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Abstract 
 

This thesis examines the validity of polyvagal theory as a model of normal 

socio-emotional responding (Porges, 1995, 2001, 2003a). Polyvagal theory makes 

several claims, and to date many of its predictions lack empirical testing. In the current 

research, five main hypotheses stemming from polyvagal theory were identified and 

tested using healthy participants. The initial empirical study examined the influence of 

laboratory stressors on autonomic function. The findings revealed that social evaluative 

threat increases activation of the sympathetic nervous system more than a virtual reality 

maze, and that arousal remains elevated for longer during anticipation of social 

evaluative threat in comparison to recovery from social evaluative threat. The second 

study investigated the effects of emotion regulation strategies on autonomic function, 

and highlighted the effectiveness of two meditation practices in reducing defensive 

physiological arousal and increasing subjective positive emotion. These studies were 

followed with a set of studies designed to evaluate the effects of defensive physiological 

arousal on socio-emotional functioning, as a direct test of polyvagal theory. The first 

study examined the effects of a laboratory stressor on facial expressivity, revealing that 

social evaluative threat had little impact on expressive regulation. A second study 

investigated the effects of a laboratory stressor on emotional sensitivity and spontaneous 

facial mimicry. Some limited support was found for polyvagal theory, although neither 

emotional sensitivity nor facial mimicry was significantly affected by laboratory stress. 

A final empirical study investigated the effects of a laboratory stressor on affiliation 

tendencies. The laboratory stressor did not influence participants’ willingness to spend 

time with others, however the experiment did reveal significant relationships between 

markers of social safeness and affiliation. The overall conclusion of this thesis is that 

polyvagal may not be a representative model of socio-emotional functioning in healthy 

participants. The implications of these findings are discussed in relation to the validity 

of polyvagal theory as a universal model of socio-emotional responding. 
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Chapter 1: The Social Consequences of Defensive Physiological States: 
An Introduction 

 

It has long been established that the body plays an important role in socio-

emotional responding. Emotions are multifaceted phenomena, and how we feel is 

intrinsically linked to our bodily state and how we behave (Mauss, Levenson, McCarter, 

Wilhelm, & Gross, 2005). Models linking physiological states with emotional 

responding have been emerging for several years, and one of the most recent models to 

be put forward is polyvagal theory (Porges, 1995, 2001, 2003a). Polyvagal theory 

suggests that complex cognitions and behaviours are contingent on the functioning of 

the autonomic nervous system. Polyvagal theory conjectures that the parasympathetic 

pathways that control the viscera are neuroanatomically connected to the neural 

pathways that regulate the muscles of the face head. The result of this connection is that 

social engagement behaviours (such as facial expressivity and social awareness) are 

withdrawn in environmental situations that signal threat or challenge. Although 

polyvagal theory has some promising hypotheses, much of the supporting arguments are 

theoretical and the theory has limited empirical support. This thesis set out to explore 

the social consequences of defensive physiological states. 

 

The literature review in Chapter 2 commences with an overview of mind–body 

interaction models, and polyvagal theory (Porges, 1995, 2001, 2003a) is singled out as a 

peripheral model of emotional responding that requires verification. The review 

highlights that there  are  theoretical  issues  surrounding  polyvagal  theory’s  three  modes  

of responding (calm and self-soothing, mobilisation with fear, and immobilisation). The 

review also identifies that Porges’  claims  regarding  the  links  between  social  

engagement and physiological state are lacking empirical support. Chapter 3 discusses 

and addresses methodological issues that are relevant to the empirical testing of 

polyvagal theory. The chapter considers several facets of emotional responding, and 

emphasises the need for a broad range of methodologies in the following empirical 

chapters. 

