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ABSTRACT Detailed ionic models of cardiac cells are difficult for numerical simulations because they consist of a large
number of equations and contain small parameters. The presence of small parameters, however, may be used for asymptotic
reduction of the models. Earlier results have shown that the asymptotics of cardiac equations are nonstandard. Here we apply
such a novel asymptotic method to an ionic model of human atrial tissue to obtain a reduced but accurate model for the
description of excitation fronts. Numerical simulations of spiral waves in atrial tissue show that wave fronts of propagating action
potentials break up and self-terminate. Our model, in particular, yields a simple analytical criterion of propagation block, which is
similar in purpose but completely different in nature to the ‘‘Maxwell rule’’ in the FitzHugh-Nagumo type models. Our new
criterion agrees with direct numerical simulations of breakup of reentrant waves.

INTRODUCTION

Refractoriness is a fundamental characteristic of biological

excitable media, including cardiac tissues. The boundary

between absolute and relative refractoriness can be defined

as the boundary between the ability and the inability of the

medium to conduct excitation waves (1). Transient conduc-

tion block is thought to be a key event in the initiation of

reentrant arrhythmias and in the development and the self-

perpetuation of atrial and ventricular fibrillation (2–5). So it

is important to understand well the immediate causes and

conditions of propagation blocks and sudden breakups in

such nonstationary regimes. The aim of this work is to

improve this understanding via analysis of a mathematical

model of human atrial tissue (6).

Kohl et al. (7) distinguish two types of single-cell cardiac

models: ‘‘membrane potential models’’ and ‘‘ionic current

models’’. The membrane potential models attempt to repre-

sent cellular electrical activity by describing, with a minimal

number of equations, the spatio-temporal course of changes

in membrane potential. Their equations are constructed using

dynamical systems arguments to caricature various properties

and processes of cardiac function. Examples of this type of

models start with the mathematical description of heartbeat as

a relaxation oscillator by van der Pol and van der Mark (8)

and continue to play an important role in describing

biophysical behavior (9) with the most successful one

arguably being the FitzHugh-Nagumo equations (10,11),

@TV ¼ D@2

XV1 eVðV � V3
=3� gÞ;

@Tg ¼ egðV1b� ggÞ; (1)

where V and g are dynamical variables corresponding to the

action potential and the cardiac current gating variables, eV,

eg, g, and b are parameters, and D is a diffusion constant.

Further examples of such models can be found in Aliev and

Panfilov, Pertsov and Panfilov, Barkley, andWinfree (12–15),

among others. An attractive feature of this approach is that,

along with a reasonable description of excitability, threshold,

plateau, and refractoriness, it focuses on generic equations that

can often be treated analytically and their dynamical proper-

ties can be extended and applied to very different physical,

chemical, or biological problems of similar mathematical

structure. The main drawback of these models, however, is

their lack of an explicit correspondence between model

components and constituent parts of the biological system,

e.g., ion channels and transporter proteins. The second type of

models, the ionic current models, attempt to model action

potential (AP) behavior on the basis of ion fluxes in as much

detail as possible to fit experimental data and predict behavior

under previously untested conditions. A major breakthrough

in this direction of cell modeling was the work of Hodgkin and

Huxley (16), representing the first complete quantitative

description of the giant squid axon. The ionic concept was

applied to cardiac cells by Noble (17,18) and there are now

ionic models of sinoatrial node pacemaker cells, e.g. (19);

atrial myocytes, e.g. (20); Purkinje fibers, e.g. (21); ventricular

myocytes, e.g. (22,23); and cardiac connective tissue cells,

e.g. (24). This is only an incomplete list and the collection of

available models continues to expand. The ionic models have

been successfully applied to study various conditions of

metabolic activity and excitation-contraction coupling, feed-

back mechanisms, response to drugs, etc. For recent reviews

of detailed ionic models, their computational aspects, and

applications, we refer to the reviews of Kohl et al. (7) and

Clayton (25). However, these models are very complicated

and have to be studied mostly numerically. Their numerical

study is aggravated by stiffness of the equations, i.e., broad

range of characteristic timescales of dynamic variables caused

by numerous small parameters of the models.
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An attractive compromise is exemplified by the model

of Fenton and Karma (26), which combines the simplicity of

only three differential equations with realistic description

of (crudely) the AP shape and (rather nicely) the dependence

of the AP duration and front propagation speed on the

diastolic interval, i.e., ‘‘restitution curves’’. Unlike the earlier

two-component model by Aliev and Panfilov (12), it has a

structure similar to that of true ionic models, and its param-

eters have been fitted to mimic properties of selected four

detailed ventricular myocyte models. It is simpler than later

proposed models of the same ‘‘intermediate’’ kind such as

Bernus et al. (27). However, this deservedly popular model

has not been in any way ‘‘derived’’ from any detailed model,

so it is only reliable within the phenomenology on which it

has been validated, i.e., normal or premature APs, but not

propagation blocks.

The problem of conditions for propagation has an ele-

gant solution for the FitzHugh-Nagumo system Eqs. 1 and its

generalizations, within an asymptotic theory exploiting the

difference of timescales of different variables, such as eg �
eV in case of Eqs. 1 (28). The answer is formulated in terms

of the instantaneous values of the slow variables (g in Eqs.

1), and claims that excitation will propagate if the definite

integral of the kinetic term on the right-hand side of the

equation for the fast variable (V in Eqs. 1), between the lower

and the upper quasi-stationary states, is positive (see Eq. 4.5

in Fife (29)). This is similar to Maxwell’s ‘‘equal areas’’ rule

in the theory of phase transitions (see section 9.3 in Haken

(30)). In case of Eqs. 1, this rule boils down to an inequality

for the slow variable g: excitation front will propagate if the

value of g at it is less than a certain g*. However, FitzHugh-
Nagumo-type models completely misrepresent the idiosyn-

cratic ‘‘front dissipation’’ scenario by which propagation

block happens in the ionic current models (31). The reason is

that small parameters in such models appear in essentially

different ways from the one assumed by the standard

asymptotic theory (32,33). So, this elegant ‘‘Maxwell rule’’

solution is not applicable to any realistic models.

