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Abstract 

The increasing pluvial flooding in many urban areas of the world has caused tremendous damage to societies 

and has drawn the attention of researchers to the development of a fast flood inundation model. Most available 

models are based on solving a set of partial differential equations that require a huge computational effort. 

Researchers are increasingly interested in an alternative grid-based approach called Cellular Automata (CA), 

due to its computational efficiency (both with respect to time and computational cost) and inherent parallel 

nature. This paper deals with the computational experiment with a new CA method for modelling 2D pluvial 

flood propagation. A Digital Elevation Model (DEM) comprising square grids forms the discrete space for the 

CA setup. Local rules are applied in the von Neumann Neighbourhood for the spatio-temporal evolution of the 

flow field. The proposed model is applied to a hypothetical terrain to assess its performance. The results from the 

CA model are compared with those of a physically based 2D urban inundation model (UIM). The CA model 

results are comparable with the results from UIM model. The advantages of low computational cost of CA and its 

ability to mimic realistic fluid movement are combined in a novel and fast flood simulation model.  
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1. INTRODUCTION 

Urban flood modelling usually involves computational techniques to simulate spreading of water into a wide 

surface area containing many complex features. These techniques are solutions of the physically based flow 

governing equations: conservation of mass, momentum, and energy. Sometimes data-driven empirical stochastic 

models employing probabilistic approaches are also used to predict flood extent [1]. Due to the complexity of 

urban setup and infrastructures, accurate urban flood modelling has always been a challenging task. Recently, 

coupled 1D-2D and 2D models [2, 3] have been applied to urban flood modelling. However, their complexity, 

computation cost and significant data requirements limit their application. Many investigations have been carried 

out to develop models which allow the linking of complex physical processes involved in urban flooding. The 

modelling of interactions between 2D surface and 1D sewer flow phenomena has emerged as the main objective 

of recently completed and current research programs in hydraulics and urban hydrology [2, 3]. Chen et al. [3] 

developed an urban inundation model (UIM) coupling both surface (2D) and subsurface (1D) sewer flows. The 

model was successful in incorporating the bidirectional flow interaction between overland surface and 

underground sewer networks.  

 

Various approaches have been devised to reduce the computational time of 2D flood modelling. Some models 

attempt this by dividing the overland flow area into various zones and then implementing a 1D-1D approach to 

simulate urban flood. Lhomme et al. [4] proposed a rapid flood spreading method that divides the domain into 

various impact zones (IZs) consisting of accumulation points and communication points where the transfer of 

water takes place. The method spills and merges IZs as the evolution of inundation proceeds. A similar model 

presented by Maksimović et al. [5] for urban pluvial flooding uses an automated overland flow pathway analysis 

in which a dual-drainage concept has been implemented using 1D-1D coupling of sewer and surface flow 

networks. The automated algorithm has been employed to create a surface network of ponds and surface flow 

paths. However, it seems a lot of pre-processing work for urban pluvial flood modelling is needed, thereby 

increasing the total runtime with little improvement over the results of the InfoWorks verified base model. 

Furthermore, 1D-2D modelling has been criticised as being too slow and difficult for effective real-time flood 

forecasting [6]. Vojinovic and Tutulic [6] proposed a method in which building elevations are raised and road 

surface were lowered to model urban flood. However, the method consumes a lot of time in pre-processing thus 

making the model computationally inefficient. In JFLOW-GPU, Lamb et al. [7] implemented the massive 

parallelisation using graphical processors to greatly reduce the computational time. 

 



The Cellular Automata (CA) approaches to urban simulation have been limited mostly to land use change 

modelling. Those models are normally stochastic and/or expert rule-based. During the last decade, however, 

methods for describing physically-based, deterministic systems within the CA framework have become much 

more popular [8]. Frisch et al. [9] developed the earliest hydro-dynamical CA model to fulfil the isotropic Navier-

Stokes equation. They employed a local particle collision rule on a hexagonal discrete grid to simulate fluid flows. 

