A Journey Through the Dynamical World of Coupled Laser Oscillators

A thesis submitted to the University of Exeter by Nicholas Blackbeard

First Supervisor: Dr Sebastian Wieczorek Second Supervisor: Dr Hartmut Erzgräber

Image on front cover: Stability diagram for three coupled laser oscillators. Specifically, it is an expanded view from Fig. 4.9(b)-(c) with a different colour scale; yellow-red = periodic intensity fluctuations, and white-black = chaotic intensity fluctuations. This picture received a prize for the Engineering, Mathematics, and Physical Sciences Image Competition.

A Journey Through the Dynamical World of Coupled Laser Oscillators

Submitted by Nicholas Blackbeard, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Mathematics, January 2012.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified, and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature:

Abstract

The focus of this thesis is the dynamical behaviour of linear arrays of laser oscillators with nearest-neighbour coupling. In particular, we study how laser dynamics are influenced by laser-coupling strength, κ , the natural frequencies of the uncoupled lasers, $\tilde{\Omega}_i$, and the coupling between the magnitude and phase of each lasers electric field, α . Equivariant bifurcation analysis, combined with Lyapunov exponent calculations, is used to study different aspects of the laser dynamics. Firstly, codimension-one and -two bifurcations of relative equilibria determine the laser coupling conditions required to achieve stable phase locking. Furthermore, we find that global bifurcations and their associated infinite cascades of local bifurcations are responsible for interesting locking-unlocking transitions. Secondly, for large α , vast regions of the parameter space are found to support chaotic dynamics. We explain this phenomenon through simulations of α -induced stretching-and-folding of the phase space that is responsible for the creation of horseshoes. A comparison between the results of a simple *coupled-laser* model and a more accurate composite-cavity mode model reveals a good agreement, which further supports the use of the simpler model to study coupling-induced instabilities in laser arrays. Finally, synchronisation properties of the laser array are studied. Laser coupling conditions are derived that guarantee the existence of synchronised solutions where all the lasers emit light with the same frequency and intensity. Analytical stability conditions are obtained for two special cases of such laser synchronisation: (i) where all the lasers oscillate in-phase with each other and (ii) where each laser oscillates in anti-phase with its direct neighbours. Transitions from complete synchronisation (where all the lasers synchronise) to optical turbulence (where no lasers synchronise and each laser is chaotic in time) are studied and explained through symmetry breaking bifurcations. Lastly, the effect of increasing the number of lasers in the array is discussed in relation to persistent optical turbulence.

Acknowledgements

First and foremost I would like to thank my supervisors and friends, Sebastian and Hartmut, for their never-ending patience, support, and of course, much needed constructive criticism. I am extremely grateful that, no matter how busy they were, they could always find time for me, whether to provide a solution, point me in the right direction, admire some mathematics, or just have a chat. Without their unwavering guidance through the beautiful and complex world of dynamical systems I could never have finished this thesis. In addition, I would like to thank my examiners, Prof. Stuart Townley and Prof. Jonathan Dawes, who had the arduous task of reading this thesis in its entirety. I greatly appreciate their feedback and advice, and feel that the thesis is all the better for it.

Next I would like to thank everyone from the Mathematics department at Exeter who have contributed to the truly wonderful experience I have had overall. I am grateful to the Dynamical Systems community who always provided stimulating new subjects to discuss, which was at times hard work, but always very rewarding. I also owe half my sanity to Mark and Hartmut for our regular, always memorable, excursions to some of the best playgrounds in the UK, including the cliffs of the south-west, the rolling expanses of Dartmoor, and the rugged peaks of the Lake District and Snowdonia. Another welcome source of distraction came from playing squash with Özgür, Hartmut, Özkan, Sam, Jack, Richard and Amrita.

The other half of my sanity I owe to my dearest friends and climbing partners. There have been many over the years, but I would like to mention a few in particular: James, Tom, Gemma, Eva and Dan. Bonds built when attached to the end of a rope tend to be everlasting and I believe this to be true for all those mentioned. One in particular I have become rather fond of. This is my partner, Gemma, whom I am indebted to. She has been a constant source of happiness, particularly when times have been difficult. For this I am eternally grateful.

Finally, I would like to thank my Mum, Dad, sister, and brother for always being there, the life advice and support that they offer, and their unconditional love.

I would like dedicate this work to Guks, whose warm and positive outlook on life will be greatly missed.