We have developed an alternative asymptotic approach

based on special mathematical properties of the detailed

ionic models, not captured by the standard theory (34). This

approach demonstrated excellent quantitative accuracy for

APs in isolated Noble-1962 model cells (33), and correctly,

on a qualitative level, described the front dissipation

mechanism of breakup of reentrant waves in the Courte-

manche et al. (6) model of human atrial tissue, although

quantitative correspondence with the full model was poor

(35). In this article we suggest, for the first time, to our

knowledge, a refined simplified asymptotic model of a

cardiac excitation front, which provides numerically accurate

prediction of the front propagation velocity (within 16%) and

its profile (within 0.7 mV). It also gives an analytical

condition for propagation block in a reentrant wave, ex-

pressed as a simple inequality involving the slow inactiva-

tion gate j of the fast sodium current. The condition is in

excellent agreement with results of direct numerical simu-

lations of the Courtemanche et al. (6) full ionic model of 21

partial differential equations.

The article is organized as follows. In the next section, we

introduce simplified model equations and discuss their prop-

erties. Analytical solutions are then presented for a piecewise

linear ‘‘caricature’’ version of our simplifiedmodel, followed

by numerical results and a two-dimensional test. The article

concludes with a discussion of results and questions open

for future studies.

MATHEMATICAL FORMULATION OF THE
MODEL EQUATIONS

Asymptotic reduction

In this section, we briefly summarize the asymptotic argu-

ments of Biktasheva et al. (35) relevant to our present purposes.

We rewrite the Courtemanche et al. (6) model in the following

one-parameter form:

@TV ¼ Dð@2

X 1K@XÞV � ðe�1INaðV;m; h; jÞ1S9I ðV; . . .ÞÞ
CM

;

@Tm ¼ ð �mmðV; eÞ � mÞ
e tmðVÞ ; �mmðV; 0Þ ¼ MðVÞuðV � VmÞ;

@Th ¼ ð�hhðV; eÞ � hÞ
ethðVÞ ; �hhðV; 0Þ ¼ HðVÞ uðVh � VÞ;

@Tua ¼ ð�uuaðVÞ � uaÞ
e tuaðVÞ

;

@Tw ¼ ð�wwðVÞ � wÞ
e twðVÞ ;

@Toa ¼ ð�ooaðVÞ � oaÞ
e toaðVÞ

;

@Td ¼ ð�ddðVÞ � dÞ
e tdðVÞ ;

@TU ¼ FðV; . . .Þ; (2)

where D is the voltage diffusion constant, e is a small

parameter used for the asymptotics, K is the curvature of

the propagating front, u() is the Heaviside function, S9I() is
the sum of all currents except the fast sodium current INa,
the dynamic variables V, m, h, ua, oa, and d are defined in

Courtemanche et al. (6), U ¼ (j, oi, . . ., Nai, Ki, . . .)
T is the

vector of all other, slower variables, and F is the vector of

the corresponding right-hand sides. The rationale for this

parameterization is:

1. The dynamic variables V, m, h, ua, w, oa, and d are ‘‘fast

variables’’, i.e., they change significantly during the

upstroke of a typical AP potential, unlike all other

variables that change only slightly during that period.

The relative speed of the dynamical variables is estimated

by comparing the magnitude of their corresponding
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‘‘timescale functions’’ as shown in Fig. 1 A. For a system
of differential equations dy=dt ¼ FðyÞ, the timescale func-

tions are defined as ti(y) [ |(dFi/dyi)
�1|, i ¼ 1. . .N and

coincide with the functions t already present in Eqs. 2.

2. A specific feature of V is that it is fast only because of

one of the terms on the right-hand side, the large current

INa, whereas other currents are not that large and so do

not have the large coefficient e�1 in front of them.

3. The fast sodium current INa is only large during the upstroke
of the AP, and not that large otherwise as illustrated in

Fig. 1 D. This is due to the fact that either gate m or gate h
or both are almost closed outside the upstroke since their

quasi-stationary values �mmðVÞ and �hhðVÞ are small there as

seen inFig. 1B. Thus in the limit e/ 0, functions �mmðVÞ and
�hhðVÞ have to be considered zero in certain overlapping

intervals V 2 (–N, Vm] and V 2 [Vh,1N), and Vh # Vm,
hence the representations �mmðV ; 0Þ ¼ MðVÞuðV � VmÞ and
�hhðV ; 0Þ ¼ HðVÞuðVh � VÞ:

4. The term K@XV in the first equation represents the effect

of the front curvature for waves propagating in two or

three spatial dimensions. Derivation of this term using

asymptotic arguments can be found, e.g., in Tyson and

Keener (28). A simple rule-of-thumb way to understand it

is this. Imagine a circular wave in two spatial dimensions.

The diffusion term in the equation for V then has the form

D @2
X1@2

Y

� �
V ¼ D @2

R1
1
R
@R

� �
V; where R is the polar

radius. If R at the front is large, its instant curvature

K ¼ 1=R changes slowly as the front propagates, and can

be replaced with a constant for long time in-

tervals. Considering R as a new X coordinate, we then

get Eqs. 2.

These aspects, as applied to the fast sodium current, have

been shown to be crucial for the correct description of the

propagation block (31). In particular, it is important that the h
gate is included among the fast variables. The particular

importance of h dynamics at the fringe of excitability has

been noted before, e.g., for the modified Beeler-Reuter

model (36). A more detailed discussion of the parameteri-

zation given by Eqs. 2 can be found in Biktasheva et al. (35).

