Investigating Naturally Occurring 3-Dimensional Photonic Crystals

Caroline Pouya
School of Physics
University of Exeter

A thesis submitted for the degree of
Doctor of Philosophy
June 2012
Investigating Naturally Occurring 3-Dimensional Photonic Crystals

Submitted by Caroline Pouya to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics
June 2012

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Caroline Pouya
2012
Acknowledgements

It has been a great pleasure working in the Electromagnetic Materials Group at The University of Exeter over the past three and a half years. There are a lot of people who have made it enjoyable and a great learning experience that I would like to acknowledge and thank.

Firstly, my supervisor Pete. Thank you for being a great supervisor! Your passion for the subject is inspirational and infectious and I have really enjoyed working with you. I have really appreciated your encouragement throughout, particularly when it comes to presentations - I really enjoy giving them and your encouragement has definitely been a major factor in this! Presenting in our weekly group meetings definitely helped with this too. Thanks to all those who attended for the useful group meeting discussions, in particular Al Hibbins and Euan. Also our group leaders, Roy and Bill. Both your passions for physics and your welcoming personalities help make the group a cohesive and enjoyable group to work in.

I would also like to thank the people I have had the opportunity to collaborate with over the years. Mathias and James from Harvard University, who I have recently collaborated with and helped make the rubber gyroid, and Doekele, Bodo and Hein from the University of Groningen. Your hospitality, friendship and help with equipment has been greatly appreciated. The trips to the beautiful Netherlands have also been a wonderful experience! It has been great to meet you all!

Chris Forrest, there is no computer crisis you can’t fix! Nick Cole, thank you for being patient with my designs (plural) of the sample compression device. Sharon, Chris Burrows, George and Andy, who helped train me in the vital and wide-ranging world of microscopy - thank you for your time! Ciaran, your sunny personality and your wave and smile was always appreciated! Ian, thanks for occasionally popping down to the basement to put a smile on the faces of everyone. There is a reason why we have yet to sample bacon cupcakes. Tomasz, thanks for introducing me to the world of FEM by means of Comsol. Matt Lockyear, you are a unique
person. Thanks for your help using HFSS and also for the occasional spot of constructive fashion advice/telling me how much you disliked my shoes. Helen, Biggy, Lizzy. The old G31’ers. You are great and are always so happy and energetic! Thanks for sharing the VNA and microwave kit with me! Nina, Celia and Mel, I always enjoyed your company, particularly in times of stress! Tim, a fellow member of natural photonics. Your ‘phobia’ of sandwiches is still a mystery to me. Pete and Sam, you are two of the most energetic people in the building and definitely help to keep up the positive atmosphere!

Those who had the joy of working in the basement. Parsons, it was a pleasure to know you. Never a dull moment with you around! Tom, even when the basement seemed to be falling down, you made us laugh. Thanks for introducing me to Solidworks and also the book by Wood, comparing the differences between animals and vegetables. Matt ‘Matlab’ Nixon, I always enjoy discussions with you... and Bob. The conferences and physics related visits we’ve been on have been great. Steve, the travelling and conferences wouldn’t have been the same without you! The topical discussions that always seemed to manifest, particularly with you and Alfie, were always so interesting... and entertaining. Alfie, your sense of humour, inquisitive mind and fun personality brings a great energy to the basement. It has been great to go on the many physics related travels with you, and yes, you and Chris are sometimes scarily alike - not always, but sometimes. Christopher, of course there was the time you accidentally threw something at me and compared me to Jupiter... Simon side-stepping to his left, music, something about ‘rad’ and it’s been a pleasure! Ed, it has been great sitting opposite you. I always enjoyed your ‘obscure or old lyrics’ greeting in the morning. Particularly on a Friday. You guys have been great! Also I would like to thank all of the Electromagnetic Materials group. From group meetings to physics/general discussions, it has been an absolute delight working with you all!

I would also like to thank my friends outside of physics, who have always been supportive and wonderful. Alexander, you have been so encouraging all the time that I have known you. Mecham, Jannine and Carly, you always help me to relax, particularly in times of stress. Alex and co., you guys are great and are always interested to hear about my research, particularly about weevils. Thank you all!

