Worst-case Analysis of Space Systems

Submitted by Wenfei Wang to the University of Exeter
as a thesis for the degree of
Doctor of Philosophy in Engineering
In December 2011

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature: _________________________________
Abstract

Worst-case analysis is one of the most important elements in the verification and validation process used to ensure the reliable operation of safety-critical systems for defence, aerospace and space applications. In this thesis, an optimization-based worst-case analysis framework is developed for space applications. The proposed framework has been applied and successfully validated on a number of European Space Agency funded research projects in the areas of flexible satellites, hypersonic re-entry vehicles, and autonomous rendezvous systems.

Firstly, the problem of analyzing the robustness of an Attitude and Orbital Control Systems (AOCS) for a flexible scientific satellite with a large number of uncertainties is considered. The analysis employs a detailed simulation model of a flexible satellite and multivariable controller, together with a number of frequency and time domain performance criteria which are commonly used by the space industry to verify correct functionality of full-authority multivariable satellite control systems. Second, the flying qualities analysis of a re-entry vehicle is investigated for a number of complex scenarios involving different types of uncertainties and disturbances. Specific methods are utilized to deal with analysis problems involving probabilistic uncertainties, physically correlated uncertainties and highly dynamical disturbances. In another study, an integrated analytical/optimization-based analysis framework is proposed for the robustness analysis of AOCS for a telecoms satellite with flexible appendages. We develop detailed Linear
Fractional Transformation (LFT)-based models of the uncertainties present in a modern telecom satellite and apply \(\mu \)-analysis to these models in order to generate robustness guarantees. We validate these models and results by cross-checking them against worst-case analysis results produced by global optimization algorithms applied to the original system model. Finally, the optimization-based framework developed in this thesis is employed to analyze the robustness of the Guidance, Navigation and Control (GNC) system for autonomous spacecraft. This study considers the autonomous rendezvous problem over the terminal flight phase in the presence of a large number of realistic parametric uncertainties and a number of safety criteria related to the capture specification. An integrated analytical/optimization-based approach was also developed for this problem so that the computational cost of simulation-based analyses can be reduced, through leveraging results from robust control tools such as \(\mu \)-analysis.

The main contributions of the thesis are (a) to provide convincing demonstrations of the usefulness of optimization-based worst-case analysis on a number of different space applications, each of which involves highly complex simulators developed by leading industrial companies from the European Space sector, and (b) to show how optimization-based analysis methods may be combined with analytical tools from robust control theory to create a more integrated, efficient and reliable verification and validation process for space applications.
Contents

Abstract 1

Contents 3

List of Figures 7

List of Tables 10

List of Publications 13

Nomenclature 16

1 Introduction 17
 1.1 Motivation .. 17
 1.2 Worst-case analysis for space applications 19
 1.3 Thesis organization 21

2 Worst-case Analysis Approaches 24
 2.1 Introduction .. 24
 2.2 Stochastic based worst-case analysis 25
 2.3 Analytical based worst-case analysis 27
 2.4 Optimization based worst-case analysis methods 33
 2.4.1 Local optimization 35
5.2 Reference satellite model

- 5.2.1 Reference satellite model ... 96
- 5.2.2 Uncertain parameters in the reference satellite model 99
- 5.2.3 Expressing the uncertain satellite dynamics as an LFT 100

5.3 LFT model validation .. 108

5.4 Attitude controller and analysis criterion 108

5.5 Analysis results .. 110

- 5.5.1 Robust stability analysis ... 111
- 5.5.2 Worst-case analysis using hybrid optimization 111
- 5.5.3 Robust performance analysis using μ 118

5.6 Conclusion ... 120

6 Verification and Validation for Autonomous Rendezvous System 121

- 6.1 Introduction ... 121
- 6.2 Simplified rendezvous dynamic model 122

6.2.1 Guidance and control algorithms 124
- 6.2.2 Uncertain parameters and evaluation criterion 126

6.3 Full terminal phase rendezvous model 127

6.4 Integrated V&V analysis framework 130

6.5 Simplified rendezvous scenario analysis 131

- 6.5.1 Optimization based analysis results 131
- 6.5.2 Sensitivity analysis .. 134

6.6 Full terminal phase scenario analysis 140

- 6.6.1 Optimization-based analysis results 140
- 6.6.2 Integrated analysis results ... 142

6.7 Conclusions ... 149

7 Conclusions and Future Work ... 155

- 7.1 Conclusions ... 155