A Critical Assessment of Ages Derived Using Pre-Main-Sequence Isochrones in Colour-Magnitude Diagrams

Cameron Pearce MacDonald Bell

Submitted by Cameron Pearce MacDonald Bell to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics in September 2012.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signed:
Cameron P. M. Bell

Date:
Abstract

In this thesis a critical assessment of the ages derived using theoretical pre-main-sequence (pre-MS) stellar evolutionary models is presented by comparing the predictions to the low-mass pre-MS population of 14 young star-forming regions (SFRs) in colour-magnitude diagrams (CMDs).

Deriving pre-MS ages requires precise distances and estimates of the reddening. Therefore, the main-sequence (MS) members of the SFRs have been used to derive a self-consistent set of statistically robust ages, distances and reddenings with associated uncertainties using a maximum-likelihood fitting statistic and MS evolutionary models. A photometric method (known as the Q-method) for de-reddening individual stars in regions where the extinction is spatially variable has been updated and is presented. The effects of both the model dependency and the SFR composition on these derived parameters are also discussed.

The problem of calibrating photometric observations of red pre-MS stars is examined and it is shown that using observations of MS stars to transform the data into a standard photometric system can introduce significant errors in the position of the pre-MS locus in CMD space. Hence, it is crucial that precise photometric studies (especially of pre-MS objects) be carried out in the natural photometric system of the observations. This therefore requires a robust model of the system responses for the instrument used, and thus the calculated responses for the Wide-Field Camera on the Isaac Newton Telescope are presented. These system responses have been tested using standard star observations and have been shown to be a good representation of the photometric system.

A benchmark test for the pre-MS evolutionary models is performed by comparing them to a set of well-calibrated CMDs of the Pleiades in the wavelength regime 0.4–2.5 μm. The masses predicted by these models are also tested against dynamical masses using a sample of MS binaries by calculating the system magnitude in a given photometric bandpass. This analysis shows that for $T_{\text{eff}} \lesssim 4000$ K the models systematically overestimate the flux by a factor of 2 at 0.5 μm, though this decreases with wavelength, becoming negligible at 2.2 μm. Thus before the pre-MS models are used to derive ages, a recalibration of the models is performed by incorporating an empirical colour-T_{eff} relation and bolometric corrections based on the K_s-band luminosity of Pleiades members, with theoretical corrections for the dependence on the surface gravity ($\log g$).

The recalibrated pre-MS model isochrones are used to derive ages from the pre-MS populations of the SFRs. These ages are then compared with the MS derivations, thus providing a powerful diagnostic tool with which to discriminate between the different pre-MS age scales that arise from a much stronger model dependency in the pre-MS regime. The revised ages assigned to each of the 14 SFRs are up to a factor two older than previous derivations, a result with wide-ranging implications, including that circumstellar discs survive longer and that the average Class II lifetime is greater than currently believed.
Contents

1 Introduction
1.1 Historical Prelude .. 13
1.2 An Overview of Low-Mass Star Formation 14
 1.2.1 The Interstellar Medium and Molecular Clouds 15
 1.2.2 Models of Star Formation 16
 1.2.3 From Pre-Stellar Cores to Stars 19
 1.2.4 Rotational Evolution .. 26
 1.2.5 Circumstellar Discs and Magnetospheric Accretion 30
1.3 Comparing Theory and Observations 34
 1.3.1 OB Associations .. 34
 1.3.2 Hertzsprung-Russell Diagram 35
 1.3.3 Pre-Main-Sequence Evolution in the Hertzsprung-Russell Diagram 37
 1.3.4 The Colour-Magnitude Diagram 40
1.4 Identifying Low-Mass Pre-Main-Sequence Stars 42
 1.4.1 Infrared Excess .. 43
 1.4.2 X-ray Emission .. 43
 1.4.3 Lithium Absorption .. 44
 1.4.4 Hα Emission .. 46
 1.4.5 Photometric Variability 46
 1.4.6 Kinematic Methods .. 48
1.5 Summary .. 49