Finally my wonderful family who I would like to thank for all their help
and advice. My parents, you have definitely helped to reduce the stress over the last three and a half years: giving me about a million years of lifts, wonderful food, strength and encouragement. You are both so inspirational and wonderful and always make me happy which is amazing and all I could ever ask for! Natalie, thank you for being a tower of strength, holiday buddy, gig buddy and general buddy and best friend. You have always supported me, particularly through the last three and a half years, and are always there to cheer me up when I need it! I am so grateful to have you all in my life! My heartfelt thanks to you all.
Abstract

This thesis describes my research into the highly tuned naturally occurring 3D photonic structures that are present on a selection of insects. The experimental and theoretical work presented in this thesis was performed in both the optical and microwave regimes.

The work performed in the optical regime included both the geometric and optical characterisation of the native photonic structures present on the beetle *Eupholus magnificus* and the butterfly *Parides sesostris*. The native photonic structures of these organisms were probed in order to determine their photonic responses and also to ascertain their geometries and structural classes. In cases where the geometry of a photonic crystal system has been determined, I have performed additional theoretical analysis of the structure to establish how it might be optimised for a particular optical function. The overall aim of the work performed in the optical regime is to further the understanding of the photonic structural designs present on a selection of beetles and butterflies, by both identifying and characterising their underlying structural geometries and consequent photonic responses.

Eupholus magnificus is a species of weevil that produces its coloured appearance from photonic structures that are present on its outer wing casing, producing a striped coloured pattern. The photonic structures that I discovered were present on this weevil were found to be contrasting in structural order. I used a wide-ranging variety of experimental and theoretical techniques in order to perform an extensive electromagnetic and structural characterisation of these contrasting structures. The two contrasting photonic mechanisms employed by *E. magnificus* were found to produce a similar optical response in terms of angle-independent colour whilst reflecting different coloured hues.

Parides sesostris is a species of butterfly that uses a gyroid photonic crystal structure, contained within scales, to produce green coloured patches on the dorsal side of its wings. In addition to this, *P. sesostris* uses embellishments to its scale morphology in order to produce a highly tuned
angle-independent optical response. The optical effects brought about by these structural embellishments were investigated with optical experimental techniques and they were found to diffusely scatter light and aid iridescence suppression. In addition to this, theoretical modelling was performed on a variety of gyroid geometries. The gyroid photonic structure found in the wing scales of *P. sesostris* was determined to be highly optimised to reflect the largest range of frequencies possible from this geometry, also aiding iridescence suppression. In addition to this, the arrangement of gyroid arrays within each scale was determined to produce the highest intensity possible by using the smallest possible number of unit cells.

In addition to the optical characterisations of the organic naturally occurring photonic structures found on these organisms, I also synthetically replicated the three fundamental naturally occurring triply periodic bicontinuous cubic photonic crystal structures for experimental and theoretical electromagnetic characterisation in the microwave regime. The microwave regime was selected to perform the characterisation as a high-resolution fabrication method can be employed in order to produce millimetre-scale structures, suitable for probing in this wavelength regime. A high resolution fabrication method is an absolute requirement for accurately replicating the complex geometries of constant mean curvature structures and retaining a high level of detail. I have electromagnetically characterised these three structures with the aim of gaining a better understanding of their polarisation-dependent photonic stop-band responses. Specifically, I have identified the origin of, and the dispersion of, photonic stop-bands produced by each unique structural geometry. I have principally focused on the characterisation of the electromagnetic responses of these structures, how they differ from each other and also why a linear polarisation dependence arises from these 3D photonic structures. In addition to this I have related the electromagnetic responses of these structures to analogous optical structures that naturally occur on the wings of the butterfly *P. sesostris* and elytra of the weevil *E. magnificus*. With this I aimed to gain a better understanding of the origin of the optical effects they provide the host biological system. This includes the characterisation of the gyroid photonic crystal structures, chosen to mimic that found in *P. sesostris* wing scales. The results from this were also subsequently used in the optical optimisation examination performed on the *P. sesostris* gyroid.

