Illuminating Flatland
Nonlinear and Nonequilibrium Optical Properties of Graphene

Peter John Hale
School of Physics
University of Exeter

A thesis submitted for the degree of
Doctor of Philosophy in Physics

2012
Illuminating Flatland
Nonlinear and Nonequilibrium Optical Properties of Graphene

Submitted by Peter John Hale to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics
2012

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Peter John Hale
2012
Abstract

In this thesis the nonlinear and nonequilibrium properties of graphene are experimentally investigated using degenerate four–wave mixing and time–resolved pump–probe spectroscopy. High quality exfoliated natural graphite and large area epitaxial graphene on silicon carbide are investigated with femtosecond and picosecond ultrafast pulses in the near–infrared. A bespoke technique for suspending exfoliated graphene is also presented.

In Chapter 3, the third–order nonlinear susceptibility of graphene is measured for the first time and shows a remarkably large response. Degenerate four–wave mixing at near–infrared wavelengths demonstrates an almost dispersionless emission over a broad spectral range. Quantum kinetic theory is employed to estimate the magnitude of the response and is in good agreement with the experimental data. The large susceptibility enables high contrast imaging, with a monolayer flake contrast of the order 10^7 times higher than for standard reflection imaging.

The degenerate four–wave mixing technique is utilised in Chapter 4 to measure the interfacial carbon signal of epitaxially grown graphene on silicon carbide. Comparable third–order signal from the silicon carbide bulk prevents true interface imaging. Excluding the third–order emission from detection by elongating the emission to outside a band–pass filter range allows for pure interfacial luminescence imaging. Features within the two growth faces are investigated with Raman spectroscopy.

Nonlinear measurements are an increasingly popular tool for investigating fundamental properties of graphene. Chapter 5 investigates the influence of ultrafast pulses on the nonlinear response of graphene. High instantaneous intensities at the sample are shown to reduce the nonlinear emission by a factor or two. Comparing the Raman peak positions, widths and intensities before and after irradiation points to a huge doping of the samples, of the order 500 meV.

In Chapter 6 the relaxation of photoexcited carriers is measured via time–resolved
pump–probe spectroscopy, where a layer dependence of hot phonon decay is observed. Single layer flakes are observed to relax faster than bilayers and trilayers, with an asymptote reached at approximately four layers. Removing the substrate and measuring fully suspended samples reveals the same trend, suggesting that substrate interactions are not the cause of the enhanced decay. The decay mechanism is therefore intrinsic to graphene, perhaps due to coupling to out–of–plane, flexural phonons. The thickness dependence of epitaxial graphene on silicon carbide is compared to that of exfoliated flakes where the layer dependence is not observed. Phonon relaxation times, however, are in good agreement.

Predictions for future investigations into this novel material based on the works here are suggested in Chapter 7. Preliminary pump–probe measurements at high carrier concentrations are an example of such progress, which will offer an insight into further decay mechanisms in graphene.
Contents

Abstract i

Acknowledgements iii

Publications vi

Contents vii

List of Figures x

1 Background Theory 1
 1.1 Introduction ... 1
 1.2 Tight Binding Model 3
 1.2.1 Low Energy Electronic Dispersion 7
 1.3 Phonon Dispersion Relation 8
 1.4 Optics .. 9
 1.4.1 Nonlinear Optics 9
 1.4.2 Visibility ... 11
 1.4.3 Raman Spectroscopy 16

2 Experimental Techniques 23
 2.1 Sample Fabrication 23
 2.1.1 Mechanical Exfoliation of Natural Graphite 23
 2.1.2 Large Area Growth Techniques 25
 2.1.3 Suspended Graphene 27
 2.1.3.1 Optical Lithography 27
CONTENTS

2.1.3.2 Wet Chemical Etching ... 29
2.1.3.3 Reactive Ion Etching ... 31
2.1.4 Contacted Samples .. 33
 2.1.4.1 Electrical Measurements 36
 2.1.4.2 Electrolyte Gating ... 38
2.2 Ultrafast Optical Measurements 39
 2.2.1 System Operation ... 40
 2.2.1.1 Levante Optical Parametric Oscillator 40
 2.2.1.2 Mira 900D .. 41
 2.2.1.3 Legend Elite ... 41
 2.2.2 Degenerate Four-Wave Mixing Experimental Technique 42
 2.2.2.1 Spectrometer .. 44
 2.2.3 Time-Resolved Pump-Probe Measurement Technique 44
 2.2.3.1 Pump-Probe Measurements on Graphitised Epitaxial SiC 48
2.3 Raman Spectroscopy .. 51

3 Coherent Nonlinear Optical Response of Graphene 52
 3.1 Introduction .. 52
 3.2 Nonlinear Measurement .. 53
 3.3 Emission Over Large Wavelength Range 54
 3.4 Calculating the Magnitude of $\chi^{(3)}$ in Graphene 59
 3.5 Graphene and Few-Layer Graphene on Dielectric Substrates 64
 3.6 Summary .. 68

4 Imaging Epitaxial Graphene on Silicon Carbide 70
 4.1 Introduction .. 70
 4.2 Z-Scan profiles .. 70
 4.3 Signal Intensity Variation Measured by Raman Spectroscopy 75
 4.4 Summary .. 77

5 Modification of Graphene via Ultrafast Pulses 78
 5.1 Introduction .. 78
 5.2 Loss of Four-Wave Mixing Signal at High Fluences 78
 5.3 Monitoring Modification via Raman Spectroscopy 81
CONTENTS

5.4 Summary ... 84

6 Hot Phonon Decay in Supported and Suspended Exfoliated Graphene ... 85
 6.1 Introduction ... 85
 6.2 Method .. 86
 6.2.1 Sample Fabrication 88
 6.3 Coupled Rate Equation Model 89
 6.4 Pump-Probe Spectroscopy for Few-Layer Supported Graphene ... 93
 6.5 Pump-Probe Spectroscopy for Few-Layer Suspended Graphene .. 98
 6.6 Pump-Probe Measurements on Graphitised Epitaxial SiC .. 103
 6.7 Summary ... 106

7 Conclusions and Further Work ... 108
 7.1 Pump-Probe Spectroscopy at High Carrier Concentrations .. 109

A Subtraction of Bulk SiC Pump–Probe Signal ... 113

References ... 117