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ABSTRACT 

 

 The study of flaked mammoth bone tools from the Late Pleistocene is a topic 

that has inspired great interest in the archaeological community for the last 40 years.  

The interpretation of evidence of culturally modified mammoth bone tools has varied 

widely across both time and space.  At different times and in different places, flaked 

bone toolmaking has been interpreted across the geographic expanse of the North 

American continent, from Beringia to central Mexico, and through a vast timeframe, 

from 120,000 years ago, until as recently as 10,000 years ago.   

The study of these purported flaked bone tool assemblages has taken many 

forms, and has involved efforts to understand broken mammoth bone assemblages by 

drawing analogies to stone toolmaking strategies, by understanding the multitude of 

taphonomic processes that affect archaeological bone assemblages, and by attempting to 

differentiate the effects of natural and cultural processes. 

This thesis reports on a series of experiments designed to lend new actualistic 

evidence to the debate surrounding flaked bone toolmaking.  These experiments include 

investigations into the effect of different environmental conditions on the degradation of 

bones, the flaking characteristics of both fresh and frozen bones, and the effect of 

rockfall as a taphonomic process on bones exposed to different real-world 

environments. 

These experiments, paired with a body of previous research, provide a basis in 

actualistic and taphonomic research that allows for the reassessment of archaeological 

and paleontological broken mammoth bone assemblages.  This thesis includes the 

reassessment and detailed taphonomic analysis of four mammoth bone assemblages 

relevant to understanding cultural bone modification and the effect of non-cultural 

taphonomic processes.  New interpretations of zooarchaeological assemblages from 



L.	
  P.	
  Karr	
   	
   	
   	
   	
   	
   	
   	
  3	
  

Lange/Ferguson (South Dakota, USA), Owl Cave (Idaho, USA), Inglewood (Maryland, 

USA), and Kent’s Cavern (Devon, UK) reveal new data that revise the understanding of 

the nature of these assemblages, and the effect of both natural and cultural bone 

fracturing agencies. 
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