Finally, I have investigated a dynamic aspect of the 3D gyroid photonic crys-
tal, formed from a constant mean curvature surface. A compliant gyroid structure was fabricated for analysis in the microwave regime and a systematic compression force applied to it. I have measured the electromagnetic response of this compliant gyroid at each compression distance. Alongside this, I used theoretical modelling to electromagnetically characterise an analogous system under compression. In doing this I have identified the origin of the novel and complex photonic band-shifting behaviour produced by this 3D geometry.
Contents

List of Figures xi

1 Thesis overview 1
 1.1 Thesis outline 2

2 Introduction - structural colour in nature 6
 2.1 Introduction 6
 2.2 1-dimensional structures in nature 8
 2.2.1 1D structural colour in beetles 8
 2.2.1.1 Tiger beetles (Cicindelinae) 10
 2.2.1.2 Polarising reflectors 11
 2.2.1.3 1D broadband reflectors in beetles 11
 2.2.2 1D structural colour in Lepidoptera 12
 2.2.2.1 Morpho rhetenor 12
 2.2.2.2 Papilio palinurus and Papilio ulysses 14
 2.2.3 1D structural colour in flora 17
 2.3 2-dimensional structures in nature 18
 2.3.1 2-Dimensional structures in birds 19
 2.3.2 The 2D photonic structure of Pherusa sp. 21
 2.4 3-dimensional structures in nature 21
 2.4.1 Callophrys rubi 21
 2.4.2 Weevils 23
 2.4.3 Dynastes hurcules 25
 2.5 Disordered structures producing broadband colour reflections 26
 2.5.1 Beetles 26
 2.5.2 Flora 28
 2.6 Self-assembly in nature 29
2.6.1 Minimal surfaces ... 30
2.7 Applications of photonic crystals 30
2.8 Conclusion .. 31

3 Theory .. 33
3.1 Introduction ... 33
3.2 Reflection of electromagnetic waves at an interface 34
 3.2.1 Thin film interference 35
 3.2.2 Constructive interference and iridescence 39
3.3 Photonic crystal theory ... 42
 3.3.1 Dispersion ... 43
 3.3.2 Maxwell’s equations and the master equation 45
 3.3.3 Mathematical and physical consequences of the master equation ... 46
 3.3.3.1 Orthogonality 47
 3.3.3.2 The variational theorem 48
 3.3.3.3 Field profiles and energy of orthogonal modes 49
 3.3.3.4 Concentration factor 52
 3.3.4 The scalability of Maxwell’s equations 53
 3.3.5 Rotational symmetry, complete band-gaps and quasi-order 55
3.4 Summary ... 56

4 Experimental and theoretical methods 57
4.1 Optical microscopy .. 57
4.2 Spectroscopy ... 58
4.3 Microspectrophotometry 59
4.4 Imaging scatterometry .. 60
 4.4.1 Narrow-angle illumination 60
 4.4.2 Wide-angle illumination scatterometry 62
4.5 Scanning electron microscopy and the focused ion beam 64
 4.5.1 Scanning electron microscopy 65
 4.5.2 The focused ion beam 65
4.6 Microwave experiments ... 68
 4.6.1 Sample fabrication 68
 4.6.2 Vector network analyser and broadband horn set-up 70
4.7 Fast Fourier transform analysis 72
4.8 Theoretical modelling ... 73
4.9 Conclusion .. 78

5 The characterisation of natural photonic crystal replicas in the microwave regime 80
5.1 Introduction ... 80
5.2 Fabrication and characterisation procedure 82
5.3 Analysis of effective plane geometry 83
5.4 The P-surface .. 85
 5.4.1 Microwave vector network analyser experimental measurements . 86
 5.4.2 Theoretical modelling .. 87
5.5 The D-surface .. 92
 5.5.1 Microwave vector network analyser experimental measurements . 93
 5.5.2 Theoretical modelling .. 94
 5.5.3 P- and D- surface summary 98
5.6 The G-surface .. 99
 5.6.1 Microwave vector network analyser experimental measurements . 100
 5.6.2 Theoretical modelling .. 101
 5.6.3 Experimental and theoretical investigation into polarisation conversion .. 105
5.7 Conclusion .. 106

