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Queueing induced by bidirectional motor motion near the end of a microtubule
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Recent live observations of motors in long-range microtubule (MT) dependent transport in the fungus
Ustilago maydis have reported bidirectional motion of dynein and an accumulation of the motors at the
polymerization-active (the plus-end) of the microtubule. Quantitative data derived from in vivo observation of
dynein has enabled us to develop an accurate, quantitatively-valid asymmetric simple exclusion process
(ASEP) model that describes the coordinated motion of anterograde and retrograde motors sharing a single
oriented microtubule. We give approximate expressions for the size and distribution of the accumulation, and
discuss queueing properties for motors entering this accumulation. We show for this ASEP model, that the
mean accumulation can be modeled as an M /M /% queue that is Poisson distributed with mean F,,,/p,, where
F,,, is the flux of motors that arrives at the tip and p, is the rate at which individual motors change direction
from anterograde to retrograde motion. Deviations from this can in principle be used to gain information about
other processes at work in the accumulation. Furthermore, our work is a significant step toward a mathematical

description of the complex interactions of motors in cellular long-range transport of organelles.

DOLI: 10.1103/PhysRevE.82.051907

I. INTRODUCTION

Cells are dynamic entities that maintain their organization
by active transport of organelles and vesicles along the fibers
of the cytoskeleton; the molecular machines driving this in-
tracellular transport are known as molecular motors. Long-
range organelle motility requires microtubules and the asso-
ciated molecular motors kinesin and dynein. Kinesin takes its
cargo to the polymerization-active plus-end of the microtu-
bule (MT), whereas dynein “walks” toward minus-ends [1].
Much is known about the motility behavior of purified mo-
tors in vitro. Motility parameters, such as attachment and
detachment rates or velocities have been measured in these
in vitro assays. Based on this knowledge, numerous model-
ing approaches have attempted to describe the behavior of
the counteracting motors kinesin and dynein. Indeed, math-
ematical modeling has revealed new concepts of motor co-
ordination [2,3]. These theoretical approaches have signifi-
cantly helped biologists to understand motor behavior in the
living cell [4].

Most information on molecular motor behavior has hith-
erto been based on in vitro assays using purified proteins and
often nonphysiological conditions. While the limited avail-
ability of consistent data makes assumptions necessary, the
observed variation of the measured motor parameters is re-
markable and raises some doubt about the accuracy of such
models. One example is the amount of force that can be
exerted by kinesin-3, which was found to be 5-6 pN for
Dictyostelium discoideum kinesin-3 [5] but only 0.15 pN for
single kinesin-3 motors from mammalian neurons [6]. Fur-
thermore, it is likely that attachment rates and detachment
rates of motors to MTs depend on additional microtubule-
associated proteins [7,8], that motor run-length can be lim-
ited by obstacles along the track [9,10] and that it depends on
associated factors that we are just beginning to understand
[8,11]. Finally, modeling often builds on information about
motors derived from different experiments using various mo-
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tors from different cell types. However, motors can be visu-
alized in living cells [12-14], raising the possibility that
mathematical models can be built on quantitative descrip-
tions of motor behavior in living cells. Recent live cell im-
aging approaches using a fungal model system have helped
to overcome some of these experimental limitations. Visual-
ization of native levels of molecular motors in living cells
provides robust quantitative data for motor behavior in long-
range motility in vivo [15].

The main contribution of this paper is to examine a model
with appropriate boundary conditions that allows us to pre-
dict accumulation sizes on the basis of measurable param-
eters in such a system. We are motivated by a particular
example of coordinated motor processes for transport within
the fungus pathogen Ustilago maydis as observed by [15] on
single oriented MTs at the tip of growing hyphae. We make
use of data in that paper to develop a novel mathematical
model. Due to the fact that our model is almost exclusively
based on quantitative data derived from the in vivo observa-
tion of one cell type, we were able to develop a model of
high accuracy that allows predictions that can be experimen-
tally tested. We approximate the model by examining the
steady state occupation of sites at the tip of a MT and making
a mean field approximation.

