem (Frobenius, 1912; Perron, 1907a,b) is fundamental

in the study of eigenvalue properties of matrices and operators. Loosely speaking,

it shows under certain conditions, that the dominant eigenvalue is unique, real

and positive. This allows the calculation of the dominant eigenvalue alone to

describe the dynamics rather than requiring the complete system of eigenvalues,

or spectrum, to be calculated. This is particularly important for IPMs where

calculating the full spectrum of the system is computationally expensive.

3.3.7 Perron-Frobenius For Population Projection Matri-

ces

To describe the Perron-Frobenius Theorem, the notions of non-negative, primitive,

irreducible and reducible matrices must be introduced.
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Non-negativity

A matrix A ∈ R
n×n is non-negative if all entries in A are non-negative (Berman

and Plemmons, 1994), that is if:

aij ≥ 0 ∀ i, j. (3.35)

Irreducibility

A non-negative matrix A ∈ R
n×n is reducible if for some permutation matrix

P, PTAP is a block upper triangular matrix (Gantmacher, 1959; Berman and

Plemmons, 1994). Contrastingly if a matrix is not reducible then it is irreducible.

Irreducibility of a matrix A is equivalent to any of the following statements:

• The life cycle of the population is strongly connected, meaning that every

node on the life cycle is connected (via a pathway) to every other node

(Rosenblatt, 1957; Berman and Plemmons, 1994).

• For a matrix A = (aij), for each i,j there exists a k such that the (i, j)th

entry of Ak is positive.

It is possible to calculate if a matrix is irreducible numerically for a given n × n

matrix A, it is irreducible if and only if (I+A)n−1 > 0 (Horn and Johnson, 1985),

where I is the n× n identity matrix.

Primitivity

A non-negative matrix A ∈ R
n×n is primitive if there exists k such that Ak >> 0.

Primitivity of A is equivalent to the following statements:

• If the life cycle of the population is strongly connected and the greatest

common divisor of the length of the loops is 1 (Rosenblatt, 1957; Berman

and Plemmons, 1994).

• Ak > 0 for some sufficiently large k.

• If An2−2n+2 > 0 (Horn and Johnson, 1985).
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Three theoretical PPMs (B1, B2 and B3) show the differences in the structure

of the life cycles for reducible, irreducible and primitive PPMs (Table 3.6). For

a 3 × 3 matrix, irreducibility is equivalent to if (I + Bi)
2 > 0 and primitivity by

B5
i > 0.

The Perron-Frobenius Theorem

Let A ∈ R
n×n be a non-negative matrix with spectrum σ(A) = (λ1, λ2, ..., λn).

The spectral radius, r(A), is defined as r(A) = maxi |λi|, which is equivalent to

the dominant eigenvalue, λ1, of A, if λ1 ∈ R and positive. The corresponding

left and right eigenvectors for λ1 are v1 and w1 respectively. Then by the Perron-

Frobenius Theorem:

• if matrix A is irreducible:

|λ1| ≥ |λi| ∀λ ∈ σ(A), λ 6= λ1, 1 < i ≤ 1, (3.36)

and furthermore that λ1 is positive and real with associated non-negative,

real eigenvectors (v1,w1 ≥ 0).

• if the matrix A is primitive, then λ1 is unique, i.e.:

|λ1| > |λi| ∀λ ∈ σ(A), λ 6= λ1, 1 < i ≤ n, (3.37)

and λ1 has associated strictly positive real eigenvectors (v1,w1 > 0) which

are the only non-negative eigenvectors of the system.
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3.3.8 For Integral Projection Models

The functions used to construct an IPM kernel (See Table 3.4) are assumed to be

continuous and as such the kernel itself is continuous on X × X, where X is the

space of individual states. The right-hand side of the projection equation is defined

to be:

T =

∫

X

k(y, x)n(x, t)dx. (3.38)

Power Positivity

A kernel is power-positive (PP) if and only if:

km(y, x) > 0 ∀ x, y ∈ X and for some m. (3.39)

This equation states that for a large enough power m the kernel is positive in all

entries. The property of power-positivity in IPMs is equivalent to the primitivity

property in PPMs (Ellner and Rees, 2006). If the kernel is continuous and compact

then uniform power positivity (UPP) is defined such that there exists some C > 0

and m > 0 where:

km(y, x) ≥ C. (3.40)

This stronger assumption of UPP rather than PP is required for stable population

growth, as PP can be found from an unbounded kernel (Ellner and Rees (2006)

Appendix B).

In order to calculate km for a probability density kernel the Chapman Kol-

mogorov formula is used. Which states that:

kt+1 =

∫

X

k(y, x)kt(z, x)dz. (3.41)

This is the IPM equivalent of the PPM projection equation At+1 = AAt.
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u-boundedness

With a continuous initial population size structure n(x, 0) = n0(x) and a proba-

bility function u(x) ∈ X, the m-step kernel is u-bounded if:

α(n0)u(x) ≤ n(m, t) ≤ β(n0)u(x), (3.42)

where α, β > 0 are constants dependent on the initial condition n0 (Ellner and

Rees (2006) Appendix B). This property ensures that given an initial population

structure, the population at some time in the future is bounded. This condition is

satisfied if there is mixing at birth, which means that the range of offspring sizes

is the same for all parents (Ellner and Rees, 2006).

The Perron Frobenius Theorem

There is stable population growth for an IPM, if the two conditions of power-

positivity and u-boundedness are satisfied (Ellner and Rees, 2006). If the kernel

satisfies these properties then (Ellner and Rees (2006) Appendix C):

1. The operator Tm will have an eigenvalue equal to the spectral radius λm with

corresponding eigenvectors w, v.

2. The dominant eigenvalue λm is simple and w is unique.

3. All other eigenvalues of Tm, ρ, other than λm satisfy |ρ| ≤ qλm for some

q < 1.

Stable population growth means that only the dominant eigenvalue and eigenvec-

tors of the system need to be calculated in order to define the population growth

rates.

3.3.9 Ergodicity

Parameterized PPMs often suffer from missing transitions, where some transitions

are not parameterized because of uncaptured data from data collection or because
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of poorly selected size class boundaries. This results in about 25% of PPMs in the

database1being reducible. For example PPM B1 is reducible (Table 3.6), this can

clearly be seen in the life cycle as the third state-class is isolated from the other

two state classes. This is obviously not biologically realistic, but if transition G3,2

was non-zero the PPM would be irreducible

Reducibility can severely affect the dynamics of the population, with the popu-

lation growth rate potentially being initial condition dependent. To overcome this

possibility, it is necessary to check that reducible PPMs are ergodic. Ergodicity

states that regardless of the initial conditions the population will follow the same

growth rate, that given by λ1. It is often the case though that if a PPM is reducible

it is non-ergodic with 63.2% of reducible PPMs in the date base being non-ergodic

(Stott et al., 2010b). When the PPM is non-ergodic it is important to take into

account the structure of the initial conditions in order to understand what growth

rate is followed.

Ergodicity can be tested from the left eigenvector, if v1 is positive then the

PPM is ergodic (Dietzenbacher, 1991). If v1 ≥ 0 then the PPM is non-ergodic and

a population may follow multiple growth rates. To determine the different growth

rates, the PPM must be permuted into a block matrix where all sub-diagonal blocks

are zero for example:

A =





A1 A1,2 · · · A1,n−1 A1,n

0 A2 · · · A2,n−1 A2,n

...
...

. . .
...

...

0 0 · · · An−1 An−1,n

0 0 · · · 0 An





. (3.43)

Then the dominant eigenvalues of each irreducible diagonal matrix are determined.

The PPMs created in Section 3.1.3 were tested for ergodicity: The matrix A1

(3.4) is primitive and so only one population growth rate will be followed; The

1The database of PPMs has been gathered by Iain Stott, David Carslake and Miguel Franco.
It currently contains 652 PPMs for 171 species. These PPMs have been found from published
studies and is continuously being added to. Further information and analysis of the database has
been carried out by Stott et al. (2010b)
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PPM Block Permutations

A2





0.933 0.375 0.409 0 0 0 0 0 4 0
0 0.708 0.136 0 0 0 0 0 0 0
0 0 0.727 0.167 0 0 0 0 0 0
0 0 0 0.833 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1





A3





0.630 0.091 0 0 0.037 0 0 0.08 0 0
0 0.681 0.095 0.067 0.148 0 0.042 0 0.038 0.083
0 0.045 0.810 0.267 0.037 0.042 0 0.04 0 0
0 0 0.048 0.7 0.074 0.125 0 0.04 0 0.042
0 0 0 0 0.630 0.083 0 0.083 0 0.083
0 0 0 0 0.074 0.708 0.25 0.08 0.038 0.208
0 0 0 0 0 0.042 0.625 0.2 0.115 0.042
0 0 0 0 0 0 0.042 0.56 0.077 0.042
0 0 0 0 0 0 0 0 0.808 0.125
0 0 0 0 0 0 0 0 0 0.75





Table 3.7: The block permutations of two non-ergodic PPMs.

matrix A4 (3.17) is reducible but ergodic as v > 0. In comparison A2 (3.5)

is non-ergodic, as is A3 (3.6). This results in block permutations as given in

Table 3.7. For A2 there are 6 possible growth rates that could be followed by the

population depending on the initial conditions (Table 3.8). PPM A3 could follow 5

different growth rates depending on the initial conditions (Table 3.8). This shows

the importance in determining ergodicity for PPMs, so that the correct asymptotic

dynamics can be predicted.

3.3.10 Perturbation Analysis

In deterministic models, fitted parameters describe the dynamics of a population

in a snap-shot of time. There are often errors associated with these parameters

and perturbation analysis informs how sensitive λ1 is to a change in a parameter.

Perturbation analysis can be used to inform management strategies, answering the
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PPM Base vector Growth rate

A2 e1 0.933
e2 0.708
e3 0.727
e4 0.833

e5, e8, e9 0
e6, e7, e10 1

A3 e1 0.630
e2, e3, e4 0.898

e5, e6, e7, e8 0.814
e9 0.808
e10 0.75

Table 3.8: The differing initial condition base vectors, ei, and the growth rate
which would be followed under these initial conditions.

questions: ‘Which vital rates are most important?’; ‘Which should be targeted in

order to conserve the population?’ or ‘Which rates need to be reduced in order to

minimize the invasive potential of a species?’ The answers to these questions can

inform managers of populations the best strategies to adopt. In this next section

the methods that have historically been used for PPMs will be described, as well

as a discussion on how these can be applied to IPMs.

Sensitivity Analysis for PPMs

Sensitivity Analysis calculates the impact of each transition probability on the

population growth rate λ1. In the case of a PPM, the sensitivity of λ1 to each

matrix entry aij is given by:

S(aij) =
∂λ1

∂aij

=
viwj

vTw
, (3.44)

where v and w are the left and right eigenvectors of the dominant eigenvalue. Often

management strategies require a certain growth rate λd and through linear extrap-

olation the required perturbation for each entry to achieve λd can be calculated as

follows:

PS(aij) =
λd − λ1

S(aij)
. (3.45)
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Some entries of the PPM are biologically zero, which can be seen in the life cycle

graph of a population and perturbation analysis for these entries is not required as

these can never be perturbed to be non-zero.

It is important to highlight perturbations which are impossible in combination

with other vital rates. Some required perturbations result in a probability estimate

greater than one, or could cause the column sum of non-fecundity values to be

greater than one. These perturbations are impossible to achieve and need to be

rejected.

Transfer Function Analysis for PPMs

Transfer Function Analysis (TFA) is promoted as an alternative to Sensitivity Anal-

ysis (Hodgson and Townley, 2004; Hodgson et al., 2006). The Transfer Function

is better equipped to deal with both structured perturbations to a population, as

well as non-linear extrapolations of required values, giving more accurate results.

In order to apply TFA to a PPM A a perturbation matrix P is defined such that

the perturbed matrix is A + P. In the case of a single perturbation this can be

re-written as: A + P = A + pDE, where D = ej, the jth basis vector defines

the column of the perturbation, and E = eT
i defines the row of the perturbation,

whilst p defines the magnitude of the perturbation. The Transfer Function of the

perturbed matrix is defined as:

G(z) = E(zI−A)−1D, (3.46)

and given the desired population growth rate λd the magnitude of the perturbation

required is:

p =
1

E(λdI−A)−1D
. (3.47)

From these equations (3.46) and (3.47), the direct relationship between the per-

turbation and the population growth rate can be calculated, which allows the

comparison of different management strategies.
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Sensitivity Analysis for IPMs

The simplest form of Sensitivity Analysis for IPMs is to directly transfer the frame-

work from PPMs to numerically estimated ‘giant’ matrix as suggested by Easterling

et al. (2000). In IPMs this will suggest the area of the approximated kernel that is

sensitive to perturbations. This method is unable to suggest management strate-

gies or relate these sensitive areas back to parameter estimates, because each entry

of the approximated kernel is formed from multiple biological functions. Given the

fragmentation value v(x) and the stable size distribution w(x) sensitivity can be

calculated as:

s(x, y) =
∂λ1

∂k(x, y)
=

v(x)w(y)

〈w, v〉 , (3.48)

where 〈w, v〉 =
∫

Ω
w(x)v(x)dx. This is a continuous representation of equation

(3.44). However, there is no value in translating equation (3.45) to the IPM as

stating the size of a perturbation on a numerical approximation cannot be trans-

lated into a management strategy for IPMs.

Sensitivity of Parameters in the IPM to Perturbations

Numerical integration itself has numerical errors, therefore to apply sensitivity

analysis to this numerical approximation will introduce errors to the sensitivity

analysis. As explained above, traditional sensitivity analysis also does not allow

conclusions about the best management strategies to be drawn. In order to calcu-

late the parameters most sensitive to perturbations it is more realistic to calculate

the effect of perturbing each parameter on the population growth rate. It is often

the case that one or more parameters are connected to each other and as one in-

creases another may increase or decrease, so it is often useful to look at the effect of

perturbations on these parameter values together. In order to calculate this each

parameter (or group of parameters) is perturbed and the new population growth

rate is calculated. It is then possible to produce a contour plot of possible parame-

ter values against population growth rate so that conclusions can be drawn about

what perturbations are required for groups of parameters. This can be viewed as

a form of simulated Transfer Function Analysis.
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3.4 Transient Analysis

Asymptotic dynamics assume that environmental conditions will remain the same

for t >> 1, but this is often not the case. Populations experience disturbances

which either perturb the population structure or the parameters of the model.

Transient analysis aims to understand the short term dynamics exhibited following

a disturbance which perturbs the population structure away from w. A number of

indices exist which can be applied to populations to measure the effect of the initial

conditions which are described below. All transient analysis can be are measured

relative to the long-term growth rate (λ1), in order to place an upper-bound on

the trajectories in the case where λ1 > 1. This will give how large or small the

population could become in comparison to if the population began in its stable

size distribution w. This is achieved by measuring the transient indicators of a

normalised matrix Â, where Â = A
λ1

.

The aim of transient analysis is to calculate the upper and lower bounds of

possible behaviour. This is called the transient envelope and consists of an upper

bound ρt called amplification and a lower bound at called attenuation.

3.4.1 For Population Projection Matrices

Possible Trajectories

The simplest method of analysis biases the initial conditions in order to observe

what would happen under biased initial conditions. In a PPM with five size classes,

five initial conditions are tested by placing all individuals into each size class in-

dependently. The population density is set to 1, i.e. |x(0)| = 1. For each initial

condition, ei, i = 1...5, the population was projected through 10 time steps and the

population size measured.

Reactivity

Reactivity is the largest possible population density which could be achieved after

one time step, with Attenuation being the smallest possible population density
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which can be achieved after one time step. Reactivity is calculated as:

Reactivity =
∥∥∥Â
∥∥∥

1
. (3.49)

As the 1-norm of a matrix is calculated as the maximum column sum of the matrix

this is easily calculated and is also easily transferable to the attenuation parameter

such that:

Attenuation = min(CS(Â)), (3.50)

where CS stands for the column sum of a matrix. These measures are relatively

simple to calculate and can be particularly useful in a system which is experiencing

constant disturbances, for example a system experiencing many hurricanes, which

could only have 1 or 2 times steps between disturbances.

Kreiss Bounds

The upper Kreiss bounds K give a theoretical lower bound for maximum amplifica-

tion ρt whilst the lower Kreiss bound K calculates an upper bound of attenuation

at (Kreiss, 1962). These are calculated as:

K
⋆

λ = maxr>1(r − 1)
∥∥∥(rI− Â)−1

∥∥∥
1
. (3.51)

and the lower bound is:

K⋆
λ = minr>1(r − 1)minCS(rI− Â)−1. (3.52)

Maximum Amplification and Minimum Attenuation

This measure gives the maximum (or minimum) possible population density that

can be achieved in the transient analysis. These are the outer bounds of the

transient envelope. These can be calculated as:

ρmax = maxt≥0

(∥∥∥Â
t
∥∥∥

1

)
(3.53)



CHAPTER 3. AN INTRODUCTION TO PROJECTION MODELLING 100

and

amin = mint≥0

(
minCS

(
Â

t
))

(3.54)

This measure is numerically calculated for each time step, in this case for t =

1, ..., 10 and the maximum and minimum densities are calculated. It is also useful

to record the times at which this minimum or maximum is reached.

3.4.2 For Integral Projection Models

Transient Analysis for IPMs is less well studied, the analysis are more descriptive

rather than following any particular formulas. The most basic form of Transient

Analysis is to project the population under differing initial conditions. An IPM,

which has been numerically integrated, will have a much larger number of ‘size

classes’ than a PPM and so a greater number of initial conditions must be tested.

If there are n size classes in the numerical approximation, n initial conditions

must be tested namely ei, i = 1...n. This calculates a range of behaviour which

could occur. To compare transient dynamics with those of the PPM a number of

indicators are then calculated from these projections. The maximum and minimum

population densities can be calculated at each time step to form a transient envelope

of behaviour. Using these bounds, an equivalent to Reactivity is calculated by

finding the maximum value of these bounds at the first time step and Attenuation

the minimum. Also of interest is the maximum (ρmax) and minimum (amin) density

reached during the first ten time steps. As with PPM analysis this is calculated

numerically.

The Transient Analysis in this Thesis is carried out relative to λ1. An alternative

suggestion by Eager et al. (In Press) was to calculate transients at each time step

relative to the population size at the previous time step and is calculated by the

Transient Function T (t, ρ). This method is not adopted in this Thesis to allow a

direct comparison of IPM Transient Analysis to PPM Transient Analysis in Chapter

5.
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Method λ1 % change from Data

I 0.9036 +1
II 1.0154 +14
III 0.9578 +7
IV 0.7378 -17
V 0.7670 -14

Data 0.894

Table 3.9: Population growth rates for the five different models for M. annularis.
The numerical approximation used 100 mesh points to calculate the dominant
eigenvalue.

3.5 Selection of an IPM Functional Form for M.

annularis

Recall from Section 3.2.3 that five different functional forms for an IPM were

suggested for M. annularis. They were:

I. s(x)g(y, x) + pf (x)nf (x)fd(y, x)

II. s(x)g(y, x) + fs(x)pf (x)nf (x)fd(y, x)

III. (1− pf (x))s(x)g(y, x) + s(x)fs(x)pf (x)nf (x)fd(y, x)

IV. (1− pf (x))s(x)g(y, x) + s(x)fs(x)pf (x)nf (x)fd(y, x
n
)

V. (1− pf (x))s(x)g(y, x) + s(x)fs(x)pf (x)nf (x)fd(y, x, n)

Each of the functions described above were parameterized for ANo, the non-hurricane

time steps (Table 3.5). These have been combined and numerically integrated to

give a graphical representation of the ‘kernel’. These can be compared, along with

the population growth rates, stable size structures and fragmentation values of

these five models. This is to select the best functional form, which will be used

in this Thesis. The population growth rate from data was calculated as the to-

tal change in population density between t and t + 1. This gives an approximate

measure of the behaviour that the population growth rates from the models can

be compared to.
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Firstly, although method I produced the best estimate of λ1 in comparison to

the data (Table 3.9), it was not based on the life cycle for M. annularis (Figure

3.2), but rather was a suggestion from literature, therefore method I is rejected

as a possibility. Secondly method II provided an estimate of λ1, which is greater

than 1, depicting a growing population. The estimate of λ1 directly from data is

a declining population, i.e. with λ1 < 1. Method II therefore provides a poor

estimate for the population growth rate and as such is rejected.

Methods III, IV and V provide estimates for λ1, which are acceptable with all

in decline, and within 17% of the growth rate from data (Table 3.9). The estimate

of λ1 from data only takes into account the change of total area on the population

and not the effect of fragmentation producing additional patches as the model does,

so it is likely that the growth rate from data is an over-estimate of the actual growth

rate. Therefore the estimate produced by Method III must be questioned. This

method fails to take into account the effect that the number of fragments produced

by a ‘parent’ patch on the size of those fragments. The fragmentation value for

this method shows a dependence on smaller patches fragmenting than methods IV

and V , this is not biologically realistic as the majority of fragmentation occurs on

large patches as shown by the fitted pf (x). For these reasons method III is also

rejected.

The population growth rate estimates and the kernels are similar for methods

IV and V (Table 3.9 and Figure 3.11). The stable size distributions are also very

similar being dominated by small patches in asymptotic time (Figure 3.12 (a)).

The fragmentation values are similar, but method IV stated that there is a greater

contribution from patches between 100 and 300cm2 (Figure 3.12 (b)). As the

asymptotic results are similar for both methods IV and V , the biological realism

of these methods are considered. The difference lies in the distribution of fragment

sizes and the inclusion of the number of fragments as a factor. It seems more

realistic to take the ‘parent’ size and divide by the number of fragments produced

as this affects the average size of the patches produced, then to include the number

of fragments in an additive fashion. For this reason method IV is selected ahead
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of method V for use in parameterising IPMs in this Thesis. That is all kernels of

M. annularis in this Thesis will be estimated by the functions:

k(y, x) = (1− pf (x))s(x)g(y, x) + s(x)fs(x)pf (x)nf (x)fd(y,
x

n
). (3.55)
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Figure 3.11: A comparison of kernels for method IV and method V as methods to
parameterize the IPM of M. annularis.

3.6 Summary

In this Chapter the Population Projection Matrix and Integral Projection Model

methods have been introduced. The methods for parameterizing M. annularis

have been selected, as well as a description of the tools that will be used to analyse

them. These will be used in Chapters 4, 5 and 7 to describe the dynamics exhibited

on Glovers Reef.
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Figure 3.12: The stable size distribution and fragmentation values for methods
III, IV and V .

This Chapter has focussed on answering the research questions RQ1, RQ2 and

RQ3 given in Figure 1.4, concerning the objective of understanding current projec-

tion modelling techniques and how they can be adapted to M. annularis. It has

also aimed at answering RQ5 in describing the current analysis techniques applied

to projection modelling.



Part II

Should Population Projection

Matrices or Integral Projection

Models be used to model

Montastraea annularis?
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Chapter 4

The Population Projection Matrix

4.1 Introduction

Population Projection Matrices have been adapted for use with populations de-

termined by size (Hughes, 1984) and, in particular, for coral colony populations

(Hughes, 1984; Hughes and Tanner, 2000; Lasker, 1991). The necessity to model

populations at patch, rather than colony scale, has been discussed in Chapter 2.

In this Chapter, a PPM for coral patches of Montastraea annularis will be pa-

rameterized in order to investigate RQ6: Does initial trauma following a hurricane

effect the dynamics of a coral patch population? The methods used to build and

analyse these PPMs are given in Chapter 3.

4.1.1 Hypothesis

In order to test RQ6, the patch dynamics of M. annularis are quantified in order

to test the hypothesis:

The initial impact of a hurricane influences the patch dynamics of Montastraea

annularis.
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Figure 4.1: (a) The proportion of the total area of ramets (over the entire sampled
population) covered by coral and algal patches. Algal patches comprise of Dictyota,
Halimeda, Lobophora variegata and other macroalgal species. (b) Rate of change
of coral and algal cover during the sampling period.

4.2 Methods

To test the hypothesis, the total area of coral patches on an individual ramet,

not the patches themselves, were grouped according to the trauma experienced

due to Hurricane Mitch. Although Hurricane Mitch occurred in October 1998,

it is the decline in coral patch area between December 1998 and June 1999 that

defines the trauma a patch undergoes as a result of Hurricane Mitch. A time lag

was observed between the passing of the hurricane and the resulting decline in

coral cover (Figure 4.1 (a)). This time lag may result from the delayed effects

of hurricanes, such as scouring and increased sedimentation, rather than primary

effects like ramet breakage.

The trauma a patch underwent is measured by the decline in coral cover. This

initial trauma is different from the initial conditions. All coral patches on each

ramet were summed together and it was assumed that all patches on the same

ramet would experience similar trauma. An indicator, X, was defined to be the

relative change in area between December 1998 and June 1999 such that:

X =
total area in June 1999

total area in December 1998
. (4.1)
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The range of observed values of X is between 0 and 1, where 0 indicates extinction

of coral patches on a ramet and 1 indicates the area of coral remaining the same.

It is possible for a value of X to be greater than 1, if growth was observed, but

this is unlikely to occur when a coral patch is under stress.

Three trauma groups were defined using the indicator X, these were ISevere,

IMild and IWeak. Group ISevere contains ramets that experienced the most severe

trauma and lost the greatest amount of relative area (X ≤ 0.47). Group IMild

contains those ramets with X in the range 0.47 < X ≤ 0.78 and group IWeak, those

that underwent the least trauma (X > 0.78). The aim was to create groups of

approximately equal size, however, this was not possible as ramets which had the

same X value were placed in the same group. Instead, following Hughes (1984)

each group was required to have 80 ramets. This resulted in groups of size 88

(ISevere), 88 (IMild) and 86 (IWeak).

A PPM was parameterised for each group, using the individual patch sizes,

rather than the grouped coral area on a ramet. Data was taken from the five

sampling dates following Hurricane Mitch (June 1999 to January 2003). It was

assumed that patch size and behaviour of each coral patch at the beginning of each

transition is independent of the behaviour exhibited in the previous transition. All

four transitions following Hurricane Mitch were grouped together to create one

PPM for each category, rather than four for each category (one per transition).

This should give an accurate description of post-hurricane behaviour and smooth

out any yearly variations. It also reduces sampling errors resulting from a small

data set. The data were collected at eight non-uniform time steps over a 4.5

year period. The time step of the PPMs was taken to be the average length of

time between the data sampling points: 10.75 months. In addition, data collected

on two sampling dates prior to Hurricane Mitch (June 1998 and October 1998)

were used to capture the behaviour of the coral population prior to a disturbance

event, this is known as the Pre-hurricane matrix (P ) with a time step of 4 months.

Percentage change and coral cover will also be calculated for the entire sampling

period, this provides information about the behaviour observed, whilst PPMs will
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project future behaviour.

