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Image on front cover: Stability diagram for three coupled laser oscillators. Specifically,
it is an expanded view from Fig. 4.9(b)–(c) with a different colour scale; yellow-red =
periodic intensity fluctuations, and white-black = chaotic intensity fluctuations. This
picture received a prize for the Engineering, Mathematics, and Physical Sciences Image
Competition.



A Journey Through the Dynamical World of

Coupled Laser Oscillators

Submitted by Nicholas Blackbeard, to the University of Exeter as a thesis

for the degree of Doctor of Philosophy in Mathematics, January 2012.

This thesis is available for Library use on the understanding that it is

copyright material and that no quotation from the thesis may be

published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has

been identified, and that no material has previously been submitted and

approved for the award of a degree by this or any other University.

Signature: ........................................



Abstract

The focus of this thesis is the dynamical behaviour of linear arrays of laser oscillators

with nearest-neighbour coupling. In particular, we study how laser dynamics are

influenced by laser-coupling strength, κ, the natural frequencies of the uncoupled lasers,

Ω̃j , and the coupling between the magnitude and phase of each lasers electric field, α.

Equivariant bifurcation analysis, combined with Lyapunov exponent calculations, is

used to study different aspects of the laser dynamics. Firstly, codimension-one and -two

bifurcations of relative equilibria determine the laser coupling conditions required to

achieve stable phase locking. Furthermore, we find that global bifurcations and their

associated infinite cascades of local bifurcations are responsible for interesting

locking-unlocking transitions. Secondly, for large α, vast regions of the parameter space

are found to support chaotic dynamics. We explain this phenomenon through

simulations of α-induced stretching-and-folding of the phase space that is responsible for

the creation of horseshoes. A comparison between the results of a simple coupled-laser

model and a more accurate composite-cavity mode model reveals a good agreement,

which further supports the use of the simpler model to study coupling-induced

instabilities in laser arrays. Finally, synchronisation properties of the laser array are

studied. Laser coupling conditions are derived that guarantee the existence of

synchronised solutions where all the lasers emit light with the same frequency and

intensity. Analytical stability conditions are obtained for two special cases of such laser

synchronisation: (i) where all the lasers oscillate in-phase with each other and (ii) where

each laser oscillates in anti-phase with its direct neighbours. Transitions from complete

synchronisation (where all the lasers synchronise) to optical turbulence (where no lasers

synchronise and each laser is chaotic in time) are studied and explained through

symmetry breaking bifurcations. Lastly, the effect of increasing the number of lasers in

the array is discussed in relation to persistent optical turbulence.
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