A change of variables t ¼ e�1T, x ¼ (eD)�1/2X,
K ¼ ðeDÞ1=2K and subsequently the limit e / 0 transforms

Eqs. 2 into

@tV ¼ @
2

x 1 k@x

� �
V � C

�1

M INaðV;m; h; jÞ;
@tm ¼ ðMðVÞuðV � VmÞ � mÞ=tmðVÞ;
@th ¼ ðHðVÞuðVh � VÞ � hÞ=thðVÞ;
@tua ¼ ð�uuaðVÞ � uaÞ=tuaðVÞ;
@tw ¼ ð�wwðVÞ � wÞ=twðVÞ;
@toa ¼ ð�ooaðVÞ � oaÞ=toaðVÞ;
@td ¼ ð�ddðVÞ � dÞ=tdðVÞ;
@tU ¼ 0: (3)

In other words, we consider the fast timescale on which the

upstroke of the AP happens, neglect the variations of slow

variables during this period as well as all transmembrane

currents except INa, as they do not make significant con-

tribution during this period and replace �mm and �hh with zero

when they are small. (A change of the value of D is eq-

uivalent to rescaling of the spatial coordinate, and is not

critical to any of the questions considered here. To operate

with dimensional velocity, we assume the value of the

diffusion coefficient D ¼ 0.03125 mm2/ms, as in our earlier

publications (35,37). Increase of the diffusion coefficient

to, say, D ¼ 0.1 mm2/ms, raises the propagation velocity

from 0.28 mm/ms in Table 1 to 0.50 mm/ms, in full agree-

ment, e.g., with results of Xie et al. (38) for the same model.)

In the resulting Eqs. 3, the first three equations for V, m,
and h form a closed subsystem. The following four equations

for ua, w, oa, and d can be solved if V(x, t) is known but do

not affect its dynamics, and the rest of the equations state

that all other variables remain unchanged. Hence we

concentrate on the first three equations as the system

FIGURE 1 Asymptotic properties of the

atrial model of Courtemanche et al. (6). (A)
Timescale functions of dynamical variables

versus time. (B) Quasi-stationary values of

the gating variables �mm and �hh. (C) Trans-

membrane voltage V as a function of time.

(D) Main ionic currents versus time. Iin ¼
Ib,Na 1 INaK 1 ICa,L 1 Ib,Ca 1 INaCa and

Iout ¼ Ip,Ca 1 IK1 1 Ito 1 IKur 1 IKr 1 IKs
1 Ib,K are the sums of all inward and

outward currents, respectively, and the

individual currents are described in Cour-

temanche et al. (6). The results are obtained

for a space-clamped version of the model

at values of the parameters as given in

Courtemanche et al. (6). In C and D, a

typical AP is triggered by initializing the

transmembrane voltage to a nonequilib-

rium value of V ¼ �20 mV.
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describing propagation of an AP front or its failure. The

above derivation procedure does not give a precise

definition of the functions H(V) and M(V); it only requires

that these are reasonably close to �hhðVÞ and �mmðVÞ for those
values of V where these functions are not small. Here

‘‘reasonably close’’ means that replacement of �hhðVÞ with

H(V) u(Vh – V) and �mmðVÞ with M(V) u(V – Vm) does not

change significantly the solutions of interest, i.e., the

propagating fronts. We have found that the simplest ap-

proximation in the form M(V) ¼ 1, H(V) ¼ 1 works well

enough. This is demonstrated in Table 1 where various choices

of M(V) and H(V) are tested. So, ultimately, we consider the

following system:

@tV ¼ @
2

x 1 k@x

� �
V1 INaðVÞ j h m3

; (4a)

@th ¼ ðuðVh � VÞ � hÞ=thðVÞ; (4b)

@tm ¼ ðuðV � VmÞ � mÞ=tmðVÞ; (4c)

where

INaðVÞ ¼ gNaðVNa � VÞ; (5a)

tkðVÞ ¼ ðakðVÞ1bkðVÞÞ�1
; k ¼ h;m; (5b)

ahðVÞ ¼ 0:135 e
�ðV1 80Þ=6:8

uð�V � 40Þ;
bhðVÞ ¼ ð3:56 e0:079V 1 3:1310

5 e0:35VÞuð�V � 40Þ
1 uðV1 40Þ ð0:13ð11 e

�ðV1 10:66Þ=11:1ÞÞ�1
;

amðVÞ ¼ 0:32ðV1 47:13Þ
1� e

�0:1ðV1 47:13Þ ;

bmðVÞ ¼ 0:08e
�V=11

;

gNa ¼ 7:8; VNa ¼ 67:53; Vh ¼ �66:66; Vm ¼ �32:7:

All parameters and functions here are defined as in

Courtemanche et al. (6) except the new ‘‘gate threshold’’

parameters Vh and Vm, which are chosen from the conditions
�hhðVhÞ ¼ 1=2 and �mm3ðVmÞ ¼ 1=2. As follows from the

derivation, variable j, the slow inactivation gate of the fast

sodium current, acts as a parameter of the model. It is the

only one of all slow variables included in the vector U that

affects our fast subsystem. We say that it describes the

‘‘excitability’’ of the tissue. Notice that it is a multiplier of

gNa, so a reduced availability of the fast sodium channels,

e.g., as under tetrodotoxin (39) or arguably in Brugada

syndrome (40) can be formally described by a reduced value

of the parameter j.
Before proceeding to the analysis of the simplified three-

variable model defined by Eqs. 4, we wish to demon-

strate that it is a good approximation of the full model of

Courtemanche et al. (6) both on a qualitative and a quan-

titative level. On the qualitative level, we show that a tem-

porary obstacle leads to a dissipation of the front. This is

illustrated in Fig. 2, which shows propagation of the AP into

a region in time and space where the excitability of the tissue

is artificially suppressed. The sharp wave fronts of the model

of Courtemanche et al. (6) as well as of Eqs. 4 stop prop-

agating and start to spread diffusively once they reach the

blocked zone. The propagation does not resume after the block

is removed. This behavior is completely different from that

of the FitzHugh-Nagumo system of Eqs. 1 in which even

though the propagation is blocked for nearly the whole dura-

tion of the AP, the wave resumes once the block is removed.

Table 1 illustrates, on the quantitative level, the accuracy of

Eqs. 4 as an approximation of the full model of Courtemanche

et al. (6).

