Information Graphics in Health Technology Assessment

Submitted by William Marck Stahl-Timmins of the Peninsula Postgraduate Health Institute to the Universities of Exeter and Plymouth as a thesis for the degree of Doctor of Philosophy in the visual presentation of health technology assessment data and information, January 2011.

This thesis, in printed or electronic format, is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this which is not my own work has been identified and that no unchanged or acknowledged material has previously been submitted and approved for the award of a degree by this or any other university.

Signed:

(Will Stahl-Timmins)
## Preface

Initial navigation and reference sections. Please use the coloured tabs that can be seen on the right-hand edge of the book to navigate to and from these sections as necessary.

## Chapter 1: Introduction

Introduces the terms ‘information graphics’ and ‘health technology assessment’. This chapter also sets the research questions for the rest of the thesis.

## Chapter 2: Methodology

A discussion of the methods used in the research domain of the thesis.

## Chapter 3: Context

Examines the current use of, and needs for, information graphics in HTA.

## Chapter 4: Design

Shows practical examples of the specification and development of information graphics, for use in HTA.

## Chapter 5: Prototype test 1 (GOfER)

An empirical study to evaluate GOfER, a systematic review overview graphic, specified in Chapter 4.

## Chapter 6: Prototype test 2 (SOC)

A second graphic, SOC, for time-based overview of a Markov model, is evaluated using similar research methods to those in Chapter 5.

## Chapter 7: Discussion

Ties together results of preceding chapters, offering conclusions drawn from combined findings of all studies in the thesis.

## Chapter 8: Appendices

Supporting material such as interview scripts and transcripts, as well as multiple-page information graphics which would disrupt the flow of the text. A methodological study is also recorded here, which informed the development of this thesis, but the results of which are not essential to understand the arguments herein.

## References
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 Contents</td>
<td>3</td>
</tr>
<tr>
<td>0.3 Abstract</td>
<td>12</td>
</tr>
<tr>
<td>0.4 Thanks</td>
<td>13</td>
</tr>
<tr>
<td>0.5 Author’s declaration</td>
<td>16</td>
</tr>
<tr>
<td>0.6 Definitions</td>
<td>17</td>
</tr>
<tr>
<td>0.7 Abbreviations</td>
<td>19</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>20</td>
</tr>
<tr>
<td>1.1 Information graphics</td>
<td>21</td>
</tr>
<tr>
<td>1.1.1 A brief history</td>
<td>21</td>
</tr>
<tr>
<td>1.1.2 Approaches to understanding</td>
<td>38</td>
</tr>
<tr>
<td>1.1.3 Working definition for information graphics</td>
<td>43</td>
</tr>
<tr>
<td>1.2 HTA (health technology assessment)</td>
<td>49</td>
</tr>
<tr>
<td>1.2.1 A brief history</td>
<td>49</td>
</tr>
<tr>
<td>1.2.2 Focus: NICE appraisals</td>
<td>53</td>
</tr>
<tr>
<td>1.2.3 Stakeholders</td>
<td>54</td>
</tr>
<tr>
<td>1.2.4 Working definition of HTA</td>
<td>55</td>
</tr>
<tr>
<td>1.3 Potential functions</td>
<td>57</td>
</tr>
<tr>
<td>1.3.1 Potential function 1: Presenting complex data</td>
<td>57</td>
</tr>
<tr>
<td>1.3.2 Potential function 2: Condensing data into a small space</td>
<td>58</td>
</tr>
</tbody>
</table>
1.3.3 Potential function 3: Overview and comparison of multivariate data
1.3.4 Potential function 4: Enabling faster information processing
1.3.5 Potential function 5: Selective focusing

1.4 Problem domain

1.4.1 Defining information needs
1.4.2 Design and production
1.4.3 Evaluation
1.4.4 Media

1.5 Research question

2 Methodology

2.1 Methodological discussion

2.1.1 Health technology assessment
2.1.2 Information design
2.1.3 Existing studies of information displays in health research
2.1.4 Researching information graphics in HTA

2.2 Process model

3 Context

3.1 Current use
## 3.2 Information needs

### 3.2.1 Introduction

### 3.2.2 Methods

### 3.2.3 Results

### 3.2.4 Conclusion

---

## 4 Design

### 4.1 Elements

#### 4.1.1 Introduction

#### 4.1.2 Personal listing strategy

#### 4.1.3 Elements

### 4.2 Specification

#### 4.2.1 Graphic 1 – Small multiple techniques including Sankey diagrams for overview of studies in a systematic review