The paper is organized as follows: in Sec. I we review
models of bidirectional motility and introduce a stochastic
exclusion model for bidirectional motion. In Sec. III we ana-
lyze the equilibrium distributions of the model using mean-
field approximations. This is used to perform quantitative
estimates of the size of the accumulation at the tip in Sec. IV.
Finally, in Sec. V we discuss predicted queueing properties
of motors in the tip. Few authors have explicitly considered
queueing properties of motors (Arita [16] is an exception)
and we suggest that precise measurements of queueing prop-
erties will in future be an important way to test models and
to gain a better understanding of the within-cell transport
processes.
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II. MODELING BIDIRECTIONAL MOTOR MOTION

In [17] Reichenbach et al. (motivated by spin systems)
consider the motion of two species along parallel tracks with
an assumption that they can hop between the two tracks with
a certain probability. They find that this can increase the
propensity of the system to form blockages. Hough et al.
[18] introduce and discuss a mathematical model of motor
crowding that appears during motor-catalyzed depolymeriza-
tion of MTs. Other models of transport include the possibility
of “blockages” of motors using two species of motors that
move in opposite directions (kinesins and dyneins) as de-
tailed in [19]. The model they consider consists of two spe-
cies of motors (dynein and kinesin) that move on a single
MT, but may detach and enter a diffusive phase. They find
clusters formed by motors moving in opposite directions,
forming stationary blockages on a single MT filament. In
[20] the authors note that the former models may be “unre-
alistically inefficient due to jam formation” and propose pos-
sible solutions to this problem by modifying the dynamics of
the network. In another approach to bidirectional transport
on a single track, Lui et al. [21] consider a system where
exclusion only applies to motors moving in the same direc-
tion; the presence of a motor in the opposite direction modi-
fies the rate at which motors can enter the site.

Our approach is closest to a model of Juhdsz [22,23], who
considers a system where indistinguishable particles are
transported in to the right on one lane (say A) and to the left
on a second (say B), and where particles can switch lanes at
a certain rate. This in principle permits much larger fluxes of
motors in both directions than observed in [19] as the mo-
tions in each direction are separated from collision. As mo-
lecular motors only perform unidirectional motion on an ori-
ented MT, this model poses the question as to how one can
use the model to understand the coordination of real in vivo
transport processes unless one interprets the two lanes A and
B as being an antiparallel arrangement of microtubules.

Nonetheless, recent experiments suggest that head-on col-
lisions of kinesin and dynein on a single microtubule are rare
and, at least away from any buildups of motors, we can in-
terpret the lanes of [22] as independent bidirectional motion
of the motors; the switching of lanes simply corresponds to
dynein moving from active retrograde to passive anterograde
transport. Because of this, we interpret the ASEP process of
[22] as modeling a coordinated bidirectional motion of indi-
vidual dynein motors on a single MT. Although [22] only
considers one species of motor that moves in antiparallel
lanes, we interpret this as motion on a single MT in the
following way: We assume that dynein move under their own
power in one direction, but they are carried by kinesin-1
bound to the dynein while moving in the other direction. The
entire motion is assumed to take place on a single MT.

A. Assumptions for the model

Consider an oriented MT aligned from left (minus end) to
right (plus end) parametrized by a spatial variable x. There
are typically several populations of motors that may use a
single MT in vivo, and in this model we concentrate on one
of these; a dynein that moves to the minus end when bound
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TABLE 1. Parameters used in the simulations. The values for
v, M,=v,/py, M,=v_/p,, and F;, are from in vivo experiments on
Ustilago maydis (see [15]). The space step & corresponds to the size
of the monomers making up the MT and is taken from [24]. The
length L of the simulation corresponds to the field of view used for
the kymographs.

v, Velocity to right 1.66 wm s™!

v_ Velocity to left 1.76 um s™!