TABLE 1 A comparison of the wave speed C, postfront voltage amplitudes Vv and the maximum rate of AP rise (dV/ dt)max

of various approximations to the Courtemanche et al. (6) model

Model

Wave speed C,

(mm/ms)

Relative error

in C

Postfront voltage

Vv, (mV)

Maximum rate of AP

rise (dV/dt)max (V/s)

The full model of Courtemanche et al. (6) 0.2824 – 3.60 173.83

Model (6) with replacements �hhðVÞ/�hhðVÞ uðVh � VÞ;
�mmðVÞ/ �mmðVÞ uðV � VmÞ

0.2130 24.5% �0.99 173.83

Equations 3 with MðVÞ ¼ �mmðVÞ; HðVÞ ¼ �hhðVÞ 0.2095 25.8% �1.06 183.82

Equations 3 with M(V) ¼ 1, H(V) ¼ 1, i.e., Eqs. 4 0.2372 16.0% 2.89 193.66

Equations 6 0.4422 57.3% 18.26 643.97

Before firing, the tissue in the models was set at rest at the standard values of the parameters (see Courtemanche et al. (6)). In these and other numerical

results, K ¼ 0 is assumed unless explicitly stated otherwise. Space-clamped versions of the models are used to compute (dV/dt)max.

FIGURE 2 Response to a temporary local block of excitability (B) in the

models of (A) Courtemanche et al. (6), (B) FitzHugh-Nagumo Eqs. 1, and

(C) in Eqs. 4. The border of the blocked region is shown by broken lines.

Solutions are represented by shades of gray: black is the smallest, and white

is the largest value of V within the solution. The parameters of the FitzHugh-

Nagumo model are b ¼ 0.75, g ¼ 0.5, and eg ¼ 0.03, whereas for the two

other models the same parameter values as described in Courtemanche et al.

(6) are used; the block is described in the plots. The value of j ¼ 0.28 in the

block in C is just below the propagation threshold (see Fig. 8). The time

and space ranges (in dimensionless units) are 70 3 70 in B and 80 3 50 in

A and C.
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It is a popular concept going back to classical works (e.g.,

41) that the fast activation gate m is considered a ‘‘fast

variable’’ and is ‘‘adiabatically eliminated’’ since most of the

time, except possibly during a very short transient, it is close

to its quasi-stationary value m � �mmðVÞ. Hence the model can

be simplified by replacing m with �mmðVÞ and eliminating the

equation for m,

@tV ¼ @
2

xV1 INauðV � VmÞ j h;
@th ¼ ðuðVh � VÞ � hÞ=th: (6)

We have explored this possibility for the model of

Courtemanche et al. (6) in Biktasheva et al. (35). Equations

6 are qualitatively correct, i.e., they still show front dissi-

pation on collision with a temporary obstacle, but make a

large error in the front propagation speed, as demonstrated in

Table 1.

Traveling waves and reduction to ordinary
differential equation of the three-variable model

To find out when propagation of excitation is possible in our

simplified model and when it will be blocked, we study

solutions in the form of propagating fronts as well as the con-

ditions of existence of such solutions.

We look for solutions in the form of a front propagating

with a constant speed and shape. So we use the ansatz F(z)¼
F(x 1 ct) for F ¼ V, h, m, where z ¼ x 1 ct is a ‘‘traveling
wave coordinate’’ and c is the dimensionless wave speed of

the front, related to the dimensional speed C by c¼ (e/D)1/2C.
Then Eqs. 4 reduce to a system of autonomous ordinary

differential equations (ODE),

V$ ¼ ðc� kÞV9� INaðVÞ j h m3
; (7a)

h9 ¼ ðc thðVÞÞ�1ðuðVh � VÞ � hÞ; (7b)

m9 ¼ ðc tmðVÞÞ�1ðuðV � VmÞ � mÞ; (7c)

where the boundary conditions are given by

Vð�NÞ ¼ Va; Vð1NÞ ¼ Vv; Va ,Vh ,Vm ,Vv;

(8a)

hð�NÞ ¼ 1; hð1NÞ ¼ 0; (8b)

mð�NÞ ¼ 0; mð1NÞ ¼ 1: (8c)

Here Va and Vv are the pre- and postfront voltages.

Equations 7 represent a system of fourth order so its

general solution depends on four arbitrary constants.

Together with constants Va, Vv, and c, this makes seven

constants to be determined from the six boundary conditions

in Eqs. 8. Thus, we should have a one-parameter family of

solutions, i.e., one of the parameters (Va, Vv, c) can be

chosen arbitrary from a certain range. A natural choice is Va

because the prefront voltage acts as an initial condition for a

propagating front in the tissue, and because in our study of

the conditions for propagation it is most conveniently treated

as a parameter rather than as an unknown.

ANALYTICAL STUDY OF THE REDUCED MODEL

An exactly solvable caricature model

The parameter-counting arguments given in the previous

section make it plausible that the problem defined by Eqs. 7

with boundary conditions of Eqs. 8 has a one-parameter

family of traveling wave-front solutions. However, the

problem is posed in a highly unusual way since the

asymptotic prefront and postfront states are not stable

isolated equilibria but belong to continua of equilibria and

thus are only neutrally stable. We are not aware of any

general theorems that would guarantee existence of solutions

of a nonlinear boundary value-eigenvalue problem of this

kind. For the two-component model of Eqs. 6 considered in

Biktasheva et al. (35), this worry has been alleviated by the

fact that there is a ‘‘caricature’’ model, which has the same

structure as Eqs. 6, including the structure and stability of the

equilibrium set and which admits an exact and exhaustive

analytical study (31). Fortunately, a similar ‘‘caricature’’

exists for our present three-variable problem as well. We

replace functions INaðVÞ, th(V), and tm(V) defined in Eqs. 5

with constants. The choice of the constants is somewhat

arbitrary. We assume that the events in the beginning of the

interval z 2 [j, 1 N), where V is just above Vm, are most

important for the front propagation. So for numerical

illustrations we choose the values of constants INa; th, and
tm as the values of the corresponding functions in Eqs. 5 at

some fixed value of the voltage V. We set the z axis so that

V(0) ¼ Vh, and then V(j) ¼ Vm for some j . 0 still to be

determined. We demand that the solutions for the unknowns

V, h, andm are continuous and that V is smooth at the internal

boundary points.

In this formulation, Eqs. 7b and 7c decouple from Eq. 7a

and from each other and are solved separately. The solutions

of these first-order linear ODE with constant coefficients are

given by Eqs. 10b and 10c, respectively. It follows that in the

interval V # Vm, Eq. 7 is a linear homogeneous ODE with

constant coefficients, and its solution given at the first row of

Eq. 10a satisfies the boundary conditions V(�N)¼ Va, V(0)¼
Vh, and V(j) ¼ Vm, provided that the internal boundary point

j is given by Eq. 12. To solve the linear inhomogeneous Eq.