Contents

Ι	In	trodu	ction and Background	17
1	Mo	tivatio	n and Thesis Outline	19
	1.1	Outlir	ne of Thesis	22
2	ΑI	Dynam	ical Systems Approach for Laser Systems	25
	2.1	A Soli	tary Laser	25
		2.1.1	Rate Equations For a Solitary Laser	26
		2.1.2	Dynamics of a Solitary Laser	27
		2.1.3	Shear and the α -parameter	28
	2.2	Coupl	ed Lasers	30
		2.2.1	Different Modelling Approaches	31
		2.2.2	Coupled-Laser vs. Composite-Cavity Mode Approach	34
	2.3	Tools	and Techniques from Dynamical Systems Theory	35
		2.3.1	Bifurcation Theory	35
		2.3.2	Symmetries and Equivariance	42
		2.3.3	Numerical Continuation	42
		2.3.4	Lyapunov Exponents	44
		2.3.5	Assembling a Puzzle	47
II C	S oup	hear-l led L	Induced Bifurcations and Chaos in Models of Threasers	e 49
3	Inti	roduct	ion for Part II	51
4	Cοι	ıpled-I	Laser Model	53
	4.1	Symm	etry Properties	55
	4.2	Phase	Locking	58
	4.3	Overv	iew of the Dynamics in the Coupled-Laser Model	58
	4.4	Local	Bifurcations and Locking	60

		4.4.1	Bifurcations of Codimensions One and Two	61
		4.4.2	Bifurcations of Codimension Higher-Than-Two	65
	4.5	Globa	l Bifurcations and Locking-Unlocking Transitions	69
		4.5.1	Negative Δ and Homoclinic Bifurcations $\ldots \ldots \ldots \ldots \ldots \ldots$	71
		4.5.2	Positive Δ and Heteroclinic Bifurcations $\ldots \ldots \ldots \ldots \ldots \ldots$	74
	4.6	Coupl	ing-Induced Chaotic Attractors	77
	4.7	Findir	ng Chaos in Larger Arrays of Coupled Laser Oscillators	77
	4.8	Shear-	Induced Chaos	80
5	Cor	nposite	e-Cavity Mode Model	85
	5.1	Passiv	e Composite-Cavity Modes	88
	5.2	Symm	etry Properties	90
	5.3	Phase	Locking	91
	5.4	Dynar	nics of the Composite-Cavity Mode Model	92
6	Cor	nclusio	n for Part II	97

III From Locking to Optical Turbulence in the Coupled-Laser Model 99

7	Introduction for Part III		101
8	Coupled-Laser Model for M Laser Oscillators		
	8.1	Coupled Oscillator Representation	104
	8.2	Motivating Example	105
	8.3	Definition of Laser Synchronisation	105
	8.4	Symmetries and Their Role in Synchronisation	107
9	Complete Intensity Synchronisation		
	9.1	Existence of Synchronised Solutions and Manifolds	109
	9.2	Stability of Special Synchronised Solutions	112
	9.3	Summary of Analytical Results	116
10	Trai	nsitions From Complete Synchronisation to Optical Turbulence	119
	10.1	An Array of Three Coupled Laser Oscillators	120
		10.1.1 Bifurcations of Non-Chaotic Attractors	121
		10.1.2 Bifurcations of Chaotic Attractors Along the 'Blurred' Synchroni-	
		sation Boundaries	124
	10.2	Larger Arrays of Coupled Laser Oscillators	129

	10.3	Properties of Optical Turbulence	131
11	Con	clusion for Part III	133
IV	7 0	Overall Summary	135
Aj	ppen	dices	140
\mathbf{A}	Phy	sical Model of a Solitary laser	141
	A.1	Rate Equations of Single-Mode Laser	142
	A.2	Nondimensionalisation	144
в	Con	nputation of Lyapunov Exponents in the M Coupled-Laser Model	147
	B.1	Tangential and Transverse Lyapunov Exponents for Attractors Within the	
		Invariant Synchronisation Manifold $Fix(\mathbb{Z}_2)$	148
		B.1.1 Tangential Lyapunov Exponents	149
		B.1.2 Transverse Lyapunov Exponents	149
	B.2	Convergence of Lyapunov Exponent Calculations	150
С	Nun	nerical Continuation Code	153
	C.1	A Worked Example for Three Coupled Lasers	153
	C.2	Verifying the Accuracy of AUTO's Results	156
	C.3	Equations-File	156
	C.4	Constants-File	159