M, Mean anterograde run-length 41.89 um

M, Mean retrograde run-length 62.37 um

Flux of anterograde dynein

F;, at a distance L from tip 1.06 57!

h Space step 8 nm
Length of simulation 10 pwm

to a MT, but which can be carried as a cargo of a kinesin to
the plus end. We assume

(H1) All motors are one of two types-moving either to the
right or to the left.

(H2) Right and left moving motors pass without interac-
tion, but there is an “exclusion principle” that means a motor
can only move forward if the site ahead is free of motors of
the same type.

(H3) In the dilute state, the motors move at a mean ve-
locity v, and v_ to the right/left, respectively.

(H4) There is a random switching of direction where
right-moving motors change to left-moving at a rate p,, and
left-moving motors change to right-moving at a rate p,,
where p,, can be expressed by velocities and M, ,, the mean
free run length of left (right) moving motors before turning
as pd:U+/Ma (puzv—/Mr)'

We are particularly interested in the boundary conditions
inferred from these experiments for a single MT at the hy-
phal tip of the fungus Ustilago maydis [15]. For this reason
we assume

(H5) The right boundary of the MT has no-flux boundary
conditions.

(H6) The right-moving motors appear at the left boundary
with flux rate o, =F}, while left-moving motors exit without
impediment.

Finally we assume

(H7) The system is in statistical equilibrium.

This suggests an ASEP model with two lanes; assump-
tions H1-H4 are essentially the same as considered by Ju-
hész [23], though we consider different boundary conditions
(H5-H7). In that paper right moving motors exit without
impediment, while here they cannot exit. The effect of this is
that the predictions in [23] on net flux rates is not applicable
here; assumptions H5-H7 imply that the net flux must be
zero. Table I gives measured or estimated values for the pa-
rameters discussed.

B. Discrete model for bidirectional coordinated motor motion

We discretize the single MT into two notional tracks; one
for motors (dynein carried by kinesin-1) going toward the
plus-end, and one for motors (dynein) going toward the
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FIG. 1. Schematic diagram of the states and transition rates for
the ASEP approximating bidirectional motion of the particles rep-
resenting motors. The “plus-end” of the MT is on the right, and
each track has dynein motors (represented as filled disks) moving in
only one direction, carried to the right by kinesin-1 on the upper
track, and moving to the left under their own power on the lower
track. The motors move as shown with rates p,, p_. The change
direction with rate p,; (down to the left moving track) or p, (up to
the right moving track). Motors are injected into the +/— tracks at
rate a+ and leave at rate S+ as shown.

minus-end. On each track we assume there are sites sepa-
rated by steps of length /; we refer to a “site” as an adjacent
location on both tracks; this is illustrated in Fig. 1. Let Tf
represent the state of the system for i=1,---N. The model
updates this as time progresses to give 7; (f); in the right-
wards direction, 7/ =0 if the site is empty and 7/ =1 if it is
occupied; similarly 7;(r) encodes the motion of leftwards-
moving motors (see Fig. 1).

We formulate a model using HI-H4 by assuming the fol-
lowing occur at given rates: occupants of + sites move one
step to the right with rate p, if the site is empty (an exclusion
principle) while occupants of the — sites move one step to the
left with rate p_ subject to a similar exclusion principle. We
assume that changes in direction from right-going to left-
going occur with rate p,; while from left-going to right-going
occur with rate p,, with the obvious exclusion principles
blocking the possibility of more than one particle at any site.
The rates, in terms of H1-H4 and & can be written