The four PPMs (ISevere, IMild, IWeak and P ) were parameterized using the meth-

ods described in Section 3.1.2. They use size classes chosen in Section 3.1.3 by the

van der Meer and Moloney algorithm for the entire data set. In addition Section

3.1.3 gives details on the parameterization of a PPM for M. annularis, and these

methods are adopted here. Once constructed the PPMs are analysed to under-

stand both the asymptotic and transient dynamics (described in Sections 3.3 and

3.4) and the results are used to test the hypothesis.

4.3 Results

4.3.1 Coral Cover Results

Prior to Hurricane Mitch there was very little free space on the ramets in the

study (≈ 4%) and coral cover was approximately 80% (Figure 4.1 (a)). This was a

healthy coral-dominated reef with four times as much coral as algae. The immediate

response to Hurricane Mitch was a decrease in coral and algal cover, followed by a

speedier recovery of algae than coral (Figure 4.1 (b)). The Algal cover recovers to

a higher percentage coverage than pre-hurricane Mitch (25% compared to 18%),

whilst the coral cover continued to decline, albeit at a slower rate than the initial

decline, with only 33% coverage in January 2003 (Figure 4.1 (a)). There appears

to have been very little colonisation of free space with the increase in free space

mirroring the decline in coral cover (Figure 4.1 (a)).

Initially, the greatest number of patches was in ramet group ISevere, but imme-

diately following Hurricane Mitch, there was a 50% drop in number as a result

of the extinction of 63 patches (Figure 4.2 (a)). Following the initial extinctions

there was a continual slower decline in the number of patches for the remaining 43

months. The group with initially the most patches ended with the least (ISevere).

In contrast, for the two years following Hurricane Mitch coral patches on ramets

in group IMild gradually increased in number as a result of fragmentation events.

This initial growth in the number of patches was followed by decline, as a result
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of further hurricanes hitting the reef. Nonetheless, in IMild at the end of the study

there are more patches than at the beginning (Figure 4.2 (a)). Coral patches in

IWeak fluctuated in number throughout the study, but with an overall reduction of

8% by January 2003 (Figure 4.2 (a)). The greatest survival of individual patches

over the study was measured as the percentage of patches identified in June 1998,

which were still present in January 2003. By this measure, the greatest survival was

observed in IWeak (89%) compared to IMild (70%) and ISevere (15%), the additional

patches in Figure 4.2 (a) were new fragments produced by coral patches.
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Figure 4.2: (a) The number of and (b) the average size of coral patches, in each
initial hurricane impact group between June 1998 and January 2003.

Over the entire study, there was a decrease in average patch size, which strongly

resembles the decrease in coral cover (Figures 4.1 (a) and 4.2 (b)). On average, coral

patches in ramet group IWeak were the largest, while ramets in ISevere possessed the

smallest patches of coral (Figure 4.2 (b)). The ramet groups were determined by

relative change in area due to Hurricane Mitch and not absolute change, therefore

the result is surprising. This shows that, on average, larger patches lost the lowest

proportion of their size (found in IWeak) and smaller patches lost the most (found

in ISevere). This gives an indication that ramets containing large patches are in the

best position to lose the least relative area as a direct result of a hurricane.

Absolute growth (in cm2) of a coral patch between sampling dates occurred

mainly on ramets in categories IMild and IWeak, with 33 and 23 growth events re-
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spectively. In comparison, patches in group ISevere experienced a total of only five

growth events between June 1999 and January 2003. No absolute growth of coral

patches was observed between October 1998 and June 1999 (the time period where

the effects of Hurricane Mitch are assumed to have occurred). Stasis events, in

which a coral patch remained the same size, were the most common throughout

the sampling period (reflecting the slow growth of the species). The exception was

the time period immediately following Hurricane Mitch when shrinkage events were

the most prevalent. Coral patches in both ISevere and IWeak experienced half the

number of fragmentation events than in group IMild. This shows that it was neither

those patches that were affected the most nor the least that produced the most

new patches through fragmentation.

Key Coral Patch Cover Results

1. There was very little colonization of free space.

2. Fragmentation mainly occurred in group IMild.

3. The largest number of growth events occurred in group IMild.

4. The best patch survival was in group IWeak, and the worst in group ISevere.

5. Ramets containing the largest patches lost the least relative area as a result

of Hurricane Mitch.

4.3.2 The Population Projection Matrices

The PPMs for each trauma category and for the Pre-Hurricane state are given in

Table 4.1. These were parameterized using methods described in Section 3.1.3 and

size class boundaries given in Table 3.2. All four PPMs were dominated by stasis,

shrinkage and fragmentation of patches, rather than growth, shown by the abun-

dance of non-zero entries on the upper triangle of the PPMs. Those ramets, which

experienced severe trauma from Hurricane Mitch (ISevere), exhibit an abundance of

zero entries in the largest 2 size classes. The only non-zero entry in columns 4 and
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5 is the entry R4,1, i.e. the shrinkage of all size class IV patches to size class I

(from 49− 153cm2 to 1− 3cm2).

As the level of trauma decreased the stasis entries in the PPMs increased (Table

4.1). This showed a greater survival rate for those patches least traumatized by

Hurricane Mitch, this is a similar pattern to that of survival of patches through

the study where IWeak had 89% of patches survived throughout the study. Patches

in IMild had the most non-zero entries in the lower-triangle of the matrix, therefore

growth was more common in IMild than the other trauma categories. This reflects

that IMild had the most absolute growth events in the study.

Hurricane Trauma PPM

P





1.000 0.013 0.010 0.015 0
0 0.974 0.030 0 0
0 0.013 0.960 0 0.042
0 0 0 0.985 0
0 0 0 0 0.958





ISevere





0.638 0.158 0.035 1 0
0.017 0.684 0.276 0 0

0 0 0.552 0 0
0 0 0 0 0
0 0 0 0 0





IMild





0.641 0.062 0.040 0.030 0
0.016 0.872 0.152 0.075 0

0 0.010 0.801 0.179 0
0 0 0.007 0.702 0.167
0 0 0 0 0.833





IWeak





0.762 0.043 0 0.009 0
0 0.819 0.070 0.026 0
0 0 0.898 0.035 0.174
0 0 0 0.922 0
0 0 0 0.009 0.826





Table 4.1: The Population Projection Matrices for each initial trauma group as
well as for pre-hurricane state.

Prior to Hurricane Mitch, a small amount of growth is observed between size

classes II and III (from 4-12cm2 to 13-48cm2). The stasis probabilities are

greater than for any post-hurricane PPM, showing greater survival of patches pre-
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disturbance than post-disturbance. Five of the eleven non-zero entries in P describe

stasis, which showed very little change in coral patch sizes prior to Hurricane Mitch.

4.3.3 Asymptotic Dynamics

As the initial trauma increased the population growth rate, λ1, decreased (Table

4.2). The populations in all three trauma categories are in long-term decline (λ1 <

1). This compares to the pre-hurricane population, which is in stasis (λ1 = 1).

Initial Hurricane Impact Population Growth Rate

P 1.00
ISevere 0.718
IMild 0.894
IWeak 0.922

Table 4.2: The Population Growth Rate for each initial hurricane trauma group.

The data were re-sampled 1000 times with replacement for each trauma category

and PPMs were created for each of these re-samples. The population growth rate

for ISevere showed the greatest variability under re-sampling where extreme values

for λ1 ranged from approximately 0.58 to 0.9. (Figure 4.3). However, the middle

50% of λ values were smaller than the lowest extremes of IMild and IWeak. The

central 50% of values for IWeak lie within the central 50% range from IMild, showing

that it is possible for IWeak to exhibit a larger growth rate than IMild. The median

growth rate is higher for IWeak than for IMild showed, on average, this is not the

case. All estimates are less than 1 and so with re-sampling all populations are in

decline.

Group ISevere is projected to become extinct within 15 time steps (13 years),

whereas group IWeak is projected to contain over 75 coral patches after 50 time

steps (45 years) (Figure 4.4). Here extinction is measured as at the time when the

population number tends towards zero. Group IMild began with the largest number

of patches, but showed a steeper initial decline and after 150 months there were
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Figure 4.3: Confidence intervals for the growth rate λ1, for 1000 resampled PPMs

projected to be fewer patches in IMild than in IWeak. After 500 months (42 years) the

best case scenario is the loss of 75% of patches (IWeak) and the worst case scenario

is that the population will be extinct (ISevere) (Figure 4.4 (a)).
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Figure 4.4: Population projections for each initial hurricane stress group over 50
time steps. Each time step represents 10.75 months. (a) The number of patches
with initial conditions from data (b) Population density with uniform initial con-
ditions across each sizes class.

With a uniform initial distribution of patches in each size class, the projection

of the PPMs can be compared under the same initial conditions (Figure 4.4 (b)).
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In this case, IMild showed a slower decline for the first 250 months, than either

IWeak or ISevere, at which point IWeak then contained a greater population density.

Group ISevere showed severe decline and after 200 months, became extinct. After

500 months 26% of patches remained in IWeak compared to 11% in IMild.

Primitivity and ergodicity is vital in determining population growth rates (as

discussed in Section 3.3.9). All four PPMs parameterized in this chapter are re-

ducible. The PPMs P and IMild are ergodic as v > 0 (Table 4.3) and in these

ramet groups all initial conditions follow one growth rate - that given by the dom-

inant eigenvalue. Ramet group ISevere is also ergodic in spite of v ≥ 0, but as v is

positive in those size-classes where the PPM in non-zero, it is classified as ergodic,

confirmed by the block matrix permutation in Table 4.3. The only non-ergodic

PPM is IWeak, where the initial conditions will determine the population growth

rate. Block permutation of IWeak (Table 4.3) give four different growth rates for

differing base vectors ei. These growth rates (Table 4.4) show that the larger the

patch sizes in the initial condition the larger the growth rate. In fact λ1 is only

achieved if patches are initially in size classes IV or V . The largest growth rate is

21% larger than the smallest growth rate, showing the necessity in understanding

the initial conditions in this trauma category.

The fragmentation values (v in Table 4.3) showed that new patches were pre-

dominantly formed by large patches in group IMild. In this trauma category over

55% of new patches were formed by size class V (≥ 154cm2). In the other two

trauma categories (ISevere and IWeak) larger patches also dominate the fragmenta-

tion value with at least 60% of new patches produced by patches in size class III

to V (≥13cm2). This post-disturbance dominance of larger patches in the frag-

mentation values is not seen pre-disturbance where all sizes equally contribute to

fragmentation.

The stable size distributions of coral patches in all three categories were domi-

nated by small patches under 50 cm2 in area, which are size classes I to III, (Table
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PPM v Ergodic?

P





1.000 0.013 0.010 0.015 0
0 0.974 0.030 0 0
0 0.013 0.960 0 0.042
0 0 0 0.985 0
0 0 0 0 0.958









0.200
0.200
0.200
0.200
0.200




Y

ISevere





0.638 0.158 0.035 1 0
0.017 0.684 0.276 0 0

0 0 0.552 0 0
0 0 0 0 0
0 0 0 0 0









0.067
0.310
0.560
0.093

0




Y

IMild





0.641 0.062 0.040 0.030 0
0.016 0.872 0.152 0.075 0

0 0.010 0.801 0.179 0
0 0 0.007 0.702 0.167
0 0 0 0 0.833









0.006
0.094
0.170
0.195
0.565




Y

IWeak





0.762 0.043 0 0.009 0
0 0.819 0.070 0.026 0
0 0 0.898 0.035 0.174
0 0 0 0.922 0
0 0 0 0.009 0.826









0
0
0
1
0




N

Table 4.3: The block permutation matrices for testing ergodicity. The table also
shows the fragmentation values and whether the PPM is ergodic.

Base vector (ei) λ

e1 0.762
e2 0.819
e3 0.898

e4, e5 0.922

Table 4.4: The differing growth rates taken by different base vectors for IWeak

4.5). Group ISevere will be dominated by coral patches only in the smallest two size

classes (1-12cm2) and 90% of coral patches in group IMild would also be in these

size classes. Only the stable size distribution for ramet group IWeak contained a

full range of coral patches with over 90% ranging between 4 and 124 cm2. Larger

patches in IWeak are rarer than smaller patches (2% in comparison to 9%), but

their existence in the long term place this trauma category in a better position to

survive future disturbances, as it has already been shown that ramets containing
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larger patches are less likely to lose the greatest proportion of area in a hurricane.

Data P ISevere IMild IWeak



0.0804
0.2692
0.3462
0.2238
0.0804









1
0
0
0
0









0.6632
0.3368

0
0
0









0.1889
0.7225
0.0857
0.0029

0









0.0930
0.3126
0.3904
0.1873
0.0167





Table 4.5: The Stable size structures for each initial hurricane group and the initial
distribution from data of coral patches in June 1998.

The surprising result is that, prior to Hurricane Mitch, the observed population

was not in the stable size structure (Table 4.5). In fact, the stable size structure

stated all individuals would range from 1 to 3cm2. Even allowing for some error in

these results, the stable size structure of the population prior to Hurricane Mitch

would be largely dominated by small patches. This was not observed in June 1998,

where the population of coral patches had a full range of sizes. If the population

remained undisturbed then the population would more likely be dominated by

smaller patches than would result following any level of trauma from Hurricane

Mitch. This allows the conclusion that hurricanes are necessary in order to achieve

a wider range in patch sizes in the long term.

Key Asymptotic Results

1. All PPMs parameterized are reducible and IWeak is non-ergodic.

2. For all trauma categories the populations are in decline.

3. As the trauma level increased the population growth rate decreased.

4. Under projection, IMild faired better for the first 200 months, and then IWeak

faired best. After 500 months it still contained 26% of the initial population

size.
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5. There is projected to be a greater variety of patch sizes in IWeak than other

trauma categories.

6. There will be a greater range of patch sizes after a disturbance than if no

disturbance occurred.

7. As trauma increased the stasis entries in the PPM decreased.

4.3.4 Perturbation Analysis

If a PPM is imprimitive, then by the Perron-Frobenius theorem v and w can

contain zero entries. This hampers sensitivity analysis as there are some entries in

the sensitivity matrix which are forced to be zero, and therefore some sensitivity

values cannot be calculated. The sensitivity results and perturbations required to

achieve λ = 1 are given in Table 4.6.

The most sensitive entries of the PPMs are the growth entries in the lower-

triangle of the matrix (Table 4.6). The estimates for these entries in the PPMs are

mainly zero (Table 4.1) and showed that, if growth is introduced to the popula-

tion, the overall population growth rate would increase. The perturbation matrix

showed that some growth entries required perturbations of less than 0.1, for exam-

ple G3,2 in IMild or G4,3 in IWeak. Although growth transitions required the smallest

perturbations in ISevere, the smallest attainable perturbation is 0.24 in G2,1.

The upper triangular entries are least sensitive in IMild, the perturbations re-

quired to achieve λ1 = 1 showed that there were no attainable increase in shrinkage

or fragmentation. This is similar to the situation for stasis entries on the diago-

nal of all the PPMs where the perturbations required for λ1 = 1 are biologically

impossible.
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Transfer Function Analysis (TFA), unlike sensitivity analysis, is not affected by

imprimitivity. However, it is affected by reducibility. This results in some entries of

the transfer function to be zero, and thus perturbing these entries will not change

λ1.

Transfer Function Analysis showed that in general a growth rate of λ1 = 1

is hard to achieve, shown by the dominance of red entries in the perturbation

matrix (Table 4.6). The majority of entries on the lower triangle are biologically

impossible to achieve as the perturbations required are too large. Both methods of

analysis showed that IMild was the PPM with the smallest perturbations required

to achieve population stasis (λ1 = 1). Not just because there are a greater number

of possible strategies that managers could take, but also the perturbations required

are generally smaller than the other PPMs. However, the possible strategies from

TFA for IMild are in the upper triangle, suggesting that shrinkage and fragmentation

must be increased in order to achieve overall population stasis (Table 4.6). This

is because more patches are caused to form increasing population number, which

is counter-intuitive as populations require larger patches if they are to withstand

further disturbances.

The size of the perturbation required varies between the two analysis approaches.

For example, G4,1 in IWeak, sensitivity stated a perturbation of 0.16 is required,

whilst TFA stated that this perturbation needs to be only 0.09. However, the cur-

rent estimate of G4,1 was 0, so this entry is unlikely to be achievable biologically.

The top three management strategies are given in Table 4.7. For trauma cate-

gory ISevere, the top three strategies for sensitivity analysis are all growth entries,

but for TFA, there is a full range of possible strategies from growth to stasis, frag-

mentation to shrinkage. The size of the perturbations required by TFA are much

smaller than those from sensitivity. For IMild, sensitivity analysis suggests that

growth should be targeted and TFA that shrinkage and fragmentation are best to

target. For IWeak TFA stated that growth of very small patches into medium or
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large patches is required. Alternatively, the shrinkage or fragmentation from the

largest to the second largest size class is also suggested by TFA. In comparison,

sensitivity again states that growth is required in this case into size class IV .

Sensitivity TFA

ISevere G3,1 (0.120) G4,2 (0.04)
G2,1 (0.204) R1,2+D1,2 (0.04)
G3,2 (0.236) S5,5 (0.28)

IMild G4,2 (0.063) R2,4 + D2,4 (0.001)
G3,2 (0.072) R1,3 + D1,3 (0.002)
G5,3 (0.194) R3,4 + D3,4 (0.01)

IWeak G4,3 (0.037) G3,1 (0.05)
G4,2 (0.047) R4,5 + D4,5 (0.05)
G4,1 (0.156) G5,1 (0.05)

Table 4.7: Top 3 management strategies suggested by both Sensitivity Analysis
and TFA for each trauma category, taken from Table 4.6. The targeted entry is
given, with the perturbation required to give λ1 = 1 given in brackets.

Key Perturbation Analysis Results

1. Managers must focus on growth entries to achieve population stasis, if using

sensitivity analysis, but must increase shrinkage and fragmentation, if using

TFA.

2. TFA showed that the perturbations to growth entries must be much larger

than calculated by sensitivity analysis, if population stasis is to be achieved

and often these perturbations are biologically impossible.

3. IMild required the smallest perturbations to achieve population stasis.
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4.3.5 Transient Analysis
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(b) IMild
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(c) IWeak
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Figure 4.5: The transient dynamics for (a) ISevere (b) IMild (c)IWeak (d) P . The black
lines are the possible dynamics with differing base vectors as initial conditions. The
blue dotted line show Reactivity and Attenuation, the green dotted lines are the
upper and lower Kreiss bounds and the red dotted lines are ρmax and amin.

In the first time step, ISevere showed the greatest range of population densi-

ties (0-1.393) (Figure 4.5 and Table 4.8). In comparison, IWeak had the small-

est range (0.826-1.084). As initial trauma decreased the width of the first time

step transient envelope decreased. Therefore, as initial trauma decreased, initial

extremes decreased. In each trauma category the maximum possible population

densities relative to asymptotics are greater than those in the first time step i.e.

ρmax > Reactivity, showing possible amplification over a number of time steps.
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Indicator P ISevere IMild IWeak

Reactivity 1.01 (III) 1.3926 (IV ) 1.1183 (V ) 1.0841 (IV ,V )
Attenuation 1 (I,II,III,IV ) 0 (V ) 0.7338 (I) 0.8260 (I)

ρmax 1.3755 (II) 3.5545 (III) 6.3547 (V ) 5.3144 (IV )
amin 1 (I,III) 0 (V ) 0.0687 (I) <0.0001 (I)

kλ 1.0096 1.2064 1.1278 1.0837
kλ 1 0 0 0.8518

Table 4.8: Values of the transient bounds for each PPM, shown in brackets is the
size class where this is achieved.

The speeds at which the populations reach these maximum amplifications vary for

each trauma category. For example ISevere achieved ρmax at t = 38 (≈ 34 years)

with initial condition e2. Other trauma categories take longer than 100 time steps

(about 90 years) with IMild taking 103 time steps with initial condition e5, and

IWeak slowest to reach ρmax in 190 time steps with initial condition e4. As trauma

increased the time at which ρmax was achieved shortened.

Reactivity and maximum amplification results showed that under biased initial

conditions the population density could be amplified above the expected asymp-

totic growth rate. In ISevere, the maximum amplification occurred if the patches

were biased to sizes 13− 48cm2. In comparison, Reactivity results showed that the

population was amplified the most when the initial population was between sizes

49−153cm2. This showed that long term amplification required smaller coral patch

sizes than the largest immediate amplification. As trauma decreased the coral patch

sizes, which result in the greatest amplification increase. In IWeak, maximum am-

plification occurred for patches between 49 and 153cm2, whilst Reactivity occurred

for all patches larger than 49cm2. The largest size classes required for amplifica-

tion was for IMild, where both Reactivity and ρmax were achieved for patches larger

than 154cm2. For PPM P , smaller sizes achieved the greatest amplification than

the PPMs post Hurricane Mitch. Reactivity was achieved with patches between

13 and 48cm2, but ρmax was achieved with smaller patches of between sizes 4 and
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12cm2.

The minimum attenuation (amin) is achieved in the first time step for ISevere,

showing instantaneous die off with initial condition e1 (Table 4.8). Minimum at-

tenuation for IMild and IWeak did not occur in the first time step, but was reached

earlier than maximum amplification. The amin value for IWeak was found at the end

of the monitored time and would decrease if a longer period of time was studied, but

an amin value of 0.00 is achieved after 29 time steps with initial condition e1, this

is effectively extinction. Finally IMild achieved amin in 23 time steps, with initial

condition e1. All minimum attenuations were achieved with the initial condition

e1, which consists of all coral patches between 1 and 3 cm2. In comparison ρmax is

achieved with a range of initial conditions.

Key Transient Results

1. As initial trauma decreased so did initial extremes.

2. As trauma increased the time at which maximum amplification was reached

shortened.

3. Minimum attenuation occurred earlier than maximum amplification for all

trauma categories.

4. Minimum attenuations and maximum amplification were achieved faster in

ISevere than other trauma groups.

5. Attenuation is achieved regardless of initial trauma when all individuals began

in the smallest size classes (1− 3cm2).

6. In general, for amplification to occur all individuals must start in larger size

classes.
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4.4 Conclusions

4.4.1 Does Initial Trauma Determine the Dynamics of an

Individual?

In this chapter it was shown that the initial trauma determines the dynamics of a

coral patch. In particular, there is a distinct difference in the behaviour exhibited

between ramets that experienced a greater than 50% loss in coral cover, compared

to the ramets where there was a less than 50% loss in coral cover. The results are

summarised in Table 4.9. This chapter has also highlighted the complexities in un-

derstanding the effect of hurricanes on a single species. In the case of Montastraea

annularis hurricanes are benifical at a colonial scale, increasing asexual recruit-

ment (Foster et al., 2007). However, at a patch scale fragmentation is detremental

to future survival and growth (Table 4.9).

4.4.2 Issues Surrounding the Use of PPMs

Many of the modelling issues associated with PPMs could have affected the out-

come of these results. Some transitions were not captured in this study, this could

be due to the relatively short study period and due to the lack of recovery dis-

cussed above; this can affect the population growth rate. Methods such as the

Integral Projection Model (Discussed in Chapter 5) can smooth over missing tran-

sitions through parameterization by curve fitting. Also the position of the size

class boundaries can affect the model, for example growth of a patch by 1 cm2

was observed, but if both pre and post transition sizes fall within the same size

class then it is marked as a stasis transition. As growth occurs only at a small

scale in this data set this can often lead to missing information in the model. In

comparison shrinkage of patches is normally at a larger scale and is thus normally

captured between size classes. This can paint an overly pessimistic outcome for
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the population. This again can be solved through the application of an Integral

Projection Model to the data set, which will capture the small scale growth that

was observed to balance out the larger shrinkage.

Finally, the issue of ergodicity and primitivity means that there can be false

conclusions about predicted growth rates of a population, this is particularly the

case in this study where IWeak was shown to follow four possible growth rates

depending on initial conditions. All 4 PPMs created were reducible, which is

the same for 24.7% of matrices in literature (Stott et al., 2010b). Using Integral

Projection Modelling negates this issue, as all numerical estimates of IPMs in this

data set are primitive and ergodic.

4.4.3 Conclusions

In this chapter, PPM modelling was adopted to test if the initial decline experienced

by a coral patch affects its future dynamics. It was found that this was the case,

with those the most severely traumatized showing worse dynamics than those the

least traumatized. A greater discussion of these results and their affect on coral

populations is given in Chapter 6.

There are issues with the framework of the PPM, especially in its application

to size-determined populations. These include reducibility of the model, handling

missing transitions and selection of size class boundaries. All of these issues can

be solved through the use of Integral Projection Modelling. Three IPMs are pa-

rameterized in Chapter 5, to directly compare the results from the PPM and IPM

methods. This will show if modelling issues affect the conclusions of this chapter.
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Chapter 5

Comparison of Projection Models

5.1 Introduction

In Chapter 4, Population Projection Matrices (PPMs) were constructed and then

used to test the hypothesis:

The initial impact of a hurricane influences the patch dynamics of Montastraea

annularis.

However, in developing PPM models for coral patch dynamics a number of issues

arose. The continuous nature of IPMs means discretization is not required in the

selection of size classes, which means that fewer errors were introduced into the

model. Also, the statistical modelling technique used to parameterize IPMs require

less data and, since data for certain transitions is difficult to obtain, is well suited

for modelling coral patches. In this chapter, IPMs are constructed for the three

hurricane trauma categories defined in Chapter 4, in order to compare the results

of the two modelling methods. Specifically in this chapter, the similarities and

differences between the models will be highlighted and reasons for these differences

will be discussed. This chapter focuses on answering the research question: ‘How

well do the results of different projection models compare?’

128
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Category ISevere IMild IWeak

X range 0 ≤ X ≤ 0.47 0.47 < X ≤ 0.78 X > 0.78

Table 5.1: Range of impacts for each initial hurricane impact category.

5.2 Methods

Hurricane Mitch struck Glovers Reef in October 1998. This was followed by a

sharp decrease in coral cover until June 1999 when the rate of decline decreased.

To measure the trauma suffered by a coral patch, the area of all coral patches

on each individual ramet were combined and a measure of initial trauma ‘X’ was

defined as:

X =
Total coral area on ramet in June 1999

Total coral area on ramet in December 1998
. (5.1)

Using this measure, the data was divided into three categories: ISevere, IMild and

IWeak (Table 5.1). According to the ramet group they were placed in, the fate of

coral patches from 5 sampling dates were combined to test the hypothesis:

The initial impact of a hurricane influences the patch dynamics of Montastraea

annularis.

In Chapter 3, five size classes were selected to model a coral patch population of

M. annularis. They were determined by the van der Meer and Moloney algorithm

(van der Meer, 1978; Moloney, 1986), which resulted in the size classes: (I) 1-3

cm2, (II) 4-12 cm2, (III) 13-48 cm2, (IV) 49-153 cm2 and (V) 154+ cm2.

These size classes were used to form a 5× 5 generic PPM:

A =





S1,1 + D1,1 D1,2 + R1,2 D1,3 + R1,3 D1,4 + R1,4 D1,5 + R1,5

G2,1 S2,2 + D2,2 D2,3 + R2,3 D2,4 + R2,4 D2,5 + R2,5

G3,1 G3,2 S3,3 + D3,3 D3,4 + R3,4 D3,5 + R3,5

G4,1 G4,2 G4,3 S4,4 + D4,4 D4,5 + R4,5

G5,1 G5,2 G5,3 G5,4 S5,5 + D5,5





, (5.2)
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where:

• Si,i represents the probability that a coral patch will remain in the same size

class, i, between time t and t + 1.

