Weather Exposure and the Market Price of Weather Risk

Submitted by Kingkan Ketsiri to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Finance, July 2012.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature
Acknowledgements

The doctoral process has been one of the most challenging journeys I have ever gone through, as I have come across it during the roller coaster ride of my life. I am grateful to the many people whose generosity made this PhD possible: for those academic, financial and emotional supporters.

In the first place I would like to acknowledge the financial and academic support of the Business School, University of Exeter, particularly for the award of PhD studentship that has funded my research for four years. I am pleased to work in a supportive, stimulating and welcoming academic and social environment.

I am truly indebted and thankful to my supervisor, Professor Richard Harris, for his supervision, advice, and guidance from the very early stage of this research. His unsurpassed knowledge and patience are very helpful in bringing me along in past several years. Above all the most needed, he provided me unflinching encouragement and support in various ways. Without him, I would have given up this great opportunity of my life.

I would like to show my gratitude to Dr. Stanley Gyoshev for his valuable comments and academic support. I also thank him for giving me a chance to work as his teaching assistant, where I have found my passion in academic work. I also wish to record my appreciation to Dr. Brian Wright for his supervision in the early stage of my research. I have benefited from his advice to develop innovative and original ideas for my research. Moreover, this thesis would not have been possible without the technical support from Robert Wisniewski. His involvement in computer programming is a backbone of this research, and I heartfelt thank for our long hour work and discussion. I am also greatly indebted to Dr. Jill Cadorath and Michael Hind for their language help.

I owe sincere and earnest thankfulness to Professor Tim Niblock, who was always willing to help and give his best suggestions. To him for spending his precious times to read the thesis of an unfamiliar topic, for giving constructive comments, for correcting my English, and for tirelessly building up my courage and confidence; I am deeply grateful in every possible way.
It is a pleasure to pay tribute also to all my friends and colleagues, whose endless encouragement and caring have supported me until the end of this long journey. Many thanks go in particular for Thai friends in Exeter, who have shared tons of laughter and great memories over the years. To P’Nong, P’Pui, P’Sao, P’Oh, P’Prae, P’Yai, P’Boy, P’Tang, P’Pim, P’Jay, P’Num, Joyce, Ploy, and Num; your friendships are invaluable to me.

Words do not suffice to express my thankfulness to my family for their unequivocal support throughout the PhD journey. Their unconditional loves and understandings have taken loads of pressure off my shoulder. My mother, in the first place, is the person who has always believed in me, cheered me up and stood by me through the good and bad times. To my auntie Aoi, I am truly obliged for her support and continuous encouragement. I also thank Pui for being such a supportive and wonderful sister.

Finally, my father deserves a special mention for his sincere love and strong confidence in me. He had longed for me to be a doctoral graduate, but his life was way too short to commemorate my achievement together. Specifically, this thesis is wholeheartedly dedicated to him. I wish he is now watching over me from heaven and proudly smiling.
Abstract

Whilst common intuition and the rapid growth of weather derivative practices effectively support the notion that equity returns are sensitive to weather randomness, empirical support is fragile. This thesis is the first study that investigates weather exposure and weather risk-return trade-off consistent with the arbitrage pricing theory (APT). It explores weather risk and its premium in the U.S. market during January 1980 to December 2009, based on three of the most weather-influenced industries.

The research starts with the construction of ten seasonally-adjusted weather measures as the proxies of unexpected temperature, gauged in Fahrenheit degree and percentage terms. The weather exposures of individual firms are estimated based on each of the ten measures and the market return. Although average weather exposure coefficients are small, the number of firms with significant estimates is more than attributable to chance and results are more profound in utilities. The weather coefficients are mainly stable over the sample period, indicating that the introduction of weather derivatives does not significantly impact a firm’s weather exposure. Further investigation into summer and winter time reveals that most of the significant weather betas are found in winter. However, only a minority of firms have statistically different weather betas between the two seasons. Results are robust with respect to the ten measures.