List of Figures

1.1	The first laser, a very small laser, and a very large laser	19
1.2	Simplified schematic of a semiconductor laser.	20
2.1	One-parameter bifurcation diagram for a solitary laser	28
2.2	Isochrons of a solitary laser with different values of α	29
2.3	A sketch illustrating the relationship between the α -parameter and shear.	29
2.4	A sketch of a linear array of coupled lasers	31
2.5	A sketch showing a component of the first spatial mode for the coupled-	
	laser and the composite-cavity mode approach.	35
2.6	Saddle-node bifurcation.	36
2.7	Saddle-node homoclinic bifurcation	37
2.8	Bogdanov–Takens bifurcation	39
2.9	The formation of a homoclinic orbit to a saddle-focus equilibrium	41
2.10	A sketch illustrating how Lyapunov exponents quantify local properties	
	associated with invariant sets of a systems phase space	45
4.1	Lyapunov diagrams for the S ¹ -reduced system (4.2) and (4.10) in the (κ, Δ)	
	parameter plane for $\alpha = 0$ and $\alpha = 1. \ldots \ldots \ldots \ldots \ldots \ldots$	59
4.2	Two-parameter bifurcation diagrams in the (κ, Δ) plane for different values	
	of α .	62
4.3	Continuation of Fig. 4.2.	63
4.4	An expanded view around the codimension-three triple-Hopf bifurcation	
	point (HH_{123}^*)	66
4.5	An expanded view around the codimension-three saddle-node Hopf bifur-	
	cation point (SH)	66
4.6	An expanded view around the codimension-two-plus-one pitchfork-Hopf	
	bifurcation point (PH)	67
4.7	An expanded view around the codimension-two-plus-one double Bogdanov– $$	
	Takens bifurcation point (BT^*)	68
4.8	The disappearance of a conjugate locking region	69

4.9	Bifurcation and Lyapunov diagrams in the (κ, Δ) parameter plane for $\alpha = 2$.	70
4.10	One-parameter bifurcation diagram showing the period, T , of limit cycles	
	vs. Δ on approaching the homoclinic bifurcation.	71
4.11	An expanded view of the (κ, Δ) parameter plane from Fig. 4.9 around the	
	non-central saddle-node homoclinic bifurcation point (NC)	72
4.12	One-parameter bifurcation diagram showing the period, T , of limit cycles	
	vs. Δ on approaching the heteroclinic bifurcation	74
4.13	An expanded view of the (κ, Δ) parameter plane from Fig. 4.9 around the	
	relative Shilnikov–Hopf point (ShH*)	75
4.14	Examples of different chaotic attractors for the coupled-laser Eqs. (4.2)	
	and (4.10) with $\alpha = 2$.	78
4.15	Lyapunov exponent diagrams in the $(\kappa, \Delta = \Omega_{in} - \Omega_{out})$ plane illustrating	
	attractors that are chaotic (yellow-red) and those that are not (black) for	
	five and ten lasers with $\alpha = 0$ and 2	79
4.16	Time evolution of sets of initial conditions showing the creation of horse-	
	shoes in the phase space of a suitably kicked oscillator with no shear. $\ .$.	81
4.17	Snapshots of the kicked solitary-laser system illustrating α -induced stretch-	
	and-fold action in the laser phase space.	82
5.1	The first three spatial modes and the mode frequencies for a fixed laser	
0.1	distance. d. with different values of the laser width difference. Δw .	88
5.2	Example modal integrals and their dependence on the laser distance, d.	
0.1	and the laser width difference, Δw .	89
5.3	Two-parameter bifurcation diagrams in the $(\kappa, \Delta w)$ plane for the composite-	
	cavity mode model (5.3) – (5.4)	93
5.4	Superposition of the Lyapunov diagram and bifurcation diagram for the	
	composite-cavity mode model (5.3)–(5.4) with $\alpha = 2$.	94
8.1	Contrasting dynamics in an array of 50 lasers	106
9.1	Stability diagrams for complete intensity synchronisation	117
10.1	The (κ, Δ) parameter plane for $\alpha = 2$ partitioned into regions according	
	to the degree of synchronisation of the corresponding attractors	121
10.2	Two-parameter Lyapunov exponent diagrams in the (κ, Δ) plane	123
10.3	A schematic showing the change in dynamics as the system approaches	
	and goes through a blowout bifurcation.	124
10.4	Riddled basin of attraction for $(\alpha, \kappa, \Delta) = (2, 5.642, 6.44)$.	126
10.5	On-off intermittency for three coupled laser oscillators	127

10.6	In-out intermittency for three coupled laser oscillators	128
10.7	The (κ, Δ) plane with $\alpha = 2$ for four and five coupled laser oscillators	
	partitioned into regions according to degree of synchronisation and op-	
	tical turbulence, and attractor types quantified by their tangential and	
	transversal Lyapunov exponents.	129
10.8	Properties of optical turbulence	130
D 4		
В.1	Convergence of Lyapunov exponent calculations: non-chaotic attractor .	151
B.2	Convergence of Lyapunov exponent calculations: chaotic attractor	152
C.1	Bifurcation analysis using AUTO	155

List of Tables

2.1	The labelling, colour coding, and shading of the bifurcation diagrams	38
2.2	The colour coding used in Lyapunov diagrams for classification of different	
	attractor types.	46
8.1	Dynamical properties associated with the fixed-point subspace	108
10.1	The colour coding for degree of synchronisation and optical turbulence	
	diagrams	120
A.1	Laser parameters and their values	144