Long-term Abnormal Stock Performance: UK evidence

Yan Huang

Submitted by Yan Huang to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Finance in May 2012.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from this thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature:....................Yan Huang.........................
Acknowledgement

Upon the accomplishment of this thesis, which marks the end of my journey in obtaining my PhD, I have mixed feelings. The most overwhelming sense among them is my gratitude towards the people who have kept encouraging and supporting me over the last few years.

I am sincerely thankful to Professor Alan Gregory, who not only nurtured and guided me as a student, but also provided me with invaluable help and advice in my research work. Without his support and help, this thesis would not have been possible. My thanks also go out to Professor Richard Harris and Dr Rajesh Tharyan for their valuable suggestions, constructive criticisms and extensive discussions on my work.

I feel heavily indebted to my parents. They have invested so much in me. Although they are physically on the opposite side of the globe, they have accompanied and encouraged me with their love and care to walk through every step of this journey.

I am also thankful to Celeste and Vincent Handford, who look after me like parents. I would not enjoy my life in the UK as I do now without their love and support.

My appreciation also goes to Dr Jane Shen. Studying the PhD can be a lonely experience, her friendship with a great deal of support and encouragement has been very important to me.

Finally, I would like to share my accomplishment with Xuefeng Sun, who has been incredibly supportive and helpful since the beginning of this journey.
Abstract

One of the most controversial issues for long-term stock performance is whether the presence of anomalies is against the efficient market hypothesis. The methodologies to measure abnormal returns applied in the long-run event studies are questioned for their reliability and specification. This thesis compares three major methodologies via a simulation process based on the UK stock market over a period of 1982 to 2008 with investment horizons of one, three and five years. Specifically, the methodologies that are compared are the event-time methods based on models (Chapter 3), the event-time methods based on reference portfolios (Chapter 4), and the calendar-time methods (Chapter 5).

Chapter 3 covers the event-time approach based on the following models which are used to estimate normal stock returns: the market-adjusted model, the market model, the capital asset pricing model, the Fama-French three-factor model and the Carhart four-factor model. The measurement of CARs yields misspecification with higher rejection rates of the null hypothesis of zero abnormal returns. Although the application of standard errors estimated from the test period improves the misspecification, CARs still yield misspecified test statistics. When using BHARs, well-specified results are achieved when applying the market-adjusted model, capital asset pricing model and Fama-French three-factor model over all investment horizons. It is important to note that the market model is severely misspecified with the highest rejection rates under both measurements.

The empirical results from simulations of event-time methods based on reference portfolios in Chapter 4 indicate that the application of BHARs in conjunction with p-value from pseudoportfolios is appropriate for application in the context of long-run event studies. Furthermore, the control firm approach together with student t-test statistics is proved to yield well-specified test statistics in both random and non-random samples. Firms in reference portfolios and control firms are selected on the basis of size, BTM or both. However, in terms of power of test, these two approaches have the least power whereas the skewness-adjusted
test and bootstrapped skewness-adjusted test have the highest power. It is worth noting that when the non-random samples are examined, the benchmark portfolio or control firm needs to share at least one characteristic with the event firm.

The calendar-time approach is suggested in the literature to overcome potential issues with event-time approaches like overlapping returns and calendar month clustering. Chapter 5 suggests that both three-factor and four-factor models present significant overrejections of the null hypothesis of zero abnormal returns under an equally-weighted scheme. Even for stocks under a value-weighted scheme, the rejection rate for small firms shows overrejection. This indicates the small size effect is more prevalent in the UK stock market than in the US and the calendar-time approach cannot resolve this issue. Compared with the three-factor model, the four-factor model, despite its higher explanatory power, improves the results under a value-weighted scheme. The ordinary least squares technique in the regression produces the smallest rejection rates compared with weighted least squares, sandwich variance estimators and generalized weighted least squares. The mean monthly calendar time returns, combining the reference portfolios and calendar time, show similar results to the event-time approach based on reference portfolios. The weighting scheme plays an insignificant role in this approach.

The empirical results suggest the following methods are appropriately applied to detect the long-term abnormal stock performance. When the event-time approach is applied based on models, although the measurement of BHARs together with the market-adjusted model, capital asset pricing model and Fama-French three-factor model generate well-specified results, the test statistics are not reliable because BHARs show severe positively skewed and leptokurtic distribution. Moreover, the reference portfolios in conjunction with p-value from pseudoportfolios and the control firm approach with student t test in the event-time approach are advocated although with lower power of test. When it comes to the calendar-time approach, the three-factor model under OLS together with sandwich variance estimators using the value-weighted scheme and the mean monthly calendar-time abnormal returns under equal weights are proved to be the most appropriate methods.
Table of Content