6 Detailed investigation into the weevil *Eupholus magnificus* 112
6.1 Introduction ... 112
6.2 Anatomy and physiology .. 113
6.3 Optical microscopy .. 115
6.4 Optical spectroscopy ... 117
 6.4.1 Microspectrophotometry ... 118
 6.4.2 Imaging scatterometry .. 121
 6.4.2.1 Imaging scatterometry via narrow-angle illumination . 121
 6.4.2.2 Wide-angle scatterometry 123
6.5 Scanning electron microscopy and focused ion beam milling 124
6.6 Structural analysis ... 131
 6.6.1 Voronoi analysis and entropy calculations 132
 6.6.2 Fast Fourier transforms .. 134
 6.6.3 Ordered photonic crystal characterisation 135
 6.6.3.1 Theoretical modelling of the ordered structure 137
 6.6.3.2 Diffraction from the scale surface structure 141
6.7 Conclusions .. 141
CONTENTS

7 The optical properties and structural optimisation of the butterfly
Parides sesostris

7.1 Introduction .. 144
7.2 Anatomy and physiology 145
7.3 The electromagnetic response of the gyroid photonic crystal within Parides
sesostris scales .. 148
7.4 Scatterometry ... 149
 7.4.1 Narrow-angle illumination scatterometry 149
 7.4.2 Wide-angle illumination scatterometry 151
 7.4.3 Summary of Parides sesostris scatterometry 153
7.5 Optimisation of Parides sesostris 155
 7.5.1 Filling fraction .. 156
 7.5.2 Number of unit cells 158
7.6 Conclusions ... 161

8 The tunable gyroid ... 165

8.1 Introduction .. 165
8.2 Sample fabrication ... 166
8.3 Experimental set-up .. 168
8.4 Experimental data ... 170
8.5 Theoretical modelling 175
8.6 Conclusions ... 182

9 Conclusions .. 184

9.1 Triply periodic bicontinuous cubic photonic crystals 185
9.2 Eupholus magnificus .. 186
9.3 Parides sesostris ... 187
9.4 The tunable gyroid ... 189
9.5 Future work ... 190
 9.5.1 Compliant structures 190
 9.5.2 The double gyroid 190
 9.5.3 Circular polarisation 193
9.6 Publications ... 193
 9.6.1 Papers .. 193
 9.6.2 Presentations ... 194

