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The current threat of global warming and the public demand for confident projections of
climate change pose the ultimate challenge to science: predicting the future behaviour of a
system of such overwhelming complexity as the Earth’s climate.

In principle, the Earth’s climate could be viewed as a deterministic dynamical system.
The laws of motion (such as the fluid dynamics of ocean and atmosphere), and the time-
dependent forcing (mostly insolation, but also interactions, for example with the biosphere
or geothermal sources) are known such that one ends up with a large system of differential
equations determining the future state entirely, using the current state as initial condition.
Unfortunately, as Lorenz [1] demonstrated with a simple model for convection, this state-
ment, even though true in principle is not applicable in practice. In chaotic systems trajec-
tories from nearby initial conditions diverge from each other at an exponential rate such
that the future state becomes unpredictable beyond a time horizon determined by the diver-
gence rate. In the face of this problem the intuitive justification for attempting long-term
climate prediction is that, while the weather is clearly chaotic, the climate is representing
the attractor of this chaotic system. If the chaotic attractor is well-behaved and the model
simulations are unbiased then ensemble runs of these simulations can reveal the statistical
properties of the attractor (for example, mean, variability, frequency of extreme events).
Moreover, one may hope that gradual changes in the forcing or system parameters lead to
a gradual change of the attractor and its statistical properties. This approach would treat
the short-term chaos as noise, thus, making predictions about the statistical properties of
realisations of this noise on long time-scales. Gradual changes of the forcing can be either
man-made (for example, in an emission scenario) or external (for example, astronomical,
if one learns from the behaviour of the palaeoclimate).

This Theme Issue addresses two practical problems that make even this type of sta-
tistical prediction so challenging. The first is that even for the most detailed models the
statistical properties of the attractor show systematic biases. The second is that the attrac-
tor may undergo sudden large-scale changes (noticeable in its statistical properties) on a
time-scale that is fast compared to the gradual change of the forcing (so-called climate
tipping).

A recent Theme Issue Stochastic physics and climate modelling was devoted to re-
ducing the bias of climate models using methods of stochastic modelling [2]. Three con-
tributions to the current issue add further to the theme of reducing the bias in large-scale
climate models. As it is unrealistic to resolve the finest relevant scales in earth system mod-
els, modellers have to close their model at some scale, treating subgrid-scale processes as
parametric influence. The traditional assumption made at this stage is that the subgrid-
scale processes are rapidly achieving equilibrium (in a stochastic sense) subject to a slow
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forcing from the large-scale (modelled) processes. Thus, subgrid processes would act back
on the model only at their equilibrium. One case where this assumption is known to be
problematic is cumulus cloud modelling. These clouds occur on a sub-grid scale yet the
assumptions of “infinitely many plumes per grid box” (this allows us to take averages) and
“convection is in equilibrium with a slowly-varying large-scale forcing” are problematic
[3]. [Plant, this volume] shows how ideas from the modelling of birth-death processes with
statistical mechanics can be transferred to statistical cumulus dynamics.

On a more conceptual level [Kwasniok, this volume] shows how the influence of sub-
grid chaotic subsystems can be incorporated into the large-scale model using a clustering
algorithm and statistical modelling of the unresolved variables. The approach by [Kwas-
niok, this volume] is data-based, that is, independent of the physics in the subgrid. Kwas-
niok’s demonstration uses the Lorenz ’96 model, which is a set of ordinary differential
equations on a ring.

The question at which scale to cut off the model for a simulation (say, a scenario) is
also determined by the trade-off of how to allocate computational resources between pos-
sible ensemble size and the numerical complexity of the model. [Ferro et al., this volume]
devise a simple model for the idealised case that model complexity is determined by grid
resolution and the ensemble consists of trajectories from perturbed initial conditions. The
model can be used to optimise the grid resolution with respect to performance measures
such as mean-squared error.

Two of the contributions are concerned with the processing of the statistical climate
predictions. [Jupp et al., this volume] show how forecasts of ternary type (forecasts, which
assign probabilities of, for example, “below”, “normal” and “above” to a quantity on each
grid point on a map, for example, precipitation) can be visualised and verified with a
colouring scheme. The proposed color scheme is continuous, and, thus, conveys the full in-
formation of the forecast. [Iziumi et al., this volume] give a demonstration of how one can
translate forecasts from regional or global climate models into statistically correct weather
series: stochastic weather generators use climate projections from a multi-model ensemble
of global climate models to generate local-scale daily weather datasets. These datasets of
climatic variables (such as daily maximum and minimum temperature, precipitation etc)
have to produce the correct statistical features such as the distribution of wet or dry spells.
These features enter, for example, crop models to assess the impact of climate change on
particular regions: [Iziumi et al., this volume] test datasets for Japan.