2 Fitting the Main-Sequence Population of Young Star-Forming Regions 51
2.1 Motivation .. 51
2.2 Sample of Young Star-Forming Regions 52
 2.2.1 Cep OB3b ... 53
 2.2.2 χ Per .. 53
 2.2.3 IC 348 ... 54
 2.2.4 IC 5146 .. 55
 2.2.5 λ Ori ... 55
 2.2.6 NGC 1960 .. 56
 2.2.7 NGC 2169 .. 56
2.2.8 NGC 2244 ... 56
2.2.9 NGC 2362 ... 57
2.2.10 NGC 6530 ... 58
2.2.11 NGC 6611 ... 58
2.2.12 NGC 7160 ... 59
2.2.13 Orion Nebula Cluster 59
2.2.14 σ Ori ... 60
2.3 Deriving Parameters from Main-Sequence Fitting 61
 2.3.1 Distance Fitting .. 61
 2.3.2 Interstellar Extinction and Reddening 63
 2.3.3 Main-Sequence Ages 64
2.4 Main-Sequence Data 65
2.5 Main-Sequence Models 65
 2.5.1 Creating the BolometricCorrection Relation 66
 2.5.2 Atmospheric Models 68
2.6 A Maximum-Likelihood Fitting Statistic 70
 2.6.1 Definition of the τ^2 Fitting Statistic 70
 2.6.2 Limiting Cases 71
 2.6.3 The Model Colour-Magnitude Diagram 72
2.7 Reddening and Extinction for UBV data 73
 2.7.1 Colour and Extinction Dependent Reddening Vectors 73
 2.7.2 Q-Method .. 75
 2.7.3 Revised Q-Method 76
2.8 Fitting the Data .. 79
 2.8.1 Isolating the Main-Sequence 79
 2.8.2 Example 1: NGC 1960 - Uniform Reddening 80
 2.8.3 Example 2: λ Ori - Variable Reddening 82
 2.8.4 Results .. 83
2.9 Discussion .. 102
 2.9.1 Derived Ages 102
 2.9.2 Derived Distances 106
2.10 Model Dependency of Main-Sequence Ages 115
 2.10.1 Effects of Updated Physical Inputs and Stellar Rotation 115
 2.10.2 Effects of Different Main-Sequence Interior Models 116
 2.10.3 Effects of Assuming Local Thermodynamic Equilibrium in Massive Stars 117
 2.10.4 Summary ... 118
2.11 Effects of Assuming a Fixed Metallicity for Different Star-Forming Regions 119
2.12 Summary .. 119
3 Characterisation and Calibration of the *Isaac Newton* Telescope Wide-Field Camera Photometric System

3.1 Motivation ... 122
3.2 Observations ... 123
 3.2.1 Zero-Point Stability .. 124
3.3 Data Reduction .. 124
3.4 Photometric Calibration .. 129
 3.4.1 Creating INT-WFC System Responses 129
 3.4.2 Comparing the SDSS and the INT-WFC System Responses 132
 3.4.3 Transforming the Data into the Standard SDSS System 134
 3.4.4 Traditional Photometric Calibration 138
 3.4.5 Calibrating the Natural INT-WFC System 139
 3.4.6 Testing the Calculated INT-WFC System Responses 139
 3.4.7 Photometric Calibration Using the Transformations 142
3.5 Summary .. 145

4 A Benchmark Test for Pre-Main-Sequence Isochrones

4.1 Motivation .. 147
4.2 Pre-Main-Sequence Models ... 149
 4.2.1 Input Physics of the Interior Models 149
 4.2.2 Comparison of Pre-Main-Sequence Models 151
4.3 Comparing the Models and the Data – I. The Pleiades 153
 4.3.1 The Pleiades Catalogue ... 155
 4.3.2 Model Parameters ... 155
 4.3.3 Discussion ... 156
4.4 Comparing the Models and the Data – II. Main-Sequence Binaries 156
 4.4.1 The Sample .. 158
 4.4.2 The Models .. 162
 4.4.3 Discussion ... 162
4.5 Quantifying the Discrepancy ... 165
4.6 Summary ... 168

5 Fitting the Pre-Main-Sequence Population of Young Star-Forming Regions

5.1 Motivation ... 169
5.2 Observations and Data Reduction 170
5.3 Isolating the Pre-Main-Sequence 171
 5.3.1 Literature Memberships ... 171
 5.3.2 Isolating the Pre-Main-Sequence Without Literature Memberships 178
5.4 A Semi-Empirical BC-\(T_{\text{eff}}\) Relation 180
 5.4.1 The Jeffries et al. Empirical Recalibration 180
 5.4.2 A Revised Semi-Empirical Recalibration 181
Contents

6.5 Reddening and Extinction for Pre-Main-Sequence Stars 182
6.6 Fitting the Data .. 185
 6.6.1 A Model for Dealing with Possible Non-Member Contamination 186
 6.6.2 Pre-Main-Sequence Ages Derived using τ^2 188
 6.6.3 Nominal Pre-Main-Sequence Ages .. 195
6.7 Summary .. 203