References ... 195

List of Figures

2.1 A schematic diagram showing the three-layered system of beetle cuticle formation. .. 9
2.2 The beetle *Chrysochroa raja* and a transmission electron microscope image of its associated multilayer photonic system. 9
2.3 The three 1-dimensional multilayer mechanisms used as broadband reflectors. ... 12
2.4 The butterfly *Morpho rhetenor* and its wing scales and associated photonic systems. ... 13
2.5 The butterfly *Papilio palinurus*, the photonic systems present on its wing scales and their optical appearance. 15
2.6 The butterfly *Papilio ulysses*, the photonic systems present on its wing scales and their optical appearance. 16
2.7 Transmission electron micrographs displaying cross-sections taken from different sites along the length of the bristles from the *Pherusa sp.* polychaete worm. .. 20
2.8 The butterfly *Callophrys rubi* and the 3D gyroid photonic crystal structure that produces its green coloured appearance. .. 22
2.9 A selection of three weevils from the *Eupholus* genus. 23
2.10 A scanning electron micrograph displaying a broken scale from the yellow coloured elyral band of the weevil *Eupholus magnificus*. 24
2.11 Colour-producing scales from the *Eupholus magnificus*, *Eupholus schoenherri petitti* and *Eupholus loriae* weevils. 24
2.12 A selection of white beetles including two scarab beetles, *Cyphochilus* and *Lepidiota stigma*, and one beetle member of the Cerambycidae, *Calothyrza margaritifera*. .. 27
3.1 A schematic diagram of the possible reflection and transmission processes that occur at the interfaces of a thin film. 36
3.2 The phase and path difference of reflected light from a thin film. 37
3.3 The origin of iridescence from a multilayer photonic system. 41
3.4 The band structures of a 2D hexagonal photonic crystal of dielectric rods in air, with two different refractive index contrasts. 42
3.5 The dispersion of 3 individual materials with different refractive indices. 44
3.6 The band diagram of a 1D photonic multilayer structure comprising periodic media of differing refractive indices. 44
3.7 The standing waves that configure within a multilayer system comprising alternating permittivities with a low contrast at the Brillouin zone boundary. 51
3.8 The standing waves that configure within a multilayer system comprising alternating permittivities with a high contrast at the Brillouin zone boundary. 51
3.9 The scalability of Maxwell’s equations: an example of a scaled photonic system. 54
4.1 The imaging scatterometer. 61
4.2 A full hemispherical polar plot showing the scattering pattern produced by a photonic-crystal containing scale from the elytra of the weevil *Eupholus loriae*. This sample was probed with narrow-angle illumination in the scatterometer. 63
4.3 Hemispherical polar plots imaged from a photonic-crystal containing scale present on the wing of the butterfly *Parides sesostris* using the wide-angle scatterometry method. 63
4.4 An example of dual scanning electron microscopy and focused ion beam milling performed on a scale obtained from the yellow coloured elytral band of the weevil *Eupholus magnificus* to expose the intra-scale photonic system. 67
4.5 The microwave experimental set-up and definitions of polar and azimuthal angles and TE and TM polarisations used in this thesis. 69
4.6 The Gaussian response of the broadband horns used to conduct the microwave transmission experiments. 71
4.7 Fast Fourier transform images obtained from an ordered and a disordered naturally occurring photonic system and a synthetic quasi-ordered photonic system. 72
4.8 A 3D finite element model set-up using the theoretical modelling software HFSS. 76
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>The y-z plane view of a 12 unit cell-deep gyroid photonic crystal finite element model and time-average electric field plots from a single incident frequency.</td>
</tr>
<tr>
<td>5.1</td>
<td>Examples of the three basic constant mean curvature surfaces; the P-, D- and G-surfaces, based on simple cubic, face-centred cubic and body-centred cubic Bravais lattice symmetries respectively.</td>
</tr>
<tr>
<td>5.2</td>
<td>The resulting photonic crystal array based on the minimal P-surface.</td>
</tr>
<tr>
<td>5.3</td>
<td>The experimentally determined transmission bands associated with the P-surface photonic crystal replica.</td>
</tr>
<tr>
<td>5.4</td>
<td>The theoretically determined transmission stop-bands associated with the P-surface photonic crystal.</td>
</tr>
<tr>
<td>5.5</td>
<td>The theoretically determined time-averaged electric fields present in the P-surface photonic crystal at the lower edge of two stop-bands produced along two different directions within the crystal geometry.</td>
</tr>
<tr>
<td>5.6</td>
<td>The difference in symmetry of the P-surface structure relating to opposing linear polarisations.</td>
</tr>
<tr>
<td>5.7</td>
<td>The resulting photonic crystal array based on the minimal D-surface.</td>
</tr>
<tr>
<td>5.8</td>
<td>The experimentally determined transmission bands associated with the D-surface photonic crystal replica.</td>
</tr>
<tr>
<td>5.9</td>
<td>The theoretically determined transmission stop-bands associated with the D-surface photonic crystal.</td>
</tr>
<tr>
<td>5.10</td>
<td>The theoretically determined time averaged electric fields present in the D-surface photonic crystal at the lower edge of two stop-bands produced along two different directions within the crystal geometry.</td>
</tr>
<tr>
<td>5.11</td>
<td>The resulting photonic crystal array based on the G-surface.</td>
</tr>
<tr>
<td>5.12</td>
<td>The experimentally determined transmission bands associated with the constant mean curvature G-surface photonic crystal replica based on the photonic crystal structure found within the wing scales of the butterfly \textit{P. sesostris}.</td>
</tr>
<tr>
<td>5.13</td>
<td>The theoretically determined transmission bands associated with the constant mean curvature G-surface photonic crystal that mimics the optical structure found within wing scales of the butterfly \textit{P. sesostris}.</td>
</tr>
<tr>
<td>5.14</td>
<td>The theoretically determined time-averaged electric fields present in the constant mean curvature G-surface photonic crystal at the lower edge of two stop-bands produced along two different directions within the crystal geometry.</td>
</tr>
</tbody>
</table>
5.15 The polarisation conversion of linearly polarised incident radiation from TM to TE, or ‘T_{ps}’, and from TE to TM, or ‘T_{sp}’, obtained experimentally at an azimuthal angle of $\phi = 0^\circ$. 107