10 in the interval V $ Vm, we note that its inhomogeneous

term f [ INaðVÞ j h m3 is a sum of exponentials

f ¼ INaðVÞ j +
3

n¼0

ð�1Þn 3

n

� �
enj=ðctmÞe�Bnz=c;

Bn [
1

th
1

n

tm
¼ tm 1 n th

th tm
; (9)

and terms proportional to nth will appear in the solution due

to the expression for Bn. Imposing the boundary conditions at

the internal point V(j) ¼ Vm and at infinity V(N) ¼ Vv, we

obtain the solution in this interval given at the second row of

Eq. 10a. Finally, the wave speed c is fixed by Eq. 11b from

the requirement that the solution for V(z) is smooth at the
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internal boundary point j. To summarize, the solution of

Eqs. 7 and 8 is

VðzÞ ¼
ðVh � VaÞeðc�kÞz 1Va; z# j;

Vv � INajc
2
t
2

ht
2

m +
3

n¼0

Anðc; zÞ; z$ j;

8<
: (10a)

hðzÞ ¼ 1; z# 0;
e�z=ðcthÞ; z$ 0;

�
(10b)

mðzÞ ¼ 0; z# j;
1� e

ðj�zÞ=ðctmÞ; z$ j;

�
(10c)

where the prefront voltage Va, the postfront voltage Vv, and

the wave speed c are related by

Vv ¼ Vm 1 INa j ðc th tmÞ2e�j=ðc thÞ +
3

n¼0

anðcÞ
tm 1 n th

; (11a)

0 ¼ ðc� kÞðVm � VaÞ � INa j c thtm e
�j=ðcthÞ +

3

n¼0

anðcÞ;

(11b)

the distance between points V ¼ Vh and V ¼ Vm is

j ¼ 1

ðc� kÞln
Vm � Va

Vh � Va

� �
; (12)

and An(c, z) and an(c) are abbreviations for

Anðc; zÞ[ anðcÞ
tm 1 nth

exp
njth � ðtm 1 nthÞz

c th tm

� �
; (13a)

anðcÞ[
�
3

n

� ð�1Þn
cðc� kÞth tm 1 tm 1 n th

: (13b)

In the limit tm / 0, this solution tends to the solution of

the two-component model of (42), as expected.

The accurate expression in Eq. 5a for the sodium current

INaðVÞ vanishes for V¼ VNa, which, in particular, means that

the transmembrane voltage never exceeds VNa. So, replacing

this function with a constant changes the properties of the

system qualitatively. Even bigger discrepancies are expected

to occur from replacing the th(V) and tm(V) by constants

because these functions vary by an order of magnitude in

the range between the pre- and the postfront voltage. It is

surprising, however, that even this rough approximation

produces results that, with exception of the postfront voltage,

are within several percent from the solution of the detailed

ionic model (6) and certainly capture its qualitative features

as can be seen in Fig. 3, where the constants are chosen at

V ¼ Vm, i.e., INaðVmÞ; th(Vm), and tm(Vm). This relatively

good agreement is not due to this special choice of parameter

values. Indeed, the caricature model and its solution Eqs. 10

involve the parameters INa; th, tm, k, Va, and j. The

dependence on the curvature k is negligible in comparison to

the deviation of the solution Eqs. 10 of the caricature model

from the numerical solution of the three-variable model

Eqs. 10. The dependence on the prefront voltage Va and

the excitability parameter j is discussed in the subsection

immediately following and represented in Figs. 4 and 6. The

parameters INa; th, and tm, on the other hand, are somewhat

arbitrary but to achieve a good agreement with the original

system given by Eqs. 7, we choose these values as the values

of the corresponding functions in Eqs. 5 at various values of

V. In Fig. 4, the relationship between the wave speed c and
the excitation parameter j for several such choices of V is

presented. It can be seen that such a variation of the values of

INa; th, and tm does not lead to significant qualitative

changes in the solution Eqs. 10 of the caricature model. Figs.

3 and 4 also show, for comparison, the numerical solutions

of the detailed ionic model of Courtemanche et al. (6) and of

the full three-variable model of Eqs. 7, which will be

described in detail in the next section.

The condition for propagation

Equation 11b defines c as a smooth function of the

parameters within a certain domain. The boundary of this

domain is associated with the propagation failure. Not all

parameters, INa; th, tm, k, Va, and j, entering Eq. 11b are of

equal importance. We consider here k ¼ 0 and postpone the

investigation of the effects of curvature to the next section.

Parameters INa; th, and tm represent well-defined properties

of the tissue, albeit changeable depending on physiological

conditions. On the other hand, parameters j and Va are not

model constants, but ‘‘slowly varying’’ dynamic quantities: j
remains approximately constant throughout the front, and Va

represents the transmembrane voltage ahead of the front, but

both can vary widely on large scales between different

fronts. Hence we need to determine the singular points of the

dispersion relation in Eq. 11b with respect to j and Va.

Similarly to the two-component caricature (31), Eq. 11b is a

FIGURE 3 (A) AP and (B) the gating variables h

and m as functions of the traveling wave coordinate

Z ¼ z
ffiffiffiffi
D

p
: The solution of the model of Courte-

manche et al. (6) is given by circles, of the full

three-variable model of Eqs. 4 by thin lines, and the

analytical solution given by Eqs. 10 for

INa ¼ INaðVmÞ ¼ 781:8; th ¼ th(Vm) ¼ 1.077,

tm ¼ tm(Vm) ¼ 0.131, Va ¼ �81.18 mV, and j ¼
0.956 by thick lines. The gates h andm are indicated

in the plot. The position of the internal boundary

point J ¼ j
ffiffiffiffi
D

p
is indicated by a dash-dotted line.
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transcendental equation for c, but it is easily solvable for the

excitation parameter j:

j ¼ ðVm � VaÞ
6 INa t

4

h tm
e

j
c th

Y3
n¼0

ðc2 th tm 1 tm 1 n thÞ: (14)

