On the dynamics of coral reef fishes:
Growth, senescence and mortality

Submitted by Shay O’Farrell to the University of Exeter
as a thesis for the degree of
Doctor of Philosophy in Biological Sciences
in September 2011

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature: ...
Abstract

The present thesis deals with the related themes of mortality and growth in coral reef fishes. In the first chapter, a nine-year dataset from Bermuda is used to quantify how reef fish populations respond to the introduction of a trap-fishing ban, finding that herbivores exhibit extremely strong recovery, but that stock-recruitment relationships may be decoupled by a numerical response in a meso-predator. In the second chapter, a dataset from Bonaire is used to test the efficacy of the widely-used coefficient of natural mortality, M, in modelling a population of stoplight parrotfish (*Sparisoma viride*). As determined from simulation models, this statistical coefficient performs considerably less well than a novel mechanistic function that partitions mortality into size- and age-based processes and achieves extremely good fits to the field data. The third chapter presents a new approach to estimating growth parameters of reef fish from tagging data that exploits the disproportionate response of certain parameters to misestimates in the true age of the tagged individuals. The method works considerably better than the most widely used method when sample sizes are small, as is commonly the case in reef fish tagging studies where recapture rates tend to be low. The fourth and final chapter uses non-lethal stable isotope techniques to tease apart the invasion dynamics of Indo Pacific lionfish (*Pterois* spp.) that are currently colonising the wider Caribbean. The results show that lionfish exhibit habitat-specific ontogenetic shifts in prey selection, inflicting elevated mortality on small, bommie-dwelling fishes on forereefs but switching to seagrass-foraging invertivores as they grow. Lionfish also display ontogenetically shifting competition with native Nassau grouper (*Epinephelus striatus*), which may provide a greater barrier to invasion success on patch reefs than on fore reefs, where competitive overlap is diminished. The thesis concludes with a discussion of some lines of enquiry that could not be undertaken owing to time or data limitations, but which may hold as much interest for the reader as they do for the author.
Table of Contents

List of Figures .. 6

List of Tables .. 8

Declaration of Author Contributions .. 9

1. General Introduction .. 10

 The herbivore: *Sparisoma viride* .. 12

 The native predator: *Epinephelus striatus* .. 16

 The invader: *Pterois volitans/miles* ... 17

 References .. 18

2. Density-dependent response of coral reef herbivores and meso-predators to a fishery closure .. 22

 Abstract ... 22

 Introduction .. 23

 Methods .. 26

 Study site and survey protocol ... 26

 Data analysis .. 27

 Results ... 28

 1. Response of herbivore biomass to the trapping ban 28

 Changes in biomass by family .. 28

 Changes in biomass by species .. 29

 2. Response of herbivore body size to the trapping ban 31

 3. Response of scarid sex ratios to the trapping ban 33

 4. Response of scarid recruit abundance to changes in adult biomass 35

 5. Responses of fished and unfished meso-predators to the trapping ban 36

 Discussion .. 37

 Impacts of fishing on parrotfishes .. 37
Density-dependence in population recovery from fishing ... 39
References .. 40

3. Disentangling drivers of trait-dependent mortality: Insights from simulations of a reef fish population ... 43

Abstract ... 43
Introduction .. 44
Methods .. 46
Study Animal .. 46
Study Site and Field Data .. 47
Summary of Simulation Model ... 49
Mortality Functions Tested .. 50
 F₁: Cohort decay (constant mortality) .. 50
 F₂: Size-escape plus cohort decay (partially trait-dependent mortality) 51
 F₃: Size-escape plus senescence (coupled trait-dependent mortality) 51
Assessing Model Performance ... 52
 Size Structure ... 52
 Individual Longevity .. 52
Population Simulations .. 53
Results ... 55
Empirical Testing of Simulated Populations ... 55
 F₁: Cohort decay (constant mortality) .. 55
 F₂: Size-escape plus cohort decay (partially trait-dependent mortality) 57
 F₃: Size-escape plus senescence (coupled trait-dependent mortality) 57
Discussion .. 58
Model Performance: Simulations of Size Data .. 58
Model Performance: Simulations of Age Data .. 59
The Evolution of Senescence in Parrotfishes ... 61
Conclusions .. 62
References ... 63
4. Estimation by elimination: A simple least squares method for approximating von Bertalanffy growth parameters from tagging data

Abstract .. 67
Introduction .. 68
Methods .. 70
 Description of procedure ... 70
 Simulations .. 72
Results .. 74
Discussion ... 78
References .. 79

5. The lionfish invasion of the Caribbean: Using isotopic inference to gain trophic perspective on competitive and predatory interactions. 82

Abstract .. 82
Introduction .. 83
Methods .. 85
 Sampling of fish tissue .. 86
 Sampling of primary producers .. 87
 Sample processing .. 87
 Data analysis ... 88
Results .. 89
1. Patch reef community isotopic niche space ... 89
 Proportion of fish sources in lionfish diet ... 92
2. Lionfish and grouper isotopic niche space within and across habitat types 95
3. Lionfish isotopic niche space across a predation gradient 96
Discussion ... 98
References .. 101