 

To empirically test polyvagal theory we used experimental designs to measure 

different forms of social responding whilst manipulating the physiological state of 

healthy participants. Chapter 4 presents an initial set of experiments that explored and 

addressed the methodological issues relevant to manipulating physiological state. 
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Experiment 1 compared two stressor manipulations and found a speech task to be a 

superior stressor manipulation compared to a virtual reality maze. This was followed by 

a second experiment, which demonstrated the utility of using the anticipation period of 

speech tasks to prolong defensive physiological arousal (Feldman, Cohen, Hamrick, & 

Lepore, 2004; Gregg, James, Matyas, & Thorsteinsson, 1999). Specifically, defensive 

arousal was found to remain elevated for longer during a five-minute rest period before 

the speech (anticipation) compared to a five-minute rest period after the speech 

(recovery). After confirming that the speech task was able to increase defensive 

physiological arousal, it was reasoned that the speech task could be used to investigate 

hypotheses arising from polyvagal theory; namely that increased activation of the 

parasympathetic nervous system should be associated with down-regulation of the 

sympathetic nervous system, whilst increased activation of the sympathetic nervous 

system should be associated with deficits in socio-emotional responding. 

 

To investigate the role of the parasympathetic nervous system in emotional 

responding, Chapter 5 was designed to investigate the effects of emotion regulation 

strategies on physiological return to baseline and self-reported distress. The focus of the 

study is on strategies that target the activation of the parasympathetic nervous system as 

well as positive affect. Participants prepared a three-minute speech to induce defensive 

physiological arousal before carrying out an emotion regulation strategy in response. 

Participants were given one of five strategies: smiling, mindful breathing, a loving-

kindness meditation, neutral listening, or resting quietly (control condition). The most 

notable physiological effects were observed in the mindful breathing and neutral 

listening groups, whilst the loving-kindness meditation was associated with the highest 

level of positive affect. 

 

Having demonstrated the utility of anticipatory stress and the effects of 

regulatory strategies in facilitating down-regulation of arousal, exploration of the social 

consequences of defensive arousal commences in Chapter 6. This chapter describes the 

findings of an investigation into the influence of defensive physiological arousal on 

expressive ability. Participants were filmed whilst being instructed to modulate their 

facial expressions (enhance, maintain, or suppress instructions; Bonanno, Papa, 

Lalande, Westphal, & Coifman, 2004). One block of the expressive regulation task was 

presented at baseline, whilst the other block was presented after a stressor manipulation: 

Half of the participants completed the speech task manipulation; the other half 
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completed a reading (control) manipulation. Analyses were conducted to investigate the 

effects of defensive physiological arousal on expressive ability, however no significant 

differences were found within or across the groups. It was concluded that increased 

activation of the sympathetic nervous system might affect spontaneous expression of 

emotion, but not consciously mediated displays of emotion. 

 

Chapter 7 examined the influence of defensive physiological arousal on 

emotional sensitivity (i.e., the ability to recognise emotions in others). The chapter 

reports the findings of two experiments. In Experiment 1 a similar design to the study in 

Chapter 6 was utilised: Participants carried out an emotion recognition task in two 

blocks with the speech task used as a mid-point stressor manipulation. In this chapter, 

electromyography was used to measure spontaneous facial mimicry (Dimberg, 1982). 

No significant differences were found within or across the groups, possibly due to 

limitations of the stressor manipulation. Experiment 2 adapted the design of the speech 

task by splitting the stressor manipulation into three one-minute blocks that were 

interspersed with the second half of the emotion recognition task. The adapted speech 

task was able to maintain arousal in the stressor group for longer during the second 

administration of the emotion recognition task, however this did not result in any 

measurable changes in emotional sensitivity or facial expressivity. 

 

A final empirical chapter (Chapter 8) explored the influence of facial 

expressivity  on  others’  willingness  to  affiliate.  Experiment  1  found  evidence to support 

Porges’  (2003a)  claim  that  facial  expressivity  is  important  in  interpersonal  interactions.  