The resulting relationship of j and c for a selected value of

Va is shown in Fig. 4. This figure reveals a bifurcation. For

values of j lower than some jmin, no traveling wave solutions

exist. After a bifurcation at j . jmin, two solutions with

different speeds are possible. Our direct numerical simula-

tions of Eqs. 4 as well as studies of the two-component

caricature model by Hinch (43) suggest that the solutions of

the lower branch are unstable. The bifurcation point jmin can

be determined from the condition that j has a minimum with

respect to c at this point and therefore satisfies

@j

@c

� �
Va¼const

¼ 0: (15)

This produces, with j(c) defined by Eq. 14, a quintic poly-

nomial equation for c2.
Activation of the sodium current is possible because tm ¼

th, permitting transient channel opening and current flow

through the cell membrane. The ratio th/tm is a function of V
in the full model, and is a constant in Eqs. 7. The minimal

value of this ratio, necessary for propagation, is shown in

Fig. 5 as a function of various choices of INa; tm, and j; it is
obtained by numerical solution of the algebraic equation Eq.

11b. The smallness of tm/th allows approximate solution of

the above mentioned quintic equation for c2. We set

c
2 ¼ +

N

n¼0

Snt
n

m: (16)

Substituting this expansion in Eq. 15 and discarding the

small terms of order O(tm) gives the zeroth-order approx-

imation to the solution as a function of the prefront voltage

Va:

j
ð0Þ
min ¼

ðVm � VaÞ
2INath

e
2Q

Q1
ffiffiffiffiffiffiffiffiffiffi
Q
2 1 4Q

p
Q1 21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

2 1 4Q
p� �

;

Q ¼ lnððVm � VaÞ=ðVh � VaÞÞ: (17)

This limit corresponds to the two-variable caricature (31).

For any given value of the prefront voltage, the value of

j must be larger than jmin for wave fronts to propagate.

Although lacking sufficient accuracy, the zeroth-order ap-

proximation given by Eq. 17 reproduces qualitatively well

the conditions for propagation and dissipation of excitation

fronts in the model of Courtemanche et al. (6). Analogously,

discarding the small terms of order Oðt2mÞ gives the first-

order approximation,

j
ð1Þ
min ¼

ðVm � VaÞ
6D

4
tm

e
� DQ
ðAth�DQÞ

Y3
n¼0

ðA tm � nDÞ;

D ¼ 12 t
2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q ðQ1 4Þ

p
;

A ¼ ðQ2ðQ1 4Þ1Q
3=2ðQ1 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
Q1 4

p
Þ 11 tm � 6

th
Q

� �
:

(18)

This approximation is already very good and changes

insignificantly as more terms are considered in Eq. 16 (see

Fig. 6).

NUMERICAL RESULTS

Propagating front solutions

We solved Eqs. 7–8 numerically, using the method described

in the Appendix. The results are shown in Figs. 3, 4, and 7.

FIGURE 4 Wave speed C as a function of the excitation parameter j.

(Thick lines) The numerical solution of Eqs. 7. (Thin lines) Solution Eq. 14

for values of th and tm corresponding to a selected voltage V¼ V0 in Eqs. 5.

From right to left, V0 ¼ �28, �30, Vm, – 34, �36, and �38 (mV). In both

cases, Va ¼ �81.18 mV and K ¼ 0 mm�1.

FIGURE 5 Wave speed C as a function of

the timescale ratio th/tm in the caricature

model Eqs. 7 and 8. The values of th and INa
are fixed to the values of the corresponding

functions in Eqs. 5 at a selected voltage V ¼
V0, the prefront voltage is Va ¼ �81.18 mV,

and curvature is K¼ 0 mm�1. (Left plot) Left

to right, V0 ¼ �38, �36, �34 and �32.7 ¼
Vm (mV), and j ¼ 0.9775. (Right plot) Right

to left, j ¼ 0.2 to 1.0 and V0 ¼ Vm.
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Fig. 3 offers a comparison of the shapes of the solution of

Eqs. 7 with a snapshot of a traveling wave solution of the full

model of Courtemanche et al. (6). The values of the wave

speed and the postfront voltage are presented in Table 1 and

also show an excellent agreement. This confirms our

assumptions that the fronts of traveling waves in the full

model have constant speed and shape and thus satisfy an

ODE system, and that j remains approximately constant

during the front. Fig. 7 shows the wave speed c as a function
of two of the parameters of the problem, the prefront voltage

Va and the excitability parameter j. For every value of j and
Va from a certain domain, two values of the wave speed c are
possible, which is similar to the solutions of the caricature

model. The smaller values of c are not observed in the partial
differential equations simulation of the full model. This is a

strong indication that they are unstable.

The condition for propagation

In this subsection, we report numerical values for the

threshold of excitability jmin below which wave fronts are

not sustainable and have to dissipate, as predicted by the

reduced three-variable model of Eqs. 7–8. Fig. 8 presents jmin

as a function of the prefront voltage Va. The curve jmin(Va)
represents a boundary in the space of the slow variables (V, j)
which separates the region of relative refractoriness where

excitation fronts are possible, even though possibly slowed

down, from the region of absolute refractoriness where

excitation fronts cannot propagate at all. In practice, however,

we can reduce the condition of the absolute refractoriness

even further. This is possible because typical APs have their

tails very closely following one path on the (V, j) plane. This
property is known for cardiac models; e.g., Vinet and Roberge

(36) present an evidence for the modified Beeler-Reuter model

that the dynamics of recovery from an AP do not depend on

details of how that AP has been initiated. Therefore of the

whole curve (V, jmin(V)), only one point is important—its

intersection with the curve (V(t), j(t)), representing a typical

AP tail. For the model Courtemanche et al. (6) considered

here, we simply state the existence of this universal (V(t), j(t))
curve as an ‘‘experimental fact’’. This is illustrated in Fig. 8,

where we plot the curve (V, jmin(V)) together with projections
of a selected set of AP trajectories. The AP solutions were

obtained for a space-clamped version of Courtemanche et al.

(6) with initial conditions for j and V as shown in the figure

and all other variables in their resting states. These trajectories

allow us to follow the correlation between the transient of j
and the AP V. Indeed, in the tail of an AP solution, the curve j
versus V is almost independent of the way the AP is initiated.