6. General Discussion .. 104
 Territoriality in Sparisoma viride .. 109
 References ... 111
List of Figures

Figure 2.1 Position of Bermuda in the western Atlantic Ocean (A) and the three sampling locations on the Bermuda reef platform (B). NR, North Rock; JS, John Smith’s Bay; WB, West Blue Cut ... 26

Figure 2.2 Changes in biomass by family group over a 9 year period, using census data commencing approximately one year after the cessation of trapping ... 29

Figure 2.3 Changes in biomass by species, using census data commencing approximately one year after the cessation of trapping ... 30

Figure 2.4 Changes in mean body size of scarids and acanthurids across the study period, using data commencing approximately one year after the cessation of trapping 32

Figure 2.5 Changes in the sex ratios of five scarid species over time, expressed as percentage of males in the population ... 34

Figure 2.6 Abundance of recruits (< 5cm) of all scarid species combined, showing no consistent increase in the number of small fish found on the reefs across the nine year study period 36

Figure 2.7 Biomass of two common meso-predators on Bermudan reefs in the nine year period following the fishery closure ... 37

Figure 3.1 Mean size class structure of the Sparisoma viride population at Karpata, Bonaire, averaged across all depths and habitats ... 48

Figure 3.2 Typical life phase composition and size-at-age of individuals in a simulated population of Sparisoma viride .. 54

Figure 3.3 Surface plot of the fits produced from a range of parameter sets by the IBSM incorporating cohort decay mortality ... 55

Figure 3.4 Summarized outputs of individual-based simulation model incorporating three different mortality functions, plotted top to bottom, and parameterized with values optimized against field data .. 56

Figure 3.5 Graphic representation of the trait-dependent functions coupled in simulation F3 to calculate the probability of mortality for an individual fish as a function of its size (left) and age (right) .. 58

Figure 3.6 Empirical age frequency data of the Sparisoma viride population at Los Roques, Venezuela, reproduced from Choat et al. (2003) ... 60

Figure 4.1 Conceptual diagram of the parameter estimation process using a model fish with an arbitrary asymptotic length, \(L_\infty \), of 300 mm, a growth coefficient, \(K \), of 0.5 and a theoretical age at size zero, \(t_0 \), of 0.055 .. 71
Figure 4.2 The size-at-age parameter space represented in the simulations, where mean $L_\infty = 300$ mm (± 20 mm s.d.) and mean $K = 0.5$. ... 75

Figure 4.3 Age frequency and probability density function of the ages represented in a sample dataset after it has been subsetted to contain only fish between 100 and 250 mm FL 75

Figure 4.4 Accuracy of estimations of K (top row) and L_∞ (bottom row) produced from 100 simulations. .. 77

Figure 4.5 The five scenarios used to test the robustness of the fitting procedure to inaccuracy in the estimate of the plausible range for L_∞. ... 78

Figure 5.1 Locations of field sampling sites in Exuma Cays, Bahamas. ... 86

Figure 5.3 Tissue isotope signatures from members of two coral patch reef communities in the Bahamas. δ^{15}N axis shows enrichment in consumer tissues of the heavier nitrogen isotope as trophic energy moves upwards. δ^{13}C axis indicates variation of source carbon in primary producer tissues .. 92

Figure 5.4 Isotopic niche space of lionfish and putative prey groups, classified by taxonomic and/or functional similarity (panel a and Table 5.1) and proportional contributions of fish groups to lionfish diet (panels b and c). ... 94

Figure 5.5 Tissue δ^{13}C as a function of lionfish body size across two habitats, shallow patch reef (panel a) and deeper fore reef (panel b). ... 96

Figure 5.6 Changes in the isotopic δ-space of invasive lionfish on fore reefs across the boundary of the Exuma Cays Land and Sea Park, which contains a substantially greater biomass of large predators than surrounding non-park areas. ... 97

Figure 6.1 Schematic of the hypothesis that the presence of large predators inside the Exuma Cays Land and Sea Park may reduce lionfish foraging efficiency, impacting on investment in egg production .. 108
List of Tables

Table 2.1 Population growth models fitted to field data .. 28
Table 2.2 Total number of surveys conducted at each site in each year and (in parentheses) total survey time in minutes. .. 27
Table 2.3 Changes in biomass of two major herbivore families, plus parameter values estimated during model fitting .. 29
Table 2.4 Changes in biomass of seven common herbivore species, and parameter values estimated during model fitting. .. 31
Table 2.5 Changes in mean body size from 1991 to 1999 for seven common reef herbivores. 33
Table 2.6 Parameter values estimated for five scarids during model fitting to sex ratio data 35
Table 3.1 Parameter values for the von Bertalanffy growth function estimated from mark recapture field data, and used to calculate size-at-age by life phase in the simulation model 54
Table 4.1 Parameter estimates produced from fitting the von Bertalanffy growth function to incremental horizontal displacements of a couplet of size measurements taken at a known time interval .. 71
Table 4.2 Ranges of L_∞ used by the elimination method simulations to assess whether the fitted values of L_∞ returned for a given horizontal displacement are considered plausible. 73
Table 5.1 Taxa and number of samples of tissue items contained in the stable isotope dataset 90