List of Figures and Tables

<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: Introduction</td>
</tr>
<tr>
<td>1.1 Background on abnormal performance</td>
</tr>
<tr>
<td>1.2 Two popular approaches in event studies</td>
</tr>
<tr>
<td>1.2.1 Event-time approach</td>
</tr>
<tr>
<td>1.2.2 Calendar-time approach</td>
</tr>
<tr>
<td>1.3 Motivation and contribution</td>
</tr>
<tr>
<td>1.4 Structure of the thesis</td>
</tr>
<tr>
<td>Chapter 2 Literature Review</td>
</tr>
<tr>
<td>2.1 Introduction</td>
</tr>
<tr>
<td>2.2 Evidence of abnormal returns in the long-run event studies</td>
</tr>
<tr>
<td>2.2.1 Initial Public Offerings (IPOs)</td>
</tr>
<tr>
<td>2.2.2 Seasoned Equity Offerings (SEOs)</td>
</tr>
<tr>
<td>2.2.3 Mergers and Acquisitions</td>
</tr>
<tr>
<td>2.3 Event studies</td>
</tr>
<tr>
<td>2.3.1 Background of event studies</td>
</tr>
<tr>
<td>2.3.2 What is a normal return?</td>
</tr>
<tr>
<td>2.3.2.1 Constant-mean-return model</td>
</tr>
<tr>
<td>2.3.2.2 Market model</td>
</tr>
<tr>
<td>2.3.2.3 Capital asset pricing model (CAPM) and Arbitrage pricing model (APT)</td>
</tr>
<tr>
<td>2.3.2.4 Multifactor models: The Fama-French three-factor model and Carhart four-factor model</td>
</tr>
<tr>
<td>2.3.2.5 Reference portfolios</td>
</tr>
<tr>
<td>2.3.2.6 Control-firm approach</td>
</tr>
<tr>
<td>2.3.3 Measurement of abnormal returns</td>
</tr>
<tr>
<td>2.3.3.1 Event-time approach: Cumulative abnormal returns vs. Buy-and-hold abnormal returns</td>
</tr>
<tr>
<td>2.3.3.2 Calendar-time approach: Average abnormal returns</td>
</tr>
<tr>
<td>2.3.4 Test statistics</td>
</tr>
<tr>
<td>2.3.4.1 Parametric tests</td>
</tr>
<tr>
<td>2.3.4.2 Non-parametric tests</td>
</tr>
</tbody>
</table>
Chapter 3 Event-time approach: Simulation based on models

3.1 Research questions and hypotheses

3.2 Data

3.3 Research methodology

3.3.1 Models

3.3.2 Statistical inferences

3.3.3 Simulation process

3.4 Simulation on random samples

3.4.1 Cumulative abnormal returns (CARs)

3.4.2 Buy-and-hold returns (BHARs)

3.4.2.1 Power of test in BHARs

3.5 Simulation on non-random samples

3.5.1 Large/Small size

3.5.2 High/Low book-to-market ratio (BTM)

3.6 Causes of misspecification

3.6.1 Distribution of abnormal returns

3.6.2 Sample selection bias

3.7 Summary

Figures and Tables of Chapter 3

Chapter 4: Event-time approach: Simulation based on reference portfolios
4.3.2 Statistical inferences ... 157
4.3.3 Simulation process ... 161

4.4 Simulation on random samples ... 162
 4.4.1 Cumulative Abnormal Returns (CARs) ... 162
 4.4.2 Buy-and-hold Abnormal Returns (BHARs) ... 163

4.5 Simulation on non-random samples .. 165
 4.5.1 Large/Small size ... 165
 4.5.2 High/Low book-to-market ratio (BTM) .. 166
 4.5.3 Industry clustering .. 167

4.6 Cross-sectional dependence of returns ... 168
 4.6.1 Overlapping returns .. 168
 4.6.2 Calendar clustering ... 169

4.7 Summary ... 170

Figures and Tables of Chapter 4 ... 173

Chapter 5: Calendar-time approach .. 205

5.1 Research questions and hypotheses .. 205
5.2 Data .. 206
5.3 Research methodology ... 206
 5.3.1 Models and statistical inferences ... 206
 5.3.1.1 Fama-French three-factor model .. 206
 5.3.1.2 Carhart four-factor model .. 207
 5.3.1.3 Mean Monthly Calendar-Time Abnormal Returns 207
 5.3.1.4 Techniques of regression ... 208
 5.3.2 Simulation process .. 209
 5.3.3 Power of test .. 210

5.4 Conventional calendar-time approach .. 211
 5.4.1 Simulation on random samples .. 211
 5.4.1.1 Equally-weighted portfolios .. 211
 5.4.1.2 Value-weighted portfolios .. 217
 5.4.2 Simulation on non-random samples ... 222
 5.4.2.1 Large/Small size .. 222
 5.4.2.2 High/Low book-to-market ratio (BTM) .. 226
 5.4.2.3 Industry clustering .. 228
 5.4.3 Cross-sectional dependence of returns .. 229
5.4.3.1 Calendar time clustering ... 229
5.4.3.2 Overlapping returns .. 230

5.5 Mean Monthly Calendar-Time (MMAR) ... 231
 5.5.1 Simulation on random samples ... 231
 5.5.2 Simulation on non-random samples ... 235
 5.5.2.1 Large/Small size ... 235
 5.5.2.2 High/Low book-to-market ratio (BTM) 237

5.6 Summary ... 238
Figures and Tables of Chapter 5 ... 241

Chapter 6 Conclusions .. 346
 6.1 Conclusion: Event-time approach based on models 348
 6.2 Conclusion: Event-time approach based on reference portfolios 351
 6.3 Conclusion: Calendar-time approach ... 354
 6.4 Limitations and Suggestions for future research 357
 6.5 Implications for the finance industry ... 359

Bibliography .. 361