In some complex natural phenomena, novel parallel computing models represent a valid alternative to standard 

differential equation methods. In particular, CA provides such an alternative approach for some complex natural 

systems, whose behaviour can be described in terms of local interactions of their constituent parts [10, 11]. 

Thomas and Nicholas [12] applied a CA model to simulate braided river flow by routing the flow from the cell 

under consideration into five downstream cells. Coulthard et. al [13] developed the CA Evolutionary Slope And 

River (CAESAR) model to simulate the sediment evolution along river channels. The four-sweep scanning 

algorithm employed for four directions in CAESAR impacts on its performance such that the model efficiency 

cannot be assured.  

 

A Lattice Gas CA (LGCA) simulation model [14] was employed in real time computer games using GPU 

computation. In such an approach macroscopic density and velocity of particles define the new fluid 

configuration. A rapid inundation model as proposed by Krupka et al. [15] might be useful for flood risk 

management rather than for flood defence and analysis because it only calculates the final inundation extent 

employing a flood-storage cell algorithm. As such, the model does not allow dynamic interaction between river 

and flood plain flow. Krupka et al. adopt the CA-like concept such as three states of a cell, dry, active and 

inactive, to determine the flood inundation extent. However, the model lacks the timing of inundation and 

dynamic spreading.  

 

The stability criterion in storage cell models like LISFLOOD-FP [16] is such that high resolution grids require 

smaller time steps relative to full 2D shallow water equation models. More recently Dottori and Todini [17] 

employed a modified local time step algorithm to improve the performance of their original cellular automata 

model [18]. The present work describes a reduced complexity model for urban flood inundation based on the CA 

approach. The motivation for this research is the development of a fast flood inundation model so that it can be 

used for flood risk calculations, where a large number of model run is needed. We propose a CA approach for 

pluvial flood modelling in which the spatio-temporal variations in flood depth and velocity are governed by local 

rules in the neighbourhood. The model is presented as an attempt to analyse the dynamics of the propagating 

flood water on the terrain due to heavy rainfall.  

2. MODEL DEVELOPMENT 

The proposed cellular automata model consists of a discrete space of square grid cells. The neighbourhood taken 

for developing the pluvial flood model is of von Neumann type. The initial condition of the terrain is assumed to 

be dry. The effective uniform rainfall lands directly on the whole area of the terrain considered. Hydrological 

losses are not considered in the model. The movement of water is modelled as occurring from the central cell. 

Only the outflows from the cell under consideration are calculated based on the ranks of the cells in the 

neighbourhood (NH). Any inflow fluxes into the cell under consideration are calculated as outflows from other 

locations in the cell neighbourhood. In this attempt, we dynamically apply the distribution algorithm according to 

the difference of the water surface elevation. Figure 1 illustrates the algorithm implemented.  

Proposed Algorithm (pseudo code): 

Program start 

1.   Initialization of variables and data input 

2.     Start of time loop { 

3.         Computation start in the local NH        { 

    i. Ranking of cells by their water surface elevations {r = 1, 2, 3, 4, 5} 

                 ii. Calculation of (rc -1) outflows from the central cell with rank rc 

                iii. Distribute water fluxes within the NH 

                 iv. Find velocities at each cell face 

4.          End of local NH loop          } 

5.   Determine time step ∆t required for the distributions applied 

6.   Update time of simulation: t = t + ∆t 

7.   Update the states (depths) for new time step 

8.   Data outputs for visualization and analysis 

9.   Repeat until the end of simulation time    

      End of time loop         }  

End of Program 



 

                                                       
Figure 1. Definition sketch of layer wise distribution (left) and outflows to the neighbourhood from the central cell (right);     

               the numbers shown are ranks in the neighbourhood 

2.1 Flux calculation 

The calculation process starts with cells being ranked locally in the neighbourhood based on the water surface 

elevation. For the von Neumann neighbourhood, there will be five discrete states of cell ranks (r = 1, 2, 3, 4, 5). 