#### 4.2.2 Graphic 2 – Two-way sensitivity analysis matrix / bubble chart

#### 4.2.3 Graphic 3 – Parallel coordinates for probabilistic sensitivity analysis

#### 4.2.4 Graphic 4 – Technology assessment report graphical overview

#### 4.2.5 Graphic 5 – Sankey Markov overview

#### 4.2.6 Graphic 6 – ‘Whirlpool’ display for enhancing tornado diagram in deterministic sensitivity analysis

#### 4.2.7 Graphic 7 – Survival synthesis bubble chart

#### 4.2.8 Graphic 8 – Distribution-based forest plot

#### 4.2.9 Graphic 9 – Search strategy link diagram
4.2.10 Graphic 10 – Individual patient display for discrete event simulation 171
4.2.11 Potential colour variations 174
4.2.12 Potential animated variations 175
4.2.13 Potential interactive variations 175

4.3 Development 177

4.3.1 Graphic 1 – Small multiple techniques including Sankey diagrams for overview of studies in a systematic review 178
4.3.2 Graphic 3 – Parallel coordinates for probabilistic sensitivity analysis 182
4.3.3 Graphic 5 – Sankey Markov overview 185
4.3.4 Graphic 7 – Survival synthesis bubble chart 188
4.3.5 Graphic 9 – Search strategy link diagram 190

5 Prototype test 1 (GOfER) 194

5.1 Introduction 195
5.1.1 Testing graphics 195
5.1.2 Testing GOfER 197
5.1.3 Aims 199

5.2 Methods 200
5.2.1 Population sampled 200
5.2.2 Sample size 201
5.2.3 Procedure 202
5.2.4 Experimental design 203
5.2.5 Outcomes 204
5.2.6 Analysis methods 206

5.3 Quantitative results 209
5.3.1 Characteristics 209
5.3.2 Task performance 211
5.3.3 Randomisation effects 214
5.3.4 General questions 215

5.4 Qualitative results 219
5.4.1 Thematic category 1: Potential functions 219
5.4.2 Thematic category 2: Organisation 220
5.4.3 Thematic category 3: Trial characteristics 222
5.4.4 Thematic category 4: Interpretation 225
5.4.5 Thematic category 5: Judgement 228
5.4.6 Thematic category 6: Observation 229
5.4.7 Thematic category 7: Preference 230
5.4.8 Thematic category 8: Design 231
5.4.9 Thematic category 9: Application 232

5.5 Conclusions 233
5.5.1 Statement of findings 233
5.5.2 Discussion 236
5.5.3 Strengths and limitations of methods 237
5.5.4 Implications of findings 239
6 Prototype test 2 (SOC)  244

6.1 Introduction  245

6.1.1 Data used  245
6.1.2 State occupancy chart (soc)  251
6.1.3 Aims of test  258

6.2 Methods  259

6.2.1 Population sampled  259
6.2.2 Sample size  259
6.2.3 Procedure  259
6.2.4 Outcomes  260
6.2.5 Analysis method  262

6.3 Quantitative results  263

6.3.1 Background of participants  264
6.3.2 Task performance  266
6.3.3 General questions  277

6.4 Qualitative results  283

6.4.1 Potential functions  283
6.4.2 Modelling  285
6.4.3 Interpretation  287
6.4.4 Actions  288
6.4.5 Design  289

6.5 Conclusions  290

6.5.1 Statement of findings  290
6.5.2 Discussion  292
6.5.3 Strengths and limitations of methods  292
6.5.4 Implications of findings  295
7 Discussion

7.1 Overall summary of results

7.1.1 Current use of information graphics
7.1.2 Needs of decision-makers at NICE
7.1.3 New prototype information graphics

7.2 General conclusions

7.2.1 Design of information graphics in HTA
7.2.2 Production of information graphics in HTA
7.2.3 Use of information graphics in HTA

7.3 Recommendations for future research

7.3.1 Developed information graphics in HTA
7.3.2 New information graphics in HTA
7.3.3 Other audiences

Appendix A – Methodological study

A – 1 Introduction
A – 2 Methods
A – 3 Results
A – 4 Conclusion
## Appendix B: NICE interview data

- **B – 1** Script for telephone interviews 346
- **B – 2** Sample NICE interview transcript 348
- **B – 3** NICE interview terms 354

## Appendix C – GOfER graphic

## Appendix D – Script for GOfER test interviews

## Appendix E – Sample interview transcript from GOfER tests

## Appendix F – GOfER test data

- **F – 2** Presentation 1 399
- **F – 3** Presentation 2 405
- **F – 5** Combination format 411

## Appendix G – SOC graphic

## Appendix H – Script for SOC test interviews

## Appendix I – Sample interview transcript from SOC tests
0.3 Abstract

This thesis addresses the question of the design, production and use of information graphics in health technology assessment (HTA). Drawing on previous research in both information design and health policy, it describes a comprehensive design process for creating new visual presentations that can inform health policy-makers.