• Gj,i represents the probability that a coral patch in size class i at time t grows

to size class j at time t + 1, where j > i.

• Rj,i represents the probability that a coral patch in size class i at time t

shrinks to size class j at time t + 1, where j < i.

• Dj,i represents the probability that a patch in size class i at time t fragments

and produces a patch of size j at time t + 1.

With a current population structure x(t) a PPM can be used to project the

future population x(t + 1) via the equation:

x(t + 1) = Ax(t). (5.3)

The Integral Projection Model (IPM) equivalently uses a kernel k(y, x) to project

the population density function, n(x, t), via the equation:

n(y, t + 1) =

∫

Ω

k(y, x)n(x, t)dx. (5.4)

The PPM and the IPM kernel describe transitions in size, but where the PPM is

discrete and requires the selection of size class boundaries, the IPM is continuous

in size and does not require this discretization.

In Chapter 3, the IPM kernel for M. annularis was selected as:

k(y, x) = (1− pf (x))s(x)g(y, x) + s(x)fs(x)pf (x)nf (x)fd(y,
x

n
), (5.5)



CHAPTER 5. COMPARISON OF PROJECTION MODELS 131

where x is the log of the patch size. The biological processes captured in the IPM

are:

• s(x): the probability that a coral patch of size x at time t survives to time

t + 1.

• g(y, x): gives the size y at time t + 1 which a coral patch of size x at time t

will become, given that the patch has survived.

• pf (x): is the probability that a patch of size x at time t will fragment at time

t + 1.

• fs(x): is the proportion of a patch of size x at time t which will remain after

fragmenting at time t + 1.

• nf (x): is the number of fragments produced by a patch of size x at time t

given that the patch fragments.

• fd(y, x
n
): gives the size of a patch of size x at time t which produces n frag-

ments, where the new fragment size is y at time t + 1.

The functions in the IPM and the entries of the PPM capture similar bio-

logical processes: The PPM entries Si,i, Gj,i and Rj,i are combined in the func-

tions (1 − pf (x))s(x)g(y, x), whilst Dj,i in the PPM is equivalent to the function

s(x)fs(x)pf (x)nf (x)fd(y, x
n
). In numerically integrating the kernel the same areas

of the kernel are equivalent to the PPM, but are created from modelling individual

biological processes rather than being aggregated into combined transitions. In the

results section below, the two modelling approaches are compared.

5.3 Results

The PPMs and IPMs were parameterized according to methods described in Sec-

tions 3.1.2 and 3.2.2. The PPMs were analyzed in Chapter 4, with the results
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Figure 5.1: The numerical fit of the probability of survival function s(x) used to
parameterize the IPMs. For each function the data points are shown alongside the
fitted models of log-size. Details of the functions plotted are given in Table 5.2.

given below as a reminder in order to make a comparison with the IPMs which are

parameterized and analyzed in this chapter.

5.3.1 Parameterization of the IPMs

Probability of Survival. The fitted function is linear for all three trauma cate-

gories (Figure 5.1 and Table 5.2), with higher order non-linearities rejected in all

cases (ISevere : P = 0.17, IMild : P = 0.18, IWeak : P = 0.33). As patch size increased

the probability of survival increased. Survival is lower for smaller patches in IWeak,

but as size increased ISevere had the lowest survival rate. At a patch size of approx-

imately 55cm2, the survival probability for IWeak and IMild was close to 1, whilst for

ISevere, the largest patches in this study have a survival probability of less than 1.

Mean Growth. The estimate is similar for IWeak and IMild, and lies below the

x = y line. This showed, in general, that all patches are decreasing in size (Figure

5.3, Table 5.2). The relationship between sizes for all three trauma groups are linear



CHAPTER 5. COMPARISON OF PROJECTION MODELS 133

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

log(size(t))

P
ro

b
a
b
ili

ty
 o

f 
F

ra
g
m

e
n
ta

ti
o
n

Data: Severe

Data: Mild

Data: Weak

Fitted Model: Severe

Fitted Model: Mild

Fitted Model: Weak

Figure 5.2: The numerical fit of the probability of fragmentation function pf (x)
used to parameterize the IPMs. For each function the data points are shown
alongside the fitted models of log-size. Details of the functions plotted are given in
Table 5.2.
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Figure 5.3: The numerical fit of the mean growth function g(y, x) used to param-
eterize the IPMs. For each function the data points are shown alongside the fitted
models of log-size. Details of the functions plotted are given in Table 5.2.



CHAPTER 5. COMPARISON OF PROJECTION MODELS 134

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

log(size(t))

R
e
s
id

u
a
ls

2

Data: Severe

Data: Mild

Data: Weak

Fitted Model: Severe

Fitted Model: Mild

Fitted Model: Weak

Figure 5.4: The numerical fit of the variance of growth function σ2(g(y, x)) used to
parameterize the IPMs. For each function the data points are shown alongside the
fitted models of log-size. Details of the functions plotted are given in Table 5.2.
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Figure 5.5: The numerical fit of the number of fragments function 2 + nf (x) used
to parameterize the IPMs. For each function the data points are shown alongside
the fitted models of log-size. Details of the functions plotted are given in Table 5.2.
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Figure 5.6: The numerical fit of the family sizes function fs(x) used to parameterize
the IPMs. For each function the data points are shown alongside the fitted models
of log-size. Details of the functions plotted are given in Table 5.2.
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Function ISevere

s(x) 0.2468 (0.3662)+0.6399 (0.2305)x

g(y, x) -0.0177 (0.0941)+0.8935(0.0475)x
σ2(g(y, x)) 0.123 (0.049)

pf (x) -8.822(3.337)+1.855(1.045)x
nf (x)− 2 0

fs(x) -0.3625(0.51)+1.0527(0.15)x
fd(y, x/n) 1.759 (0.268)

σ2 0.431
IMild

s(x) 0.2644(0.3464)+1.0601(0.1866)x

g(y, x) -0.0687(0.0343)+0.9933(0.0125)x
σ2(g(y, x)) 0.0199(0.2411)+0.6892(0.0880)x

pf (x) -6.0251(0.8349)+0.9387(0.2266)x
nf (x)− 2 -0.9445(0.3780)

fs(x) 0.0524(0.3417)+0.8937(0.0921)x
fd(y, x/n) 0.0780(0.4471)+1.3910(0.2823)x

n

σ2 1.1796
IWeak

s(x) -0.0191 (0.4913)+1.0612 (0.2136)

g(y, x) -0.0892 (0.0274)+ 1.0071 (0.0077)x
σ2(g(y, x)) 0.0265(0.3598)+0.5207(0.1014)x

pf (x) -6.9962(1.5813)+0.8286(0.3566)x
nf (x)− 2 -1.3863 (0.7071)

fs(x) 0.3183(1.0463)+0.8050(0.2348)x
fd(y, x/n) 2.6177 (0.3105)

σ2 1.7357

Table 5.2: The fits for the three models with standard errors given in brackets for
each estimate.
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(with non-linearities rejected: ISevere : P = 0.19, IMild : P = 0.08, IWeak : P = 0.26),

and as size increased at time t so did the size of the patch at time t + 1. For small

patches in ISevere, the size of patches at time t+1 is similar to other trauma groups,

but the gradient of the line is lower and for large patches there is a greater decrease

in area than the other trauma categories.

Variance of Growth. The variance of growth was linear for IMild and IWeak with

quadratic terms rejected (IMild : P = 0.527, IWeak : P = 0.989). This meant that

as size increased the variability of sizes decreased (Table 5.2 and Figure 5.4). The

variance for ISevere was constant with linear terms rejected (P=0.29). This showed

that variance did not vary with patch size.

Probability of Fragmentation. The probability for ISevere showed that for

patches larger than 55cm2 there is a greater than 50% chance of fragmentation

(Figure 5.2). This seems unlikely and could be skewed by the low number of

patches that fragmented in this category. The smallest chance of fragmentation is

in IWeak, where pf (x) is about half the value as IMild. There was no fragmentation

predicted for patches of size 8cm2 or less for all categories. The fitted probability

is linear (Table 5.2), as patch size increased so did the probability of fragmentation

(non-linearities are rejected: ISevere : P = 0.08, IMild : P = 0.06, IWeak : P = 0.94).

Number of Fragments. For all three trauma categories, the number of frag-

ments produced was not dependent on initial patch size (Figure 5.5 and Table 5.2),

linear terms were rejected in IMild (P = 0.12). However, in the case of ISevere and

IWeak, the mean number of fragments were calculated, due to the low number of

fragmentation events in these categories. The greatest mean number of patches

produced was in ISevere, 3, and the fewest in IWeak, 2.25.

Family Size. For all categories, as patch size increased so did family size (non-

linearities rejected: IMild : P = 0.82, IWeak : P = 0.51, Figure 5.6 and Table 5.2).

IMild had a larger family size than IWeak. This showed that larger patches kept

a greater proportion of their area following fragmentation, compared to smaller
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patches.

Fragment Size. When a patch fragmented in IMild the larger the original patch,

the larger the patches produced. This relationship was linear with quadratic terms

rejected (P = 0.62). In both IWeak and ISevere, the size of fragments did not depend

on their initial size, with the mean fragment size giving the best fit of data (linear

terms rejected, IWeak: P = 0.37 and ISevere: P = 0.29). The fragments produced in

IWeak were 33% larger than in ISevere.

There were issues in fitting the number of fragments and family size functions in

ISevere. This was because of a lack of fragmentation data captured (only two patches

fragmented) and this skewed the fitted models, or resulted in terms in the model

being insignificant. In these cases the functions were fitted with the mean, either

of the number of fragments or family size.

5.3.2 Comparison of IPM Kernels and PPMs

Similarities Between IPM Kernels and PPMs.

The IPM kernels and PPMs (Table 5.3) are similar in the following ways:

• In ISevere the peak probability values, on the diagonal, in the IPM kernel are

lower than in IMild and IWeak. This showed that the survival in this trauma

group is low. The PPM also showed low probability estimates in the stasis

values.

• In the PPM of ISevere, there are only zero transition rates for sizes above size

class IV , reflected in an IPM that is zero in these areas. In the PPM there

is growth from size class I to size class II, also shown in the IPM where

non-zero contours are shown in these size classes.
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• In IMild the IPM kernel is concentrated around the x = y line, i.e. around the

survival-growth line. There is a slight decrease in all sizes as the survival-

growth line lies below the x = y line. The probabilities are higher than in

ISevere and is greatest in size class III. The PPM also reflects this with the

highest stasis values in size classes II, III and IV .

• Some growth is observed in the PPM of IMild, but the amount of growth and

shrinkage decreased as size increased. There is no growth into size class V

and there is no shrinkage from size class V into size classes I, II or III. This

is reflected in the IPM where the log kernel shows a decrease in behaviour as

size increased and in particular there was little growth into size class IV and

shrinkage from size class V .

• The IPM for IWeak showed the majority of behaviour will occur on the x =

y line. The width of this line was narrower than other kernels, and this

behaviour lies within the diagonal size classes. This is reflected in the PPM

where most non-zero entries were located in the stasis entries on the diagonal.

• In the PPM of IWeak, there was a greater amount of behaviour in the upper

right triangle than on the lower left triangle, and this is reflected in the IPM

log-kernel where there is a darker region in the upper right triangle compared

to the lower left triangle.

• In the PPM of IWeak, growth is non-zero from size class IV to V and this is

reflected in the IPM log-kernel where non-zero contours are located. As size

increased stasis values increased in the PPM, this is the same in the IPM

kernel where the largest contours were located in size class V .
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Major differences between the IPM kernels and PPMs.

• The contribution from fragmentation is on a smaller scale in the IPM kernels

than in the PPMs. The contribution to the IPM is only observed on a log-

scale.

• In ISevere, the IPM kernel showed a small amount of growth into size class V ,

although this is only observed on a log-scale. This transition is zero in the

PPM.

• The kernel for IMild is symmetrical around the x = y axis, which is particularly

evident on the log-scale. This is not fully observed in the PPM where there

are more zero entries on the lower-diagonal than on the upper diagonal.

• The behaviour in IWeak is strictly confined to the diagonal entries in the IPM

kernel, with no shrinkage or fragmentation contribution. This differs from

the PPM where there are 6 upper-triangular non-zero transitions.

5.3.3 Comparison of Asymptotic Dynamics

The population growth rates (Table 5.4), stable size structures and fragmentation

values (Table 5.5 and Figures 5.8 and 5.9) show similarities and differences between

the two modelling approaches.

Category PPM IPM

ISevere 0.718 0.680
IMild 0.894 0.691
IWeak 0.922 0.981

Table 5.4: Population growth rates for all three trauma categories for both PPM
and IPM modelling methods. Calculated as the dominant eigenvalue of either the
PPM or of the numerical estimate of the kernel.
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of the numerical estimation of the IPMs.
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Figure 5.9: The stable size distributions and fragmentation values for each trauma
category on a log-size scale, calculated as the left and right eigenvectors of the
dominant eigenvalue of the numerical estimation of the IPMs.
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ISevere IMild IWeak

w





0.6632
0.3368

0
0
0









0.1889
0.7225
0.0857
0.0029

0









0.0930
0.3126
0.3904
0.1873
0.0167





v





0.067
0.310
0.560
0.093

0









0.006
0.094
0.170
0.195
0.565









0
0
0
1
0





Table 5.5: The stable size-structures for each trauma category w calculated as
the right-hand eigenvectors for the dominant eigenvalue of the PPM. Also given is
the fragmentation value v calculated as the left-hand eigenvector for the dominant
eigenvalue of the PPM.

Similarities Between the Predicted Asymptotic Dynamics

Similarities between the two approaches:

• For all three trauma categories and both modelling methods, the population

growth rates are below 1 (Table 5.4). This showed that all populations are

in asymptotic decline.

• For both methods, ISevere had the lowest growth rate, and IWeak the largest.

As trauma increased, the growth rate estimate decreased (Table 5.5).

• In IMild, the stable size structure for the IPM was dominated by patches under

12cm2 (Figures 5.8 and 5.9), whilst the distribution for the PPM projects only

91% of patches are under 12cm2 (Table 5.5).

• For IWeak the stable size structure for both the IPM and PPM had a larger

range of coral patch sizes than either of the other 2 trauma categories (Figures

5.8 and 5.9 and Table 5.5).

• The largest contribution in the stable size structure for IWeak was under 50cm2

in the IPM (i.e. in size classes I, II and III). The PPM estimated the same
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with under 20% of patches located in size classes IV and V .

• The IPM and PPM stable size structures for ISevere and IMild are similar, with

most patches predicted to lie in the first 2 size classes.

• In the case of IWeak, the estimates of the stable size distributions are very

similar, in both the distribution of sizes and the peak contribution of patch

sizes.

• The estimates of the stable size distribution also showed the same increase

in spread of sizes as trauma decreased for both the IPM and the PPM.

• The fragmentation value for ISevere (Figures 5.8 and 5.9 and Table 5.5) showed

a greater contribution from smaller coral patch sizes than either of the other

trauma categories.

• The peak contribution to the fragmentation value occurred at approximately

100cm2 in the IPM of ISevere, which is in size class IV , with the peak in the

PPM occurring in size class III.

• In IMild, the IPM fragmentation value showed there is the greatest contribu-

tion from the largest patches than any other category. The PPM also showed

this as the only non-zero value was in size class V .

• The greatest contribution in v for IMild came from patches larger than 100cm2

in the IPM (Size classes IV and V ), and the PPM estimated over 75% of the

fragmentation contribution came from size classes IV and V (greater than

49cm2).

Differences Between the Predicted Asymptotic Dynamics

The differences between the two approaches are:
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• The level of the asymptotic decline varied between modelling methods (Table

5.5).

• For ISevere and IMild, the growth rate estimated by the PPM was larger than

the estimate by the IPM, by 5% and 23% respectively.

• For IWeak, the PPM estimate was 6% lower than the IPM estimate.

• The PPM estimated growth rate for IMild was closer to the estimate for IWeak,

but for the IPM estimate it was nearer ISevere. The differences in estimates

are large enough to effect extinction times.

• The IPMs are all primitive and hence ergodic, therefore all initial condi-

tions follow the same growth rate. This is not the case for the PPMs where

the PPM for IWeak in non-ergodic and therefore trajectories of population

projections can follow very different growth rates depending on the initial

conditions.

• In ISevere, the IPM predicted the stable size structures would contain only

small patches, with over 95% of patches lying within size class I and the

remaining 5% in size class II. The PPM estimated that there will be a

greater proportion of larger patches, with only 66% of patches lying in size

class I, with the remainder in size class II.

• The maximum size in the stable size structure of IWeak for the IPM was

approximately 400cm2, the PPM showed that there was a complete range of

patch sizes with no upper limits in area (Figures 5.8 and 5.9 and Table 5.5).

• The PPM for both ISevere and IMild predicted larger patch sizes in the stable

size structure than the IPM.

• In IWeak the fragmentation values are different for the PPM and IPM. In the

PPM, the contribution to the production of new patches came from size class
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Reactivity Attenuation ρmax amin

Category PPM IPM PPM IPM PPM IPM PPM IPM

ISevere 1.39 12.71 0 0.02 2.74 56.08 0 0
IMild 1.12 1.35 0.74 0.02 2.50 19.6 0.12 0
IWeak 1.09 1.46 0.83 0.01 1.82 4.10 0.15 0

Table 5.6: The transient dynamics for all three trauma categories for both the
PPM and IPM methods.

IV , which is from sizes 49− 153cm2. In the IPM the contribution came from

all sizes, with the maximum contribution at about 200cm2.

5.3.4 Comparison of Transient Analysis

The transient analysis of the PPM and IPM methods (Figures 5.10, 5.11 and

5.12), show the upper and lower bounds of possible behaviour of the standardised

matrices Â = A
λ1

. This shows the relative upper and lower bounds of behaviour

that could occur from biased initial conditions compared to if the popualtion was in

an asymptotic state. The upper and lower bounds were calculated from projecting

biased initial conditions ei for all i ∈ n, where n is either the number of size classes

in the PPM, or the number of mesh points in the IPM

Similarities in the Transient Dynamics

• The lower bounds for population density are the same in ISevere for the PPM

and IPM, with an Attenuation value of 0 (Figure 5.10 and Table 5.6).

• The PPM and IPM predict the highest relative maximum population density

occurred in ISevere compared to IWeak and IMild (Figures 5.10, 5.11 and 5.12).

This means that ρmax was higher in ISevere for both modelling methods (Table

5.6).

• ISevere had the greatest range of possible behaviour in both the PPM and

IPM, both after one time step and ten time steps (Figure 5.12 and Table



CHAPTER 5. COMPARISON OF PROJECTION MODELS 147

0 2 4 6 8 10
0

1

2

3

4

5

Time

P
o

p
u

la
ti
o

n
 D

e
n

s
it
y

IPM upper bound

PPM upper bound

IPM lower bound

PPM lower bound

Figure 5.10: The upper and lower bounds of transient behaviour of the IPM and
PPM models of ISevere over ten time steps.
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PPM models of IMild over ten time steps.



CHAPTER 5. COMPARISON OF PROJECTION MODELS 148

0 2 4 6 8 10
0

1

2

3

4

5

Time

P
o

p
u

la
ti
o

n
 D

e
n

s
it
y

R
e

la
ti
v
e

 t
o

 A
s
y
m

p
to

ti
c
s

IPM upper bound

PPM upper bound

IPM lower bound

PPM lower bound

Figure 5.12: The upper and lower bounds of transient behaviour of the IPM and
PPM models of IWeak over ten time steps.

5.6).

• The upper bounds for the IPM were always above that of the PPM, whilst

the lower bounds for the IPM were always below that of the PPM (Figures

5.10, 5.11 and 5.12).

• IWeak had the lowest maximum densities for both the IPM and the PPM,

showed by the lowest ρmax values (Figure 5.12 and Table 5.6).

Differences in Transient Analysis

• The maximum population density ρmax for ISevere for the PPM was achieved

by the IPM in 2 time steps (Figure 5.10).

• The lower bound of behaviour in IMild predicted extinction after one time

step in the IPM, Attention = 0, but a population density of 0.74 in the PPM

(Figure 5.11 and Table 5.6). In fact the PPM does not predict extinction

after 10 time steps (amin > 0).
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• In IWeak, the IPM states extinction after 1 time step, Attenuation = 0, but

the PPM states the minimum possible relative density was 0.83 (Figure 5.12

and Table 5.6).

• In ISevere and IMild, the PPM predicted a similar maximum amplification,

ρmax, however the IPM estimates are different with ISevere much larger than

IMild (Table 5.6).

• For the PPM lower bound of IMild and IWeak the population density of 0 is

not reached in the ten time steps (amin > 0), whilst the IPM lower bound is

0 after 1 time step with Attenuation = 0 (Table 5.6).

5.3.5 Comparison of Sensitivity Analysis

The IPM estimates of sensitivity (Table 5.7) are highest in the lower triangular

area, where growth of patches occurs. ISevere had the highest sensitivity and IWeak

the lowest. In ISevere, the kernel is most sensitive in growth from size classes I to

size classes III or IV . The remaining kernel is not sensitive. This is similar to

the sensitivity for the PPM, where the most sensitive entries are growth from size

class I to size classes II and III, or growth from size class II to III. There is a

greater number of non-zero sensitivity entries in the PPM, compared to the IPM.

In IMild, highly sensitive growth entries are seen in both the IPM and PPM. In

particular the IPM highlights the importance of growth from size class I to size

class V , whereas the PPM highlights the importance of growth from size class II

to size classes III and IV or size class I to size class V . There are some areas

which overlap, but the PPM gives a wider range of sensitive values.
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In IWeak, sensitivity is higher in all growth areas than either ISevere or IMild in

the IPM. It is most sensitive from size classes II and III to size classes IV and

V and the PPM it is most sensitive in growth from size classes II and III to IV .

The picture is similar for both methods.

5.4 Conclusions

In conclusion, the two projection methods paint a similar picture of the dynamics

of the reef. There are some key differences in the results, namely in the size

of the population growth rates; the distribution of proportions of patch sizes in

the future; and short term dynamics of the populations. However, in general the

picture shown is the same. Compared to the PPM, the IPM is easier to fit and

is also more accurate at estimating the vital rates. There is also greater detail

produced in the IPM kernel than in the PPM and this is, in turn, reflected in the

greater detail of the corresponding stable size structure and fragmentation value.

Moreover, using the IPM, solves the problem of discretization into size classes. It

is for these reasons, that the IPM should be used ahead of the PPM.

The results of this chapter showed that the population dynamics of the two

models - PPM and IPM - are similar. In particular, the population growth rates

decreased as trauma increased regardless of the method used to model the popu-

lation. It depended on the trauma category as to whether the PPM method over-

estimated or under-estimated the population growth rate. Ramula et al. (2009)

stated that for small data sets the growth rates for IPMs are less biased. Therefore,

the population growth rates for IPMs are more reliable and closer to their actual

values. There are 118 coral patches in IWeak, 144 in IMild and 105 in ISevere. Ramula

et al. (2009) suggest that for smaller data sets of plants, the IPM is a better alter-

native to the PPM. It is only when there is greater than 600 pieces of data when

the PPM and IPM population growth rates are the same (Easterling et al., 2000).
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Easterling et al. (2000) state that the estimates of growth rates for IPMs and

PPMs should be closely related. The fact this does not occur in this case could

suggest that the PPM method does not accurately model fragmentation and this

in turn affects the growth rate estimate. It is the trauma category with the most

fragmentation where the discrepancy is most observed. In IWeak, the estimate for

the PPM is lower than the IPM, possibly because the fragmentation was over-

estimated in this case. In ISevere, the probability of fragmentation in the IPM

could be under-estimated due to a lack of data and this could skew the results. In

ISevere and IMild, the size distribution of fragments is constant, as opposed to for

IWeak where it is linear. This shows greater realism, with larger patches creating

larger fragments, especially as the number is independent of patch size. This could

account for why the estimate of the growth rate of ISevere and IMild is lower in the

IPM than the PPM and, in the case of IWeak, where there is a linear relationship,

it is higher.

The IPM kernels showed a similar picture to the PPMs. The most common

behaviour was stasis and this was the same for all trauma categories. The contri-

bution from fragmentation to the kernel was much less in the IPM than the PPM

and could account for the differences in growth rates and fragmentation value. The

estimate of survival-growth in the PPM and IPM was similar and showed it is accu-

rately modelled by both methods; however, the IPM should be better at capturing

fragmentation. This is because the IPM accounts for different biological aspects

that contribute to fragmentation where, as in the PPM case, the estimates attempt

to calculate the fragmentation contribution in one hit.

Growth of an individual coral patch was only observed in small numbers through-

out the study with the exception of the time step at which Hurricane Mitch oc-

curred, where there was no growth observed. However, in the PPMs, even those

few growth events are rarely captured. There are many reasons why growth was

uncaptured. Some of these are inherent in the PPM structure, for example, the
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discretization of size classes. It is also known that the population growth rate is

sensitive to the width and number of sizes classes selected (Ramula and Lehtila,

2005). The uncaptured growth could also be because M. annularis is a slow grow-

ing coral, therefore growth is only on a small scale compared to shrinkage. Finally

it could be as a result of missing data, where the coral patches randomly selected

did not exhibit growth, but other coral patches did.

The issues in capturing growth could account for the variation of growth rates

between the different modelling methods. The growth rate for IWeak could be

under-estimated by the PPM, as growth transitions are not captured. The two

remaining population growth rates are over-estimated by the PPM model; this

could be because of a bias caused by missing transitions. There could also have

been some shrinkage events that were classified as stasis in the PPM, hence over-

estimation of behaviour. The IPM is not affected by discretization or sensitivity to

selection of the number of size classes and hence is assumed to give more accurate

results.

The ‘giant’ matrix estimates of the IPMs are primitive and hence ergodic. This

gives confidence to the values of the population growth rate. Especially in the case

of IWeak, the PPM is non-ergodic and the initial conditions determine the growth

rate, in the case of the IPM all initial conditions will follow the same growth

rate. This also aids sensitivity analysis where in the PPM imprimitivity affects its

calculation by introducing forced zero entries.

The PPM and IPM showed a similar pattern in the behaviour of the stable size

structure w for IWeak. In estimating the stable size structure for ISevere and IMild,

the PPM stated that there will be larger patches than the IPM. This could be

linked to the smaller growth rates estimated by the IPM, as larger patches have

better survival rates and a greater chance of fragmentation. The IPM gives greater

detail in the distribution and also showed the distribution of the patches within

the size class boundary.
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The fragmentation value of the PPM and IPMs for ISevere and IMild are very

similar with peak contributions in the same range of sizes. However the fragmen-

tation value for IWild showed different results. In particular, the IPM showed that

not only is v non-zero for the complete range of sizes, but also the peaks of the v

are not in the same place as the PPM. This could be as a result of slight differences

in the kernel as a result of modelling fragmentation in a more biologically realistic

method.