Participants viewed videos of individuals regulating their facial expressions and 

indicated that they would be more willing to spend time with regulators displaying 

greater levels of emotion, particularly if they expressed positive emotion. As well as 

affecting subjective ratings, displays of emotion were also associated with significant 

changes  in  the  observers’  heart  rate.  Interestingly,  individuals’ willingness to affiliate 

with others was found to be related to their self-reported social safeness as well as their 

baseline high-frequency heart variability. These relationships provide some support for 

Porges’  (2009a)  argument  that  social  interactions are dependent on environments being 

perceived  as  safe.  Experiment  2  investigated  whether  observers’  willingness  to  affiliate  

could be influenced by defensive physiological arousal. Participants again viewed 

videos of individuals regulating their facial expressions, with the adapted speech task 

used as a stressor manipulation during the second half of the task. The findings did not 
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support the hypothesis that increased activation of the sympathetic nervous system is 

associated with decreased affiliation. 

 

Several conclusions can be drawn from the empirical chapters of this thesis. 

Most importantly there is not a clear link between defensive physiological arousal and 

socio-emotional functioning in healthy control participants. The final chapter (Chapter 

9) provides a general overview of the main findings of the thesis. It discusses the wider 

implications of the current findings in the context of emotion research. The chapter also 

considers the implications of the empirical findings in terms of the validity of polyvagal 

theory. 
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Chapter 2: The Autonomic Nervous System and Emotional Responding 
 

Broadly defined, emotions guide action and organise behaviour towards salient 

goals (Davidson & Irwin, 1999). The presence of an emotion is linked to changes in 

subjective experience, appraisal, expression, physiological arousal, and goal-directed 

behaviour and involves several processes: The perception of an emotional stimulus, the 

production of an affective state and emotional behaviour, and the regulation of the 

affective state and emotional behaviour (Phillips, Drevets, Rauch, & Lane, 2003). When 

emotional stimuli are perceived, messages are sent from the central nervous system to 

the rest of the body, either by nerve cells or chemical hormones, generating changes in 

autonomic, neuroendocrine, and somatomotor systems. Importantly, these routes of 

communication are bidirectional creating a feedback loop between the central nervous 

system and the rest of the body allowing the organism to continuously adapt to the 

changing demands of the environment (Hugdahl, 1996; Porges, 2003a). The presence of 

an emotion is generally a private experience unless behavioural (e.g., facial, vocal, 

postural) changes associated with the experience of the emotion are expressed (Gross & 

John, 1995). Behaviourally expressing an emotion signals to others that an emotion is 

occurring, making emotional expression an important part of social interactions 

(Darwin, 1872/2009). In this chapter I provide an overview of how the mind and body 

interact to shape how we experience and express our emotions. 

 

2.1. Integration of the Mind and Body 
 

It has long been debated as to whether emotional experiences are shaped by the 

mind influencing the body, or the body influencing the mind (see Dalgleish, Dunn, & 

Mobbs, 2009, for a review). William James (1884) put forward the controversial 

argument that emotional experiences arise from direct perceptions of bodily change; we 

do not run because we are frightened, we are frightened because we run. The idea that 

an emotional experience does not start with a conscious experience but our experience 

of bodily changes was shared by Carl Lange (1885). Both James and Lange believed 

that bodily and behavioural responses precede the conscious experience of emotion, 

resulting in what it today known as the James–Lange theory of emotion. Walter B. 

Cannon (1927) critiqued the James–Lange theory arguing that visceral changes do not 

always result in the presence of an emotion. Cannon put forward evidence that 

contrasted with the claims of James and Lange, for example surgical separation of the 
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viscera from the body was shown not to attenuate emotional behaviour in animals, and 

Cannon reasoned that the range of visceral changes in the body resulted in too little 

differentiation to explain the range and variety of emotions experienced. As reviewed in 

Dalgleish  et  al.  (2009),  recent  work  has  questioned  Cannon’s  claims  with  evidence  

suggesting that emotional responses may at least in part be distinguished on the basis of 

patterns of autonomic activity (Ekman, Levenson, & Friesen, 1983), that separation of 

the body from the brain can in fact reduce the intensity of emotional experience (e.g., 

following spinal injury, Montoya & Schandry, 1994), and that artificial stimulation of 

the viscera (e.g., via intravenous injection of peptides) can induce emotions (Harro & 

Vasar, 1991). The dissonance between the James–Lange theory of emotion and 

Cannon’s  critique  raised  important  questions in the field, and this longstanding debate is 

still relevant to our current understanding of how we experience emotions. I would 

argue that a major contribution of James, Lange, and Cannon, is that it is now generally 

accepted that both the mind and the body play important roles in shaping the emotional 

experience. 