As a result, the projections of the trajectories (V(t), j(t)) in-
tersect the critical curve (Va, jmin(Va)) in a small vicinity of one
point, (j*, V*)¼ (0.29756 0.0015,�72.56 0.5). This result

suggests the following interpretation. As a wave front propa-

gating into the tail of a preceding wave reaches a point in the

state corresponding to this ‘‘absolute refractoriness’’ point

(j*, V*), it will stop because of insufficient excitability of the

medium, and dissipate.

In a broader context, in the front propagation speed, c is a
function of j and V in the relative refractoriness region of the

(V, j) plane, so the highly correlated dependencies of V(t) and
j(t) in the wake of an AP mean that c at a particular point

becomes a fixed function of time. This makes it possible to

describe c in terms of the diastolic interval DI, i.e., the time

passed after the end of the preceding AP. This dependence,

known as dispersion curve or velocity restitution curve, is an

important tool in simplified analysis of complex regimes of

excitation propagation (44–48).

Propagation block in two dimensions

In two spatial dimensions, the condition of dissipation j, j*
may happen to a piece of a wave front rather than the whole

FIGURE 6 Threshold value jmin above which propagation is possible, as a

function of the prefront voltage Va for the same values of the parameters as

in Fig. 3, i.e., th ¼ 1.077 and tm ¼ 0.131. Shown are different

approximations to the perturbation expansion given by Eq. 16. (Solid line)

Zeroth order, Eq. 17. (Dashed line) First order, Eq. 18. (Dotted line) Second
order.

FIGURE 7 Wave speed C as a function of j and Va, for the model of Eqs.

7. Rapid changes are indicated by a higher density of curves. The thick

dotted line on the base represents the threshold value jmin and may be

compared to the results in Fig. 6.

Conditions for Propagation and Block 2265

Biophysical Journal 90(7) 2258–2269



of it. In that case, we observe a local block and a breakup of

the excitation wave. Fig. 9 shows how it happens in a two-

dimensional simulation of the detailed model of Courte-

manche et al. (6). A spiral wave was initiated by a cross-field

protocol. This spiral wave develops instability, breaks up

from time to time, and eventually self-terminates. This is one

of the simulations discussed in detail in Biktasheva et al.

(35). Here we use it to test our newly obtained criterion of

propagation block. The red color component represents the V
field, white for the resting state, and maximum for the AP

peak. This is superimposed onto an all-or-none representa-

tion of the j field, with white for j . j* and blue for j # j*.
Thus the red rim represents the ‘‘active front’’ zone where

excitation has already happened but j gates are not

deactivated yet; most of the excited region is in shades of

purple representing the gradual decay of the AP with j
deactivated. The wave ends up with a blue tail, which

corresponds to V already close to the resting potential but j

not yet recovered and still below j*. So the blue zone is where
there is no excitation, but propagation of excitation wave is

impossible, i.e., absolutely refractory zone. The white zone

after the tail and before the new front is therefore relative

refractory zone, where front propagation is possible. Thus, in

terms of the color coding of Fig. 9, the prediction of the

theory is: the wave front will be blocked and dissipate where

and when it reaches the blue zone, and only there and then.

This is exactly what happens in the shown panels: the red

front touches the blue tail, first at the third panel, at the point

indicated by the white arrow, and subsequently in its vicinity.

The excitation front stops in that vicinity and dissipates. So we

have a breakup of the front.

The analysis of the numerics, which ran for the total of

7400 ms until self-termination of the spiral and showed four

episodes of front breakup, has confirmed that in all cases the

breakup happened if and only if the front reached the blue

region j # j*.

Curvature effects

Since we attempt to compare the results of our one-

dimensional model to simulations of spiral waves in two-

dimensions, it is important to explore the dependence of the

solution on the curvature of the front. The standard theory

says that in two dimensions, the normal velocity of the wave

front needs to be corrected by the term l K, where l is the

typical width of the wave front (28). The speed-curvature

diagram presented in Fig. 10 A shows that in our simplified

model, this relationship is satisfied to rather large values of

|K|. Our choice of boundary conditions in Eqs. 8 assumes that

the excitation fronts propagate from right to left, so positive

values of the curvature correspond to concave fronts. Only at

very small values of the radius of curvature of the order of

0.3 mm for j ¼ 1 the wave speed shows a nonlinear

dependence on curvature as seen in the inset to Fig. 10 B.
This part of the figure also demonstrates that there is a critical

value of the curvature for which the excitation wave stops to

propagate as well as an unstable branch of the solution.

FIGURE 8 Thick solid line represents the thresh-

old value jmin for excitation failure as a function of

Va for the model given by Eqs. 7. The dotted lines

represent projections of AP trajectories in the space-

clamped detailed model of Courtemanche et al. (6).

FIGURE 9 Local propagation block, dissipation, and breakup of the front

of a reentrant excitation wave. The density plots represent the distribution of

the transmembrane voltage V (red component) in regions of superthreshold

(white) and of subthreshold (blue) excitability j. The white arrow indicates

the time and place the propagation block begins. The time increases from A

to F with Dt ¼ 20 ms; size of the simulation domain is 75 mm 3 75 mm.
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However, these phenomena occur at very large curvatures

that are far outside of the range of values of j Kj, 0.1 mm�1

observed in the two-dimensional simulations of Fig. 9.

The most important question with respect to our study is

whether the curvature changes significantly the critical value

of the excitation parameter j* below which the wave fronts fail

to propagate. To answer this question, we present Fig. 10 C in

which the wave speed c is shown as a function of j for three
values of the curvature corresponding to a noncurved front

and to convex and concave fronts with radius of curvature

equal to 10 mm. The values of jmin for these three cases differ

only slightly. So, the propagation blocks in our simulations do

not depend significantly on the curvature of the front.

This conclusion is valid for the particular cardiac model

(6) and for the particular context. In Comtois and Vinet (49),

the minimal diastolic interval, defined as time from the

moment V ¼ �50 mV to the moment propagation becomes

possible again, depended only slightly on curvature for the

modified Beeler-Reuter model at standard parameters, but

was much more pronounced when tj was artificially in-

creased sixfold. The simplest explanation of this difference is

that the small variation of jmin due to the curvature takes much

longer for j(t) to make if @j/@t is very small, so even that

small variation jmin becomes significant.