There are fewer parameters used to describe the IPM as opposed to the PPMs.

In particular there are approximately 14 parameters for an IPM rather than 25 for

the PPM. The continuous nature of the IPM means that, where transitions are not

observed in the data set, they are still found in the IPM. The PPM is unable to

capture transitions, which should be observed but are not. Fewer parameters also

mean that there is a greater amount of data to calculate each parameter in the

IPM, which reduces the sampling errors in the model.

The transient analysis showed very different pictures between the PPM and

IPM models. The lower bounds for the IPM fall to zero instantly, inspite of the

numerical estimates being primitive. This is due to some initial conditions falling

within categories that have a zero transition rate and this is an issue with transient

analysis of IPMs. The upper bounds of the IPM population densities relative to

the asymtotics is always greater than the PPM, whilst the lower bounds of the IPM

are always lower than the PPM. It is unclear if this is as a result of the transient

analysis techniques or as a result of this particular model.

Transient techniques are better developed for PPMs than IPMs, and PPMs

should always be analyzed in this manner (Townley et al., 2007). However, for the

IPM these techniques are less well developed. Due to the increased number of ‘size

classes’ in the numerical approximation of the IPM, the lower bound will always

fall to zero and there will always be some zero entries. Therefore, the transient

analysis will always be more descriptive when it comes to the upper bounds. The
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transient growth in the IPMs suggested that the missing growth transitions from

the PPM are now captured.

Sensitivity analysis showed that for all 3 categories it is perturbations to growth

where λ1 is most sensitive. Sensitivity analysis of IPMs allows a visual demonstra-

tion of which part of the kernel the growth rate is most sensitive. In comparison

sensitivity analysis of the PPMs give only which entry is most sensitive. Where this

lies on the upper triangle, this could be through the shrinkage of patches or through

fragmentation. See Chapter 8 for a deeper discussion on sensitivity methods and

management strategies for Integral Projection Modelling.

5.4.1 Modelling Issues of IPMs

Integral Projection Models solve many of the problems that arose in modelling M.

annularis by a Population Projection Matrix. Namely, there is no false definition of

size class boundaries that skew results by not capturing the small scale transitions.

The IPM is also able to smooth over missing transitions from data. Therefore, the

use of IPMs for a coral population is better than the use of PPMs. However, there

are some issues arising from modelling these populations.

The main issue in modelling a coral patch population using Integral Projection

Models comes from the parameterization of fragmentation. This has not previously

been modelled in IPMs and the functional form of the kernel that was felt to

best reflect the dynamics was selected. However, there are many other possible

forms this model could take and further research should aim to understand the

biological process. In fact, fragmentation at the patch scale of algal patches is

seen as beneficial to a population (Renken et al., 2010), but the opposite seems to

be true here, more patches fragment when there is a stronger hurricane and the

growth rate then declines.

Further issues surround the numerical integration of the kernel. This is nec-
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essary in order to analyze the results, but it does introduce errors to the results.

The selection of the integration boundary and the number of mesh points required

are inter-linked and should ideally be selected for each IPM created. The selection

of the integration boundary and the number of mesh points was not dealt with in

this chapter, instead Section 7.3.1 will select these for this Thesis, and the results

are used in this chapter. This is because the IPMs parameterized in Chapter 7 will

be used in Chapter 9 to project possible hurricane scenarios.

5.4.2 Conclusions

In conclusion the acceptance of the hypothesis in Chapter 4 was the same as when

modelled using the IPM. This chapter has shown that although there are some

differences in behaviour, the conclusions remain the same. This chapter has shown

that the IPM fixes many of the issues of the PPMs. There are some issues that arise

from using the IPMs, but the benefits out way the costs. As a result the Integral

Projection Model will be used in Part III of this Thesis instead of the Population

Projection Matrix.



Chapter 6

Discussion of Results

6.1 Introduction

In Part I and Part II of this Thesis, the projection models for M. annularis have

been parameterized (Chapters 4 and 5). The results are discussed here. This

discussion is divided into five sections. Section 6.2 gives a brief summary of the

results so far, in particular focussing on answering the first six research questions

shown in Chapter 1. Section 6.3 highlights the main problems of the models and

methods used in this study, but will also explain why the results are valid in light

of these shortcomings. Section 6.4 will look at how the results are consistent with

other research in this area, whilst Section 6.5 looks at why the results are important.

Finally Section 6.6 will suggest areas for further research.

6.2 Summary of Main Findings

In Chapter 3, the techniques on how to fit a projection model to M. annularis

were explained. In particular, different methods for how to fit the kernel of an

Integral Projection Model were shown, as well as methods for how to select the most

appropriate method. It was shown that a combination of biological information and
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reasonable analytical results can give the best fit for how to fit a fragmentation area

of a kernel.

The Population Projection Matrix is a popular method for modelling popula-

tions (Caswell, 2001). However, there are many issues surrounding their suitability

for populations where size determines the dynamics of the population. The main

challenges of modelling a population by a PPM in this Thesis was the issue of

missing transitions (Chapter 4). This lead to not only reducible matrices being

produced that are biologically unrealistic (Stott et al., 2010b), but also non-ergodic

matrices (for example IWeak). This meant that the asymptotic dynamics were not

independent of the initial conditions and makes it very difficult to project the pop-

ulation with confidence. In the case of M. annularis, it is growth transitions that

are missing. As growth was recorded on a scale of 1− 2cm2, it meant growth was

often missed and recorded as stasis within a size class instead. It was for this reason

that the Integral Projection Model was applied to the same data set in Chapter 5.

Integral Projection Models solve the solution of missing transitions, due to the

way that they are parameterized. Statistical techniques used to fit the models

mean that there is a smoother fit. By numerically integrating the kernel, there are

a greater number of ‘size classes’; this is possible as each size class does not require

its own set of data in order to parameterize it, meaning that a greater number of

size classes can be modelled. This issue is dealt with further in Chapter 7. There

are still issues surrounding the method of modelling fragmentation. This makes up

a small part of the kernel, with fragmentation being a rare event with only 63 events

observed in the data set. This means that there is only a small amount of data to

fit these functions. Future studies should focus on retrieving more information on

fragmentation in order to more accurately model this part of the kernel.

The results for the IPM and PPMs do not compare as well as other studies

suggest they should. In their study, Easterling et al. (2000) found that the popula-

tion growth rates for the IPM and PPM were the same to 2 decimal places and for



CHAPTER 6. DISCUSSION OF RESULTS 159

theoretical studies found little difference or bias. However, the population growth

rate estimates used for this study were very different. This initially raises issues

on the validity of the models, but could be due to the modelling of fragmentation

within the models. In the PPM, this is achieved in a very crude method, which

may over-estimate the contribution of fragmentation to the population. In addi-

tion, the growth rate is sensitive to the width of the size classes and emphasizes

again that, for coral populations, it is the IPM that should be used. Inspite of this,

the different growth rates did not affect the conclusions of RQ6.

Most studies focus on the asymptotic dynamics of a population and these meth-

ods of analysis are well developed (See Caswell (2000) for a summary for PPMs).

All studies so far that use IPMs only focus on the asymptotic dynamics (Easterling

et al., 2000; Childs et al., 2003, 2004; Ellner and Rees, 2006; Hesse et al., 2008;

Kuss et al., 2008; Rees and Ellner, 2009), with the exception of Eager et al. (In

Press). However, the transient dynamics of a population are just as important in

understanding the response of a population to disturbances (Townley et al., 2007;

Townley and Hodgson, 2008). In the case of modelling a population following a

hurricane, transient dynamics are important. In this Thesis, transient dynamics of

both the PPM and IPM have been carried out (See Chapters 4 and 5). The tran-

sient techniques for IPMs are not well developed, but it would be assumed that the

transient bounds from PPM analysis should be transferable to the IPM framework.

In particular the effect of biased initial conditions has been measured to compare

with those in a PPM. Often the results are similar, with the PPM upper and lower

bounds being enclosed in the IPM bounds.

In Chapter 4 the research question: ‘Does initial trauma following a hurricane

affect the dynamics of a population?’ was investigated. It was found that the

stronger the initial trauma, the stronger the asymptotic decline. In transient time,

the more severe impact had greater extremes of behaviour than those with weaker

initial trauma. It was shown that the dynamics on a ramet with a greater than
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50% coral cover loss was markedly different from those with a less than 50% loss.

It also showed that transient growth was possible for all patches.

6.3 Short-comings of Methods

The PPM method is particularly useful for populations determined by age or stage

where biological indicators determine the boundaries of state class. With a popu-

lation determined by size, as in the case of M. annularis, these class boundaries

are artificially chosen (Ramula and Lehtila, 2005). As discussed in Chapter 3, the

errors surrounding these boundaries can be reduced in order to reduce the mod-

elling errors. This method is popular with coral populations (Hughes, 1984), but

this does not mean that this is the best method that could be used by Ecologists.

The PPMs built in Chapter 4 were reducible, due to missing transitions (Stott

et al., 2010b). These missing transitions, particularly when it comes to growth

transitions, could result in an under-estimation of the population growth rates for

all PPMs. This is due to the growth observed in this study being on a scale of 1

or 2cm2, whereas shrinkage of patches was on a larger scale. Therefore, the Van

der Meer and Moloney algorithms selected that shrinkage transitions need to be

captured more than the small scale growth (Moloney, 1986; van der Meer, 1978).

The IPMs created and used in Chapter 5 solved many of these problems. They

are particularly useful when there is only a small data set (Zuidema et al., 2010).

In Chapter 5, it was shown that the PPM actually over-estimated the population

growth rates in some cases, this is due to it being less able to capture small scale

transitions.

The issue with using the IPM for coral populations is the lack of comparable

models in literature. The methods adopted to parameterize these models are an

initial attempt to describe the dynamics. Much is known about the biological pro-

cesses of colonies of M. annularis (Foster et al., 2007) and about their reproduction
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and fragmentation, but little is known about the patch dynamics of this species.

Therefore, assumptions have had to be made about the decision processes involved

in fragmentation. It is known that fragmentation is a rare event for patches (only

63 fragment events were observed in our data set) and, therefore, will only con-

tribute a small amount to the population dynamics. It is vital that this is captured

accurately, as this is the only method that is used in this model to create new

patches.

Reproduction does not occur at a patch scale (Szmant, 1991), which resulted

in a closed system being modelled with no contribution from other populations of

M. annularis. It is known that there is asexual and sexual reproduction at the

colonial scale of M. annularis (Foster et al., 2007). This model only captured

the asexual reproduction at a patch scale through fragmentation, but the sexual

reproduction is not captured, as it was not included in the data set. As this was

not captured in the data, the reproductive value only captured the contribution of

patch sizes to fragmentation. This meant that the reproductive value was instead

labelled as the fragmentation value. Future studies would need to focus on the

contribution of recruitment to the population, in fact it is thought that the ability

of a coral population to withstand hurricanes is as a result of their recruitment levels

(Hughes, 1994; Hughes and Tanner, 2000; Coles and Brown, 2007). The results of

this Thesis are still valid, as there is some thought that hurricane stress actually

reduces the ability of coral to sexually reproduce as energy is instead required to

repair damage (Crabbe et al., 2008). This is in part due to the competition of

space between algae and coral and, as algae are quicker at colonization, it often

means that coral populations miss out (Connell, 1997; Connell et al., 1997).

The low number of patches that fragment can indeed skew the results. For

example in ISevere there were only 2 patches which fragmented. The IPM method

cannot accurately model the process, as such low numbers of data skew the statis-

tical fits. There is little that can be done about this. The confidence in the fitted
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models comes from the fact that there is a similar shape in the results of other

categories.

6.4 Are the Results Consistent with Previous Re-

search?

Coral reefs are in long term decline, with no pristine reefs remaining (Jackson

et al., 2001; Pandolfi et al., 2003); one fifth already destroyed; one fifth under

immediate threat and another quarter under long term threat (VanOppen and

Gates, 2006). This shows the extent of the threat hanging over coral reefs. There is

currently a rapid shift to alternate states (Bellwood et al., 2004), with a dominance

of branching corals or even algae rather than the dominance of reef-building corals

seen in the past (Lugo et al., 2000). This research agrees with this long-term threat

to coral reefs. It showed that in the long-term, even under weak trauma, there is

asymptotic decline in coral cover. As coral patch cover declines, so the healthiness

of the reef will decline, as the reef-building coral will then have no method of

growing and recovering after disturbances. In the Caribbean basin, there are no

examples of recovery of reefs following a hurricane disturbance (Connell, 1997) and

this study only adds to the growing collection of these studies.

Gardner et al. (2005) found that, on average, a population will decrease by 17%

following a hurricane. This study has shown that there was a decrease in coral cover

of 31% following Hurricane Mitch, but only 3% and 8% following hurricanes Keith

and Iris, which on average was 14% for all three hurricanes.

No recovery has been observed on a coral reef for at least 8 years after a hurri-

cane (Gardner et al., 2005). In fact, it has been suggested that most reefs follow

a synergy trajectory after a hurricane, where the decline experienced prior to a

hurricane is only increased by the hurricane (Gardner et al., 2005). This study
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confirmed this with no recovery observed in the data. This could be because the

data was not collected for a long period following the hurricanes. The population

showed a synergy of effects, where the decline was increased, following the hurri-

canes with all hurricane trauma categories at a greater rate of decline than that

prior to the hurricane. The reason for this increase in decline is because the reefs

are now at a reduced capacity to deal with hurricanes (Rogers and Laffoley, 2011).

This is because other stresses like overgrazing reduce the capacity of the reef to

recover from a hurricane. This is causing there to be a shift from coral dominated

reefs to algal dominated reefs. Once this shift has occurred, the reefs will have a

diminished capacity to recover (McClanahan et al., 2001).

6.5 Why are these Results Important and Novel?

The results discussed in this chapter are important in that they add to the body

of knowledge of how coral reefs respond to hurricanes. It was shown that the long-

term and short-term dynamics of a coral patch is determined by the initial trauma

experienced following a hurricane.

In Chapter 2, it was highlighted that the Integral Projection Model lends itself

perfectly to modelling a coral population, but that this has not been done by any

other study. This Thesis is a first step towards a better understanding of how to

model coral patches by IPMs. It suggests possible methods of parameterization,

which give an insight into the issues surrounding fragmentation.

Comparisons of the PPM and IPM methods have shown that Coral Reef Ecol-

ogists should turn to the IPM to model their populations. It provides a more

accurate model and allows the capture of small scale behaviour, which had been

previously missed by PPMs. It also allows better fit for small data sets (Zuidema

et al., 2010), and does not require the false definition of size class boundaries that

have no biological motivation.
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Most understanding of the effect of hurricanes on coral populations is at the

colonial level (Edmunds and Elahi, 2007; Hughes, 1984). Although, as was dis-

cussed in Chapter 2, it is vital that the dynamics on a patch scale are understood.

This Thesis has modelled the population at this smaller scale, as it is at this scale

at which live coral is found. Even though colonies may survive longer than the

coral patches, if there is no live coral on a colony effectively the colony is dead.

Without the live coral, there is no way that the colony can grow and recover, thus

understanding these dynamics is vital.

6.6 Further Study

The results from Parts I and II of this Thesis have investigated the effect of hur-

ricanes on a coral patch population. It has raised further questions which need to

be answered. Some of these questions will be answered in Part III of this Thesis.

Namely, how a coral patch population be better managed into growth, using the

IPM method as an indicator (see Chapter 8). A further question is how looking at

climate change affects these results. In order to answer these questions the data

set must be divided in a different manner to Chapter 4, so that the population can

be projected under different scenarios to calculate the range of possible behaviour

that could occur. This will be done in Chapters 7 and 9.

There are other questions which have arisen that have not been investigated in

this Thesis. The data failed to capture recovery following hurricanes. Although it

is now thought that many coral populations experience a sharper decline after a

hurricane (Gardner et al., 2005), it is also thought that recovery is unlikely to be

seen in the first 8 years after a hurricane (Gardner et al., 2005). Therefore, any

further research should aim to study a coral population for a longer period of time

in order to capture the natural recovery on a reef rather than the continued decline

following a hurricane.
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As has been discussed above, further research should also aim to understand

the level of recruitment required in order to boost the population size sufficiently

between hurricanes and the level of recruitment that is required for the population

to survive.

6.7 Conclusions

In the first two parts of this Thesis, different projection models have been fitted to

the data set in order to understand the dynamics on the reef. It has shown that

the IPM is a better alternative to the PPM at modelling coral patch dynamics.

However, it has also shown that further research is required to accurately capture

the process of fragmentation. In Parts I and II the first six research questions from

Figure 1.4 have been investigated. In Part III the remaining four questions will be

answered.



Part III

On the Applications of Integral

Projection Models to

Management and Climate

Change.
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Chapter 7

The Integral Projection Model

7.1 Introduction

In Part II, it was concluded that the Integral Projection Model (IPM) was a bet-

ter alternative to the Population Projection Matrix (PPM) at modelling a patch

population of Montastraea annularis. The IPM solved many of the issues that

arose from PPM modelling, for example, the problem of missing transitions and

the selection of size classes. By being continuous in state, size class selection is

not necessary and distribution errors are not introduced into the model. An IPM

is parameterized through statistical curve fitting and is, therefore, able to smooth

out missing transitions. This makes the IPM an ideal model for size-determined

populations like M. annularis.

In this chapter, IPMs are parameterized to answer the research question: ‘Do

the dynamics exhibited during a hurricane vary with hurricane strength?’ In Chap-

ter 4, it was concluded that the initial trauma experienced by a coral patch follow-

ing a Category 5 hurricane determined the long-term behaviour of a coral patch.

This chapter differs by investigating the total dynamics of the reef ignoring relative

initial decline and uses a different subdivision of the data (see Figure 1.5). The

methods for parameterization and analysis of an IPM were discussed in Chapter 3
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and are applied here to answer the research question.

By parameterizing three different IPMs (AStrong, AWeak and ANo) it allows the

projection of possible future dynamics under different scenarios of hurricane fre-

quency and intensity. These scenarios are motivated by the expected effect of

climate change on hurricane activity. The IPMs parameterized in this chapter are

used in Chapter 9 to investigate a range of possible population densities with differ-

ent hurricane patterns and in Chapter 8 to suggest possible management strategies.

7.2 Methods

The Glovers Reef data set, see Chapter 1, was divided into three groups according

to the hurricane activity that occurred at each time step (Table 7.1). The three

IPMs, AStrong, AWeak and ANo, are parameterized using the log-size of a coral patch,

due to the distribution of coral patch sizes in June 1998 being approximately log-

normally distributed.

Three individual IPMs were parameterized, as opposed to one with a hurricane

factor included, to allow controlled projection into the future (see Chapter 9).

Climate change is thought to be increasing the intensity of hurricanes (IPCC, 2007).

Three models allow differing scenarios to be projected in a controlled manner to

compare possible future dynamics on a reef.

IPM Transitions Number of data Hurricanes

AStrong 2 (October 1998 to December 1998) 577 Mitch
3 (December 1998 to June 1999)

AWeak 5 (June 2000 to May 2001 ) 494 Keith
6 (May 2001 to May 2002) Iris

ANo 1 (June 1998 to October 1998) 762
4 (June 1999 to June 2000)

7 (May 2002 to January 2003)

Table 7.1: Division of data used to create three IPMs, AStrong, AWeak and ANo and
the number of data available to parameterize them.
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Chapter 3 discussed the differing methods that could be adopted in selecting

the functional form of the kernel for M. annularis. Application to ANo data caused

the selection of the kernel form to be:

k(y, x) = (1− pf (x))s(x)g(y, x) + s(x)fs(x)pf (x)nf (x)fd(y,
x

n
), (7.1)

with corresponding IPM equation:

n (y, t + 1) =

∫

Ω

k (y, x)n (x, t) dx. (7.2)

In this projection equation, Ω is the range of possible patch sizes and n(x, t) is the

distribution of patch sizes at time t. The kernel k(y, x) incorporates the following

functions:

• s(x): The probability a patch of size x at time t survives to time t + 1, fitted

using logistic regression.

• g(y, x): Given that a patch of size x at time t survives to time t + 1, this

function approximates its size y at time t+1. This function models both the

growth and shrinkage of coral patches. It is fitted by a Gaussian distribution,

with fitted mean and variance.

• pf (x): The probability that a patch of size x at time t will fragment at time

t + 1. This is fitted using a logistic regression.

• fs(x): Given that a patch of size x at time t fragments, fs(x) is the proportion

of the original patch x which will survive in fragment form. This is fitted

through linear regression with a Gaussian error structure.

• nf (x): Given a patch x fragmented at time t, nf (x) approximates the number

of patches which are produced. This is fitted through a transformed variable

X = x− 2 and a Poisson error function.
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• fd(y, x
n
): This gives the size of a fragment y at time t + 1 given a patch size

x at time t fragments and the number of fragments produced n. Fitted to a

Gaussian distribution with fitted mean and variance taken as the variance of

fragment sizes y at time t + 1.

7.3 Fitted Models

The parameterized IPMs and their fits are given in Table 7.2 and Figures 7.1 to

7.7, with the complete functional form of the IPMs given in equations (7.3), (7.4),

(7.5).

Probability of Survival: For all three groups, quadratic terms were rejected

(ANo: P = 0.70, AWeak: P = 0.67, AStrong: P = 0.51). As patch size increased

so did survival rates (Table 7.2 and Figure 7.1). For patches over 140cm2, the

probability of survival is close to one, irrespective of whether or not a hurricane

occurred and of the hurricane strength. For smaller patches, there was a greater

variety in the probability of survival. Where patches of 1cm2 in AStrong had a 29%

chance of survival, this doubled for AWeak to 62%, whilst ANo had 58% survival. As

patch size increased, there was a steeper increase in survival in AStrong than AWeak

or ANo. There was a slightly greater probability of survival for all patch sizes in

AWeak than in AStrong.

Growth: For all fitted mean growths and variances, quadratic terms were

rejected (ANo: P = 0.34 and P = 0.88, AWeak: P = 0.07 and P = 0.41, AStrong:

P = 0.2 and P = 0.60). This showed a linear relationship between size at time t

and size at time t+1 (Table 7.2 and Figure 7.3). The proximity of the fitted mean

growth lines to the x = y line showed only small scale growth and shrinkage of

patches. The estimates for mean growth are similar for all three groups, but there

were slight differences for small patch sizes. Small patches in AStrong had a greater

decrease in size than in AWeak and ANo.
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Mean growth for large patches was similar for all categories. There was a greater

variability in patch size for AStrong than AWeak or ANo (Figure 7.4 and Table 7.2),

as evidenced by a greater number of data located away from the mean line.

Probability of Fragmentation: The greatest chance of a patch fragmenting

was in AStrong, whilst AWeak showed the least (Figure 7.2 and Table 7.2). This was

confirmed by data in AStrong, where 5% of patches fragmented compared to 2.6%

in ANo and 2.2% in AWeak. The fitted functions showed a much higher probability

of fragmentation for larger patches than smaller patches. For patches under 8cm2,

fragmentation did not occur in all groups. The largest probability of fragmentation

occurred in AStrong for patches over 400cm2, where there was a 29% chance of

fragmentation. The relationship between size and fragmentation was linear with

quadratic terms rejected (ANo: P = 0.054, AWeak: P = 0.18 and AStrong: P = 0.08).

Number of Fragments: For all categories linear terms were rejected (ANo:

P = 0.07, AWeak: P = 0.85, AStrong: P = 0.61) and the number of fragments were

independent of initial patch size. The most common number of fragments produced

was two in all categories, i.e., it is most common for one patch to divide in half.

The fitted mean is similar for both AStrong and AWeak, but lower than for ANo (Table

7.2 and Figure 7.5). It showed that more patches are produced if fragmentation

occurred naturally than if forced by a hurricane event, even though the chances of

fragmentation increased with a hurricane event.

Family Size: The relationship between the size of the ‘parent’ patch x and

the total area of the fragments produced is linear for all categories with quadratic

terms rejected (ANo: P = 0.20, AWeak: P = 0.74, AStrong: P = 0.28). This showed

that as the patch size increased so the total area remaining after fragmentation

increased (Table 7.2 and Figure 7.6). In ANo, a greater area of coral remained than

both AWeak and AStrong with the lowest amount in AStrong.

Fragment Size: For all three categories, a linear relationship is observed, as

the original patch size increased, so did the fragment patch sizes (Table 7.2 and
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Figure 7.7). Quadratic terms were rejected in all categories (ANo: P = 0.72, AWeak:

P = 0.39, AStrong: P = 0.04). In AStrong, although P < 0.05, the quadratic terms

were rejected because the inclusion caused all factors to be not significant and so a

linear relationship was assumed. There is greater variability between estimates for

small patches, with large patches having similar estimates for all three categories.

Key Function Results

1. Larger patches have better survival rates than smaller patches, regardless of

hurricane strength (Figure 7.1) .

2. Smaller patches survive better in AWeak and ANo than in AStrong (Figure 7.1).

3. Patches in AStrong have a higher chance of fragmenting (Figure 7.2).

4. Patches under 8cm2 do not fragment regardless of hurricane occurrence or

strength (Figure 7.2).

5. More patches are created by fragmentation in ANo than in AWeak and AStrong

(Figure 7.5).

6. When large patches fragment, a greater area will remain than with small

patches (Figure 7.6).
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Figure 7.1: The fitted probability of survival function s(x) for the IPMs AStrong,
AWeak and ANo, shown on the log-size scale. The fitted models are shown in com-
parison to the data.
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Figure 7.2: The fitted probability of fragmentation function pf (x) for the IPMs
AStrong, AWeak and ANo, shown on the log-size scale. The fitted models are shown
in comparison to the data.
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to the data.
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7.3.1 Mesh Size and Integration Boundary

The IPMs for AStrong, AWeak and ANo were fitted in the previous section, but in order

to analyze these functions, numerical integration methods must be adopted. Recall

from Section 3.2.2 that two different methods to select the integration boundaries

were defined. The integration boundary defines Ω as the minimum and maximum

sizes that the kernel is integrated over and requires the inclusion of all possible sizes

that the coral patches could achieve. The mesh size defines the number of points

that are used during integration. To calculate the integration boundary, certain

parameters from the data are calculated, namely:

• l the minimum observed size

• u the maximum observed size

• σ2 the variance of observed patches sizes

Given these parameters the two possible methods of choosing the integration bound-

ary Ω = [L U ] are:

(I) [L U ] = [0.9l 1.1u]

(II) [L U ] = [l − 3σ2 u + 3σ2]

The integration boundaries are calculated for all three IPMs and for each bound-

ary ((I) and (II)) the population growth rate λ was used to calculate the number of

mesh points required. The population growth rate is used ahead of other metrics

as the dominant eigenvalue converges to the overall population growth rate, λ1, as

the number of mesh points increases (Easterling et al., 2000).