The finding that unpredictable weather broadly affects groups of stocks has a direct implication in asset prices, as weather risk may be one of the priced factors. In this study, the weather risk premium is estimated using the standard two-pass Fama and MacBeth (1973) methodology, enhanced with Shanken’s adjustments for the errors in variables problem. The tests are based on firm-level and portfolio-level regressions, assessed by different model specifications and repeated for the ten weather measures. In the unconditional setting, there is little support that the market price of weather risk is not zero. Although the estimates are insignificant, the magnitudes of weather premiums are relatively high compared with those of other macroeconomic factors in previous literature. Most of the estimated weather pricings are negative; thus, stocks exposed to weather should be hedged against an unanticipated increase in temperature. The main pricing results are robust to alternative sample sets, portfolio formations, base assets and weather measures. Nonetheless, the significance of weather premium is slightly affected by model specifications. In few cases, the pricings of weather risk are significant when the positive values of weather betas are used in cross-sectional regressions.
Table of Contents

Chapter 1
Introduction .. 10
1.1 Research motivation ... 10
1.2 Background and context .. 11
1.3 Research objectives ... 14
1.4 Research contribution ... 15
1.5 Structure of the thesis ... 15

Chapter 2
Weather Risk and Weather Derivatives ... 18
2.1 Introduction .. 18
2.2 Weather risk .. 20
2.2.1 Energy utilities .. 20
2.2.2 Agriculture ... 24
2.2.3 Other industries ... 29
2.2.4 Financial markets .. 35
2.3 The management of weather risk: introduction to weather derivatives 40
2.3.1 Overview of weather derivatives ... 41
2.3.2 Weather derivatives market ... 43
2.3.4 Weather derivatives valuation ... 48
2.4 Summary ... 56

Chapter 3
Weather Risk in Asset Pricing Context ... 63
3.1 Introduction .. 63
3.1.1 Objective of this chapter ... 64
3.1.2 Structure of this chapter ... 65
3.2 Weather exposures and share values ... 65
3.2.1 A review of market-based accounting research ... 65
3.2.2 Identifying the under-researched area ... 71
3.3 Asset pricing theory ... 72
3.3.1 History of asset pricing ... 72
3.3.2 Theoretical background of CAPM and APT ... 73
3.3.3 Literature review on CAPM and APT ... 77
3.4 Weather as a fundamental determinant of stock returns 86

Chapter 4
Data Analysis and Quantifications of Unexpected Weather 91
4.1 Introduction .. 91
4.2 Data description and analysis ... 93
4.2.1 The sample ... 93
4.2.2 The market proxy ... 98
4.2.3 The weather variable ... 99
4.3 Measures of unexpected weather ... 113
4.3.1 Implications on unexpected weather measures ... 113
4.3.2 Constructing measures of unpredictable weather events 116
4.3.4 Statistical properties of weather variables ... 123
4.4 Summary .. 124

Appendix I: The Normal Distribution and the Jarque-Bera Test 127
Appendix II: The Unit Root Test .. 128
Appendix III: The Seasonality Tests ... 129
Appendix IV: ARIMA Model ... 132

Chapter 5
The Weather Exposures of U.S. Corporations .. 166
5.1 Introduction ... 166
5.2 Literature review ... 168
5.3 Empirical methodology .. 171
 5.3.1 Model specifications ... 171
 5.3.2 Parameter stability test .. 175
 5.3.3 F-test for equality constraints in models ... 177
5.4 Empirical results .. 178
 5.4.1 Distribution of firm-level weather exposure coefficients 180
 5.4.2 Stability of weather betas ... 184
 5.4.3 Corporate exposures to weather in winter and summer 186
 5.4.4 Market exposure to weather ... 190
5.5 Discussion and further research ... 192
5.6 Conclusion .. 197

Chapter 6
The Price of Weather Risk... 220
6.1 Introduction ... 220
6.2 Literature review ... 222
6.3 Empirical methodology .. 226
 6.3.1 Weather in asset prices .. 227
 6.3.2 The two-stage regressions ... 228
 6.3.3 Portfolio versus individual stocks regression 232
 6.3.4 Portfolio formation .. 233
 6.3.5 Models and Hypothesis .. 236
6.4 Empirical results .. 238
 6.4.1 Portfolio results ... 238
 6.4.2 Portfolio-level cross-section regressions .. 241
 6.4.3 Firm-level cross-section regressions ... 243
 6.4.4 The movement of estimated weather risk premiums over time.......... 248
6.5 Discussion and further research ... 249
6.6 Conclusion .. 253

Chapter 7
Conclusion .. 279
7.1 Measures of unexpected weather ... 280
7.2 The weather exposure .. 280
7.3 The market price of weather risk ... 282
7.4 Suggested implications and the significance of the findings 284
7.5 Limitations and further research ... 285