v, v_ vy v_ {
Pe= T T PaThe Pu (1)
Figure 2 shows a comparison of an experimentally mea-
sured kymograph (a time-distance graph) showing the mo-
tion of photoactivated dynein moving on a single MT near a
hyphal tip of Ustilago maydis, and a simulated kymograph
using the model illustrated in Fig. 1 with parameters in Table
I. The parameters for the simulation are obtained from ex-
perimental images such as Fig. 2 by measurement of the
slopes of the observed kymograph traces (to give v.), the
frequency of turning of left- or right-going traces [to give
Pu.q and hence from Eq. (1) M, and M, ] and the flux rates (to
give the boundary conditions for the simulation). In [15], the
turning rate is extracted by measuring the fraction of motors
passing a fixed reference point that have traveled less than a
given distance past this point before turning; this is fitted to
an exponential distribution with mean distance M, (respec-
tively, M,) and then Eq. (1) is used to give p, 4. For more
details of experimental measurement of the parameters see
[15]. We note here that
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FIG. 2. Top: a simulated kymograph using the model in Fig. 1
and parameters in Table I. Bottom: an experimentally measured
kymograph showing dynein motion over 10 um near the hyphal tip
of the fungus Ustilago maydis, obtained using methods described in
[15]. Dynein moves away from the tip under its own power, and is
carried by kinesin-1 toward the tip; it is visualized by fluorescent
GFP attached to endogenous copies of the dynein. Observe (a) the
presence of an accumulation of dynein on the right hand side in
both cases, (b) the apparent absence of any significant interaction
between counter-moving motors, (c) the occasional change in direc-
tion away from the tip and (d) the velocities (represented by the
slopes in either direction) are consistent along the microtubule.

(a) From Table I, the two velocities v+ are of similar
magnitudes and individual motors are visible as they are
relatively dilute on MT away from the end of the MT;

(b) The motors moving in opposite directions seem to
pass each other with no measurable interaction, suggesting
that the two-lane model is reasonable;

(c) The turning rates are small, meaning that the majority
of motors move from one end of the MT and enter an accu-
mulation that is at the plus-end of the MT; the mean free
run-length is longer than the illustrated section of MT;

(d) Individual motors can be observed to enter the tip,
remain there for some time and then leave. We will be con-
cerned with estimating the tip size, i.e., the average number
of motors that are queued at the tip at any one time.

III. MEAN-FIELD ANALYSIS OF EQUILIBRIUM STATES

The ASEP model in Fig. 1 is not amenable to explicit
analytic solution and so we use a mean field approximation
as in [23] to reduce the system to an approximating PDE. If
we define
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pi=(7), o;=(7)

to be the average occupancy of site i where the average is
over an ensemble of initial states, then a mean field approxi-
mation assumes that occupancy properties of the adjacent
sites are independent of each other. This gives the approxi-
mation

dp;

o =pipist(1 = p) = popi(l = piy) = papi(1 = 07)
+p,0i(1=py),

do;

E =P—0'i+1(1 - U'i) —P_O'i(l - U'i—l) —Puo'i(l - Pi)

+papi(1 = 0y). (2)

We approximate this further to a partial differential equation
by considering a spatial variable x € [0, 1] and noting that if
x=i6 where d=h/L is a small parameter, then

ap; & p;
1=pt O — +—— +0(5),
Piz1=P ax 2 ox* &)
do; & FPoy 3
Oi1=0; 5 60—+ ——5 +0(5),
0. 2 ox

where all derivatives are evaluated at x. Ignoring terms of
order O(8%), Eq. (2) can be written as

dap v, ap [ dzp
== I-0)+ l-p)+—Q2p-1)—-+6—"5,
ot pdp( O') pua-( P) L( P )(9)6' 2L 19)62
Jdo v_ ap v_Po
—= 1-0)- l-p+—10-20)"+0—7—.
ot PdP( 0-) pua-( P) L( 0-) Ix 2L (9x2
3)

Adding these two equations gives

d(p+0) i|:ﬁ

_ 2 y_ Y2
at  dx L(p 2 L(02 U)}

v, p v_Po
+O0l Tt
2L dx~ 2L dx

1%
= —Jp(x.1),0(x,1)] (4)
ox
where
Uy, » v_ v,dp v_ r?cr)
Jx,t)=—=(p* = p) - —(c? - +5<——+—— .
()= o =p) = o =) o ¥ oL i
Any stationary state will satisfy 3—1:0 meaning that the

steady-state net flux along the domain is constant indepen-
dent of x. To first order in & the steady-state satisfies

v dp
0=—psp(1-0)+p,o(1-p)+—(2p-1)—,
L dx

PHYSICAL REVIEW E 82, 051907 (2010)

