GENOTYPE-BY-ENVIRONMENT INTERACTIONS AND SEXUAL SELECTION

Submitted by:

Fiona Caroline Ingleby

to the University of Exeter as a thesis for the degree of Doctor of Philosophy in

Biological Sciences

August 2012

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all materials in this thesis that are not my own work have been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.
ABSTRACT

Genotype-by-environment interactions (G x Es) describe genetic variation for phenotypic plasticity, such that the relative performance of genotypes varies across environments. These interactions have been studied in the context of natural selection for decades, but research interest in the evolutionary consequences of G x Es in sexual traits is more recent. Theory suggests that G x Es in sexual traits could be of fundamental importance to the operation of sexual selection across heterogeneous environments, but empirical research lags behind the theory. In this thesis, I review the current literature on the role of G x Es in sexual selection and identify areas for further research. Using cuticular hydrocarbons (CHCs) in the fruit fly *Drosophila simulans* as a model system for sexual selection, I examine G x Es in trait expression and quantify the effect of these G x Es in terms of sexual signal reliability and the coevolution of male and female sexual traits.

To do so, I use a combination of quantitative genetics and laboratory environmental manipulations. First, I demonstrate that male CHC profile is subject to sexual selection through female mate choice and find some variation in patterns of mate choice across diets and temperatures (Chapter 3). Next, I identify G x Es in male and female CHC expression across diets and temperatures, although G x Es in male CHC profile across temperatures are weak (Chapter 4). I find that G x Es in male CHC expression can cause sexual signal unreliability, as predicted by theory, since male CHCs do not reliably signal heritable aspects of male attractiveness across diets and temperatures (Chapter 5). I also find G x Es in some aspects of female mate choice across temperatures (Chapter 6). In spite of the evidence for signal unreliability and variation in female mate choice across environments, I show that the overall outcome of mate choice is unaffected by G x Es, such that the same male genotypes are attractive across diets and temperatures (Chapters 5 and 6). From my results, it seems likely that females assess male attractiveness based on multiple male sexual signals, so that whilst male CHCs influence mate choice, CHC profile does not necessarily correlate well with overall male attractiveness. I discuss the implications of these results for the evolution of sexual traits and the genetic covariance between male and female sexual traits across environments. The research in this thesis highlights the importance of multivariate studies of sexual selection across environments for a more complete understanding of the evolution of sexual traits.
LIST OF TABLES AND FIGURES

Chapter 2

Box 2.1 Models of G x Es in sexual traits... 36
Table 2.1 Summary of studies which have tested genetic and environmental effects on sexual trait expression... 38
Table 2.2 Effect sizes of G x E interactions... 41
Figure 2.1 Reaction norms for relative fitness of four genotypes measured in two different environments.. 42
Figure 2.2 The effect of gene flow between different environments on the strength of female preferences.. 43
Figure 2.3 Reliability of sexual traits where G x Es affect the scale of variation between trait expression in different environments... 45

Chapter 3

Table 3.1 Principal component analysis for male CHC expression............................. 60
Table 3.2 Results of a MANCOVA of the effects of diet and temperature on male CHC profile... 61
Table 3.3 Proportion of males from each environment which successfully mated in a 3-hour assay... 61
Table 3.4 Pair-wise comparison of the strength of linear, quadratic and correlational sexual selection on male CHCs.. 62
Table 3.5 Results of a selection analysis for female mate choice on 3 PCs of male CHC profile across four environments... 62
Table 3.6 The major vectors of linear and nonlinear sexual selection on male CHC profile across four environments... 63
Table 3.7 Genetic constraint on male CHC profile across four environments........ 63
Figure 3.1 Mean male PC score across diets and temperatures...................................... 64
Figure 3.2 Fitness surfaces showing sexual selection on male CHC profile across four environments.. 65

