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Abstract 

 

During intracellular biotrophic growth, the rice blast fungus Magnaporthe oryzae secretes a 

large battery of effector proteins, which are thought to suppress host cell defence responses. 

Although a number of these effector proteins have been identified, their precise biological 

functions and contribution towards plant infection remains unclear. In this thesis, I report that 

during biotrophic growth, the secretion of a LysM effector protein, Slp1, is required for rice 

blast disease. I show that Slp1 binds chitin and is able to suppress the chitin-induced oxidative 

burst and defence gene-expression in rice cells. Slp1 competes with the membrane-localised 

chitin receptor CEBiP in rice, and this competitive interaction results in a reduction in virulence 

associated with Δslp1 null mutants. Slp1 is secreted by intracellular hyphae specifically during 

biotrophic growth, and accumulates around hyphal tips at the plant-fungal interface. Using 

transgenic rice lines which express fluorescent marker proteins targeted to the plasma 

membrane and endoplasmic reticulum, I investigate the biotrophic growth phase of M. oryzae. I 

show that the rice host plasma membrane becomes tightly apposed to invasive biotrophic 

intracellular hyphae. I also show that the rice host plasma membrane and endoplasmic reticulum 

accumulate around the Biotrophic Interfacial Complex (BIC), a bulbous structure attached to the 

sub-apical region of intracellular fungal hyphae, which accumulates fluorescently-labelled 

avirulence effector proteins. Using a fungal plasma membrane marker, I show that the BIC 

resides outside the fungal plasma membrane and cell wall is made exclusively of plant cellular 

material.  
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