 

Mind–body research is inherently complicated because even when researchers 

attempt to isolate the brain from the body using separation designs, the emotional 

experience may still being driven by remaining peripheral feedback mechanisms 

(Heims, Critchley, Dolan, Mathias, & Cipolotti, 2004). Current researchers are aware of 

this limitation, so rather than isolate the origins of an emotional response to just the 

brain or body, a hybrid position is taken. The body is thought to signal a basic sense of 

emotional intensity to the brain, which is cognitively appraised to lead to a more 

nuanced experience (Dalgleish et al., 2009). Schachter and Singer (1962) provided key 

evidence for this two-factor theory of emotion by demonstrating that the emotional 

experience is dependent not only on the presence of bodily arousal, but also the 

cognitive expectation of why the arousal has occurred. Consequently when conducting 

emotion research it is essential to consider the how the body communicates with the 

brain to produce an emotional experience. Emotion is not a purely cognitive phenomena 

and the role of the body in generating the experience of an emotion needs to be 

emphasised. 
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2.2. The Autonomic Nervous System 
 

The mind and body are linked by a complex network of neurons and synapses. 

Conventional models of the human nervous system group the neural networks of the 

brain and spinal cord together to form the central nervous system (CNS; Jessell, 1995). 

This system is responsible for processing signals sent to and from the rest of the body. 

The brain is often considered the central organ of behaviour as it can exert a top-down 

influence  on  many  aspects  of  behaviour,  allowing  many  of  the  body’s  functions  to  be  

consciously controlled (Cameron, 2009; Jessell, 1995). Any nervous tissue lying outside 

of the brain and spinal cord is referred to as the peripheral nervous system. This second 

system carries motor and sensory information from the brain to the body and then relays 

information back to the CNS. Although the peripheral nervous system and CNS are 

theorised as being anatomically separate, they are functionally interconnected (Jessell, 

1995). The peripheral nervous system has been further divided into the somatic system, 

which controls muscular activities, and the autonomic nervous system (ANS), which 

controls the viscera, glands, and sensory systems of the body (Sequeira, Hot, Silvert, & 

Delplanque, 2009). Most of the divisions alluded to have been established on the basis 

of anatomy, neuropharmacology, and function, which has led to some contention over 

the years (Blessing, 1997; Jänig, 2006). 

 

Distinctions between the ANS and CNS are mainly due to historical conceptions 

about their anatomy and function; in reality the ANS and CNS interact to such an extent 

it is difficult to separate them from one another, although many still talk of them as 

though they are independent (van Toller, 1979). Current understanding suggests that the 

CNS and ANS are constituted of the same neural elements, however the arbitrary 

divisions  made  between  “central”  and  “peripheral”  physiology  has  diverted  attention  

away from the role of the ANS in understanding emotional behaviour (Blessing, 1997). 

It is important to establish how the ANS controls the viscera of the body because the 

physiological changes that occur during an emotional response are mostly generated by 

this system. It has been argued that all physiological and behavioural events, and their 

associated affective experiences, can be explained in terms of neural circuitry, making 

the ANS a suitable focus for emotion research (Blessing, 1997). 