6 The Revised Pre-Main-Sequence Age Scale ... 205
 6.1 Motivation .. 205
6.2 Comparing the Main-Sequence and Pre-Main-Sequence Ages 206
6.3 Final Assigned Pre-Main-Sequence Ages .. 208
 6.3.1 Comparison with Literature Ages .. 210
6.4 Closing Words on Pre-Main-Sequence Isochrones .. 215
6.5 Implications of the Revised Pre-Main-Sequence Age Scale 216
 6.5.1 Circumstellar Disc Lifetimes .. 216
 6.5.2 Evolutionary Lifetimes of Young Stellar Objects 219
6.6 Summary .. 219

7 Conclusions and Future Work ... 221
 7.1 Conclusions ... 221
 7.2 Future work ... 223
 7.2.1 Consistent Ages and Investigating Environmental Effects 223
 7.2.2 Long-Term Calibration of Pre-Main-Sequence Evolutionary Models . 224

Bibliography ... 226

A Photometric Observations: Exposure Times ... 262

B Pleiades Single-Star Sequence ... 267
List of Figures

1.1 Schematic evolution of a protostar ... 20
1.2 Schematic evolution of protostar SEDs 22
1.3 Idealised representation of the magnetic field structure of a CTTS 24
1.4 Rotation periods as a function of stellar mass in young open clusters . 28
1.5 Hertzsprung-Russell diagram .. 36
1.6 Hertzsprung-Russell diagram with pre-MS evolutionary tracks and isochrones 38
1.7 \(V, (V - I) \) CMD of the \(\sigma \) Ori association 43
1.8 Equivalent width of Li I against radial velocity 45