_ do
0=—Pu0'(1—p)+pdp(1—0')+vz(1—2cr)a. (5)

Note that vf has units of s!. The net flux can be written in
this case as

J+(x) = j_(x) = Jo. (6)

The quantities j+(x)=%(p—p2) and j_(x)=%(o-— 0?) are the
fluxes of the left and right-going particles. The mean field
equations are well-known to have solutions with shock for-
mation; the second derivative (diffusion) terms act as a sin-
gular perturbation that permits shocks or boundary layers to
form between regions where Eq. (6) is a valid approxima-
tion.

Asymptotic form of the shock solution

Consider the mean-field model (3) on the spatial domain x
in the interval [0,1] with boundary conditions as illustrated in
Fig. 1. As described in [22] the equilibrium state may have
boundary layers depending on the phase and the boundary
conditions. General boundary conditions a-. and B. for the
mean field model (3) on a spatial domain x € [0, 1] may be
replace by effective boundary conditions that will depend on
the phase induced within the system; for example an effec-
tive boundary condition a, .=min(e, ,p,/2) recognizes that
no injection rate can induce more than a maximal current.

The symmetric cases a=a,=a_ and B=5,=[_ together
with p,=p_=1 are discussed in [22], while [23] examines
the case a_=0 and B, > 0. In this paper, we consider the case
of the plus end blocked, i.e., a_=/3,=0 so that the balanced
total flux J,, is zero and a boundary layer may develop on one
(or both) of the left-hand boundaries.

We concentrate on the case of injection and escape at x
=0 (a,/p, small, B_=p_) and no-flux at x=1: («_=0, B,
=0). This can be expressed as boundary conditions on the
densities,

F. L
p(0) = & = 5~

+ Uy

0(0)=0,

p(h)=1, o(1)=0,

where a boundary layer will appear in o(x) at x=0; we can
remove this by replacing this boundary condition with an
effective boundary condition, solving Eq. (10) to give o(0)
in terms of p(0). Note that both fluxes at the right are zero,
meaning that the net flux is zero.
In the case where v=v,=v_ we can solve J,=0 in Eq. (6)
to give
p=o0, or p=1l-o0. (7)

These states are termed equal-density and complementary-
density, respectively, in [22]. For equal-density states we
have

v dp
0=—(2p-1)— - 1-
L( p—1) dx+(pu pa)p(1 =p)

so that
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1 £+1-4C, exp[(p, — pa)xLiv]

2 (8)

p(x) =
where C, is a constant. Similarly, for the complementary-
density states we have

v dp
0=—Q2p-1)—"+p,1-p)*=psp’, 9)
L dx

which can in principle be integrated to give an implicit ex-
pression for the complementary-density states.

For a more general case of v, and v_ shocks may also
form in the system that join regions of equal density to those
with complementary density [22,23]. As in [22], we classify
the equilibrium state as H (high density) or L (low density) in
each lane. For the parameters considered here, the system
will be in a state where there is a shock from a LL state to a
HL state; the shock corresponds to a change from equal den-
sity to complementary density. If we assume that there is a
shock at x=x, € (0,1) and write the densities

p(x) for x <x;
plx) = ,
p(x) for x> x,

oy(x)  for x <x
o(x) = ,
ox) for x> x,,

where p;, (0;,) are the solutions from left and right bound-
ary for p (o), then the fluxes in each direction will match
across the shock

limxaxo— J+(x) = lim)on+ J+(x),

limx_,xo_ j_(x)= lim,(_,x0+ j_(x).

This matching implies p;(x,)=1-p,(x,) or o;(x;,)=0,(x,).
Section IV extends this analysis to the more general case of
unequal velocities in retrograde and anterograde directions.

IV. QUANTITATIVE ESTIMATES FOR QUEUE SIZE

We assume that the flux F, rate is small and accords with
the in vivo experimental observations of [15]. In such a case
there will be an equilibrium state where p(x) and o(x) are
approximately equal density from the left boundary up to a
point close to the right boundary. At this “shock” there is a
rapid transition to a region where the total density is almost
full—a queue at the plus-end tip.