The mesh size was selected as the minimum size required for λ1 to converge to

4 decimal places (Table 7.3). As the integration boundary widened, the number of

mesh points required increased. It is impossible to separate the selection of bound-

ary values and mesh points, as one directly affects the other. It is important to take
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into account both of these measures as the benefits of using a wider integration

boundary are often out-weighed by the increased computational cost of increasing

the number of mesh points. When a very small number of mesh points are selected

there is a large numerical error in the calculation of λ1. It can result in values of λ1

which are not realistic. For example, in Figure 7.8 when the number of mesh points

is under 10 for ANo, λ1 > 5. As the number of mesh points increased, the popula-

tion growth rate was calculated as 0.74. This demonstrates the importance of the

correct calculation of the number of mesh points required to accurately describe

the dynamics of the population.

In general, using method (II) is computationally more expensive than method

(I) (Table 7.3). The number of mesh points for method (II) was over three times

higher than method (I), despite the integration area being only 2.5 times larger for

method (II) than method (I).

The λ1 estimate for AWeak and AStrong were the same to 2 decimal places, for

both integration boundary methods. However, the growth rates for method (I)

was slightly larger than method (II). For ANo, the growth rate is larger for method

(II) than method (I) and are only the same to one decimal place. There was

no systematic bias in the growth rate by shrinking the integration boundary. A

compromise of Ω = [L U ] = [0 7] is used for all three IPMs, in order to unify

the choice of integration boundary. The required mesh sizes for this boundary are

given in Figure 7.8. This showed that a mesh size of 145 is required for ANo, 60 for

AStrong and 200 for AWeak. As a result of this, a mesh size of 200 will be used for

all IPMs, to ensure that there is convergence to 4 d.p for the population growth

rate in all three categories.

The number of mesh points and integration boundaries are unified for all three

IPMs to allow direct comparison for all sizes. It will also allow the projection

of different hurricane scenarios in Chapter 9. If they were not unified then this

analysis could not be carried out.
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IPM Boundary Method Boundary λ1 Mesh Size

ANo I [0 6.898] 0.7387 115
II [−5.286 11.557] 0.7450 445

AWeak I [0 6.5768] 0.7836 135
II [−4.852 10.83] 0.7834 425

AStrong I [0 6.890] 0.4345 55
II [−5.465 11.728] 0.4279 145

Table 7.3: The population growth rates for the two different integration boundaries.
The mesh size given is the minimum size required for λ1 to converge to 4 decimal
places.
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Figure 7.8: The population growth rate calculated on the range Ω = [0, 7] for a
varying number of mesh points.

7.4 Results

The parameterized IPMs are analyzed using methods described in Chapter 3 to

determine their basic dynamical properties. In terms of the overall patch dynamics

of the systems, it requires an assumption that the environmental conditions remain

unchanged each year. In the case of AStrong, this means that a strong hurricane

occurs every year; for AWeak that a weak hurricane occurs every year; and for

ANo that there is never a hurricane. These situations are highly improbable with
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hurricane frequency and intensity varying annually, but this assumption allows the

comparison of behaviour under different situations. To allow for annual variation,

the IPMs can be interweaved to project possible behaviour. This analysis will be

carried out in Chapter 9.

Analyses of the asymptotic dynamics give an indication of the behaviour that

is being exhibited by the three IPMs (See Section 7.4.2). In particular, it allows

comparison of metrics like the population growth rate. It is often the case that the

population will not reach the asymptotic dynamics and so it is necessary to also

carry out transient analysis (see Section 7.4.3). The combination of the informa-

tion from asymptotic and transient analysis gives a better overall picture of the

behaviour, which is seen under these varying hurricane conditions.

7.4.1 Kernel Results

The majority of coral patch behaviour was concentrated around the x = y line. This

showed a greater contribution from survival and growth than from fragmentation

(Figure 7.9). Kernel values are higher in AWeak than either AStrong or ANo (Figure

7.9 (a) (c) and (e)), which showed greater survival rates, in particular between sizes

200− 600cm2. The lowest survival is in AStrong (Figure 7.9 (e)).

The log-kernels (Figure 7.9 (b), (d), (f)) are given to accentuate the contribution

of fragmentation. The greater intensity of colour showed greater contribution from

fragmentation in AStrong, than either of the other categories. The smallest amount

of fragmentation occurred in ANo. The log-kernels also showed that the survival-

growth region is wider for AStrong than either AWeak or ANo. This showed that

under stronger hurricanes there was greater variability in resulting patch size. The

proximity of the survival-growth contribution to the x = y line for ANo and AWeak

showed only small-scale change in size. Whereas for AStrong, the survival-growth

contribution lies below the x = y line, which showed a systematic decrease in area.
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(a) ANo kernel (b) ANo log-kernel

(c) AWeak kernel (d) AWeak log-kernel

(e) AStrong kernel (f) AStrong log-kernel

Figure 7.9: The kernels and log-kernels for the fitted IPMs ANo, AWeak and AStrong.

7.4.2 Asymptotic Dynamics

All three IPMs had a population growth rate of less than 1, indicating long term

decline. The smallest growth rate was observed in AStrong (λ1 = 0.43), which was

41% lower than AWeak (λ1 = 0.78) and 42% lower than ANo (λ1 = 0.74). An
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unexpected result was that the growth rate of AWeak was higher than ANo; this is

counter-intuitive, as it would be expected that a hurricane would lower the growth

rate. This showed that a weak hurricane benefits a reef, having said that, it could

also indicate that ANo does not exclusively model non-hurricane behaviour, but

instead that there is some residual effects captured in this IPM.

The stable size structure for all categories showed all individuals will ultimately

be smaller than 20cm2 (Figure 7.10 (a)). On the log-size scale, small differences

in distribution can be seen (Figure 7.11 (a)), where AWeak showed slightly larger

patches than ANo and AStrong. There is also a lower proportion of smaller patches

in AWeak. The worst case scenario is in AStrong, where the greatest proportion of

smaller patches will dominate. This result paints a bleak picture for the popula-

tion regardless of hurricane strength, still it must be remembered that very few

populations will ever reach asymptotic time. This is because hurricanes do not

occur every year and so there will be some interaction between these IPMs. This

interaction may perturb the population in a way that increases the proportion of

larger patches on the reef. This interaction is investigated in Chapter 9.

The models that have been produced do not include reproduction and recruit-

ment, therefore, as was explained in Section 3.3.5, the reproductive value instead

models the contribution that different size coral patches make to fragmentation.

The fragmentation values (Figures 7.10(b) and 7.11(b)) showed it was large patches

that contribute to fragmentation. However, AWeak had a higher contribution from

slightly smaller patches than ANo. The sizes contribution to fragmentation for

AStrong lies within the sizes for AWeak and ANo. For all categories, there is little

contribution to fragmentation from sizes below 200cm2.

Initial conditions from data calculated the number of patches of each size, which

existed at time t, as opposed to t + 1. This effectively created a 200 × 1 vector

where the ‘size class’ boundaries are those defined under numerical integration

(Figure 7.12). These initial conditions were calculated independently for each of
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Figure 7.10: The stable size structure, w, and fragmentation values, v for all three
IPMs on a size scale.
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Figure 7.11: The stable size structure w(x) and fragmentation values, v(x) for all
three IPMs, both on a log-size scale.
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the IPMs, using the patch behaviour observed in each category. Each IPM was

then projected through time using their initial conditions, in order to project when

population numbers decline to zero.

Using initial conditions from data, there were initially a greater number of

patches in ANo, with the fewest in AWeak (Figure 7.13 (a)). After 10 months, there

were a greater number in AWeak than in AStrong, with the population becoming

extinct in approximately 60 months. After 100 months, there are approximately

the same number of patches in ANo and AWeak and both populations then follow

a similar decline with extinction after approximately 150 months. Extinction is

measured as the time when no patches remain in the population. Patches in AStrong

become extinct two and a half times quicker than AWeak and AStrong.

Each of the initial conditions for the above projections were different. This

allowed comparison of number of patches on the reef, according to observed patch

numbers. However, it is also informative to compare the models using one set

of initial conditions. This will allow the intrinsic dynamics of the models to be

compared. It highlights the differences in the models, rather than the difference in

initial conditions. This required the construction of a theoretical initial condition,

which followed a log-normal distribution. A log-normal distribution was selected,

as it was earlier assumed that the coral patches followed a log-normal distribu-

tion, when fitting the growth and fragmentation distribution functions. This was

achieved through randomly generating a large number of patch sizes on a log-scale,

where the random generation was taken to be normally distributed. This randomly

generated data were then divided amongst the ‘size-class’ boundaries from the nu-

merical integration. These boundaries were the same for all three IPMs as the

same integration boundary and numbers of mesh points were used. In this case

population density is used ahead of number of patches, as the number of patches

are artificially selected and the density gives a better idea of the proportion of

patches in each size class at each time step.
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Figure 7.12: Initial conditions for ANo, AWeak and AStrong. These are shown on a
log scale, using the mesh boundaries selected during numerical integration.
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Figure 7.13: (a)Projection of population sizes under initial conditions from data.
(b) Projection of population density under log-normal initial conditions.

When the populations are projected using randomly generated log-normal ini-

tial conditions (Figure 7.13 (b)), the population under AStrong will become extinct

after approximately 200 months, three times quicker than AWeak or ANo. The popu-

lation in AWeak faired slightly better than ANo, due to the slightly higher population
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growth rate, but after 600 months it will also be extinct.

Key Asymptotic and Kernel Results

1. In AStrong, the kernel showed a systematic decrease in patch size.

2. Survival-growth dominates all the kernels and influences dynamics more than

fragmentation.

3. AStrong had the steepest asymptotic decline.

4. The asymptotic growth rate of AWeak is higher than ANo.

5. The stable size distribution of patches are all dominated by patches less than

20cm2 in area, but there are patches of a slightly larger size in AWeak in

comparison to AStrong or ANo.

6. Large patches contributed the most to fragmentation for all three categories.

7. With a log-normally distributed initial patch structure, coral patches in

AStrong will die off three times quicker than those in AWeak or ANo.

7.4.3 Transient Analysis

It is unlikely that these IPMs will ever reach their asymptotic dynamics due to

varying hurricane occurrences each year. It is important to describe the dynamics

immediately following a disturbance. Transient analysis gives the relative ampli-

fication or attenuation of behaviour, compared to what would be exhibited if the

population was in its stable size structure (as shown in Figure 7.10). To calcu-

late the maximum amplification, as well as the minimum attenuation, each IPM

was projected over 10 time steps. The initial conditions were biased, so all mem-

bers were in one ‘size class’ (from numerical integration), and the maximum (and

minimum) amplification calculated for each time step.
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There is a greater range of possbile behaviour after 1 time step for AStrong. Re-

activitiy shows an amplification of 2.1825, whilst attenuation is 0.003. This gives

a range of 2.18, which is much larger than either AWeak or ANo, with ranges 1.20

and 1.28 respectively (Table 7.4). This showed that the stronger the hurricane

the greater range of amplfication and attenuation that could be achieved by bi-

ased initial conditions. It also showed a greater range in behaviour by a population

experiencing a weak hurricane, than a population experiencing no hurricane. Reac-

tivity showed a similar picture to the range of Reactivity and Attenuation (Figure

7.14).

Attenuation was achieved by the smallest possible patch sizes of between 1.000

and 1.001cm2 for all three IPM categories (Table 7.4). In comparison, the sizes for

which Reactivity was achieved vary slightly. The smallest sizes were in AWeak and

ANo of between 25.88 and 27.33cm2, whilst for AStrong it was achieved by slightly

larger patches of between 27.33 and 28.87cm2 (Table 7.4).

For all biased initial conditions, the maximum amplification (ρmax) and min-

imum attenuation (amin) are achieved after ten time steps (Figure 7.14). Mini-

mum attenuation for all three IPMs is 0.00 (Table 7.4). Maximum amplification

showed that for certain biased initial conditions the population could be amplified

massively in comparison to amsyptotic dynamics. There is a marked difference

between AStrong and AWeak, where a maximum amplification for AWeak was 7.11,

but for AStrong was 1451.9. The maximum amplification for ANo was larger than

for AWeak.

The sizes, for which maximum amplification occurred, was much larger for

AStrong, than either AWeak or ANo (Table 7.4). In AStrong, maximum amplification

occurred with patches of between 94.90 and 99.98cm2, this was over double the size

of patches in AWeak and ANo. However, ANo achieved maximum amplification with

patches slightly larger than AWeak. In comparison minimum attenuation occurred

in all categories with patches under 2cm2. These patches were slightly larger for
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Indicator AStrong AWeak ANo

Reactivity 2.18 (27.33 to 28.87) 1.22 (25.88 to 27.33) 1.29 (25.88 to 27.33)
Attenuation 0.003 (1.000 to 1.001) 0.02 (1.000 to 1.001) 0.01 (1.000 to 1.001)

ρmax 1451.9 (94.90 to 99.98) 7.11 (37.98 to 40.12) 12.73 (40.12 to 42.38)
amin 0.00 (1.14 to 1.16) 0.00 (1.000 to 1.001) 0.00 (1.000 to 1.001)

Table 7.4: The transient dynamic indicators for the three IPMs; AStrong, AWeak and
ANo. In brackets are the range of sizes which achieve these values.

AStrong at 1.14 to 1.16cm2, compared to 1.000 to 1.001 in both ANo and AWeak.

Under log-normal initial conditions, the population density after 10 time steps

was very different for the three IPMs. However, for all three IPMs the log-normal

initial conditions fair better than the asymptotic stable size structure (Figure 7.14).

Under log-normal initial conditions, ANo achieved a lower relative population den-

sity to AWeak and AStrong. On the other hand the relative population density was

much larger in AStrong than those that would be achieved under log-normal initial

conditions.

Key Transient Results

1. There is a greater range of amplification and attenuation for AStrong than

AWeak, both after 1 time step and after 10.

2. Under certain biased initial conditions, AStrong can exhibit large amplification.

3. Amplification and attenuation under AWeak is lower than ANo.

4. Attenuation after 1 or 10 time steps was achieved by very small patches.

5. Reactivity is achieved in all three categories by patches between 25 and

30cm2.

6. ρmax was achieved by patches larger than those which achieved Reactivity.
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Figure 7.14: Transient dynamics of (a) ANo, (b) AWeak and (c) AStrong. The range
of possible dynamics relative to those exhibited if the population was in stable size
distribution. The behaviour under log-normal initial conditions (black line) and
the maximum and minimum possible behaviour for each time step (blue and red
lines) are shown, with the values of Reactivity, Attenuation, ρmax and amin given.
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7.4.4 Perturbation Analysis

Parameters selected in Section 7.3 were the best fit to the data, but each estimate

has an associated standard error (s.e.). With this standard error, it is possible to

perturb related parameters within a given region, in order to estimate a range of

possible growth rates. This gives the confidence in each estimate and also shows

which parameters are most sensitive. To calculate a 95% confidence interval, pa-

rameters were perturbed within a range of values:

x± 1.96s.e.

In Table 7.5, the associated range of values for the population growth rate under

these perturbations are given when both the intercept and slope parameters for

each function were perturbed at the same time. Figures 7.15, 7.16 and 7.17 give a

visual display of the effect of these perturbations on the population growth rate.

The closer the mean estimate lay to a λ-contour, the more sensitive λ1 was to the

parameter estimate.

7.4.5 Confidence Intervals for λ

Function AStrong AWeak ANo

s(x) [0.3718,0.4735] [0.6923,0.8268] [0.6760,0.7768]

g(y, x) [0.2527,0.8529] [0.6052,0.9409] [0.5796,0.9352]
log(σ2(g(y, x)) [0.4080,0.5836] [0.7793,0.8034] [0.7317,0.7579]

pf (x) [0.3638,0.4644] [0.6871,0.8049] [0.6728,0.7707]
nf (x) [0.4019,0.4555] [0.7315,0.7899] [0.7193,0.7529]
fs(x) [0.3968,0.4632] [0.7624,0.7988] [0.7163,0.7497]

fd(y, x
n
) [0.3508,2.5841] [0.7320,0.8707] [0.7005,0.7981]

Table 7.5: The 95% confidence intervals for λ1, formed through the perturbation
of the intercept and slope parameters simultaneously. The boundaries of pertur-
bations are given by x± 1.96s.e.

In AStrong, the mean estimate for λ1 is 0.43, but could range from 0.253 to
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2.58, depending on which parameters were perturbed (Table 7.5). It is surprising

that the upper confidence interval for λ1 is above 1 for fd(y, x
n
). The growth rate

increased dramatically when the intercept parameter dropped below -0.25 (Figure

7.15). With the exception of fd(y, x
n
), all other upper estimates for λ1 lie below 1

and confidence that the population is in decline is high. The lowest growth rate

is 0.25 is found when the mean growth estimates are perturbed. The number of

fragments parameter has the smallest range of λ values, showing this parameter is

least sensitive to perturbations.

In AWeak, all estimates for λ lie below 1 (Table 7.5), which means that there

is high confidence that the population is in decline. The lowest estimate for λ is

0.6052 and the highest 0.9409, both found in the 95% confidence interval for mean

growth. The highest lower estimate is 0.7793 and the lowest upper estimate is

0.8034, in the 95% confidence intervals for the variance of the growth.

For ANo, all estimates are lower than the critical value of λ = 1 (Table 7.5),

meaning that the population is in decline for the 95% confidence interval. The

lowest growth rate is 0.5796 and the highest is 0.9352, both found from the mean

growth estimate. The highest lower bound is 0.7317 from the variance of growth

and the lowest upper bound is 0.7497 from the family size estimate.

For AWeak and ANo the mean growth estimates are most sensitive to perturba-

tions, whilst for AStrong it is the fragment disctribution.

7.4.6 Comparison of Parameters

• Survival: Similar for all three categories, requires an increase in both inter-

cept and slope to see population growth rate increase (Figures 7.15 (a), 7.16

(a) and 7.17 (a)). Within the 95% confidence interval, AWeak can achieve

the highest growth rate. The highest growth rate achieved in AStrong is lower

than the lowest growth rate in AWeak and ANo.
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• Probability of Fragmentation: Requires a decrease in both intercept and

slope parameter values for all three categories (Figures 7.15 (b), 7.16 (b) and

7.17 (b)). This will decrease the probability of fragmentation for all patches,

but will in particular decrease the probability for larger patches. In the 95%

confidence interval, AStrong is smaller than AWeak and ANo for all possible

values. Again, AWeak can achieve a higher growth rate than ANo.

• Mean Growth: For both AWeak and ANo, the fitted parameters lie closer

to an increasing contour than a decreasing. The largest possible growth rate

occurs in AWeak and ANo of 0.9, whilst AStrong can achieve a growth rate of

0.8 (Figures 7.15 (c), 7.16 (c) and 7.17 (c)).

• Variance of Growth: These parameters are the least sensitive to pertur-

bations for all three categories. All are more likely to be higher than the

nominal value in the 95% confidence interval than lower (Figures 7.15 (d),

7.16 (d) and 7.17 (d)).

• Family Size: For all three categories, a small decrease in slope will cause

a larger population growth rate decrease than if the decrease in slope was

larger (Figures 7.15 (e), 7.16 (e) and 7.17 (e)). There is very little effect due

to changing the intercept parameter and it is more important to increase the

slope parameter. This means it is more important to increase the proportion

of a large patch remaining than it is for small patches.

• Fragment Size: These show two different stories. For AStrong, there was little

sensitivity to small perturbations in the intercept, followed by a rapid increase

for larger perturbations (Figure 7.15 (f)). This showed that increasing all

fragment sizes in AStrong could cause a quick increase in population growth and

is the most sensitive within the 95% confidence interval. In comparison, AWeak

and ANo showed a similar picture of proportional responses to perturbations
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(Figures 7.16 (f) and 7.17 (f)). In all cases, the intercept needs to decrease

to cause an increase in growth rate. This means all fragment sizes need to

decrease in size. It also required for the slope to increase, which is equivalent

to increasing the size of fragments produced by large patches. The horizontal

nature of the λ-contours in AWeak and ANo showed that perturbations to the

slope are more sensitive.

• Number of Fragments: All three categories are very similar and population

growth rate increased as the number of fragments decreased (Figures 7.15 (g),

7.16 (g) and 7.17 (g)).

7.5 Conclusions

7.5.1 Does Hurricane Strength Affect Patch Dynamics?

The results in this chapter showed that the strength of a hurricane affects the

dynamics of a population. If a strong hurricane strikes a population, the long-term

growth rate was much lower than if there was no hurricane or even a weak hurricane.

The surprising result was that, under a weak hurricane, there was a slightly larger

growth rate than if there was no hurricane. Historically, hurricanes were thought

to benefit a coral reef by creating free space, however this result showed they can

also boost the long term growth rate at a patch scale. It is not just in the long term

that the differences can be seen, transient analysis has shown that a population

experiencing a weak hurricane could have the lowest amplification after one time

step, and a strong hurricane the highest.

Other results that support this conclusion are that individual patches are more

likely to fragment under a strong hurricane, and that survival rates of patches

are lower under strong hurricanes. It is also interesting that larger patches in

all categories are more likely to survive and more likely to fragment than smaller
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patches. Therefore, it is more beneficial for populations to be dominated by larger

patches in order to survive future disturbances, but it also puts them at greater

risk of fragmenting.

In spite of the differences, some results are the same regardless of hurricane

strength. All populations are in decline and will be dominated by patches under

20cm2. This showed agreement with other studies on the Caribbean reef, which

currently predict that all coral populations are experiencing coral cover decline (for

example Gardner et al. (2003)).

7.5.2 Modelling Issues of IPMs

Further issues surround the numerical integration of the kernel. This is necessary

in order to analyze the results, but it does introduce errors to the results. The

selection of the integration boundary and the number of mesh points required, are

inter-linked and should ideally be selected for each IPM created. However, to allow

the projection of interacting IPMs in Chapter 9, these needed to be identical for all

three IPMs in this Thesis. This meant that some compromises were reached to get

the most accurate results for all 3 IPMs. The other issue of numerical integration

was the selection of L in Ω = [L, U ]. Due to the log-size assumption L had a

natural lower boundary of L = 0 or in terms of patch size L = 1cm2. In the data

set, the minimum recorded size was 1cm2, as all measurements were calculated to

the nearest cm2. This excludes patches smaller than 1cm2, but which were not

extinct. This could also underestimate the number of patches in the population,

but in terms of area would have little affect on the results.

The final issue surrounded the choice to create three IPMs, rather than one with

an additional hurricane factor. This increased the sampling error in the model, as

more parameters were required to be fitted with the same number of data. This

lead to three survival functions (with two parameters for each) being parameterized
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from 1833 pieces of data. In comparison, if a hurricane factor was included in one

IPM, only three parameters would need to be fitted. However, by calculating the

95% confidence interval for λ1 for all parameters, showed that all but one parameter

still lead to population decline.

Modelling fragmentation was an issue, as fragmentation is a rare event. Even

so, these models give the best approximation to the dynamics. There are always

fewer pieces of data to parameterize the fragmentation part of the kernel than the

survival-growth parameters. For example, all 1833 pieces of data can be used to

parameterize survival, but only a fraction of those can be used to model number

of fragments.

7.5.3 Conclusion

In this chapter, Integral Projection Models were parameterized in order to under-

stand if the strength of a hurricane affected the dynamics of the population. This

was achieved by the division of the data into three categories: to compare the dy-

namics under no hurricane; a weak hurricane effect and a strong hurricane effect.

It has been concluded that this does affect the dynamics, but surprisingly a popu-

lation under AWeak has better long-term and short-term dynamics than ANo. This

will be further discussed in Chapter 10. The IPMs created in this chapter will be

used in Chapters 8 and 9, to assess what effect there is on a population when the

IPMs interact and to suggest management strategies and to investigate the effect

that climate change may have on the population.
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Figure 7.15: The population growth rates of AStrong under perturbations of the
parameters.
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Figure 7.16: The population growth rates of AWeak under perturbations of the
parameters.
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Figure 7.17: The population growth rates of ANo under perturbations of the pa-
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Chapter 8

Management Strategies for

Montastraea annularis.

8.1 Introduction

When populations are in decline, a natural question to ask is ‘how can the popula-

tion be managed so that it grows?’ In this chapter, methods for selecting plausible

strategies are suggested. The Integral Projection Model for non-hurricane transi-

tions (ANo), which was parameterized in Chapter 7, is used in order to demonstrate

how mathematical models can aid managers in selecting how best to manage a pop-

ulation. The non-hurricane transitions are used as managers are able to control

the population best in periods of senescence.

By using Integral Projection Modelling, it allows the perturbation of individual

processes. In contrast, the PPM can only recommend areas of behaviour to be

targeted, as one or more processes could be modelled by the same parameter, for

example fragmentation and shrinkage.

The aim is to suggest strategies, which will aid recovery between hurricanes.

As was discussed in Section 2.3, the definition of recovery is not clear from the

literature. In this chapter, recovery is defined as ‘an increase in population growth

203
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rates alongside the existence of large patches in a population’. It was decided

to include the requirement of larger patches as it was shown in In Chapters 4

and 7 that larger patches are better able to survive disturbances, therefore the

increase in patch sizes should also be an aim of any management strategy. The

ideal management strategy will increase the population growth rate above 1, i.e.

λ1 ≥ 1, as well as exhibiting a stable size structure dominated by larger patches.

This is not always achievable. In Chapter 7, it was shown that the 95% confidence

interval for λ1 were all less than 1 for ANo. This showed that the population is

firmly in decline, and could mean that it is not possible that some functions, when

managed, are able to achieve λ1 ≥ 1. In this chapter, when λ1 ≥ 1 is not achievable

the best achievable strategy will be suggested.

This chapter firstly describes the methods, which can be used to calculate man-

agement strategies, before going on to suggest possible strategies that managers

could use in the case of M. annularis. Two types of management strategies are

suggested in this chapter: those that target only one biological function and those

that target two interlinked functions.

8.2 Methods

The methods adopted to select management strategies are illustrated in this section

through their application to one of the functions in the IPM kernel. Recall that

the IPM kernels fitted in Chapter 7 are of the form:

k(y, x) = (1− pf (x))s(x)g(y, x) + pf (x)nf (x)fs(x)fd(y,
x

n
), (8.1)

the function g(y, x) captures the growth and shrinkage of coral patches from one

time step to the next. The growth function was an obvious function to target as,

by increasing the mean size of a coral patch, it would be expected that the overall
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population growth rate should increase. In particular, the mean size of patches

g(y, x) was managed. Unmanaged, the fitted mean growth function for ANo was:

g(y, x) = −0.1198 + 1.0129x,

which resulted in a growth rate of λ1 = 0.74. In Section 7.4.4, both the intercept

(-0.1198) and slope (1.0129) parameters were perturbed concurrently to calculate

the 95% confidence interval of the growth rate as λ1 = [0.5796 0.9352]. The same

method of numerical simulation was adopted here, with the exception that there

is no upper or lower bounds for the parameters. Instead of finding the maximum

possible λ within a defined range of parameter values, the aim is to find the maxi-

mum possible λ within a reasonable range of parameters. In this case, the growth

parameters were perturbed for ranges: [-0.3144 1.6656] for the intercept and [0.499

2.489] for the slope parameter. This results in Figure 8.1 (a), a contour map of the

population growth rate (λ1) for each possible combination of intercept and slope

parameters within this range. This range was selected through trial and error as

the best range that gave the best λ1. From Figure 8.1 (a), different management

strategies can be selected by selecting the required λ1 and reading off the inter-

cept and slope parameter values. This case is an example of where λ1 = 1 is

unachievable.