5.16 The polarisation conversion of linearly polarised incident radiation from TM to TE, or ‘T_{ps}’, and from TE to TM, or ‘T_{sp}’, obtained theoretically at an azimuthal angle of $\phi = 0^\circ$. 107

5.17 The polarisation conversion of linearly polarised incident radiation from TM to TE, or ‘T_{ps}’, and from TE to TM, or ‘T_{sp}’, obtained experimentally at an azimuthal angle of $\phi = 45^\circ$. 108

5.18 The polarisation conversion of linearly polarised incident radiation from TM to TE, or ‘T_{ps}’, and from TE to TM, or ‘T_{sp}’, obtained theoretically at an azimuthal angle of $\phi = 45^\circ$. 108

5.19 Line plots showing the polarisation converted experimental and theoretical transmitted intensity of TE to TM, T_{sp}, linearly polarised radiation. 109

6.1 The weevil $E. magnificus$. .. 114

6.2 An alternative $E. magnificus$ weevil sample showing the slight variation in colour within the species. ... 114

6.3 Bright field microscope images of the scales from the yellow and blue elytral bands of $E. magnificus$. ... 116

6.4 The reflectance spectra obtained from a millimetre sized area of the yellow and blue elytral bands of the elytra of $E. magnificus$. 117

6.5 The specular reflectance of the yellow and the blue elytral bands of $E. magnificus$ over the incident angle range of 0° to 45° using a millimetre-radius incident beam-spot. ... 119

6.6 The reflectance spectra of $E. magnificus$ obtained from intra-scale regions of each structurally coloured elytral band. 120

6.7 Scattering patterns produced by the yellow and blue scales of $E. magnificus$.122

6.8 Wide-angle scatterometry obtained from a scale from the yellow and the blue elytral band of $E. magnificus$. 124

6.9 A typical single scale from the yellow elytral band of $E. magnificus$. ... 125

6.10 Scanning electron microscopy images of a scale from the yellow elytral band of $E. magnificus$, cross-sectioned using focused ion beam milling. . 127

6.11 A typical single scale from the blue elytral band of $E. magnificus$. . . . 128

6.12 Scanning electron microscopy images of a scale from the blue elytral band of $E. magnificus$, cross-sectioned using focused ion beam milling. . 129

