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Abstract

This thesis presents investigations in to the properties of bulk graphite, graphi-
tised silicon carbide and exfoliated graphene. The background physics and theory
relevant to the investigations is detailed. This is followed by descriptions of the
equipment and methods used during experiments presented within this thesis.

Millikelvin de Haas—van Alphen and Shubnikov-de Haas experiments were per-
formed for several types of graphite. These types included forms of natural, kish and
highly orientated pyrolitic graphite. Oscillations for two sets of carriers (holes and
electrons) were observed with varying strengths between the types. This suggests
that the mobility of the charge carriers in graphite can vary significantly depend-
ing on the formation of the graphite bulk. Hall measurement results support this
statement, as the electron to hole mobility ratio appears much greater in natural
graphite than in highly orientated pyrolitic graphite.

Analysis of the oscillations for each sample indicates that the electrons have a
higher mobility than the holes, and that the effective mass of the holes is lower
than that of the electrons. Depending on the sample, the mobility of the holes was
found to vary between 1.07 — 1.42m?/Vs and the mobility of the electrons between
1.64 — 16.0m?/Vs. The effective masses of the charge carriers were found to be
0.031 + 0.007 mg and 0.046 + 0.003 m for holes and electrons respectively.

The nature of the carriers for the different types of graphite was determined. It
was found in the de Haas—van Alphen experiments that the phase of the carriers var-
ied between samples. However, in the majority of cases, the electrons were shown to
be Dirac fermions. In Shubnikov—-de Haas experiments, the electrons demonstrated
an indeterminate nature. In both types of measurement, the holes were found to
have an indeterminate nature.

De Haas—van Alphen experiments were also performed on two graphitised silicon
carbide samples. The sample fabricated at The University of Leeds exhibited a com-
plicated background magnetisation. This is not characteristic of a carbon system
and so indicates a lack of a carbon film. The sample fabricated by the Georgia Insti-
tute of Technology exhibited a magnetisation akin to ZYB grade highly orientated
pyrolitic graphite.

Sheet magnetoresistance measurements were also performed on a more recent
graphitised silicon carbide sample, fabricated at The University of Leeds. Weak
localisation was observed as well as a large number of non-oscillatory features. These
features were attributed to the absence of a defined Hall-bar geometry and the

presence of multiple graphene domains between surface contacts.



Magnetotransport and activation energies of exfoliated graphene flakes were also
investigated. The charge carrier mobilities at 240 K for a particular sample were
found to be 20, 670430 cm?(Vs) ™! for holes and 22, 770440 cm?(Vs) ™! for electrons.
These mobilities rose to 25, 6004200 cm?(Vs) ™! for holes and 25, 9004200 cm?(Vs) ™!
for electrons by 2.5 K. This observation implies that the holes experience stronger
phonon scattering than the electrons.

The activation energies for filling factors v = +2 and v = +6 were found at
several magnetic fields for the sample. The activation energies allowed for determi-
nation of the broadening of the Landau levels. The broadening of the v = 46 levels
were found to be constant as a function of magnetic field, with I'1 4 = 260 + 40 K.
The v = —2 level also showed a constant value for the broadening, I'_5 = 6204+40 K.
However, for v = +2, the activation energy approached the bare Landau level sep-
aration at high magnetic fields. This implies a zero-energy Landau level that is
narrower than the higher levels. Further to the mobility asymmetry at high tem-
peratures, the difference in broadening between the v = —2 and v = +2 sides of
the zeroth Landau level suggests that there is a form of scattering which affects the

holes more than the electrons near the Dirac point.
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