2.1 MS distance fitting for the Praesepe open cluster 62
2.2 Interstellar extinction curves for the Milky Way 63
2.3 Difference between nominal and measured \(E(B-V) \) 74
2.4 Difference between the original and revised Q-methods 77
2.5 Effect of age on MS isochrones in the \(U - B, B - V \) colour-colour diagram. 78
2.6 Best-fitting \(U - B, B - V \) colour-colour diagram for NGC 1960 80
2.7 Best-fitting \(V, B - V \) CMD for NGC 1960 81
2.8 Age-distance \(\tau_2 \) grid for NGC 1960 82
2.9 Application of the revised Q-method for \(\lambda \) Ori 83
2.10 Best-fitting \(V_o, (B - V)_o \) CMD for \(\lambda \) Ori 84
2.11 Age-distance \(\tau_2 \) grid for \(\lambda \) Ori .. 85
2.12 Application of the revised Q-method for Cep OB3b 86
2.13 Best-fitting \(V_o, (B - V)_o \) CMD for Cep OB3b 87
2.14 Application of the revised Q-method for \(\chi \) Per 88
2.15 Best-fitting \(V_o, (B - V)_o \) CMD for \(\chi \) Per 89
2.16 Application of the revised Q-method for IC 348 90
2.17 Application of the revised Q-method for IC 5146 91
2.18 Best-fitting \(U - B, B - V \) colour-colour diagram for NGC 2169 92
2.19 Best-fitting \(V, B - V \) CMD for NGC 2169 93
2.20 Application of the revised Q-method for NGC 2244 94
2.21 Best-fitting \(V_o, (B - V)_o \) CMD for NGC 2244 95
2.22 Best-fitting \(U - B, B - V \) colour-colour diagram for NGC 2362 96
2.23 Best-fitting \(V, B - V \) CMD for NGC 2362 97
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.24</td>
<td>Application of the revised Q-method for NGC 6530</td>
</tr>
<tr>
<td>2.25</td>
<td>Best-fitting (V_0, (B - V)_0) CMD for NGC 6530</td>
</tr>
<tr>
<td>2.26</td>
<td>Application of the revised Q-method for NGC 6611</td>
</tr>
<tr>
<td>2.27</td>
<td>Best-fitting (V_0, (B - V)_0) CMD for NGC 6611</td>
</tr>
<tr>
<td>2.28</td>
<td>Application of the revised Q-method for NGC 7160</td>
</tr>
<tr>
<td>2.29</td>
<td>Best-fitting (V_0, (B - V)_0) CMD for NGC 7160</td>
</tr>
<tr>
<td>2.30</td>
<td>Best-fitting (U - B, B - V) colour-colour diagram for stars in the vicinity of the ONC</td>
</tr>
<tr>
<td>2.31</td>
<td>Best-fitting (V, B - V) CMD for stars in the vicinity of the ONC</td>
</tr>
<tr>
<td>2.32</td>
<td>Application of the revised Q-method for (\sigma) Ori</td>
</tr>
<tr>
<td>2.33</td>
<td>Best-fitting (V_0, (B - V)_0) CMD for (\sigma) Ori</td>
</tr>
<tr>
<td>2.34</td>
<td>Application of the revised Q-method for the Pleiades</td>
</tr>
<tr>
<td>2.35</td>
<td>Best-fitting (V_0, (B - V)_0) CMD for the Pleiades</td>
</tr>
<tr>
<td>2.36</td>
<td>Effect of atmospheric models on transforming the interior models</td>
</tr>
<tr>
<td>3.1</td>
<td>Stability of (g_{\text{WFC}})-band zero-point as a function of time</td>
</tr>
<tr>
<td>3.2</td>
<td>Linearity curves for the INT-WFC four EEV CCDs</td>
</tr>
<tr>
<td>3.3</td>
<td>La Palma atmospheric extinction curve</td>
</tr>
<tr>
<td>3.4</td>
<td>Atmospheric absorption bands as modelled using an F8 star</td>
</tr>
<tr>
<td>3.5</td>
<td>Combined aluminium and MgF(_2) coating reflectance spectrum</td>
</tr>
<tr>
<td>3.6</td>
<td>Normalised SDSS (ugriz) and INT-WFC ((Ugriz)_{\text{WFC}}) system responses</td>
</tr>
<tr>
<td>3.7</td>
<td>Theoretical transformations between the SDSS and INT-WFC photometric systems</td>
</tr>
<tr>
<td>3.8</td>
<td>SDSS Stripe 82 standard star (u - g, g - i) colour-colour diagram</td>
</tr>
<tr>
<td>3.9</td>
<td>SDSS Stripe 82 standard star (r - i, g - i) colour-colour diagram</td>
</tr>
<tr>
<td>3.10</td>
<td>SDSS Stripe 82 standard star (r - i, i - z) colour-colour diagram</td>
</tr>
<tr>
<td>3.11</td>
<td>Magnitude difference in the (U_{\text{WFC}})-band between the WFC({\text{calc}}) and WFC({\text{obs}}) photometric catalogues</td>
</tr>
<tr>
<td>3.12</td>
<td>Magnitude difference in the (g_{\text{WFC}})-band between the WFC({\text{calc}}) and WFC({\text{obs}}) photometric catalogues</td>
</tr>
<tr>
<td>3.13</td>
<td>Magnitude difference in the (r_{\text{WFC}})-band between the WFC({\text{calc}}) and WFC({\text{obs}}) photometric catalogues</td>
</tr>
<tr>
<td>3.14</td>
<td>Magnitude difference in the (i_{\text{WFC}})-band between the WFC({\text{calc}}) and WFC({\text{obs}}) photometric catalogues</td>
</tr>
<tr>
<td>3.15</td>
<td>Magnitude difference in the (Z_{\text{WFC}})-band between the WFC({\text{calc}}) and WFC({\text{obs}}) photometric catalogues</td>
</tr>
<tr>
<td>4.1</td>
<td>Pre-MS evolutionary tracks for masses of 0.1, 0.5 and 1.0 (M_\odot)</td>
</tr>
<tr>
<td>4.2</td>
<td>Pre-MS isochrones at an age of 4.6 Gyr</td>
</tr>
<tr>
<td>4.3</td>
<td>Two square degree three-colour mosaic image of the Pleiades</td>
</tr>
<tr>
<td>4.4</td>
<td>Optical/near-IR CMDs of the Pleiades</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.5</td>
<td>Difference between the observed and calculated system absolute magnitude as a function of the primary component mass</td>
</tr>
<tr>
<td>4.6</td>
<td>Difference between the observed and calculated system absolute magnitude as a function of the physical separation between components</td>
</tr>
<tr>
<td>4.7</td>
<td>Model dependent ΔBC corrections as a function of T_{eff} in the INT-WFC $(griZ)_{\text{WFC}}$ and 2MASS JH bandpasses</td>
</tr>
<tr>
<td>5.1</td>
<td>Cep OB3b $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD with literature members overlaid</td>
</tr>
<tr>
<td>5.2</td>
<td>Selection of bright stars in χ Per $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD</td>
</tr>
<tr>
<td>5.3</td>
<td>Positions of bright stars in χ Per on the sky</td>
</tr>
<tr>
<td>5.4</td>
<td>Variation in $A g_{\text{WFC}}$ as a function of T_{eff}</td>
</tr>
<tr>
<td>5.5</td>
<td>Variation in $E(g - i){\text{WFC}}$ as a function of $T{\text{eff}}$</td>
</tr>
<tr>
<td>5.6</td>
<td>Reddening vectors in the $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD</td>
</tr>
<tr>
<td>5.7</td>
<td>Best-fitting $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD for λ Ori</td>
</tr>
<tr>
<td>5.8</td>
<td>Best-fitting $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD for NGC 2362</td>
</tr>
<tr>
<td>5.9</td>
<td>Best-fitting $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD for NGC 2169</td>
</tr>
<tr>
<td>5.10</td>
<td>Best-fitting $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD for NGC 7160</td>
</tr>
<tr>
<td>5.11</td>
<td>Best-fitting $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD for NGC 1960</td>
</tr>
<tr>
<td>5.12</td>
<td>NGC 2244 $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD with 2Myr model isochrones overlaid</td>
</tr>
<tr>
<td>5.13</td>
<td>Cep OB3b $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD with 6Myr model isochrone overlaid</td>
</tr>
<tr>
<td>5.14</td>
<td>IC 348 $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD with 6Myr model isochrone overlaid</td>
</tr>
<tr>
<td>5.15</td>
<td>IC 5146 $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD with 6Myr model isochrone overlaid</td>
</tr>
<tr>
<td>5.16</td>
<td>NGC 2244 $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD with 6Myr model isochrone overlaid</td>
</tr>
<tr>
<td>5.17</td>
<td>NGC 6530 $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD with 6Myr model isochrone overlaid</td>
</tr>
<tr>
<td>5.18</td>
<td>NGC 6611 $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD with 6Myr model isochrone overlaid</td>
</tr>
<tr>
<td>5.19</td>
<td>ONC $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD with 6Myr model isochrone overlaid</td>
</tr>
<tr>
<td>5.20</td>
<td>σ Ori $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD with 6Myr model isochrone overlaid</td>
</tr>
<tr>
<td>5.21</td>
<td>χ Per $g_{\text{WFC}}, (g - i)_{\text{WFC}}$ CMD with 14Myr model isochrones overlaid</td>
</tr>
<tr>
<td>6.1</td>
<td>MS versus pre-MS age for the SFRs</td>
</tr>
<tr>
<td>6.2</td>
<td>Disc frequency as a function of revised pre-MS age</td>
</tr>
</tbody>
</table>
List of Tables