CONCLUSIONS

In this article, we have shown that propagation of excitation

and its block in the Courtemanche et al. (6) model of human

atrial tissue can be successfully predicted by a simplified

model of the excitation front, obtained by an asymptotic

description focused on the fast sodium current, INa:Whereas it

was known that main qualitative features of the INa-driven
fronts can be described by a two-component model for V and

h, we have now found that for good quantitative predictions,

one must also take into account the dynamics of m gates.

Thus, we have proposed a three-component description of the

propagating excitation fronts given by Eqs. 4. We have

obtained an exact analytical solution for a piecewise-linear

‘‘caricature’’ three-component model of Eqs. 4. For an

appropriate choice of parameters, it reproduces the key

qualitative features of the accurate three-component model of

Eqs. 4 and gives a correct order of magnitude quantitatively.

Numerical solution of the automodel equation of the proposed

three-component model of Eqs. 4 gives a very accurate

prediction of propagation block in two-dimensional reentrant

waves. For the given model, this reduces to a condition

involving the prefront values of V and j, or even in terms of j
alone. This provides the sought-for operational definition of

absolute refractoriness in terms of j, simple and efficient.

The success of the propagation block prediction justifies

the assumptions made on the asymptotic structure, i.e.,

appearance of the small parameter e of Eqs. 2, and also

confirms that two-dimensional effects, e.g., front curvature,

do not significantly affect the propagation block conditions,

at least in the particular simulation.

As the description and role of INa are fairly universal in

cardiac models, most of the results should be applicable to

other models. However, some other cardiac models may

require a more complicated description. For instance, the

contemporary ‘‘Markovian’’ description of INa (e.g., (50)) is
very different from the classical m3jh scheme. Also, prop-

agation in ventricular tissue in certain circumstances can be

essentially supported by L-type calcium current rather than

mostly INa alone (51).

APPENDIX: NUMERICAL METHOD

For a numerical solution, the problem needs to be formulated on a finite

interval z 2 [zmin, zmax] rather than on the open interval z 2 (– N, N).

Furthermore, because of the piecewise definition of the problem, this interval

must be separated in three parts—[zmin, 0], [0, j], and [j, zmax] as discussed

in section ‘‘Analytical study of the reduced model’’. The standard numerical

methods we use require that the problem is posed on a single interval, for

instance y 2 [0, L]. So we use the mapping

FIGURE 10 (A and B) Wave speed C for the

model of Eqs. 7 and 8 as a function of the

curvature for values of j ¼ 1. . .0.4 (from top to

bottom). Results for the detailed model (6) are

denoted by thick solid lines. (C) The wave speed

C in the model given by Eqs. 7 as a function of j

for K ¼ 0.1, 0, and �0.1 mm�1 (from top to

bottom).
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½0; L�’y ¼
�z; z 2 ½zmin;0�;
ðj=LÞz; z 2 ½0; j�;
z� j; z 2 ½j; zmax�

8<
: (19)

to transform Eqs. 7 as follows:

V$1 ¼ �ðc� kÞV91 1 gNaðVNa � V1Þj h1 m
3

1;

h91 ¼ �ðc thðV1ÞÞ�1ð1� h1Þ;
m91 ¼ ðc tmðV1ÞÞ�1

m1;

V$2 ¼ ððc� kÞV92 � gNaðVNa � V2Þj h2 m
3

2Þ=p;
h92 ¼ �ðp c thðV2ÞÞ�1

h2;

m92 ¼ �ðp c tmðV2ÞÞ�1
m2;

V$3 ¼ ðc� kÞV93 � gNaðVNa � V3Þ j h3 m
3

3;

h93 ¼ �ðc thðV3ÞÞ�1
h3;

m93 ¼ ðc tmðV3ÞÞ�1ð1� m3Þ;
c9 ¼ 0;

p9 ¼ 0; where p[ j=L

V9v ¼ 0; (20)

where the subscripts 1, 2, and 3 denote the variables corresponding to the

three subintervals. Here, the end of the second subinterval j is an unknown

parameter and together with the wave speed c and the postfront voltage Vv

must be determined as a part of the solution. Because these unknowns are

constants, their derivatives must vanish, which leads to the introduction of

the last three equations in Eqs. 20.

The boundary conditions in Eqs. 8 at infinity are substituted by

ðuÞzmin ;zmax
¼ ðuÞð7NÞ 1 v; (21)

where u is the vector of unknown variables and v is a vector of small

perturbations, obtained as a solution of Eqs. 7 linearized about Eqs. 8.

Together with the implicit assumptions V(0) ¼ Vm and V(j) ¼ Vh, which

break the translational invariance and the additional requirements that the

solutions must be continuous functions of z and that V(z) must be smooth,

the necessary 15 conditions are

V1ð0Þ ¼ Vh; V2ð0Þ ¼ Vh; V3ð0Þ ¼ Vm;

V91ð0Þ ¼ �pð0ÞV92ð0Þ; h1ð0Þ ¼ h2ð0Þ; m1ð0Þ ¼ m2ð0Þ;
V93ð0Þ ¼ pðLÞV92ðLÞ; h3ð0Þ ¼ h2ðLÞ; m3ð0Þ ¼ m2ðLÞ;
V91ðLÞ ¼ �ðcðLÞ � kÞðV1ðLÞ1VaÞ; V2ðLÞ ¼ Vm;

V3ðLÞ ¼ �ðV3ðLÞ � VvðLÞÞ=ðcðLÞ thðV3ðLÞÞÞ;
h1ðLÞ ¼ 1; m1ðLÞ ¼ 0;

h3ðLÞ ¼ V93ðLÞ
gNaj ðVNa � V3ðLÞÞ

1

cðLÞthðV3ðLÞÞ1 ðcðLÞ � kÞ
� �

:

(22)

We use the boundary-value problem solver D02RAF of the Numerical

Algorithms Group numerical library, which employs a finite-difference

discretization coupled to a deferred correction technique and Newton

iteration (52). The analytical solution given in Eqs. 10 is used as an initial

approximation to start the correction process. The method proves to be very

robust over a large range of parameters.
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