The largest achievable growth rate was λ1 = 0.953, a relative increase in λ1 of

73%. It was achieved when the function was perturbed to g(y, x) = 0.1156+1.0129x

(Figure 8.1 (b)). This is achieved through the perturbation of the intercept pa-

rameter alone. Perturbing the intercept parameter alone is equivalent to managers

needing to increase all sizes of coral patches proportionally, whilst if the slope pa-

rameter was perturbed, managers would need to increase larger patches by a larger

proportion than smaller patches.

The perturbation resulted in an increase in patch sizes from below the 1 : 1 line
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Figure 8.1: Management of mean growth: (a) The contour map of possible λ1

values, the black cross shows the unmanaged parameter values and the red cross
the managed parameter values. (b) The selected management strategy, given the
size of a patch, x, at time t it gives its size at time t+1. The dotted line is the 1 : 1
line where the size at time t is equal to the size at time t + 1. (c) The stable size
structure of the managed and unmanaged population shown on a log-size scale. (d)
The fragmentation value of the managed and unmanaged population shown on a
log-size scale.
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to above the 1 : 1 line, where all patches remain the same size (Figure 8.1 (b)).

On average, coral patches need to grow rather than shrink as is currently the case.

Given that M. annularis is a slow growing coral, the feasibility of a mean increase

in size must be questioned.

The perturbations do not exclusively affect the population growth rate, but

also the stable size structures and the fragmentation values. Under the perturba-

tion described above, the stable size structure and fragmentation value changed

dramatically (Figure 8.1 (c) and (d)). Where left unmanaged, the population was

dominated by small patches, whilst the managed population will be dominated by

larger patches (Figure 8.1 (c)). This is logical, as the management strategy calls

for an increase in the mean growth of patches, resulting in more patches growing

to larger sizes. The fragmentation value changed, instead of larger patches con-

tributing the most to fragmentation, it is instead smaller patches that contribute

to fragmentation (Figure 8.1 (d)). This in turn causes fewer patches to fragment,

as smaller patches have a lower probability of fragmentation.

It is possible to reject management strategies purely on these results, for exam-

ple if the stable size structure was dominated by smaller patches when managed,

then the effort and cost required to implement the strategy would not be worth-

while. From this, a definition of feasibility of a management strategy can be defined

as follows.

A management strategy is classified as feasible if the following conditions are

met:

1. The perturbations required are within a reasonable range.

2. The stable size structure is not dominated by smaller patches.

3. The new function seems reasonable for a M. annularis population.

Not all functions have feasible management strategies, but this information can be
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just as useful for managers, as it shows which functions should not be targeted or

would waste resources if they were targeted.

Under this definition of feasibility, is the above management strategy feasible?

It satisfies the first criteria, with perturbations of 196% and 0.6% for the intercept

and slope parameters. The second criteria is satisfied as under management the

stable size structure is dominated by large patches. Finally, the third criteria can

be tested. The strategy fails at this final hurdle, due to the large increase in patch

sizes required at each time step by a slow growing coral. Therefore it is concluded

that this strategy is infeasible.

8.3 Results

8.3.1 One Function Strategies

In this section, each biological function is targeted in turn and assumes that man-

aging one function will not impact or alter any other function.

Probability of Survival

The best management strategy is to increase survival rates for all patches, regard-

less of size to greater than 90% (Figure 8.4). The strategy required the perturbation

of both the intercept (by 1008%) and slope (by 2%) parameters (Table 8.1). A per-

turbation of 1008% is large, but is required, in order to increase the survival rates

of smaller patches. These large perturbations only lead to an increase in λ1 by

8%. The stable size structure (Figure 8.2) was little affected by this management

strategy, in fact it slightly shrinks the peak sizes and is dominated by patches

under 3cm2. It is concluded that this strategy is not feasible for two reasons:

firstly the stable size structure is dominated by smaller patches and secondly the

perturbations required to achieve a small increase in λ1 are large.
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Figure 8.2: The stable size structure of the different management strategies sug-
gested in Table 8.1

Mean Growth

Increasing the mean growth line such that all patches experience growth was the

best management strategy. It achieves an increase in the population growth rate

by 22%, but required an increase in the intercept parameter by 163% (Figure 8.5

and Table 8.1). Increasing the intercept parameter, and not the slope parameter,

requires a manager to proportionally increase all patch sizes, rather than larger

patches more than smaller patches. Alongside increasing the growth rate, the

stable size structure also changes (Figure 8.2). The population will be dominated

by larger patches when managed, rather than smaller patches when unmanaged,

and will place the population in a better position to survive future disturbances.

The question about this strategy is if coral patches are able to achieve the growth

required for this strategy (Figure 8.5 (a)). The mean growth line falls just above

the 1 : 1 line, showing only slight growth of patches and, therefore, should be

achievable. This strategy fulfils the three criteria of feasibility.
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Figure 8.3: The fragmentation values of the different management strategies sug-
gested in Table 8.1

Variance of Growth

Greater variability in patch sizes is required, in order to increase the population

growth rate (Figure 8.6). It is unclear how this could be achieved by managers,

but to get a 19% increase in the population growth rate it only requires increases

in the parameters of 7% and 26% (Table 8.1). This management strategy did not

alter the stable size structure by a significant amount, with only a slight increase in

peak sizes observed (Figure 8.2). By the definition of feasibility, this management

strategy is indeed feasible, but the biological achievability of this strategy must be

questioned.

Probability of Fragmentation

Perturbations of parameters showed that the probability of fragmentation should

decrease, in order to achieve a change in the population growth rate (Figure 8.7

(b)). In turn, this increases the survival and growth contribution to the kernel and

decreases the fragmentation contribution. The probability of fragmentation can be
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Figure 8.4: Survival management strategies. (a) The probability of survival for
the unmanaged and managed population, shown on a log-size scale. (b) λ-contour
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managed population parameters.
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decreased through the reduction of stress on coral patches, as fragmentation is a by-

product of this stress. The best strategy decreased the probability of fragmentation

for patches of size 1000cm2 from 0.2 to 0.05 (Figure 8.7 (a)). This is achieved by

decreasing the intercept parameter by 52% and increasing the slope parameter by

26% (Table 8.1). Under this strategy, certain patch sizes will not fragment, in

particular patches under 30cm2 (Figure 8.7 (a)). This strategy has minimal effect

on the stable size structure (Figure 8.2). Therefore, this strategy is not feasible as

the perturbations will not give an increase in the stable size structure or, in fact,

an increase in the growth rate.

Number of Fragments

This strategy could perturb the population to a growth rate of 1, but this strategy

was infeasible, as it required the number of fragments to increase from 2.4 to 4.01.

An alternative strategy is to increase the number of fragments produced from 2.4

to 3.35, which increased the population growth rate to 0.9 (Table 8.1 and Figure

8.8). It is counter-intuitive to increase the number of fragments, as it would in turn

decrease the size of these fragments. It may result in a decrease in the total area

on the reef temporarily, but the existence of a greater number of patches, under

positive conditions for growth, may in the long-term increase the overall structure

and size of the population. It is unclear how this can be achieved by managers,

but it is feasible, as it increases the maximum sizes in the stable size structure

significantly (Figure 8.2). It does this without significantly decreasing the size of

patches contributing to fragmentation (Figure 8.3).

Family Size

The total area of the fragments constricts the area remaining post fragmentation.

Under perturbations, the intercept parameter does not affect the population growth

rate (Table 8.1 and Figure 8.9 (b)). This result is important as it informs managers
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Figure 8.7: Probability of Fragmentation management strategies. (a) The proba-
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that increasing family size of all patches equally will not benefit the population.

Instead, managers should focus on increasing the family size for larger patches.

The suggested management strategy required at least a 100% of a coral patch area

to remain post fragmentation (Figure 8.9 (a)). This is infeasible as fragmentation

is known to occur under stress and so it is highly likely that some coral patch area

would be lost.

Fragment Distribution

In order to increase the population growth rate, the size of fragments needs to in-

crease (Figure 8.10 (a)). However, to increase the population growth rate by only

3% required large perturbations of the parameters by 100% and 75% respectively

(Table 8.1 and Figure 8.10 (b)). In doing so, the stable size structure of the popu-

lation would slightly decrease in patch size (Figure 8.2). Therefore, this strategy is

infeasible as the effort required for such a small increase in the population growth
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Figure 8.9: Family size management strategies. (a) The total area of coral remain-
ing given the size of the parent patch. Shown on a log-size scale. (b) λ-contour
plot, the black cross shows the unmanaged parameter values, and the red cross the
managed population parameters.
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rate is high and would result in a population consisting of smaller patch sizes.

Conclusions

In conclusion, under single-function perturbations only three strategies were feasi-

ble:

1. Increasing mean growth of patches

2. Increasing variability in patch sizes

3. Increasing the number of fragments produced

These three strategies would increase the growth rate to 0.9, 0.88 and 0.9 respec-

tively.

8.3.2 Management Strategies Targeting Two Biological Func-

tions

Strategies that targeted one function did not increase the population growth rate

into population growth. Of the three strategies considered feasible, it would be in-

teresting to investigate what would happen if another function was targeted simul-

taneously in two of the strategies. In particular, what would occur if fragmentation

probabilities decreased as mean growth increased. It would also be interesting to

investigate what would happen if the size of fragments altered as the number of

fragments increased. The first strategy was selected, because in reducing stress

on a reef, both the mean growth will increase and the fragmentation probability

would decrease. The second strategy was selected, because the fragment size func-

tion depended not only on the size of the ‘parent’ patch, but also on the number of

fragments produced. As these functions are linked in the functional form, it makes

sense to investigate the effect of management on both of the functions.
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The two functions were managed by selecting the probability of fragmentation

and number of fragment strategies in Table 8.1. Then by perturbing the parameters

of mean growth and fragment distribution, the best management strategy can be

calculated.

Probability of Fragmentation and Mean Growth

In decreasing the probability of fragmentation alone the growth rate altered little.

However, when the mean growth function is increased alongside this, the population

growth rate can be increased to λ1 = 0.9108 (Table 8.2). The effect on the stable

size structure was the increased dominance of larger patches, above and beyond that

of when mean growth alone was targeted (Figure 8.11 (a)). In fact, the minimum

patch size, which is found in the stable size structure is 150cm2, compared to the

unmanaged population, where the maximum patch size in the stable size structure

was 20cm2. The fragmentation value in the combined management strategy showed

slightly larger patch sizes than mean growth alone. However, patches contributing

to fragmentation were still much smaller than the unmanaged population. This

shows few patches fragment as the fragmentation value consists of patches smaller

than 20cm2, but the population will consist only of patches over 150cm2 and the

strategy shows patches under 20cm2 have a probability of zero of fragmenting. This

is consistent with a reduction in stress on the reef and increased growth. This is

similar to behaviour that should be seen in periods of senescence.

Number of Fragments and Fragment Distribution

The function of fragment size (fd(y, x
n
)) is determined by the size of the ‘parent’

patch, as well as the number of fragments. When both are managed, the population

growth rate can increase to λ1 = 0.975 (Table 8.2), in comparison to 0.8997 (nf (x))

and 0.76 (fd(y, x
n
)) if managed individually (Table 8.1).
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The effect on the stable size structure was to increase the dominance of larger

patches than either of the two single-function management strategies. There would

be a full range of patch sizes in a population, with patches over 20cm2 equally likely

to be in the population. This result appears counter-intuitive, as the strategy is

decreasing the size of patches post fragmentation, but by increasing the number of

fragments produced there is a greater chance that some of these patches will sur-

vive and grow in the future. Patch sizes in the fragmentation value will decrease

in size, to be almost symmetrical in the patch size range (Figure 8.11 (b)). The

combination of the two strategies causes smaller patches to contribute to fragmen-

tation.

8.4 Conclusions

In conclusion, better growth rates can be achieved if two functions are managed

concurrently. In particular, this chapter highlights two strategies that managers

could target, namely a Growth strategy, where the probability of fragmentation

and mean growth are targeted and a Fragment strategy, where the number of

fragments is increased and the size of these fragments decreased. Both of these

strategies increased the dominance of larger patches in the stable size structure

placing the population in a better position to survive future disturbances, as well

as increasing the population growth rate by at least 23%. How these strategies can

be achieved is discussed in Chapter 10.

This chapter has shown one possible method by which management strategies

could be selected for a population of coral patches in years of senescence. These

strategies can be used when investigating the interaction of hurricane frequency

and intensity on a population, in order to understand the effect of climate change

on the reef (see Chapter 9).
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Figure 8.11: (a)The stable size structure, and (b) the fragmentation values, given
on a log-size scale. Given for the single-function and two-function management
strategies.



Chapter 9

Extinction times for Montastraea

annularis Under Differing

Hurricane Scenarios

9.1 Introduction

It is forecast that, with climate change, the intensity and duration of hurricanes

will increase (IPCC, 2007; Knutson et al., 2010). This chapter investigates the pop-

ulation dynamics projected to occur on the coral patch population under differing

hurricane scenarios associated with climate change. To do this, the IPMs param-

eterized in Chapter 7 are used and the frequency and intensity of hurricanes are

varied to investigate the extinction times on the reef. At the end of this chapter,

the two main management strategies from Chapter 8 are included in the model to

investigate if management could increase the extinction time of the M. annularis

population.

225
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9.2 Methods

An Integral Projection Model (IPM) can be used to project the future behaviour

of a population (See Section 3.3.2). Projection uses the numerical approximation

of the kernel K and the initial conditions approximation X(0). By repeated pre-

multiplication of K, the population at time t = l is:

X(l) = KlX(0). (9.1)

The numerical approximation of ANo is N; of AWeak is W and of AStrong is

S. At each time step in the projection, one of the approximations (N, W or S)

are selected in place of K. For example, over a 10 year projection, with a strong

hurricane in the third year and a weak hurricane in the 7th year, the population

at time t = 10 would be:

X(10) = N3WN3SN2X(0). (9.2)

This can be adapted to include differing frequencies of S and W, with N selected

in the interim years. In Chapter 4, the time step of the IPM is calculated at 10.75

months, therefore for a projection of 45 years, 50 time steps need to be used and

for 52 years there will be 58 time steps. These are the lengths of projections used

in this chapter.

Hurricanes occur in the Caribbean between June and November each year. In

the model, there is a time step of 10.75 months, which is a large enough time step

that it is always possible for a hurricane to occur within the time step.

The initial conditions used in the projections X(0) are constructed by randomly

generating a large data set (n = 3000) from a normal distribution on the log-size

to give the distribution n(x, 0). Log-normality was assumed due to the assumption

that the data was log-normal in the parameterization of the IPMs. The initial
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Figure 9.1: The initial conditions as used in the projections compared to the struc-
ture of the data in June 1998.

conditions n(x, 0) is discretized using the ‘size class’ boundaries defined through

the numerical integration to form X(0). The same initial conditions are used in

every projection in this chapter.

The theoretical initial conditions (Figure 9.1) under-estimated the proportion

of smaller individuals (< 100cm2) in comparison to the data, and over-estimated

the proportion of individuals between 100 and 400cm2. All individuals in the

theoretical initial conditions were forced to be under 600cm2 to match the initial

conditions observed in data. The initial condition X(0) is standardized so that

|X(0)|1 = 1, in order to use population density as a relative comparison of sizes,

as the number of patches was artificially chosen, with n = 3000. This allowed the

comparison in population densities of different scenarios at each time step.

The critical density is defined to be a population density of 0.05 (5% of the

initial size). This is when a population is assumed to be in a critical state from

which it is unlikely to recover. Many of the scenarios tested in this chapter reach

population densities below the critical density prior to the end of the projection
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Name Date Strength

Dean 21/08/07 5
Iris 09/10/01 4

Keith 01/10/00 3
Mitch 27/10/98 5
Greta 19/07/78 2
Fifi 19/09/74 2

Carmen 02/09/74 3
Francelia 03/09/69 2
Hattie 31/10/61 4
Anna 24/07/60 1
Abby 15/07/60 1
Janet 28/09/55 5

Table 9.1: The hurricane activity for Glovers Reef between 1955 and 2011 (Belize
National Meteorological Service, 2010).

period; in these cases the Extinction Time is measured as the first time at which

the population density falls below the critical density. If the population is above

the critical density at the end of the projection period, then it is the population

densities that are compared.

Population projections measure the population density at each time step, but

the size structures of the population can also be calculated for every time step by

measuring the structure X(t) at all t. The population structures are normalized so

that the proportions of patches of each size can be compared. They are normalized

by:

X̂(t) =
X(t)

|X(t)|1
. (9.3)

Since Hurricane Janet struck Glovers Reef in 1955, eleven further hurricanes

have hit the reef (Table 9.1). There are three measures of hurricane activity used

in this chapter:

1. Return Time (RT): the average length of time between hurricanes of a given

category. Calculated as RT = E(Y ), where Y is the length of time between

hurricanes of a given strength.
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AWeak AStrong

Return Time 5.12 26
Rate of Occurrence 5.8 17.3

Frequency 0.17 0.06

Table 9.2: The measures of hurricane occurrences on Glovers Reef between 1955
and 2011. All Category 5 hurricanes were assigned to AStrong and all others to
AWeak, tropical storms were not included.

2. Rate of Occurrence (RO): is how often a hurricane of a given strength

occurs. It is calculated as RO = 52
number of hurricanes

, where 52 is the number of

years observed in Table 9.1.

3. Frequency (ω): the average number of hurricanes of a given strength striking

Glovers Reef each year. Calculated as ω = number of hurricanes
52

, or as ω = 1
RO

.

To calculate these measures on Glovers Reef, all Category 5 hurricanes were as-

sumed to be AStrong and all remaining hurricanes as AWeak, this leads to the results

in Table 9.2. These showed the frequency of AStrong was about one third of AWeak.

The return time for AWeak was slightly smaller than the rate of occurrence with

both between 5 and 6 years. In comparison for AStrong, the return time was much

larger than the rate of occurrence, with both measures being larger than AWeak.

On average, AWeak are almost three times more likely to occur in a given year than

AStrong.

Climate change is predicted to increase intensity and duration of hurricanes. In

order to test the impacts that hurricanes could have on Glovers Reef, a number of

scenarios will be projected. Namely:

(I) Observed Hurricane History: The hurricane history of Glovers Reef since

Hurricane Janet in 1955 will be reproduced to capture the dynamics of the

system if this situation were to be replicated and to test the model. This

assumes that all Category 5 hurricanes in Table 9.1 can be modelled by

AStrong and all others by AWeak. Where two hurricanes occurred in the same
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year, it was assumed that the effect was equal to the strongest hurricane

observed.

(II) Periodic vs. Clustered: Hurricanes rarely occur at periodic intervals, but

instead are often clustered together in groups. In this scenario, the difference

in behaviour from these two scenarios are tested. Theoretically a clustering of

hurricanes will cause a steeper initial decline but give a longer recovery time

between clusterings. Also the decline from clustered hurricanes, although

sharp, should decrease with every hurricane (Gardner et al., 2005). Periodic

occurrences will have a shorter recovery time but should have smaller initial

tissue loss. This scenario tests this theory.

(III) Increased Intensity: The 2007 IPCC report claimed that the total global

number of hurricanes will remain the same, but that the intensity of these

hurricanes will increase (IPCC, 2007). This would result in an increase in

number of strong hurricanes, alongside a decrease in weaker hurricanes. This

scenario tests what would occur if the same number of hurricanes, 12, hit

the reef in a 52 year period (as were observed to strike Glovers Reef between

1955 and 2007), but that the ratio of AStrong to AWeak increased (Table 9.3).

(IV) Decreased Return Time of AStrong: It is projected that with climate

change the intensity of hurricanes will increase. This will result in a greater

number of strong hurricanes, which could potentially cause an increased

amount of damage to the reef. This is modelled by decreasing the return

time of AStrong.

Scenario I was tested in two parts. Firstly, the observed population densities

from June 1998 to January 2003 were compared to the model. After eight time

steps, the population density was:

X(8) = NWNWN2SNX(0). (9.4)



CHAPTER 9. HURRICANE SCENARIOS 231

Secondly, it was assumed that in September 1955 the population density was equal

to 1, and the size structure X(0) was projected over the 52 year history on Glovers

Reef (Table 9.1).

To test scenario II, both AWeak and AStrong are investigated separately. The

average return time for AWeak is 5.12 years, whilst for AStrong it is 26 years, over

a 45 year period, therefore 8 AWeak hurricanes should occur, but for AStrong only 2

would occur. To test the idea of clustering for AWeak, two sets of 4 hurricanes were

assumed to occur at the beginning and in the middle of the projection, with the

periodic hurricanes occurring every 6 time steps. Whilst for AStrong, the clustered

scenario was tested with two hurricanes assumed to occur in subsequent time steps

at the beginning of the study and for the periodic 29 time steps apart. The same

numbers of hurricanes were selected, for both clustered and periodic, so that the

only differing factor was clustering or periodic nature of the hurricanes, not the

number that occurred.

Scenario III is modelled by taking the time period between Hurricanes Janet

and Dean (52 years) and the number of hurricanes observed in this time (12). The

initial population structure X(t) in then projected through the next 52 years with

12 hurricanes occurring in this time. Ten scenarios are tested with the ratio of

AStrong to AWeak reducing for each scenario (Table 9.3). The proportion of AWeak

to AStrong was calculated as the number of AWeak for every AStrong. A proportion

of three AWeak for every AStrong - the current ratio, to no AWeak for every AStrong

are tested. This will give a range of population densities, which could occur with

increased intensity, but with no increase in the number of hurricanes. This projec-

tion assumed periodic occurrences of AWeak and AStrong independently through the

projection period calculated for each scenario and for each category of hurricane

independently.

In order to test scenario IV, it was assumed that hurricanes would occur at

periodic intervals through a 45 year time period, according to their average return
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Scenario Number of RO Number of RO Proportion
AStrong AStrong AWeak AWeak

A 3 17.3 9 5.8 3
B 4 13 8 6.5 2
C 5 10.4 7 7.4 1.4
D 6 8.7 6 8.7 1
E 7 7.4 5 10.4 0.71
F 8 6.5 4 13 0.5
G 9 5.8 3 17.3 0.33
H 10 5.2 2 26 0.2
J 11 4.7 1 52 0.09
K 12 4.3 0 - 0

Table 9.3: The 10 different scenarios used in testing Scenario III. The number of
each classification is given, alongside their rate of occurrence. Finally, the number
of AWeak hurricanes for every AStrong hurricane is given.

time (Table 9.2). The return time for AStrong began at 26 years and was decreased

to 13 years and also to 6 years. This scenario did not assume that the number of

hurricanes remained the same, but did assume that no weak hurricanes occurred

in this time frame. The population density after 45 years or the time at which the

population reached a density of 0.05 was recorded.

9.3 Results

9.3.1 How Does the Model Compare to Observed Data?

The model consistently under-estimated the population density from data (Figure

9.2). At the end of the study, January 2003, the population density from the data

is 0.67, compared to 0.56 from the model, an under-estimation of 16%. This could

be because ANo may not purely capture non-hurricane dynamics, but also include

some residual hurricane effects. This could account for the difference shown after

one time step. In the data, the reef had been undisturbed for many years and

slight growth in density at the beginning of the study was observed, but the model
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Figure 9.2: Projection of the observed hurricane history between June 1998 and
January 2003 compared to the population densities recorded.

experienced decline. In spite of this difference, both the model and the data showed

the same pattern of decline.

9.3.2 Scenario I: Observed Hurricane History.

Table 9.1 gave the hurricane activity at Glovers Reef since 1955. The combination

of AWeak and AStrong hurricanes were applied to the initial conditions X(0) in order

to assess what could have occurred to the population density on the reef in the past.

Figure 9.3 showed that the population density fell below the critical density prior

to June 1998. It suggests two things, firstly that the reefs were already depleted

at the beginning of the study relative to their historical size, with the population

being over 95% higher 47 years prior to the start of the study in 1998 (Figure 9.3).

Secondly, that the model does not accurately capture the recovery of a reef in a

period of calm. In particular, between Hurricanes Greta and Mitch there was a

period of 30 years without a hurricane disturbance. The model continues to decline

in this time, but some recovery should have been observed.
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Figure 9.3: The projection of the model using the hurricane history on Glovers
Reef. The red dashed line shows the critical density.

9.3.3 Scenario II: Periodic vs. Clustered

AWeak Hurricanes

Over a 50 year period, 8 hurricanes occurred in each scenario, either in two groups

of four or periodically. In the case of the periodic model, these occurred every 5.12

years (the average return time on Glovers reef). This is compared to the clustered

scenario where 4 hurricanes occurred in subsequent time steps in two groups. It

was found that, in spite of the increased recovery time between the clustering of

hurricanes, the periodic group had a slightly later extinction time than the clustered

scenario (Figure 9.4). The periodic scenario had an extinction time of t = 365.5

months (30 years) compared to t = 322.5 months (28 years) for the clustered

scenario. This highlights the question of recovery, it would be expected that a

longer period of calm (as in the case of clustered) should allow recovery on the

reef, which was not observed. For a periodic occurrence of hurricanes, there are

shorter periods of calm and you would expect further decline as a result. This
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for either a clustering of hurricanes or periodic occurrences. 8 hurricanes occurred
for both the clustering and periodic scenarios. The red line shows the critical
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scenario showed that the decline after the 2nd, 3rd and 4th clustered hurricanes was

smaller than that after the 1st. This confirmed other observed studies that the loss

experienced after a hurricane is in part determined by the length of time since the

previous hurricane (Gardner et al., 2005).

The size structures of the population over the projection period showed similar

behaviour for both the clustered and the periodic population (Figure 9.5). After

one time step, there was a smoothing out of the initial conditions; this was followed

by a decline in the sizes observed. After 10 years, the maximum size of a patch in

either scenario is approximately 200cm2, after 20 years - 100cm2 and after 30 years

under 50cm2. In the periodic case after 10 years, there was a very small proportion

of patches over 200cm2 (Figure 9.5 (b)), unlike the clustered case, where all patches

are below 200cm2 (Figure 9.5 (a)).
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Figure 9.5: The size structures of the populations over time for both the clustered
and periodic scenarios for AWeak.
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Figure 9.6: The population densities for AStrong comparing the periodic and clus-
tered scenarios, with 2 hurricanes occurring in a 45 years period. The red line
shows the critical density and the red circles where a strong hurricane occurred.

AStrong Hurricanes.

For AStrong, the two hurricanes in the clustered scenario are in the first two time

steps, whilst for the periodic scenario they are 26 years apart. Theoretically, it was

expected that the clustered hurricanes should end with a greater density, as there

is a longer period of calm. The current model showed that there is no recovery in

the projection period and for AStrong there is no difference in the behaviour, when

it comes to assessing extinction time (Figure 9.6). In both cases, this occurred

after approximately 34 years, later than the extinction time for AWeak of between

28 and 30 years (Figure 9.6).