6.13 Scanning electron microscope images of a broken blue scale of $E. magnificus$. ... 130
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.14</td>
<td>A Voronoi diagram obtained from a domain within a scale taken from the yellow coloured band of E. magnificus.</td>
<td>133</td>
</tr>
<tr>
<td>6.15</td>
<td>A Voronoi diagram obtained from a large intra-scale region taken from the blue coloured band of E. magnificus.</td>
<td>133</td>
</tr>
<tr>
<td>6.16</td>
<td>Fast Fourier transforms of the photonic nanostructures within the yellow and blue elytral scales of E. magnificus.</td>
<td>135</td>
</tr>
<tr>
<td>6.17</td>
<td>Scanning electron microscope images of a scale cross-section showing a domain with hexagonal symmetry and square symmetry obtained from a yellow elytral band of E. magnificus.</td>
<td>137</td>
</tr>
<tr>
<td>6.18</td>
<td>The face centred cubic (FCC) supercell.</td>
<td>138</td>
</tr>
<tr>
<td>6.19</td>
<td>Scanning electron microscope images of a cross-section through a scale from a yellow elytral band of E. magnificus.</td>
<td>139</td>
</tr>
<tr>
<td>6.20</td>
<td>Scanning electron microscope images of a cross-section through a scale from the yellow elytral band of E. magnificus.</td>
<td>139</td>
</tr>
<tr>
<td>6.21</td>
<td>Theoretical photonic band diagram of an ideal inverse face-centred cubic photonic crystal.</td>
<td>140</td>
</tr>
<tr>
<td>7.1</td>
<td>The butterfly Parides sesostris and the structurally coloured green scales present on its dorsal wings.</td>
<td>146</td>
</tr>
<tr>
<td>7.2</td>
<td>A transmission electron microscope image showing a cross-section through a P. sesostris green scale.</td>
<td>147</td>
</tr>
<tr>
<td>7.3</td>
<td>Hemispherical polar plots obtained by narrow-angle illumination imaging scatterometry from the under-side of a single P. sesostris scale.</td>
<td>150</td>
</tr>
<tr>
<td>7.4</td>
<td>Hemispherical polar plots obtained by narrow-angle illumination imaging scatterometry from the top-side of a single P. sesostris scale.</td>
<td>152</td>
</tr>
<tr>
<td>7.5</td>
<td>Hemispherical polar plots obtained by narrow-angle illumination imaging scatterometry from the top-side of a single P. sesostris scale oriented at 30° and 45° to the incident beam with an increased exposure time.</td>
<td>152</td>
</tr>
<tr>
<td>7.6</td>
<td>Hemispherical polar plots obtained by wide-angle illumination imaging scatterometry from the under-side of a single P. sesostris scale.</td>
<td>153</td>
</tr>
<tr>
<td>7.7</td>
<td>Hemispherical polar plots obtained by wide-angle illumination imaging scatterometry from the top-side of a single P. sesostris scale.</td>
<td>154</td>
</tr>
<tr>
<td>7.8</td>
<td>Grey-scale plots representing the collective reflection and transmission responses from gyroid photonic crystal structures with material volume fractions that range from $26% \leq \phi_s \leq 74%$.</td>
<td>157</td>
</tr>
<tr>
<td>7.9</td>
<td>Colour-plots displaying the collective theoretical reflection and transmission responses from gyroid photonic crystal arrays that vary with numbers of unit cells in the depth of the array.</td>
<td>159</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

7.10 Line plots displaying the reflectance responses of a gyroid structure with material volume fraction \(\phi_s = 0.4 \) with varying numbers of unit cells in the depth of the array. .. 160

7.11 Line plots displaying the peak reflectance responses of the principle maximum peak and the secondary Fabry-Perot resonances observed in figure 7.10. .. 161

7.12 A transmission electron microscope image displaying the number of gyroid unit cells present in the depth of a \(P. sesostris \) scale. 162

8.1 A compressible gyroid comprised of a rubber polymer and air. 166

8.2 The experimental set-up employed to investigate the photonic effects of compressing a compliant gyroid photonic crystal array. 169

8.3 The experimentally determined transmitted magnitude data displaying the stop-bands associated with the compliant gyroid photonic crystal structure using TM linearly polarised incident radiation when under compression. .. 171

8.4 The experimentally determined transmitted magnitude data displaying the stop-bands associated with the compliant gyroid photonic crystal structure using TE linearly polarised incident radiation when under compression. .. 172

8.5 A table displaying the relative expansions that occur from the compliant gyroid sample when under a compressive force. 173

8.6 The relative movement of an incident beam away from the surface normal to the \((10\bar{1})\) geometric planes when polar angle is increased. 174

8.7 The theoretically-determined transmitted magnitude data, obtained using TM linearly polarised incident radiation, displaying the stop-bands associated with the compliant gyroid photonic crystal structure when under compression. .. 176

8.8 The theoretically-determined transmitted magnitude data, obtained using TE linearly polarised incident radiation, displaying the stop-bands associated with the compliant gyroid photonic crystal structure when under compression. .. 177

8.9 The theoretically modelled transmitted magnitude data obtained at normal incidence from a series of gyroid arrays with systematically varied filling fractions comprised of the same permittivities as the compliant gyroid replica. .. 180

8.10 The theoretically-determined time-averaged electric fields present in a compliant gyroid photonic crystal. ... 181
LIST OF FIGURES

9.1 A double gyroid structure fabricated for the microwave regime. 191
9.2 A view perpendicular to a single face of the double gyroid structure. . . 191
9.3 The theoretically determined transmission through a double gyroid using
 TM polarised incident radiation. 192