The thesis begins by introducing, and functionally defining the terms ‘information graphics’ and ‘health technology assessment’ in Chapter 1. It then offers a methodological discussion of how research can be performed at the intersection between these two diverse fields. This discussion forms Chapter 2 of the thesis.

The context of use is surveyed in two studies, which are presented in Chapter 3. These assess the current use of information graphics in HTA, and the information needs of health policy decision-making bodies. This enables a needs-based approach to the design of 10 information graphics, that could be used in HTA. These are shown in Chapter 4.

Finally, two of these information graphics are empirically tested with two further research studies, forming Chapter 5 and Chapter 6.

The thesis is aimed at giving practical advice to those wanting to produce graphical presentations of information in HTA, and to provide the foundation for further original research in information design and HTA. Chapter 7 draws together the research from the rest of the thesis, to make recommendations in light of the combined findings.
This PhD thesis is not the work of one person, but of many. Without the assistance of the following people, the volume would be much diminished:

### Supervisory team

**Martin Pitt**
I am immensely grateful that you have recognised the potential of visual communication of scientific data. Your patient support and guidance through the last three years and more has enabled me to produce this work. If I have got science, it is thanks to you. I look forward to working with you in the future.

**Rob Anderson**

**Ken Stein**

### Peninsula College of Medicine and Dentistry

**Stuart Logan**
Thank you for your valuable feedback through my transfer and Annual Research Events. Your astute critiques of the project have focussed it greatly.

**Nicky Britten**

**PenTAG (The Peninsula Technology Assessment Group)**
You have made me feel like one of the team (apart from Ken, obviously...) You are a strong group, and I will miss your questioning minds and sharp wits enormously. (And all the cake, of course...)

**Gabriel Rogers**
Thanks for sharing your information communication challenges with me, which ultimately enabled me to base my designs on actual needs rather than ones I imagined in the bathtub.

**Mary Bond**

**Tiffany Moxham**

**Ruth Garside**
For being there to bounce ideas off, and advising me throughout my studies. Your deep knowledge of your fields never ceases to amaze me.

**Colin Green**

**Roy Powell**

**Jaime Peters**

**Jenny Lowe**
For putting up with my endless binding and printing demands, you have my thanks. Also, for booking my accommodation and travel around Europe, and generally looking after me (and keeping the tea and biscuits flowing).

**Sue Whiffin**

**Jo Perry**

**Lianne Perry**
For patiently keeping me on course with the practicalities of writing such a volume, and helping me to meet the requirements of postgraduate study in the School.

For keeping my unconventional IT needs met without a whisper of protest, and letting me get on with the bits I could do myself. And for providing an appreciative audience to show off my latest gadgets to.

My fellow PhD sufferers, we have pretty much all emerged (or nearly emerged) at the end of a long journey. I won’t say we are unscathed, but we have survived this far... Thanks for being there to commiserate with, and congratulate me, as appropriate.

And the rest of family Timmins, Stahl, Vyvyan-Jones, etc. I will always owe everything to you.

For putting up with the huge demands on my time that this PhD has required, and distracting me when I needed it most. If I have any shred of sanity remaining now, it is thanks to you.
and the others at Reading University’s Department of Typography and Graphic Communication, especially the Otto and Marie Neurath Isotype Collection. You guard the traditions of our field, and do so with great sensitivity and openness.

and the other staff and students at Plymouth’s BA (Hons) Graphic Communication with Typography course, for giving me a platform to begin to develop my teaching skills. I found even a small quantity of teaching support exhausting but enormously rewarding. I was very pleased to be able to play a tiny part in the creative development of such engaging and interesting young minds.

I wish that I could name you all without breaching the terms of my ethical research permission from the university. Without your input, I would have no research on which to base this PhD. Thank you for offering your time, insight, encouragement, suggestions and expertise.

You do challenging, sometimes misunderstood, but greatly important work. I feel privileged to have come to understand a little about your field.

Lastly on this list, but in no way last in my mind, I would like to thank those that have taken it upon themselves to inform and explain using visual communication. Thank you for helping to make my life colourful, fascinating, and full of beautiful information graphics.

External contacts

Eric Kindel

Peter Jones

The participants in my studies:

The NICE technical advisors

The researchers at PenTAG and ScHARR

The hundreds that took part in the online study

HTA researchers worldwide

Information designers

I found even a small quantity of teaching support exhausting but enormously rewarding. I was very pleased to be able to play a tiny part in the creative development of such engaging and interesting young minds.

The participants in my studies:

The NICE technical advisors

The researchers at PenTAG and ScHARR

The hundreds that took part in the online study

HTA researchers worldwide

Information designers

I wish that I could name you all without breaching the terms of my ethical research permission from the university. Without your input, I would have no research on which to base this PhD. Thank you for offering your time, insight, encouragement, suggestions and expertise.