The population structures were similar for the periodic and clustered scenario

(Figure 9.7). For the periodic case (Figure 9.7 (b)) there are slightly larger patches

at each comparable time than the clustered case (Figure 9.7 (a)). Again, as with

AWeak, the population is dominated by a decrease in patch sizes. After 30 years,

both populations consist only of patches smaller than 50cm2.
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Figure 9.7: The size structures for AStrong over time for (a) the clustered scenario
(b) the periodic scenario.
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Figure 9.8: Scenario III: with 12 hurricanes over a 52 year period, the ratio of
AStrong to AWeak increased from scenario A to scenario K as defined in Table 9.3

9.3.4 Scenario III: Increased Intensity

As the ratio of AWeak to AStrong decreased, so the extinction time decreased (Figure

9.8). With the current historical rate of hurricanes on Glovers Reef (Scenario A),

the extinction time is t = 419.3 months. As the ratio increased to Scenario K, the

extinction time is t = 344 months, a difference of 6.3 years. Scenario A, with the

lowest number of AStrong, has the latest extinction time, and scenario K, with the

most AStrong, had the shortest extinction time.

9.3.5 Scenario IV: Decreased Return Time of AStrong.

As the return time decreased from 26 years to 6 years the extinction time shortened

(Figure 9.9). At best, the extinction time is t = 408.5 months for a return time

of 26 years to t = 365.5 months for 6 years. This is a difference of 4 years as the

return time decreased.
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Figure 9.9: Scenario IV: measuring the effect of decreased return time of AStrong.
The critical density is shown by the red line and a strong hurricane by a red circle.

9.3.6 Conclusions

Under these four different scenarios the key results are:

1. The model under-estimated population density from data.

2. Recovery between hurricanes is not captured.

3. For AWeak, clustered hurricanes have a lower population density than periodic

hurricanes. For AStrong there is no difference in the extinction time between

periodic and clustered hurricanes.

4. For both clustered and periodic hurricanes, there is a decrease in the maxi-

mum patch size in the population.

5. Increasing the intensity of hurricanes varies the extinction time by up to 6.3

years.

6. Decreasing the return time of AStrong varied the extinction time by up to 4

years.
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9.4 Do Extinction Times Change with Manage-

ment on the Reef?

In the previous section, it was found that no recovery was captured. In Chapter 8,

some management strategies were recommended that could increase the population

density. The two most effective strategies were:

• Growth (GS): Decreasing the probability of fragmentation, alongside in-

creasing the size of patches that do not fragment.

• Fragments (FS): Increasing the number of fragments produced and decreas-

ing the size of these fragments.

The numerical approximation of GS was G and FS was F. These can be applied

in the same way as equation (9.2), with the exception that N is replaced by either

G or F. Therefore, equation (9.2) becomes:

X(10) = G3WG3SG2X(0), (9.5)

or

X(10) = F3WF3SF2X(0). (9.6)

Each of the scenarios investigated above will be tested, assuming that manage-

ment had occurred. This is to compare what is projected to occur on the reef,

alongside what could occur, if these management strategies were adopted. Recall

the scenarios were:

(I) Observed Hurricane History

(II) Periodic vs. Clustered

(III) Increased Intensity
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(IV) Decreased Return Time of AStrong

Until now, the metric of population density was used. This is the proportional

number of patches remaining compared to the initial population size, at each time

step. Alongside this calculation, the minimum total area of the population will be

calculated. This analysis was carried out because the population density can be

misleading. It does not take into account the structure of the population and be-

cause of this, a high population density could consist entirely of very small patches

and, therefore have a low total area. The opposite can also occur; a small popula-

tion density may consist of a few very large patches and, therefore, have a larger

total area.

To calculate the minimum total area, a total population of n = 1000 was as-

sumed to occur at the start of the projection period. This population was then

projected through time under the differing hurricane scenarios, but with the total

area calculated at each time step. This was done by taking the ‘size class’ bound-

aries calculated during numerical integration. These were then used to calculate

the lowest possible total area by multiplying the number of individuals in each ‘size

class’ by the lower bound of the size classes. These were then summed together in

order to give the minimum total area on the reef at each time step. The reason this

is a minimum is because the lower bound of each size class was used and individuals

could lie anywhere within the size classes.

9.4.1 Do Management Models Give a Better Fit to Ob-

served Data?

Both of the managed populations over-estimated the final population density (Fig-

ure 9.10), in comparison the unmanaged population under-estimated the popula-

tion density by 16%. Strategy GS over-estimated the density by 3%, whilst FS

over-estimated by 25%. In fact, GS closely mirrored the population density from
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Figure 9.10: A comparison of the population density from the data to the model,
assuming that either the fragment or growth management strategies have occurred.

data, which suggests that this is the best fit to the data. A large difference be-

tween the models was observed when Hurricane Mitch damaged the reef. This was

because the data was affected for two time steps, but the model only one.

The coral patch structure in January 2003 was dominated by small patches, with

patch sizes ranging up to 400cm2 (Figure 9.11). All models under-estimated the

contribution of small patches (under 50cm2) to the population and over-estimated

the contribution of patches larger than 100cm2. The unmanaged model had no

patches over 300cm2, an under-estimation of maximum size. As larger patches

are more likely to survive future disturbances, this could explain the difference in

density at the end of the study. FS over-estimated the contribution of patches over

400cm2, with all patch sizes still in existence, but is a good fit for coral patches

of between 50 and 200cm2, closely resembling the data. Finally GS largely over-

estimated the proportion of patches between 100 and 600cm2, but limited patches

to be under 600cm2. It is this slight over-estimation, which could account for

the slight over-estimation of final population density. The size structure of the
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Figure 9.11: The size structures of the populations in January 2003, comparing the
unmanaged model, the managed models GS and FS and the population structure
observed in the data in January 2003.

unmanaged population showed a closer resemblance to the data than either of the

managed populations.

9.4.2 Scenario I: Observed Hurricane History

The results for population density and total area present very different pictures. In

terms of population density, strategy GS has a larger density than the unmanaged

population for the first 300 months (Figure 9.12 (a)). Under GS, there was a

decline after each hurricane, but GS performed better with short recovery periods.

The extinction time under GS was 63 months after the unmanaged population. In

comparison, FS exploits the transient dynamics better. This strategy results in a

higher population density trajectory, ending with 23% of its initial size.

Whilst the population density showed FS always outperformed GS, this was

not the case in terms of total area (Figure 9.12 (b)). In fact after 150 months,

strategy GS had a larger total area, but a steeper decline between Hurricanes
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Figure 9.12: Observed hurricane history on Glovers Reef over the past 52 years
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Greta and Mitch resulted in FS finishing with the largest area. The decline for

the unmanaged population was greater for total area than population density with

a very small area remaining after 250 months. In comparison, FS saw large scale

transient growth increasing to over three times its initial size in terms of total area.

The same increase was seen in GS later in the projection period. At the end of the

projection period, FS had 47% of its initial area remaining, in comparison to GS,

which had only 6% and the unmanaged population 0.007%.

9.4.3 Scenario II: Periodic vs. Clustered

AWeak Hurricanes

In terms of population density and under management by GS, the population faired

better at the end of the projection period with clustered hurricanes than periodic

hurricanes. This is due to the time between the two groups of hurricanes allowing

some recovery to occur (Figure 9.13 (b)). In comparison, in the periodic occurrence

of hurricanes there is decline following every hurricane. There were small periods

of recovery, but as more hurricanes occurred, there is not enough strength in the

model to see the recovery for the entire period (Figure 9.13 (b)). After 5 hurricanes,

there is only stasis following a hurricane, rather than the growth observed after the

first hurricane.

After the first set of clustered hurricanes, it takes 100 months for the population

to recover before growth is then observed (Figure 9.13 (b)), but the growth observed

is not enough for the population to return to its initial population density. If a

longer period of calm occurred then there may have been further growth. Following

the first hurricane in a group of clustered hurricanes, there is a steeper decline than

the other 3 hurricanes. This showed that the impact of subsequent hurricanes was

smaller. The clustered scenario reached a population density of 0.07 after 45 years,

whilst with periodic hurricanes there is an extinction time of t = 505.3 months
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(42 years), supporting the fact that clustered hurricanes give a better population

density for GS.

The managed population FS faired much better than either the unmanaged

or GS populations, with the population surviving to 45 years. The periodic sce-

nario resulted in a population density of 0.19 and for the clustered of 0.20 (Figure

9.13 (b)). This showed that neither of the scenarios gave a substantially better

population density than the other. The clustered scenario was dominated by a

sharp decline following the first hurricane in a group, but this decline continued

at a slower rate for each subsequent hurricane. After 4 hurricanes had occurred

for both scenarios, the clustered scenario faired slightly better. This was due to a

growth in population density during periods of calm. The transient growth began

to fall away before the second group of hurricanes struck the reef. This showed

that, at the point when there were an equal number of hurricanes, the clustering

scenario tended to fair slightly better.

In relation to total coral area, the management strategy GS was always smaller

than strategy FS (Figure 9.13 (a)). For an initial population size of n = 1000, the

total area after 100 months was larger for GS than FS in the periodic scenario.

In fact the periodic scenarios for both GS and FS had a similar maximum area of

316780 and 318140 cm2 respectively. These are achieved at different times with FS

achieving this maximum area at t = 53.75 months and GS at t = 182.75 months.

This showed that, although GS may have contained fewer patches, these patches

were larger in area. After 300 months, strategy FS contained a larger area of coral

tissue than GS because the population lost more area and patches at this point.

The clustered population for GS showed a sharp decline during both groups

of hurricanes in both density and area (Figure 9.13 (a)). In the recovery period

after the first clustering, the total area recovered to 259000cm2 compared to the

initial size of 123640cm2. This was due to the growth of individual patches, rather

than an increase in patch numbers. The clustering of hurricanes under FS showed
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Figure 9.13: Scenario II: The population densities of clustered and periodic hurri-
cane occurrences for AWeak under management strategies GS and FS. The red line
shows the critical population density and red crosses a strong hurricane.
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similar recovery to GS, but the transient growth initially observed in the total area

was curtailed before the second group of hurricanes, this is not the case for GS.

Using the population density measure, FS performed better than GS, but in

terms of total area both clustering scenarios performed better than either periodic

scenario. For GS, the final area in the clustering scenario was 36% of the initial

area, but this was outperformed by the FS strategy by a further 9% remaining.

The periodic scenario under FS performed much better than GS, with a final area

of 36% its initial size, compared to 13%.

In terms of population density, the unmanaged population decreased steadily

with an extinction time of between 28 and 30 years. However, the total area showed

a much sharper decrease in the first 100 months, so that after 200 months there is

very little area remaining. In fact, after 45 years for both scenarios under 10cm2

of area remained, which was under 0.004% of the original area.

AStrong Hurricanes

The unmanaged population reached the critical population density at t = 408.5

months, with little difference observed between clustering and periodic scenarios.

For strategy GS, the population density showed transient growth for both the

clustered and periodic scenarios (Figure 9.14 (b)). The clustered strategy peaked

later and at a lower population density than the periodic case due to the additional

hurricane at the beginning of the study. The unmanaged population reached the

critical density at t = 451.5 months for the clustered scenario and t = 440.8 months

for the periodic scenario. The management strategy GS increased the extinction

time by approximately 40-50 months. After 200 months, the clustered scenario

had a larger density than the periodic scenario; this showed the population faired

better with two strong hurricanes occurring in succession rather than spread out.

The population structure at the end of the study showed the population was

dominated by larger patches under GS (Figure 9.15). This suggested only a few
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large patches remained, rather than an abundance of smaller patches. Although

it is better for future disturbances that large patches exist, it is also necessary for

there to be a range of patch sizes.

Under strategy FS, the population ended at a population density of 0.43 for the

periodic scenario and 0.46 for the clustered scenario (Figure 9.14 (b)). This showed

a good level of patch survival under this management strategy. The population

density for the periodic scenario is slightly higher than the clustered scenario in

the period prior to the second hurricane, at which the population density dropped

below the clustered scenario and remained there. The population structure (Figure

9.15) showed a full range of patch sizes, both large and small. This placed the

population in a good position to survive future disturbances. The structure is the

same for both the clustered and periodic scenarios.

If the population started with 1000 individuals, the total area at the beginning

of the projection was 120950cm2 (Figure 9.14 (a)). This was the maximum area

achieved by the unmanaged population for both scenarios. The decline was steep

for the first 50 months and then levelled off when the area was already low. At the

end of the projection period, the area for both clustered and periodic scenarios was

54cm2, this was 0.04% of the initial population area, although low this is higher

than in the case of AWeak.

Under the measure of population density, management strategy FS outper-

formed strategy GS for both scenarios for the entire projection period. However,

with regard to the total area, strategy GS had a larger area between 100 and 300

months. This showed that, although there were fewer patches in GS (Figure 9.14

(b)), these patches were larger and summed to a larger total area (Figure 9.14 (a)).

After 300 months, the higher patch numbers in FS summed to a larger area than

GS. The sharp decline in patch numbers after 200 months in GS was mirrored in

the decline of total area. The extinction time for GS was only slightly larger than

the unmanaged population, but the final total area was between 108% and 116%
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Figure 9.14: Scenario II: Periodic vs. clustering of AStrong. (a) The minimum total
area (b) The population density.



CHAPTER 9. HURRICANE SCENARIOS 252

0 200 400 600 800 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

Size (cm
2
)

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

Initial Conditions

Periodic

Clustered

Periodic − GS

Clustered − GS

Periodic − FS

Clustered − FS

Figure 9.15: The size structures of the populations at the end of the period stud-
ied for the clustered and periodic scenarios under management of AStrong, shown
alongside the log-normal initial conditions.

higher. For strategy FS, 43% of the population density remained in the periodic

scenario, but this lead to an increase in total area of 4%. This demonstrated that,

although patch numbers were in decline, the total coral area was in growth. The

total area increase was higher in the clustered scenario by 9% in area, but had a

decline of 64% in population density (Figure 9.14 (b)). In fact, under FS neither

scenario ever fell below the initial total area, due to the transient growth observed

at the beginning of the projection period.

9.4.4 Scenario III: Increased Intensity

Ten different hurricane intensity scenarios were suggested, which increased the ratio

of AStrong to AWeak (See Table 9.3). In an unmanaged population, the extinction

time was longest with lowest intensity and shortened slightly as intensity increased,

from 35 years to 28.7 years.

Under management strategy GS, all scenarios A to K reached the critical density
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Scenario Extinction Extinction Population Area Area
Time Time Density Remaining Remaining

Unmanaged GS FS GS FS

A 419.3 516 0.23 0.20 0.53
B 397.8 505.3 0.20 0.12 0.35
C 397.8 516 0.18 0.08 0.24
D 387 483.8 0.19 0.20 0.53
E 376.3 526.8 0.16 0.09 0.19
F 365.5 494.5 0.15 0.22 0.39
G 365.5 473 0.12 0.08 0.53
H 354.8 537.5 0.12 0.10 0.18
J 354.8 505.3 0.10 0.14 0.29
K 344 505.3 0.09 0.16 0.27

Table 9.4: Extinction times, population densities and proportion of area remaining
for the ten different scenarios of increased hurricane intensity. The worst scenario
is highlighted in red, and the best in green.

of 0.05 within the 45 year projection period. Unusually, the extinction times did

not decrease in order of increasing intensity (Figure 9.16 (a) and Table 9.4). On

average, GS increased the extinction time by 11.25 years, with the range of increases

of extinction time between 8.05 and 13.4 years. The worst scenario of GS was

strategy G - three AStrong for every AWeak, whilst the best was strategy H - five

AStrong for every AWeak (Figure 9.16 (a) and Table 9.4). This was an unexpected

result as intuitively fewer strong hurricanes should be better for a population.

Strategies J and K had the same extinction time as strategy B, again unusual as

B had two AWeak for every AStrong and K purely had AStrong.

In terms of total area, the lowest remaining area was 8% for strategies C and

G (Table 9.4). This confirmed the population density result, where G had the

shortest extinction time. The low population density did not always tally with

lowest total area. Strategies F and D had the greatest remaining area (22% and

20% respectively), but were the 2nd and 3rd shortest extinction times. Therefore,

although there were fewer patches, these patches had a larger area. Strategies E

and H had the two longest extinction times, but were amongst the lowest in total
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Figure 9.16: Scenario III: Increased intensity. The number of hurricanes are held
at 12 in 52 years, the intensity of hurricanes increased as strategies go from A to
K. (a) for strategy GS (b) for strategy FS
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area remaining, indicating these strategies were dominated by small patches.

Under FS, the critical density of 0.05 is not reached in the 45 years of the

projection period (Figure 9.16 (b)). The pattern of population density for the

10 strategies was the same as in the unmanaged population, where strategy A

(lowest intensity) finished with the highest population density (0.23) and strategy

K (highest intensity) ended with the smallest population density (0.09). This

showed that under FS, the population density will decrease with growing intensity.

There was an overall decrease in population density of 61% from strategy A to

strategy K. Transient growth is shown by some strategies, and up to 200 months

into the projection the population can be larger than the initial size, depending on

which scenario is observed.

In terms of total area, the best strategies were A, D and G, which resulted in

a remaining area of 53% (Table 9.4). The worst strategy was H, with a remaining

area of 18%. Strategies A and D were also good strategies for GS and whilst H was

bad. Where G was one of the worst strategies for GS, it is one of the best for FS.

In comparing the possible minimum and maximum trajectories of population

density (Figure 9.17), patches under FS survived better than GS and the unman-

aged population. The upper limit of GS, in terms of population density for the first

200 months, lay above the lower limit of FS, this showed it was possible for the

population density in GS to be higher than FS under different intensities. What is

clear is that any form of management (either FS or GS) resulted in higher popula-

tion densities for the entire 45 year period, compared to the unmanaged population.

In terms of total area, the upper limit for GS was higher than FS between 100 and

400 months. Although there are fewer patches, these patches were larger than in

FS. For GS, there was a greater variety in possible total area than FS, showing

a greater impact on the total area of the population with increased intensity. At

best, a population could be four times the initial area in GS, whilst in FS it can

be over three times its initial size. The unmanaged population became dominated
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Figure 9.17: The upper and lower bounds of the population densities for strategy
III for the unmanaged population and the managed populations FS and GS.
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by smaller patches and, after 200 months, only a small area remained on the reef,

in spite of patches remaining for a further 200 months.

9.4.5 Scenario IV: Decreasing Return Time of AStrong

Management of Fragments

By managing fragments, the coral patch population will no longer reach the critical

density in 45 years with a decreased return time of AStrong (Figure 9.18 (b)). Instead

of becoming extinct at t = 365.5 months for a return time of 6 years, a population

density remained of 0.23. With the current return time and under FS, a density

of 0.43 remained, this showed a decrease in population density of 47% for the

decreased return time in comparison to current rates. Even with the shortest

return times, the population density will increase following each hurricane, but the

size of this increase will decline after each subsequent hurricane.

The picture from total area is similar to that shown by population density

(Figure 9.18). With RT = 26 years there was a higher total area than that of

RT = 6. It differed in that, under FS, RT = 26 years saw an increase in area of

105% at the end of the projection period. Even with a decreased return time to

RT = 6 years, over half of the total area still remained. The decline following a

hurricane was clearer in total area, compared to that in population density. This

was from the reduced population density, but also from partial mortality reducing

the area of patches that were not killed by the hurricane. This partial mortality is

not captured in the population density.

Management of Growth

Management of growth caused an unusual result; there was a longer extinction time

for a RT = 6 years than there was for RT = 26 years. The extinction time was

t = 473 months, compared to t = 430 months. However, for the first 300 months,
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Figure 9.18: Scenario IV: The effect of decreasing the Return Time of AStrong under
strategy FS. (a) The population density compared to the unmanaged population.
The solid red line is the critical population density, and the red circles where a
strong hurricane occurred. (b) The total area compared to the unmanaged popu-
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RT = 26 years outperformed that of 6 years. The same pattern was observed in

terms of total area, where RT = 26 years reached the highest total area at about

200 months before declining in size (Figure 9.19 (b)). At the end of the study for

RT = 6, there was a remaining area of 16% compared to 5% for RT = 26 years.

This showed that a management strategy of growth required a regular disturbance,

in order to perturb the population away from being dominated by a few large

patches. This strategy reduces the possibility of producing new patches, and this

could explain the behaviour.

9.4.6 Conclusions

The use of management strategies, when calculating the extinction times, lead to

the following conclusions:

1. Management of growth most closely resembles the observed data.

2. Strategy GS performed well when there were small return times, but FS

performed better when return times were longer.

3. The total area measure painted a different picture to population density,

highlighting when populations were dominated by a few large patches, or

by a large number of small patches, as well as taking into account partial

mortality of patches.

4. Strategy GS often performed better during the projection period in terms of

total area, with FS performing better in terms of population density.

5. Clustered AWeak hurricanes had a larger area remaining for all management

strategies than a periodic scenario.

6. Periodic hurricanes of AWeak have a later extinction time than clustered hur-

ricanes.
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Figure 9.19: Scenario IV: The effect of decreasing the Return Time of AStrong under
strategy GS. (a) The population density compared to the unmanaged population.
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7. For both periodic and clustered, strategy FS performed better than GS for

AWeak.

8. Strategy FS was a better management strategy for AStrong, regardless of clus-

tering or periodicity. It had a larger population density and greater total

area at the end of the projection period.

9. With increased intensity under GS, the critical density will occur within 45

years.

10. With management strategy GS, the population density for three AStrong hur-

ricanes for every AWeak hurricane had the shortest extinction time, but five

AStrong hurricanes for every AWeak had the longest extinction time.

11. For management strategy GS, the total area measure showed two AStrong

hurricanes for every AWeak had the largest remaining area, with either three

or 0.7 AStrong for every AWeak giving the smallest remaining area.

12. With increased intensity under strategy FS, the final population density will

decrease in order of increasing intensity from 23% of patches remaining at

best to 9% at worst.

13. In terms of total area and under management strategy FS, it is best for either

one AStrong for every 3 AWeak, an equal amount of AWeak and AStrong or three

AStrong for every AWeak to give the largest remaining area of 53%. The worst

case was when there was five AStrong for every AWeak with a remaining area

of 18%.

14. Decreasing the return time of AStrong under FS will reduce the population

density and total area.

15. The decline following a hurricane was larger if the total area at the time of

the hurricane was larger.
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9.5 Conclusions

This chapter has investigated the resulting dynamics when the three IPMs param-

eterized in Chapter 7 are interweaved. It has shown that, under current forecasts

of climate change, M. annularis populations will decrease in size and area. This

chapter has also investigated the effect of management on these projections. In

particular taking strategies from Chapter 8 and applying them. It was shown

that under management of growth, a regular occurrence of strong hurricanes was

required to help the growth of the population, whilst management of fragments

required longer periods of recovery.

Finally, this chapter has shown that the regular measure of population density is

not sufficient to fully predict behaviour on the reef as it does not take into account

partial mortality after a hurricane, or the size of the patches in the population.

It was shown that, in terms of minimum total area, the picture painted was often

different to the picture painted by population density.



Chapter 10

Discussion of Results

10.1 Introduction

In Part III of this Thesis, Research Questions 7 to 10 were answered (Figure 1.4).

In particular the aim of this part was to, firstly, understand the possible methods

of management and, secondly, to investigate the effect of climate change on ex-

tinction times. This chapter will discuss the results of Chapters 7, 8 and 9 and is

broken down into six sections. Section 10.2 answers the question of what is the

best management strategies for M. annularis and discusses how these theoretical

strategies could be achieved. Section 10.3 investigates OBJ 3: Climate Change

(Figure 1.4). It will discuss the results from Chapter 9 and their consequences.

This chapter will then discuss the modelling issues that arose in this part of the

Thesis (Section 10.4), before going on to discuss how the results presented here

are consistent with previous research (Section 10.5). It will then briefly discuss

why these results are important (Section 10.6), before finally suggesting areas for

further research (Section 10.7).

263



CHAPTER 10. DISCUSSION OF RESULTS 264

10.2 What is the Best Management Strategies

for a Montastraea annularis Population?

In Chapter 8, it was shown that the best methods to manage a population of

M. annularis patches was to target two biological functions at the same time.

In particular, two strategies were suggested: a Growth strategy, by increasing

the mean size of a patch and reducing the probability of fragmentation, and a

Fragments strategy, which increased the number of fragments, whilst reducing the

size of these fragments. A population growth rate of 1 was not possible, even when

managing two functions concurrently. This indicates the presence of other stresses

on the reef. These could be overfishing (Hawkins and Roberts, 2004; Hughes et al.,

2003); coral bleaching (Brown, 1997; Muller and D’Elia, 1997); tourism (Nystrom

et al., 2006) or increased run off from sedimentation (Koop et al., 2001) to name a

few. In fact, understanding the impact of only one of these stresses on a population,

like hurricanes, is not enough to understand the behaviour on a reef. It is now

thought that the combined effect of these stressors is greater than the sum of the

individual stresses, which many populations exhibiting synergy effects. This is

where two stresses interact with each other amplifying the effect on the population

(Rogers and Laffoley, 2011).

The Growth strategy could be achieved through the introduction of a marine

reserve to an area. Marine reserves protect limited areas of reefs, in order to reduce

human stresses (Bellwood et al., 2004). In particular, they focus on reducing the

overfishing exploitation on the reef, in order to increase the density of grazers in the

area (McClanahan et al., 2006; Mumby and Harbourne, 2010). In marine reserves,

there have been up to double the density of grazers observed than outside the

reserve (Mumby et al., 2006a) and this can keep algal levels under control, which

reduces stress on coral patches and provides free space for colonization. Other

studies have found that over-fishing and the diadema die-off have inhibited the
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ability of a reef to recover following a hurricane (Hughes and Connell, 1987; Hughes,

1994; Lugo et al., 2000) and has shown that this must be a focus for managers,

if coral populations are to bounce back. It has been found that M. annularis

exhibited recovery inside a marine reserve, but net mortality outside (Mumby and

Harbourne, 2010). If a reef experiences a disturbance in an already degraded state,

then the reef can exhibit a phase change away from being coral dominated to being

algal dominated (Mumby et al., 2006b).

It has been suggested that coral reefs can follow a hysteresis effect when the

grazing on a reef is reduced (Mumby et al., 2007). Grazing levels need to be much

higher than historical levels to recover to a pre-disturbance state, if there is already

degradation on the reef (Mumby et al., 2006b). When the level of grazing on a

reef is reduced, it places the population at greater risk of degradation following a

disturbance. For example, in Figure 10.1, if a population undergoes a disturbance,

the result is dependent on the level of grazing. If a reef has a high level of grazing,

then it will bounce back from the coral cover loss to a stable equilibrium. However,

if there is a reduction in grazers (for example the Diadema die-off of 1983) and a

disturbance reduces the coral cover to below the dotted line, then the population

will shrink to the other stable equilibrium. In this case, the proportion of the reef

that is required to be grazed must then be higher than the original amount, in

order for it to recover. This shows the importance of maintaining high grazing

levels on a reef.