We will estimate the densities and tip size (the mean size
of the motor accumulation at the plus-end) using simulations
and analytical approximations of the model. We will be in-
terested in properties of solutions where v, and v_ are

ve=v(l * ¢

with v is the mean of the average velocity of motors in either
direction and a small parameter €. From the boundary con-
ditions a_=p,=0, the net flux must be zero (J,=0), so that

-0
pPP-p 1-¢€

1+e€

(10)

and hence
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1 2
0'=5<1 + \/1 +4<1 +T€6)(p2—p)).

We make the ansatz that there is a solution such that

min[p(x),1 - p(x)] < K6,

min[o(x),1 — o(x)] <K& (11)

for small enough & and seek a solution that satisfies this
away from any shocks. Solving Eq. (10) with this ansatz
gives a perturbed equal-density state

2¢ | p’—p
1-€[2p-1

]+0(52) (12)

o=p+

and a perturbed complementary-density state

2¢ | p’-p
1-€l2p-1

o=1-p- }+0(52). (13)

For & small, the inflowing boundary condition at x=0,
p(0)=6LF;,/v,, and a shock appears at x,=1-ye(0,1)
where

y = Ong,+ 0(8).

This shock is a transition from LL to HL as described above
and n,, is the number of occupied sites at the tip and we
refer to as the queue or tip size. In the equal density (LL)
region x € (0,x,) we have

v

0=—"
L

d
(2p=1)°"+p,0(1=p) = pypl1 = 0) + O(&).

do

Using the ansatz (11), noting that when Z—jf and - are of

order &, and taking leading order terms we have
dp L (1 2€ )
—_—— + —_—
dx v(l+e) 1—¢/PuPa)P

and so, using v,=(1+€)v and the boundary condition p,(0)
=F,,h/v, we have

F,L L L ,
explx| —-—]|+0(5)
U, M, M,

pi(x) = 6"

when x € (0,x,). In the complementary density region (HL)
x € (x;,1) we have

v,.(2p-1)dp a )<1 e pz_p>
L ax P TP TP T
2¢ p*—
+de<P+_€ P p)+0(52)
1-e2p-1

so that to leading order we have ﬁﬁf:l. Applying the
boundary condition p(1)=1, we have

L
0,0 =1+ G- 1)+ 0(8).
Uy
Balancing the flux on the right-moving track at the shock
x=x,=1-0n,,+0(5") allows us to find a solution that satis-
fies the ansatz (11). For n, large this will give a solution
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with a shock of width approximately 26 from Eq. (6) and a
boundary layer if n,, is small. From p,(x,)=1-p,(x,), we
take the first order in &, leading to

F.
6nt[pL& =~ 5Le
v

L (L L)
Xp_—_,
M, M,

+ Uy

which means that the average number of motors at the tip is

F, ( L L ) (14)
ng, =~ —exp| — - —1,
" Pa P Mr Ma

where p,= %
Denoting by F,,. the leading order flux of arrivals at the

tip of the MT, to leading order F,,.=Fj, exp(ﬁ—ML), mean-
ing that we can express the leading order mean tip size as

Farr
nn‘p = . (15)
Pa

Tip size from simulations

To confirm the results in the previous section, we have
performed stochastic simulations using both Gillespie and
parallel update Monte Carlo algorithms. The Gillespie algo-
rithm [25] produces quantitatively correct statistics for
events that are instantaneous and independently distributed
in an exponential manner. We use a small enough time step
(h,=4.2X 1073 s) to resolve the fastest process at each site in
a Monte Carlo simulation. The sequence of updates may af-
fect the outcome, so we specify that we update first the an-
terograde lane and then the retrograde lane. For both
Gillespie and Monte Carlo schemes we use simulation time
of at least order t=160 s, taking care to ensure that the sys-
tem has reached a statistically stationary state before measur-
ing tip size. There is no unique way to determine exactly
where the queue for the tip starts—here we consider the fol-
lowing two definitions which agree well with a number of
other definitions of tip size (not shown):

(a) We define nﬁ»p to be the tip size as the total number of
sites where the average density is over half where plus-direct
current reaches its maximal, similar to the tip size definition
in [26].