Bibliography .. 287
Table 2.1: Weather derivatives and other risk management tools 59
Table 4.1: Summary of equities in the sample .. 137
Table 4.2: Unit root test results for the market return series, Jan 1980 – Dec 2009 138
Table 4.3: State-wide temperature for 48 states, Jan 1980 – Dec 2009 139
Table 4.4: Principal component analysis: total variance explained 140
Table 4.5: Principal component analysis: communalities ... 141
Table 4.6: Statistics of nationwide monthly temperature, Jan 1980 – Dec 2009 142
Table 4.7: Tests for the presence of seasonality in temperature data 143
Table 4.8: Unit root test results for temperature series, Jan 1980 – Dec 2009 144
Table 4.9: Seasonal decomposition of temperature series by X-12-ARIMA 145
Table 4.10: Diagnostics for the regARIMA (1 0 1)(0 0 1) of temperature series 147
Table 4.11: Unit root test results of seasonally adjusted temperature series (TSA)... 149
Table 4.12: A correlation matrix for independent variables 156
Table 5.1 : Distribution of β_w for U.S. firms, Jan 1980- Dec 2009 200
Table 5.2: Analysis of absolute weather coefficients, $|\beta_w|$ 204
Table 5.3: Sign change of β_w from 1980-1997 to 1998-2009 period 205
Table 5.4: A stability test for β_w from 1980-1997 to 1998-2009 period 206
Table 5.5: Distribution of firm-level β_w (winter) and β_w (summer) 207
Table 5.6: A test on an equality of seasonal weather coefficients 211
Table 5.7: Number of equities with significant Durbin-Watson statistic 212
Table 5.8: Market exposure to unexpected weather 213
Table 6.1: Portfolio formation, estimation and testing periods in the post-ranking beta portfolios.. 256
Table 6.2: The portfolio weather coefficients for the post-ranking $\hat{\beta}_w$ portfolios...... 257
Table 6.3: The number of stocks in pre-ranking $\hat{\beta}_w$ and post-ranking $\hat{\beta}_w$ portfolios... 258
Table 6.4: The $\hat{\beta}_w$ -ranked portfolio returns .. 259
Table 6.5: The portfolio market betas of the $\hat{\beta}_w$-ranked portfolio 260
Table 6.6: The portfolio weather betas of the $\hat{\beta}_w$-ranked portfolio 261
Table 6.7: The $\hat{\beta}_{MR}$-ranked portfolio returns .. 262
Table 6.8: The portfolio market betas of the $\hat{\beta}_{MR}$-ranked portfolio 263
Table 6.9: The portfolio weather betas of the $\hat{\beta}_{MR}$-ranked portfolio 264
Table 6.10: Regression coefficients estimated by the $\hat{\beta}_w$-ranked portfolios 265
Table 6.11: Regression coefficients estimated by the $\hat{\beta}_{MR}$-ranked portfolios 266
Table 6.12: Coefficients estimated by firm-level regressions 267
Table 6.13: Coefficients estimated by firm-level regressions with $|\hat{\beta}_w|$ 268
Table 6.14: Coefficients estimated by firm-level regressions with $\hat{\beta}_e$ 269
Table 6.15: Coefficients estimated by firm-level regressions with $\hat{\beta}_c$ 270
Table 6.16: Serial correlations in time-series of weather risk premiums 271
List of Figures

Figure 2.1: Volumes and notional values of traded weather contracts, 2001-2006 60
Figure 2.2: CME weather derivatives trading volume ... 61
Figure 2.3: Weather derivatives geographic trading and business lines, 2002-2006 62
Figure 3.1: An assumed weather-security price relationship .. 90
Figure 4.1: The market return series: graph and descriptive statistics 157

Figure 4.2: Scree plot of state-wide monthly average temperatures 158
Figure 4.3: Monthly average nation-wide U.S. temperature, Jan 1980 - Dec 2009 159
Figure 4.4: Level correlogram of national monthly average temperature series (T) 160
Figure 4.5: The seasonally adjusted temperature series (TSA) 161
Figure 4.6: Level correlogram of W1, Jan 1979 - Dec 2009 162
Figure 4.7: The correlogram and Q-Stats of residuals from the ARMA (1,1) of W1... 163
Figure 4.8: Level correlogram of TSA series, Jan 1979 – Dec 2009 164
Figure 4.9: The correlogram and Q-Stats of residuals from the ARMA (1,1) of TSA 165
Figure 5.1 : Distribution of β_w over the whole sample in 30-year period 214
Figure 5.2: Distribution of β_{ww} over the whole sample in 30-year period 216
Figure 5.3: Distribution of β_{ws} over the whole sample in 30-year period 218
Figure 6.1: The instability of weather betas ... 272
Figure 6.2: The movements of estimated weather risk premiums over 1985-2009 273