1.1 Phases of the ISM ... 15

2.1 Literature sources for the Johnson UBV photoelectric photometric data . . 65
2.2 MS ages, distances and reddenings for the sample of SFRs 121

3.1 Normalised calculated INT-WFC system responses 133
3.2 Theoretical transformation between the SDSS and INT-WFC photometric systems for unreddened MS stars .. 137

4.1 Sample of MS binaries ... 159

5.1 Literature sources used in the identification of pre-MS stars 172
5.2 Absolute pre-MS ages for SFRs with MS ages $\gtrsim 10$ Myr 194
5.3 Nominal pre-MS ages for SFRs with MS ages < 10 Myr 201

6.1 Near-IR excess fraction as a function of revised pre-MS age 218

A.1 $(UgriZ)_{WFC}$ exposure times for the sample of SFRs 262
A.2 $(UgriZ)_{WFC}$ exposure times for the Pleiades fields 265
A.3 $(UgriZ)_{WFC}$ exposure times for the SDSS Stripe 82 standard fields 266

B.1 Pleiades single-star sequence in the INT-WFC $(griZ)_{WFC}$ and 2MASS JHK_s bandpasses ... 267
Declaration

Chapters 2, 5, and 6 contain work that will be published in the near future and represent the second instalment of the saga.

The photometric observations taken with the Wide-Field Camera on the Isaac Newton Telescope were obtained by Tim Naylor and myself. The Isaac Newton Telescope is operated on the island of La Palma by the Isaac Newton Group (ING) in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

Near-IR photometric data for the sample of main-sequence binaries were obtained from the Two-Micron All-Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation.

The final reduction of the Isaac Newton Telescope data and the calculation of the Isaac Newton Telescope bandpasses were performed by Tim Naylor.

The τ^2 fitting statistic used for fitting the models to the data is the brainchild of Tim Naylor and R. D. Jeffries.

The rest of the work presented in this thesis is my own.