Other global state variables such as depth of flow and ground elevations are continuous in nature. If the rank of 

the central cell is rc, there will be rc - 1 number of cells getting water as flux through the cell boundaries in the 

neighbourhood considered. In the layer wise calculations, there will be rc - 1 layers (at most) to receive water, if 

enough volume is available. Thus outflow volumes for i
th

 layer (see Figure 1) can be given by the following 

recursive formula that is applied locally for each cell considered. 
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where idL∆ is the volume distributed to i
th

 layer from the central cell having rank rc, d0 is the depth of water in the 

central cell before any spillage into the neighbouring cells takes place. Thus fluxes for each of the cells are 

calculated as outflow flux to the cell of rank r given by:  
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where, N is the total number of neighbourhood cells, i.e., 5 for the von Neumann neighbourhood considered. 

2.2 Depth calculation 

A very important step in the CA approach is its state update. In present CA calculations the global continuous 

state is the flow depth in a cell, which is updated for every new time step n+1.The following transition rule is 

used to update the flow depth: 

  
A

tq
dd

nn

∆

∆
+=+1

                                                                   (3) 

where, q is the net inflow flux into the cell; A∆  is the area of the cell. Equation (3) is equivalent to the following 

continuity equation: 
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where, W is the volume of water in the cell, q is the flux vector at cell boundary and Sr is the source term. To 

control the outflows from the cell and avoid abrupt jumps in depth, a non-dimensional parameter is used to limit 

the flux through the boundaries. The transition rule for updating the global state of cells is then given by:  

                      
A

F
dd

i

∆
+= ∑

0                                                                    (5) 

2.3 Time-step calculation 

Many studies have been carried out by the research community to reduce the simulation time and predict reliably 

the timing of flood inundation. This is mainly due to the fact that as higher and higher resolution DEM data is 

being used, the shorter will be the time step required for stability of model computations. The time increment 

determined in this way, i.e., the smallest anywhere in the whole domain that satisfies the stability criteria, implies 

that for most of the cells only a fraction of the locally allowable time step is used to integrate the solution in time. 

This represents a waste of computational effort [19] and limits the applicability of the method. The use of 
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spatially variable local time step and constrained time steps (in between the shortest and longest time steps) can 

be found in literature. A spatially varying time step can increase solution accuracy and reduce computer run times 

[20, 21]. Dottori and Todini [17] employed a local time step algorithm to speed up the originally formulated 

LISFLOOD-FP model by Bates et al. [22] and suggested that there is no need to limit the ratio between 

maximum and minimum time step. In particular, there is no need to divide cells in groups with different time 

steps, since the maximum allowable time step is directly assigned to each cell interface and stored after each 

computational step. In the present work the maximum allowable time step is calculated so that water across a 

single cell width is distributed within the neighbourhood, thereby automatically satisfying the conventional 

Courant-Friedrichs-Lewy (CFL) criterion. The velocity at a cell boundary is calculated based on the flux 

transferred through the cell given by following formula:  
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where F is the flux volume being transferred between two cells, x∆ is the cell size and t∆ is the time step. The 

maximum allowable velocity is limited by the maximum velocity calculated based on the Manning’s formula and 

wave celerity given by:.  
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where n is Manning’s roughness coefficient, R is the hydraulic radius, S is the slope of water surface, g is the 

gravitational acceleration, and d is the water depth. The time step is then set to ensure that the maximum flux can 

be transferred within single time step. So, each time the state transition rule is applied, the global time is updated 

by the time step value obtained from Equation (8). Since the time step is based on the maximum flux transferred 

through the cell boundaries into the neighbourhood, it is also valid for other intermediate flux values calculated 

during current time step because water distribution is allowed within a single cell width only. 
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The inherent nature of the CA approach makes it highly suitable for parallelisation. Because of the capability of 

synchronous and independent updating of the states of each cell, it is computationally efficient and may find its 

application into cloud computing and GPU computations. The reduction in the model run time through 

parallelisation would increase the utility of such models.  