(b) We define n;;, to be the total sites that are occupied in
an arbitrarily chosen “tip region” (in our case, the last 1 um
of the MT).

The quantity n‘;ip corresponds to the definition of tip size
used in simulations in [15]. Using the measured parameters
from [15] as in Table I, long simulations show that there is
little difference in tip size between the two simulation algo-
rithms: we find nfip=25, nfip=25.4i0.22 using the Monte
Carlo and nﬁp:24, n,,=25.3*0.29 using the Gillespie algo-
rithm. The explicit expressions (13) and (12) for the motor
density p and o are in good agreement with Gillespie and
Monte Carlo simulations of the process as illustrated in Fig.
3; tip size for general velocity from analytical expression
(14) is also in good agreement with simulation as illustrated
in Fig. 4.
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FIG. 3. A comparison of the mean field approximation of the
densities p and o from Eq. (12) to Eq. (13) (lines), with densities

obtained from numerical simulations using a Monte Carlo algorithm
(points). Parameters are as in Table 1.

V. QUEUEING MODELS AT THE TIP
A. Queueing at the tip as an M/M/ «-process

The motors that reach the tip for the ASEP model can be
thought of as joining a queue that has approximately
M/ M/ type—motors arrive at and leave from the tip with
exponential (memoryless=M) distributions, and there is no
limit in the number () of identical “servers” at which a
single motor can queue [27]. In our case, the arrival rate is
F,,. while the leaving rate from each server is p,.

This allows us to conceptually understand the queueing
process at the tip as a quantitative process without worrying
about detailed motion within the tip. Let X(¢) be the number
of motors at the tip. In the stationary state, the mean tip size
is simply the mean queue size [28],

F
lim E[X(t)] = FarrE[Ml] = f’
t—© d

where M, is a random variable that gives the time spent by
nth motor in the queue before it leaves; and E[M,]=1/p,.

36y Analytical estimation of Mo ]
341 o Average of nfi'p
32f * Average of nzp
30r
S 28f
a
= 261
24r
22r
20+
181
-03 -02 -01 6 0.1 0.2 0.3

FIG. 4. Comparison of tip size predictions between simulation
and analytical approximation from Eq. (14) for a range of unequal
velocities parameterized by e: parameters as in Table I except for
ve=v(l*e€) and v=1.7 us~.
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FIG. 5. The bar-graph shows the distribution of instantaneous
tip size nfip for parameters as in Table I. This was obtained
using a Monte Carlo simulation with a very long sample length
(2.1 X 10% s). The smooth curve shows a fit to a Poisson distribu-

tion with mean 25.3.

We write the distribution of tip sizes at time ¢ as Q,(¢)
=P[X(t)=n]. Assuming that a flux of F,,, motors arrive at
the tip per second, and that loss of motors is at a rate np, for
n motors at the tip, Q,, evolves according to the master equa-
tion

dQy
= _ - F ,
dt del aerO
do,
dt = Faern—l + (n + 1)den+1 - Faern - nden'

Solving for the steady (equilibrium) distribution Q,(r)=0,
and normalizing so that 2,0,=1 gives the Poisson distribu-
tion

7

0,="exp ¢ (16)
n.

with parameter ¢é=F,,./p, as observed in simulations (see
Fig. 5). The mean size of tip for this model is given by

3,10, which is precisely é=F,,./p, in agreement with Eq.
(15).