The other strand of this Theme Issue discusses the problem of modelling, predicting
and detecting climate tipping. On the phenomenological level, tipping can be described as
a strongly nonlinear response of a dynamical system to a change of a system parameter that
is itself gradual (slow) over time [9, 10]. Assume that for the initial parameter the system
has an attractor that can be viewed on a coarse level of modelling as a stable equilibrium
perturbed by noise. One expects that, as the parameter changes gradually over time, the
location of this equilibrium changes more or less proportionally. However, if there are
positive feedback mechanisms present in the system then these feedback mechanisms can
give rise to threshold (critical) parameter values at which the positive feedback causes
an abrupt change of the dynamics. One common scenario is that the stable equilibrium
collides due to the parameter change with an unstable equilibrium in a fold, such that the
equilibrium disappears and the system rapidly jumps toward a distant attractor.

[Crucifix, this volume] gives a review of conceptual oscillator models that are used
to explain glacial-interglacial cycles. Without forcing most of these models exhibit self-
sustained relaxation oscillations (periodic motion with fast phases and slow phases where
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the transition to the fast phase can be considered as a tipping point). A large part of Cruci-
fix’ review is devoted to the effect that stochastic and astronomical forcing have on these
self-sustained oscillations. An alternative, also reviewed by Crucifix, is that the forcing
merely induces coherent hopping in double-well potentials (so-called noise-induced tip-
ping). [Ashwin et al., this volume] analyse an alternative, less conventional, mechanism
for tipping. It is possible that the threshold for tipping is not a critical value of the gradu-
ally changing system parameter but a critical rate of parameter change. This phenomenon
was observed in a simple model for the so-called compost bomb instability [13].

The fold-induced tipping scenario as described by Rahmstorf [9] and Lenton et al. [10]
promises to be detectable before it happens due to early-warning signs: before a gradually
changing parameter crosses a critical value at which positive feedback causes the equilib-
rium to disappear in a fold, the attractivity of the equilibrium weakens. Thus, one should be
able to discern early-warning signals from time series of measurements in the form of in-
creased autocorrelation and variance. [Lenton et al., this volume] compare these indicators
and their newly developed indicator based on detrended fluctuation analysis (DFA). They
extract these indicators from palaeoclimate time series that show apparent tipping as well
as from model outputs, and test their robustness with respect to method parameters (such
as filtering bandwidth, or length of the sliding window). For a system fluctuating around an
equilibrium close to a fold, the probability of noise-induced tipping depends on the lead-
ing nonlinear term in (what is often called) the right-hand side of the equations. [Sieber &
Thompson, this volume] seek to extract the presence of a non-zero nonlinearity in the right-
hand side from time series. [Beaulieu et al., this volume] review statistical techniques that
detect if a time series contains a change point (an abrupt change in mean or variance, or in
any parameters in an underlying regression model). The paper extends change point detec-
tion criteria based on the Schwarz Information Criterion to time series with autocorrelation
(a typical feature of climate time series). The methods are illustrated for the CO2 concen-
tration measurements of Mauna Loa, and the ∆14C measurements (which are a tracer for
past climate change). [Franzke et al., this volume] compare estimators for the Hurst expo-
nent from a time series, a measure for self-similarity, and, thus, long-range dependence;
the methods employed by Beaulieu, and Sieber & Thompson assume autocorrelation only
between nearby elements of the time series.

The issue starts off, very appropriately, with a review of the thermodynamic big picture
by [Kleidon, this volume]. Kleidon looks at how the Earth maintains its thermodynamic
disequilibrium. The principles of non-equilibrium thermodynamics lead to upper bounds
on the available free energy generated and consumed by various processes on Earth. Hu-
man activity (roughly, the demand for food and from industrial consumption) appropriates
a substantial amount of free energy, of the order of 50Terawatt, which is already on the
same order of magnitude as the free energy generation by abiotic means (approx. 40TW),
and is a large fraction of the free energy biotic generation (approx 215TW). As human ap-
propriation will increase in the near future the a central question when predicting climate
change is whether the human activity will negatively impact the ability of the Earth system
to generate free energy.

The review by Kleidon serves also as an excellent introduction, giving a sense of the
scale of the challenge posed by climate change, and listing direct implications for various
forms of renewable energy and planetary engineering.
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