You do challenging, sometimes misunderstood, but greatly important work. I feel privileged to have come to understand a little about your field.

Lastly on this list, but in no way last in my mind, I would like to thank those that have taken it upon themselves to inform and explain using visual communication. Thank you for helping to make my life colourful, fascinating, and full of beautiful information graphics.
0.5 Author’s declaration

The six original research studies presented this thesis, in Chapters 3.1, 3.2, 4, 5, and Appendix A, are all my own work. Two studies have been published as joint works, which require a statement of my involvement in the research:


The content analysis research for this study was performed by myself at an early stage of my PhD. All data collection, analysis and visual presentation of data were performed by me. The idea for the study was, however, that of my Director of Studies, Dr Martin Pitt. He also produced the original draft of the paper, using sections from a report on the study written by myself. The other two authors and myself each made comments on the draft before submission.


The research study was designed, programmed and analysed entirely by myself. Statistical work and graphical presentation of results were also carried out by me. I also drafted the paper, which the other authors were kind enough to comment on and edit. Dr Peters checked the statistical work, but did not make any major revisions.
Appraisal Committee (NICE) – The meeting at which guidance on the use of a health technology in the UK’s national health service is discussed.

Arm – This term is used both in relation to mathematical modelling and clinical trials. The arms of a Markov model are different simulations which are run so that they can be compared with each other. The arms of a clinical trial relate to different groups of participants, who would usually be given different interventions, so that they can be compared.

Confounder – A factor that influences the results of a trial, and potentially introduces bias, such as having flawed randomisation.

Confidence interval – A statistical measure, giving a range of values and a stated degree of certainty. Commonly, this range represents an area within which there is 95% probability that the true population mean may be found, as estimated from a sample of this population (Field, 2005).

Cycle – The unit of time into which a Markov model is separated, commonly a week or a month in HTA.

Discrete event simulation – A way of producing a mathematical model, in which simulated patients are represented individually.

EVPi (expected value of perfect information) analysis – A calculation of the amount you would be willing to pay for perfect information (if that were possible).

Forest plot – A graphical presentation specifically developed for presenting meta-analyses. These charts give a summary of the weight and direction of scientific evidence (see Chapter 4.2.8.1).

Hazard ratio – A statistical measure of the hazard, or risk of an event, with reference to an explanatory variable – such as the risk of death with reference to which of two interventions was received.
Health technology – “The drugs, devices, and medical and surgical procedures used in medical care, and the organizational and supportive systems within which such care is provided.” (Office of Technology Assessment 1978)

Intervention – A health intervention can be a drug, device, surgical procedure, screening programme, public health campaign or organisational change.

Markov model – A mathematical modelling technique commonly used in HTA. In this technique, cohorts of people are simulated, allowing transitions between health states to be represented by flows between states.

Model (modelling, modeller) – In HTA, a mathematical model is a simulation of a cohort of imagined people, used to extend the length of trials.

Parallel coordinates – A way of showing data with many attributes on a single set of axes. See Chapter 4.2.3: Graphic 3 – Parallel coordinates for probabilistic sensitivity analysis.

Scalability – In information visualisation literature, this term refers to whether a visual presentation would be suitable for a much larger or more complex data set than the example with which it is presented.

State – A state in a Markov model is a grouping of units that fulfil particular criteria. In HTA, simulated people commonly move between states when experiencing different health events, such as undergoing surgery, disease progression or death.

Systematic review – A way of giving an overview of an area of research, by systematically searching databases of published scientific evidence. See Chapter 1.2.1 – A brief history of HTA.

Technology (as in context of ‘health technology assessment’) – See Health technology.

Vector-based files – Vector-based files, such as PDFs, can be enlarged and resized, as they are recorded as a series of mathematical functions, rather than on a pixel-by-pixel basis, as in bitmap (or raster) file formats such as JPEG and TIFF).
Abbreviations

**EBM** – Evidence–based medicine

**GOFER** – Graphical Overview for Evidence Reviews

**HTA** – Health technology assessment

**INAHTA** – International Network of Agencies for Health Technology Assessment

**ISPOR** – International Society for Pharmacoeconomics and Outcomes Research

**MCV** – Multiple Coordinated View (a method of linking interactive displays together and presenting them on the same screen)

**NHS** – National Health Service (UK)

**NICE** – National Institute for Health and Clinical Excellence (UK)

**TAR** – Technology assessment report (UK HTA)

**OTA** – Office of Technology Assessment (USA)

**PSA** – Probabilistic Sensitivity Analysis

**SOC** – State Occupancy Chart

**UK** – United Kingdom (of Great Britain and Northern Ireland)