Chapter 4

Table 4.1 Principal component analysis for CHC expression in both sexes............... 84
Table 4.2 Summary of the set of six models tested for males and females........ 85
Table 4.3 Posterior mean of genetic and G x E variance components for PC1, PC2 and PC3 for each sex... 86
Table 4.4 Cross-environment genetic correlations for each male and female PC.... 86
Table 4.5 Heritability of each male PC... 86
Table 4.6 Heritability of each female PC.. 87
Figure 4.1 Reaction norms showing trait expression across two hypothetical environments... 88
Figure 4.2 Experimental setup for each isoline.. 89
Figure 4.3 Overall posterior mean for male CHC expression, showing the effect of diet and post-eclosion temperature.. 90
Figure 4.4 Overall posterior mean for female CHC expression, showing the effect of diet and post-eclosion temperature.. 90
Figure 4.5 Reaction norms for the isoline x diet interaction in male and female CHC expression... 91
Figure 4.6 Reaction norms for the isoline x temperature interaction in female CHC expression... 92

Chapter 5
Table 5.1 Principal component analysis for CHC expression in both temperature and diet manipulation... 110
Table 5.2 Results for GLMMs for male attractiveness across temperature and diet... 111
Table 5.3 Broad-sense heritability estimates of male attractiveness...................... 111
Table 5.4 Results from a mixed model MANOVA of PCs 1-5 of CHC expression across temperatures... 112
Table 5.5 Results from a mixed model MANOVA of PCs 1-5 of CHC expression across diets... 114
Figure 5.1 Experimental design for each isoline.. 116
Figure 5.2 Mean absolute difference between isoline sire and son attractiveness and PC scores across temperatures... 117
Figure 5.3 Reaction norms for male CHC expression across temperatures........... 118
Figure 5.4 Mean absolute difference between isoline sire and son attractiveness and PC scores across diets... 119
Chapter 6

Table 6.1 Summary of the set of models tested for copulation latency and mate acceptance... 137

Table 6.2 Variance in copulation latency and mate acceptance accounted for by genetic and G x E effects... 139

Table 6.3 Cross-environment genetic correlation and heritability of copulation latency and mate acceptance... 139

Table 6.4 Overall estimates for the linear selection gradient on each PC of CHC expression... 139

Figure 6.1 Female G x E reaction norms for copulation latency and mate acceptance across temperatures... 140

Figure 6.2 Genetic variation in copulation latency as a function of male CHC profile... 141

Figure 6.3 Genetic variation in mate acceptance as a function of male CHC profile... 142

Figure 6.4 Posterior estimates of the linear selection gradient on each PC of male CHC expression for each female G x temperature combination... 143
AUTHOR’S DECLARATIONS

During the research contributing to this thesis Fiona Caroline Ingleby (FCI) was supported by a studentship from the ESF. All of the chapters presented in this thesis were written by FCI with comments and editing from David J. Hosken (DJH) and John Hunt (JH). The laboratory populations and inbred lines used in Chapters 3-6 were set up by FCI using animals collected by Natasa Fytrou in Greece in April 2010. Further contributors for each chapter are detailed below.

Chapter 2

A version of this chapter was published as a review article in the *Journal of Evolutionary Biology* 23: 2031-2045. FCI, DJH and JH are grateful for the comments of two anonymous reviewers.

Chapter 3

The data in this chapter was collected by FCI, Kristy Flowers (KF), Michael F. Hawkes (MFH), Sarah M. Lane (SML) and James Rapkin (JR). Chris Mitchell provided training for gas chromatography techniques. FCI and JH conducted the statistical analyses.

Chapter 4

The data in this chapter was collected by FCI, KF, MFH, SML and JR. Ian Dworkin (ID), FCI and JH conducted the statistical analyses. FCI wrote the manuscript with comments and editing from DJH, JH and ID. A version of this chapter has been accepted for publication in the *Journal of Evolutionary Biology*.

Chapter 5

The data in this chapter was collected by FCI with assistance from Eóin Duffy and Richa Joag during mating assays. FCI and JH conducted the statistical analyses. A version of this chapter has been accepted for publication in the *Journal of Evolutionary Biology*.
Chapter 6
The data in this chapter was collected by FCI with assistance from Jack Boyle, Nicole Goodey and Claire Young during mating assays. Statistical analyses were carried out by FCI. A version of this chapter is currently in review with *Heredity*.

Appendix 3
This chapter was co-authored by FCI, DJH and JH. A version of this chapter appears in: *The role of genotype-by-environment interactions in sexual selection* (Ed: DJ Hosken and J Hunt). In press with Wiley-Blackwell.