More generally, using Eq. (16) and E[X(1)]=X,_nQ,,
there is a closed form differential equation for E[X(r)]

%{E[X(r)]} = Fapr = paBLX(1)]

with solution [for initial condition X(0)=0]

Farr
Pa

E[X(1)]=—"[1 - exp(- pat)]. (17)
From the above Eq. (17), we can also see that starting from
an empty tip, it will take a time approximately O(I}d) seconds
for the tip size to approach the stationary state. This approxi-
mation of E[X(7)] agrees well with simulations—Fig. 6 illus-
trates this, along with typical fluctuations of tip size for a
single simulation.
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FIG. 6. Tip size as a function of time, starting from no motors at
the tip, comparing the analytic approximation (17) with stochastic
simulations using a Gillespie algorithm. The ensemble average over
300 simulations (parameters as in Table I) and a single simulation
are shown.

More generally, the rate of slowest convergence to the
equilibrium distribution of Eq. (16) (assuming rapidly decay-
ing distributions) is —p,, with corresponding eigenvector

an g_'(g_n)
n.

Note that the eigenvector changes sign at the maximum of
the distribution, the slowest decaying mode being associated
with long-range fluctuations, and the rate coincides with the
convergence rate in Eq. (17). As a consequence, transients in
the mean size of the tip are expected to settle on a time scale
of 1/p,. The agreement of the convergence rates suggests
that, if this is a good model for the experiment of [15], then
we expect fluctuations in tip size to settle on this time scale.

B. Other queueing models at tip

Further generalizations of this model could consider more
complex queueing models such as those with nonmemory-
less distributions of incoming and outgoing motors; queues
with a finite number of “servers;” reducing the number of
servers should not make a significant difference as long as
the mean queue for each server is small. In addition, it would
be interested to include a more realistic geometry for the
queue, though it will still be a great challenge to discover the
processes that governs the queue in vivo.

C. Conclusion

We have been able to present a model of a complete sys-
tem of bidirectional motor transport using in vivo parameters
and to predict the observed appearance of a fluctuating con-
centration of motors at the tip of a microtubule. In this paper
we have focused on queueing effects induced by the exclu-
sion dynamics of a stochastic transport model. We use a de-
velopment of a model of Juhdsz [23] as a qualitative model
of the bidirectional transport process observed in hyphal
growth of Ustilago maydis.

The homogeneous stochastic model for motion on the MT
predicts the dependence of the size of this concentration on

051907-7



ASHWIN, LIN, AND STEINBERG

measurable transport parameters-the crucial parameters be-
ing the flux rate of arrival at the tip F,,, and the mean rate of
turning of motors p,—the latter can be obtained by estimat-
ing (as in [15]) the mean free path of motors away from the
tip.

In principle, many predictions from the model, such as
queuing properties, average densities and accumulation sizes
can be experimentally measurable in vivo. In [15], the num-
ber of motors experimentally observed at the tip is in fact
underestimated by this model by a factor of about two; the
observed average number of dynein at the tip is approxi-
mately 55. The rate of turnover of the motors at the tip is also
different in the experiment; the model here predicts that the
turnover will be on the time scale 1/p,, while the experiment
observes two populations in the queue; one with a fast turn-
over of order 1/p,; and one with a slower turnover; these
observations suggests that there are (at least) two dynamical
processes keeping dynein at the tip for [15] and the ASEP
model discussed here is only one of these.

In fact, an additional control mechanism is been observed
to capture a subpopulation of dynein at the plus-end in [15];

PHYSICAL REVIEW E 82, 051907 (2010)

the capture mechanism involves plus-end binding proteins,
such as EB1 and its interactor dynactin, that anchors the
dynein complex to the MT tip [29]. Only a combination of
the simple transport and the binding processes seem to be
sufficient to explain the accumulation. We have not discussed
the biological function of the accumulation, but recent work
suggests that it ensures a high rate of capture of arriving
organelles by preventing them from “falling off” the end of
the track [15].

Our understanding of organelle transport is still at the
beginning and this work is the first step toward a quantitative
understanding of complex cellular transport mechanisms.
Rapid progress in mathematical modeling and experimental
research suggests a much more holistic understanding will be
vital to understand complex cellular processes such as mem-
brane trafficking in neurons.
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