                            

                                                                               Figure 2. Hypothetical terrain 

3. MODEL APPLICATION 

The proposed model was tested for a hypothetical terrain as shown in Figure 2. The terrain consists of both 

forward and reverse slopes of 0.2 %. It also has a lateral slope of +0.1% toward the reader. There is no flow 

allowed across boundaries, i.e., flow is enclosed by the boundaries. There is an outlet at the lowermost end of the 

terrain. The main data inputs to the model are:  

(i) Rainfall: A net rainfall of 20 mm per hour uniform intensity fed to the whole terrain. The rainfall lasts for 

one hour and then stops.  
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(ii) Digital Elevation Model: A DEM consisting of 600 square cells (50mx50m) is given as an input to the 

model.  

(iii) A constant value of Manning’s coefficient of roughness is given for all the cells, n = 0.10. 

The above mentioned inputs were provided to the model and various outputs and results calculated. Those 

include, but are not limited to, the depth distribution at checkpoints, flow profile, flow rate across any boundary, 

total inundated area, and outflow volume from the terrain, etc. Some of the results will be presented in the 

subsequent sections. To achieve the uninterrupted computation for all the grids inside the flow domain and to 

provide a realistic boundary condition, a layer of grid cells is added as ghost cells around the whole domain of 

calculation. This layer acts as neighbouring cells for the edge cells, but does not affect the results. Thus, for no-

flow boundary, the water surface elevation of the ghost cell is made equal or higher to the adjacent (inner) edge 

cell so that there is no flow or no gradient available for any crossflow to occur. For the outflow cell a surface 

elevation gradient is maintained to ensure the continuity of flow.  

4. RESULTS AND DISCUSSION 

The results obtained from the proposed CA model are compared with the results of UIM, a 2D non-inertia 

overland flow model that neglects the acceleration terms in the shallow water equations. The flow profile after 

the onset of rainfall is shown in Figure 3. The water is flowing down along the steepest slope and accumulating in 

the lowermost pond area. The drying and wetting process during this spatio-temporal flow evolution is 

reproduced well by the model. It can also be observed that the water exchange between two pond areas takes 

place through the narrow strip on the lower side of the area. 

    
 

Figure 3. Flow and depth profiles after the onset of rainfall at (a) 40 (b) 60 (c) 100 & (d) 200 minutes. 

 

The results for flow depths at various locations are examined to assess the model performance. Various check 

points where depths are calculated are shown on Figure 2. The depth of water computed by both models at the 

lowest point (pond) against the time is plotted. The results are in good agreement (see Figure 4(a)). The depth at 

the lowermost point, upstream of the crest, increases rapidly at the beginning (after the onset of rainfall), but 

when water starts transferring to downstream sub-catchment through the crest, the rate becomes lower and then 

remains almost constant. The variation of flow depths at various other points are shown in Figure 4(b). Both 

results from the current CA model and UIM are plotted for comparison. The CA results follow the trend of UIM 

model results. However, the peak depths are underestimated by the CA model though the discrepancies are not so 

significant. The plot shows the depths at crest and both of its left and right cells. When compared with the 

computational speed, the current CA model is 15 times faster than UIM (e.g. 2 seconds versus 30 seconds).  
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Figure 4. (a) Temporal variation of water depth at pond. (b) Temporal variation of water depth at various check point 

5. CONCLUSION 

The developed 2D cellular automata model has been applied to a simple hypothetical terrain. Numerical results 

obtained are compared with those of a 2D UIM that employs Saint-Venant’s equation for flood inundation 

prediction. The depths obtained at various check points show a good agreement with the results of UIM. 

(a) (b)  (c) (d) 



 

At present, the model is undergoing refinements so that it could be used on a large area and still achieve fast 

computations. It should be noted that the proposed CA algorithm is particularly suitable for parallelization and 

GPU computations, which could increase the appeal of the model for a range of applications. The CA method 

could be further developed to include not only the overland flow but also associated processes, such as sewer 

flow, infiltration and sediment transport, etc. The model allows managing wetting and drying effects over wide 

areas. However, it needs to be demonstrated and validated on a wide variety of practical applications that are 

planned for the future. Therefore, future work will focus on the application of the CA model to real flood 

situations and evaluation of its effectiveness.  
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