It is also now thought that the impact of climate change on a reef is primarily

determined by the extent to which the reef is already in decline (Knowlton, 2001;

Hughes et al., 2003). By introducing marine parks onto a reef, the coral patches

should be in a healthier state to bounce back.

These marine parks must cover a large enough area, in order to fully benefit

the reef. Historically, marine parks and no take zones are on a small scale and

their benefits have not been fully felt. It has been suggested that it is important
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Figure 10.1: The hysteresis effect in relation to grazing and coral cover. The
black squares show that if grazing decreased alongside a disturbance reducing coral
cover, then a higher proportion of grazing is required for the reef to recover to
the initial coral cover. Alternatively, the red square shows the situation where, if
grazing levels are high enough, a disturbance reduces coral cover and it can recover
without changing the grazing levels. The black solid lines are stable equilibrium
and the dotted line an unstable equilibrium.
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to begin protecting corals at an entire ecosystem level, if the management is to be

effective at reducing the region wide coral cover decline in the Caribbean (Hughes

et al., 2003; Pandolfi et al., 2005).

Success of a management strategy should be measured as the recovery of a

diverse population structure on the reef (Bellwood et al., 2004). Marine Parks,

when effectively managed, are a great way of achieving this. When this is achieved,

coral patch populations will also be healthier, as the stress on the reefs will be less,

and this will allow the coral patches to recover better following a disturbance.

For the Fragment management strategy, it is less obvious how this could be

achieved by managers. In fact, the strategy seems counter-intuitive. It has been

shown in Chapters 4 and 7 that larger patches survive hurricanes better, but this

strategy calls for the creation of more, smaller fragments, when fragmentation does

occur. The success of this strategy is seen best under the metric of population

density and hence the population growth rate. It increases the number of patches

on a reef, but the total area of this reef may shrink. Under this metric, the benefits

to the reef are less obvious (see Chapter 9). This strategy provides an alternative

method to traditional management of growth, but managers would be well advised

to target growth, in order to form a population more robust to future disturbances.

10.3 Hurricanes, Climate Change and Recovery.

10.3.1 How Does a Change in Hurricane Activity Effect

the Projections of Population Dynamics?

The effect of subsequent hurricanes is lower when the time of recovery between

hurricanes is reduced. In previous research, the effect of Hurricane Gilbert on the

USVI was less because Hurricane Allen had struck the reef eight years previously

(Woodley, 1989). Instead, Hurricane Gilbert reset the recovery time on the reef.
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The results in this Thesis has shown that the loss following a hurricane depended

on the time since the last hurricane (Chapter 9). It meant that in a clustering of

hurricanes, the loss following each subsequent hurricane was lower. This could be

as a result of the first hurricane removing weaker, more vulnerable patches and

so, when the next hurricane strikes, the weaker patches do not exist. Instead, the

hurricane affects the stronger patches, therefore the loss is lower. However, this

loss could be more devastating, as it is damaging the stronger patches. In fact, it is

plausible that it is the shrinkage of larger patches that is more damaging than the

removal of smaller patches, as it places the population at a greater risk of collapse if

another hurricane strikes before recovery is achieved. This is seen in the clustering

of hurricanes reducing population density more than periodic hurricanes, where

some recovery is seen in the unmanaged population.

Recovery (a return to pre-disturbance density) did not occur in the study.

Growth rates of Montastraea annularis coral patches are unknown, but colonial

growth rates are relatively slow for M. annularis, with documented rates between

0.37 and 1.6 cm/year (Foster, 2007). Therefore, recovery time for slow growing

coral is probably longer than the monitored period of 5 years. Coral reefs are

thought to recover over a much longer period of 10-25 years (Glynn, 1973; Wood-

ley, 1992; Sorokin, 1995; Gardner et al., 2005). Thus this study is painting a bleak

picture for the population of coral patches and recovery could be observed outside

of the time frame studied.

Severe, Category five hurricanes are rare, with only two such events being

recorded in the vicinity of Glovers reef since 1889 (Hurricanes Janet and Mitch

in 1955 and 1998 respectively). Coral populations may, therefore, have a num-

ber of years in which to recover between acute disturbance events. However, less

severe disturbance events occur with greater frequency (current return time on

Glovers Reef is 5.12 years (Table 9.2)) and a rise in sea temperatures resulting

from global warming is predicted to increase the frequency and magnitude of both
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coral bleaching and hurricane events (Elsner, 2006; Elsner et al., 2008; Emanuel,

2005; Goldenberg et al., 2001; Holland and Webster, 2007; Webster et al., 2005).

The response of corals observed in this study paints a bleak picture for the future

of coral reefs unless either corals are able to adapt to such changes in conditions or

local management measures, such as the placement of marine reserves, are able to

lessen the immediate and long-term impacts of disturbances.

The ability of a reef to recover from a disturbance will depend, to an extent,

on the outcome of interactions between coral and algal patches. Empty space

created on ramets, following coral mortality, can be colonized by algal species.

They have a competitive advantage over corals, due to their faster growth rate

(Mumby et al., 2005). In this study, we did not model coral-algal interactions, but

algal patch dynamics on the same coral colonies have been studied in Mumby et

al. (2005). Disturbances have been shown to push coral reefs over a ‘tipping point’

from coral-dominated reefs into algal dominated reefs (Mumby et al., 2007). Once

the population passes through this tipping point then greater recovery is needed,

for a reef to become coral dominated. This is of particular concern where there

are interacting disturbances affecting the reefs, for example coral bleaching and

disturbances. Therefore, it is vital to study how to help coral patches bounce back

immediately following disturbances to ensure this tipping point is not reached.

Extinction times on the reef are predicted to lie within the next 45 years (Chap-

ter 9). With an increased intensity, but not frequency, of hurricanes it has been

shown that this time frame for extinction could reduce by 11 years. It has recently

been said that coral reefs could become extinct within this generation (Rogers and

Laffoley, 2011) and this study supports this. It is thought that coral reefs will

adapt to climate change, rather than become extinct (Hughes et al., 2003). This

adaptation could come from a changing structure of species on the reef, with pre-

viously abundant reef-building corals are likely to be replaced by branching coral

species. This study appears to support this, if the coral patch population of M.
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annularis dies off within 45 years as predicted, then the colonial scale die off will

follow.

10.3.2 Does Management Alter Population Dynamics as a

Result of Climate Change?

It has been shown that if marine parks are effective and a growth management

strategy is adopted, then a population requires hurricanes at certain return times to

achieve the greatest range of coral patches. It was found that without a disturbance

the population is dominated by a few large patches, rather than a larger number

of small patches. A weak hurricane in particular will disturb a population and

create new patches, which are then in the position to grow between hurricanes.

This strategy seems the most likely strategy to have existed in the past. With

the growth of coral patches in between hurricanes, followed by a perturbation of

size structure at regular intervals. With climate change, this will change how this

structure works.

Increasing the intensity of hurricanes with climate change ultimately decreased

the time to extinction, even when there was management on the reef. This showed

that if recovery can be forced on a reef, through the use of marine parks, that

hurricanes would still result in the extinction of patches of M. annularis on a reef.

10.4 Modelling Issues

The IPMs do not include the hurricane stress as a factor so that projections in

Chapter 9 could be calculated. Therefore, the more traditional method of creating

three projection models to compare was adopted (Hughes, 1984). The alternative

method of including it as a factor (Dahlgren and Ehrlen, 2009; Childs et al., 2003,

2004) would not allow independent projection, but would instead include hurricane
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occurrence as a random factor.

There is an additional issue of balancing the number of size classes with the

computational cost of numerical integration. In order to do this, the metric of

population growth rate was used. This selected both the integration boundaries

and the number of mesh points. Even with a declining population, it is important

to ensure that the integration boundary was large enough to include all possible

behaviour. However, this is still only a numerical estimate of the behaviour.

There was a lack of recovery captured in the data and this effected the prediction

of extinction time of the population. This is shown by the population growth rate of

the no-hurricane transitions being lower than for a weak hurricane. This limitation

was solved by introducing possible management strategies on the population. For

example, by introducing increased growth on the population introduced the idea of

what could occur on the population when the stress on a population was reduced.

The Glovers Reef data set from June 1998 to January 2003 captured the dy-

namics of coral patches under the presence of three hurricane disturbances. There

were no other types of disturbances on the reef at this time. However, the mass

coral bleaching event of 1998 was not captured explicitly in these models, but coral

patches were under stress at the start of this data set. It is known that, at a colo-

nial scale, many colonies experienced partial mortality following the mass bleaching

event (Mumby et al., 2005), but the effect at a patch scale is unknown. This could

account for the lack of recovery observed on the reef, which hindered the ability of

the models to capture recovery between hurricane disturbances.

It was shown in Chapter 9, that coral patch populations will become extinct

in the next 45 years, even if there is some management of growth on the reef.

Therefore, the population is in a situation that, under the threat of hurricanes

alone, the population will become extinct, particularly with climate change. This

model does not account for the additional, more direct impacts of climate change

on coral reefs. The increase in coral bleaching in the models of hurricane scenarios



CHAPTER 10. DISCUSSION OF RESULTS 272

and the impact that it could have on the coral population is not accounted for. It

is also thought that there will be an increase in acidification on reefs, which could

decrease the strength of coral to withstand disturbances (IPCC, 2007).

The measure of population density and population growth rate can often mis-

lead the results of the population. This is because it does not take into account the

structure of the population or for partial mortality of patches following a hurricane

disturbance. This lead to a misleading benefit for the fragments strategy that was

dominated by a large number of small patches, whilst the growth strategy was

dominated by a few patches of large area. This meant that the measure of total

area was introduced in Chapter 9, in order to fully understand the dynamics on

the reef.

10.5 Are the Results Consistent with Previous

Research?

It has been observed in other studies that subsequent hurricanes will have a smaller

effect on a coral population than the initial hurricane (Gardner et al., 2005) and that

this decline is larger when there has been a longer period of senescence preceding a

hurricane, the results of this study support this. The decline following Hurricanes

Keith and Iris was smaller than Hurricane Mitch, this was in part because Hurricane

Mitch was a stronger Category 5 hurricane but the Hurricane Index for Hurricane

Keith was on a similar level to that from Hurricane Mitch (Chapter 1). The

presence of Hurricane Mitch reduced the cover loss after Hurricanes Keith and Iris

than would otherwise have been expected. This could also give some reason as to

why AWeak had a higher growth rate than ANo.

In disagreement with the above theory, these results have shown that there is

the possibility of short term growth following a hurricane. This depends on the



CHAPTER 10. DISCUSSION OF RESULTS 273

initial conditions on a reef and show that it is not only the strength of the hurricane

which is important, but also the structure of the reef, which affects its ability to

grow immediately following a hurricane.

Many studies have been carried out on single site populations and this study

adds to this body of knowledge (for example Woodley et al. (1981; 1989) and

Bythell et al. (1993)). It is important that these studies are added to, so that

a wider understanding of the change in coral cover following a hurricane can be

understood. Few studies go on to forecast future dynamics (See Hughes et al.

(1984) as an exception), it is this that is the unique part of the study. It not only

quantifies the decline following a hurricane, but also showed that this decline will

continue in the longer term. These results also add to the body of knowledge of the

effect of two or more hurricanes on a single site, for example (Woodley et al., 1981;

Woodley, 1989) monitored the effect of hurricanes Allen and Gilbert on the USVI

reefs. They found a similar picture, in that the second hurricane did not have the

same level of decline, but instead reset the time at which recovery could begin.

There should be urgency in the study of coral reefs after hurricanes and other

effects from climate change, as it has recently been stated that ecosystems like

coral reefs could be lost within the next generation (Rogers and Laffoley, 2011).

The projections of the populations in these studies does not contradict this, but

instead increases confidence in these results, with all coral populations in this study

projected to become extinct within 45 years.

10.6 Why are These Results Important and Novel?

The results from Part III of this Thesis are important as an Integral Projection

Model is fitted to a coral patch population. The issues that surround the fitting

of these models were discussed (Section 10.4). The method was adapted to al-

low for fragmentation, with different methods for modelling this biological process
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discussed in Part I.

This Thesis is novel as it suggests how models can help in the understanding

of the indirect impact of climate change on coral reefs. It investigates how the

increasing intensity of hurricanes could effect the extinction time on the reef, not

only in terms of population density, but also in terms of minimum total area. It

has been shown that there can be a marked difference between the results from

population density and the results from total area. This was particularly the case

when management of coral patches was introduced into the model. This Thesis

has, therefore, highlighted the importance of selecting the correct metric when

comparing results.

10.7 Further Study

Further research is required to understand the synergistic effect of climate change

on the reefs. This study has aimed to understand the impact of increased hurricane

activity on the reef. It is important that future studies aim at understanding

what would happen under a more realistic scenario of decreased strength of reefs

to withstand disturbances; increased coral bleaching events and an increase in

hurricane activity. Future study should also aim to understand the impact of

climate change on coral reefs by a combination of these effects. It is also important

that research takes into account the changing structure on the reef and the changing

dominance from reef-building corals to branching corals.

10.8 Conclusions

In conclusion, Part III of this Thesis has investigated Research Questions 7 to 10 by

parameterizing three IPMs. These IPMs were then used to investigate management

and the impact of climate change on the population.
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Chapter 11

Conclusions

11.1 Introduction

The aim of this Thesis was to investigate the effect of hurricane activity on the

dynamics of the reef-building coral Montastraea annularis (Chapter 1). To do

this, a data set from Glovers Reef was used to understand the dynamics following

Hurricanes Mitch, Keith and Iris between June 1998 and January 2003. To fully

investigate this aim, the Thesis was divided into three main sections: to understand

the modelling techniques required to use projection models; to understand and

develop methods of analysis and then to understand what could occur under climate

change. In this chapter, the main findings will be summarized by answering each

of the ten research questions asked in Figure 1.4, whilst then summarizing the

contribution this Thesis has made and suggest areas for future research.

276
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11.2 Summary of Main Findings

11.2.1 Research Objective One: Modelling

RQ1: What are the current techniques used to apply projection models

to coral populations?

The majority of previous studies into the response of coral populations to hurri-

canes used the coral percentage metric to describe the dynamics of the population

through the study. The drawbacks of these models were discussed in Chapter 2,

in particular they do not attempt to understand the underlying dynamics of the

observed behaviour and are useless in projecting future dynamics on the reef. Some

studies were found to use Population Projection Matrices for coral populations in

order to understand the transitions on individual members of the population, and

to use these PPMs to project the future dynamics on a population.

It was found that the selection of size classes in these models was arbitrary and

can skew the results. It was decided to use the PPM to model the M. annularis

population on Glovers Reef, but to ensure that the sizes classes are selected using

the van der Meer and Moloney algorithms, in order to reduce modelling errors (See

Chapters 3 and 4).

Finally the Integral Projection Model (IPM) was discussed as a possible method

for modelling coral populations. Although no coral populations have previously

been modelled by this method (see Chapter 2), they are ideally suited to modelling

populations described by size. It was decided that these were an ideal fit for coral

populations like M. annularis and were modelled in this manner in Chapters 5

and 7.
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RQ2: How can Montastraea annularis be modelled by projection models?

Population Projection Matrices have been used to model M. annularis at a colonial

scale (for example Hughes and Tanner (2000)), but never at a patch size scale. The

methods for modelling the population were felt to be transferable, but with some

differences in modelling biological processes. For example, no sexual reproduction

or recruitment occur at the patch scale (Szmant, 1991), but instead fragmentation

creates new patches in these models. Similar methods to Renken et al. (2010) were

used to capture fragmentation and that an adapted Lefkovitch matrix was to be

used (Lefkovitch, 1965). This was because modelling M. annularis required the

inclusion of shrinkage and fragmentation entries in all upper triangular entries in

the matrix, which are not found in the Lefkovitch matrix.

It was concluded that the IPM structure from plant populations were trans-

ferable to modelling M. annularis, but instead of the kernel consisting of the

survival-growth and fecundity contributions to the population, the fecundity con-

tribution is replaced by the contribution of fragmentation (Chapter 3). To model

M. annularis, five different forms of the fragmentation functions were tested to

find the best fit to the data (see Section 3.2.3). This was the first attempt to model

fragmentation and further research is required to fully understand the biological

processes at a patch scale, if further accuracy in the model is to be achieved.

RQ3: What modelling issues arise from applying projection models to

Montastraea annularis?

Patches of M. annularis are best modelled by size, and the Population Projection

Matrix method required the discretization of sizes to form size classes. The bound-

aries created were artificial and some within size class information was lost. It was

shown in Chapter 4 that shrinkage of patches was captured, but growth of patches

was often missed, due to the scale of these processes. These problems were solved



CHAPTER 11. CONCLUSIONS 279

by the IPM (Chapters 5 and 7), where size was not discretized and growth was

better captured.

Some PPMs produced in Chapter 4 were reducible and non-ergodic. This is a

common problem in PPM modelling and is caused either by the inaccurate selection

of size classes or by transitions not being captured in the data set. In this Thesis,

the main issue is from missing transitions from the data set. The IPM solved this

problem by not requiring discretization and by using statistical curve fitting so that

missing transitions are smoothed out.

Modelling by the IPM solved many of the issues arising from the PPM, but had

its own challenges. These issues were mainly surrounding the numerical integration

of the kernel. However, as mesh points were chosen after the fitting of the model

to data, the issues of discretization are not as severe. As long as a large enough

number of mesh points are selected (so that λ1 converges to 4 decimal places) the

errors from this should be small. The greatest issue was in selecting the width

of the integration boundary to include all possible patch sizes. In particular in

selecting the lower boundary (See Chapter 6).

The issue of modelling fragmentation is the same in both the IPM and PPM

methods. The process is poorly understood on a patch scale and modelling tech-

niques are the best currently available. It has resulted in a possible over-estimation

of the fragmentation contribution in the PPM compared to the IPM (Chapter 5).

RQ4: How well do the results of different projection models compare?

In direct comparison the IPMs and PPMs allowed similar conclusions to be drawn

for a given hypothesis (See Chapter 5). Previous research stated that there should

be a close resemblance of results between PPMs and IPMs (Easterling et al., 2000),

but this was not found here. As discussed in Chapter 5, this could result from the

modelling of fragmentation in the two models. The greater complexity of modelling

techniques in the IPM should more accurately capture the dynamics than the PPM.
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The size of the data set could also account for the difference, with IPMs better able

to capture the dynamics for small data sets (Ramula et al., 2009).

The transient dynamics of IPMs and PPMs have not previously been compared.

It was found that there was a greater difference in the results than observed in the

asymptotic dynamics (Chapter 5). Some transient results of the IPMs are as a

direct result of the modelling methods, but as IPMs are primitive, these results

are more accurate than those from the PPM, which are affected by reducibility.

Further research should aim to transfer the transient bounds from PPM analysis

(Townley et al., 2007; Stott et al., 2010a) to IPM analysis.

11.2.2 Research Objective Two: Analysis

RQ5: What current methods of analysis exist?

Methods of analysis for the IPM and PPM are given in Chapter 3. It was shown

that, post numerical integration, the IPM and PPM can be analyzed in a very

similar fashion. The main difference was in the analysis of transient dynamics

where techniques for IPMs were less well developed. Due to reducibility of PPMs,

the analysis of IPMs should be more accurate and their greater complexity gives

greater detail to the possible dynamics.

Projection modelling is particularly well suited to projecting populations into

the future. This allows investigation into interactions of one or more models (for

example Chapter 9). This has been carried out on PPMs in the past (Hughes,

1984), but is better suited to the IPM, where a greater number of size classes gives

greater detail into possible behaviour.
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RQ6: Does initial trauma following a hurricane effect the dynamics of a

population?

It was shown in Chapters 4 and 5 that the initial trauma experienced by a coral

patch affected the long term and short term dynamics of the population. The

more severe the initial trauma, the greater the asymptotic decline. In the first

200 months it was those patches, neither the least not the most affected, which

were projected to fair better. The weakest trauma leads to a greater range of coral

patch sizes, with populations under the severest trauma being dominated by small

patches. Finally, in transient time there are greater extremes of possible behaviour

with increased trauma.

In Chapter 6, it was explained that patches are more likely to survive future

disturbances, if it is dominated by larger patches. This meant that the long-term

dynamics was determined by initial trauma, but also the ability of the popula-

tion to withstand future disturbances was also determined by initial trauma, as

populations experiencing the weakest trauma contained the largest patches.

The picture painted in this study is one of a worst case scenario. All populations,

regardless of initial trauma, are in severe decline. This could be the result of other

stresses on the reef inhibiting the ability of the reef to recover from a disturbance,

for example over-fishing or coral bleaching. This, alongside the fact that reefs have

been shown to require at least 8 years to recover from a hurricane (Gardner et al.,

2005), meant that recovery was not captured in this Thesis. In spite of this, it does

not alter the conclusion that initial trauma does affect the dynamics exhibited.

RQ7: Do the dynamics exhibited during a hurricane vary with hurricane

strength?

It was shown in Chapter 7 that a strong hurricane severely damages a population.

It was also shown that a population under a weak hurricane faired better than a
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hurricane under no hurricane. This was counter-intuitive and could be explained

by the lack of recovery captured in the model.

It was also found that strong hurricanes increased the rates of fragmentation

and decreased rates of survival, but that regardless of hurricane strength, larger

patches are more likely to survive or fragment than smaller patches.

As it is rare for two hurricanes to strike the reef in two consecutive years,

transient dynamics are a better indicator of behaviour than asymptotic dynamics.

It showed a similar picture with greater transient attenuation in AStrong, but similar

levels for both AWeak and ANo.

It has been accepted that hurricanes can benefit coral populations on a reef

scale by creating free space for coral to colonize and destroying more abundant

species which in turn increases biodiversity. However, it has never previously been

shown at a patch scale.

RQ8: What are the best management strategies for a Montastraea annularis

population?

Management strategies for M. annularis are easier to capture using IPMs than

with PPMs. This is because individual biological functions can be perturbed, as

opposed to PPMs, where groups of biological functions are perturbed together.

Through mathematical modelling, it is possible to suggest areas that should be

targeted by managers. It was found that management of one function alone would

not promote population growth, but two functions needed to be managed to reduce

the asymptotic decline by a greater amount. The aim of management strategies

was to not only increase the population growth rate, but also to increase the size

of patches in the population. This was because larger patches are more likely to

survive future disturbances.

It was found that the best strategies were to either target the mean growth,

whilst reducing the probability of fragmentation, or to increase the number of
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fragments at the same time as decreasing the size of these fragments. The first

strategy could be achieved through the positioning of marine parks and no-take

zones, which will increase the density of grazers, such as parrot fishes, in turn

decreasing algae cover and providing free space for coral patches. It remains unclear

how managers could achieve the second strategy.

It is important that there is an increase in coordination between managers, who

are trying to manage the population from different threats. Managing against the

threat of hurricanes alone will not save the population.

11.2.3 Research Objective Three: Climate Change

RQ9: How does a change in hurricane activity effect projection of pop-

ulation dynamics?

In 2007, the IPCC report stated that with an increase in global temperature, it

is likely that hurricanes will increase in intensity and duration (IPCC, 2007). By

projecting the coral population and increasing intensity from its current rate on

Glovers Reef, the extinction time decreased on the reef by 6.3 years (Chapter 9).

Recovery was not captured in these models with the population in decline even

in years between hurricanes. Caribbean reefs are in decline and, therefore, decline

on the reefs between hurricanes is to be expected, but if the reefs are to survive

past 45 years, recovery must be achieved on the reefs.

RQ10: Will management improve the projected population dynamics

under climate change?

Two management strategies suggested in Chapter 8 were to either target mean

growth and reduce fragmentation or to focus on managing fragments. It has been

shown that, even with management, increasing intensity of hurricanes will still

decrease the extinction time on the reef and that management will increase the ex-
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tinction time of the population. On average, management increased the extinction

time by 11 years if managing growth, but, if managing fragments, extinction will

not be reached within 45 years (Chapter 9).

It is important that the right metric is used in measuring population size.

Population density often gave a misleading picture. It failed to capture the size

of patches or partial mortality of patches following a hurricane. Total area on a

reef is a better metric and often showed transient growth in total area in periods

of calm. This showed that there is some hope for a M. annularis population; if

management on reefs can be successful then a significant area of M. annularis can

remain after 45 years, even with increased hurricane intensity.

One interesting result was that to exploit total area transients, management

targeting mean growth required a Category 5 hurricanes to occur at an increasing

rate. Otherwise, the initial transient growth tails off and decline is recaptured on

the reef (Chapter 9).

11.3 Research Contribution

The aim of this research was to not just explain what happened through the time

period that the data was collected, but to also use this information to project

possible future behaviour. In this, my research has contributed in three main

ways:

• It advances modelling techniques by promoting the use of Integral Projection

Models (IPMs) for coral populations. IPMs have never, to my knowledge,

been used to model coral populations, but instead have been applied to plant

or tree populations. As IPMs are a better alternative to Population Projec-

tion Matrices, when the behaviour of an individual is determined by its size,

it seems natural to use IPMs on coral populations. This has involved devel-

oping the IPM framework to include the biological process of fragmentation.
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It is hoped that this research will encourage coral reef ecologists to use IPMs,

ahead of PPMs to model populations in the future.

• The research lies at the interface between climate change, hurricanes and

coral reefs. This research takes into account the possible effects of climate

change on hurricane activity in the Caribbean and simulates what the effect

would be on coral patch cover. It is important to understand the range of

possible behaviour that coral patches could exhibit, in order to inform future

management strategies.

• It has investigated the impact of hurricanes on Montastraea annularis at a

patch scale. It has shown that initial trauma determines the dynamics of a

patch and also that the strength of the hurricane also affects the dynamics.

It showed that, regardless of hurricane strength or initial trauma, that larger

patches survive disturbances better, but are also more likely to fragment.

11.4 Recommendations for Future Research

There are two main areas where further research is needed to develop the results of

this Thesis. Firstly, better understanding of the biological process of fragmentation

at the patch scale is required, if there are to be improvements in the fitting of an

Integral Projection Model to coral patch populations. It would also be useful if

IPMs were applied to a greater variety of coral species to develop further techniques

for analysis. It is also important that transient bounds are developed for the

analysis of IPMs further. It has been shown in this Thesis that it is unlikely that

a population will ever reach asymptotic dynamics and so the transient analysis is

vital to understanding the future behaviour of a coral patch population.

Finally, future research should aim to look at the synergistic effects of climate

change on reef-building corals. The impact of climate change on hurricanes is just
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one area in which coral reefs will be affected. It is important that future research

aims at combining the impact of hurricanes, alongside the decreasing resilience

of coral reefs to disturbances and the increasing risk of coral bleaching and coral

disease.

11.5 Conclusion

In this Thesis, Population Projection Matrices and Integral Projection Models

have been used to analyze the data set from Glovers Reef. They have been used to

investigate the behaviour exhibited by the population (Chapters 4, 5 and 7), as well

as to project future possible behaviour under both climate change and management

(Chapters 8 and 9). The results of this Thesis have been summarized above and

show that projection models are required, if the underlying dynamics on a reef are

to be fully understood.
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