 

The role of the ANS is to regulate and coordinate bodily activities such as 

respiration rate, heart rate, and digestion, many of which are usually without conscious 
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control. The CNS however, can control, inhibit, or bypass lower reflex mechanisms of 

the ANS via activity in areas such as the hypothalamus, amygdala, and prefrontal cortex 

(Jessell, 1995). On this basis, Blessing (1997) has criticised the used of the term 

“autonomic nervous system”, as this implies that the ANS acts independently of the 

CNS. In actual fact, specific patterns of neural outflow to the cardiovascular and 

visceral organs originate almost exclusively within the brain. To resolve this issue it has 

been  suggested  that  the  term  ‘autonomic’  should  be  abandoned,  and  that  instead  

researchers should refer terms such as efferent and afferent visceral neurons (Blessing, 

1997). Although this argument has its merits, for ease of communication I will retain the 

use of the term autonomic nervous system in this thesis. 

 

Because of the ANS, the human body is able to quickly alter its internal state to 

meet the demands of the external environment. This is extremely important when 

survival relies on the ability to quickly identify and appropriately respond to 

environmental threats and rewards (Darwin, 1872/2009; Porges, 2009b). The ANS 

innervates every organ in the body and has two divisions, the sympathetic branch and 

the parasympathetic branch, as can be seen in figure 2.1. The sympathetic nervous 

system (SNS) is generally a catabolic system that expends energy and prepares the body 

for fight–flight behaviours, resulting in changes such as increased heart rate, increased 

sweating, and increased blood flow to skeletal muscle, as well as the inhibition of the 

digestive system (Cannon, 1929). This system is often activated when a threat/stressor is 

encountered. Most of the nerve fibres for the SNS originate in the thoracic and lumbar 

segments of the spinal cord (i.e., the middle and lower back regions of the spine) and 

project a short way from the spinal cord into bundles of fibres that along the spinal 

vertebrae known as the sympathetic chain ganglia. The preganglionic fibres of the SNS 

are relatively short whereas the postganglionic fibres that project from the sympathetic 

chain to the effector organs are much longer. Innervation of the adrenal medulla by the 

SNS releases the catecholamines adrenaline and noradrenaline into the bloodstream 

(Parkinson, 1990), therefore the SNS is often conceptualised as having a diffuse effect 

throughout the body (as noted by Cannon, 1929; but see Gebber, 1990; and Morrison, 

2001). 
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Figure 2.1. The autonomic nervous system: Parasympathetic and sympathetic divisions 
(from Morris & Maisto, 2001, p. 72). 

 

The parasympathetic nervous system (PNS) which makes up the other half of the 

ANS is generally anabolic, promoting the conservation of energy and a state of rest and 

digest (Cannon, 1929). For example this system tends to activate the digestive tract 

whilst reducing heart rate. Most of the PNS nerve fibres originate in the cranial or sacral 

regions of the spinal cord (i.e., the very top and bottom regions of the spine), including 

the vagus nerve which originates from nuclei in the brainstem and plays a major role in 

the PNS. Unlike in the SNS, parasympathetic ganglia tend to be found in or near the 

innervated regions, allowing the activity of the PNS to be localised and specific. Also 

the PNS is characterised by the chemical acetylcholine rather than the catecholamines 

adrenaline and noradrenaline. 

 

At first, the division of the SNS and PNS appears straightforward, however the 

systems interact in highly complex ways to produce resultant changes in physiology. 

Whilst the SNS tends to have an activating effect and the PNS tends to have an 

inhibitory effect, the two systems are not simply antagonistic as is often reported. The 

two systems can be co-activated, uncoupled, or reciprocal in their effects (Berntson, 

Cacioppo, & Quigley, 1991; Jänig, 2003). Following this understanding, it is recognised 

that both  systems  will  function  to  adjust  the  body’s  physiological  response  to  meet  the  

specific demands of the environment (Blessing, 1997). It should also be emphasised that 

the two systems can be very specific in their effects. Cannon's (1929) original 

conception of the SNS suggested that the system was functionally homogeneous in its 
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effects (i.e., components exhibited uniform increases or decreases in activity). This line 

of reasoning arose because the SNS was shown to innervate targets organs that are 

widely distributed, such as the blood vessels in skeletal muscle, skin, and viscera, as 

well as sweat glands (Jänig, 2006). However, contemporary research has established 

that sympathetic nerves innervating target organs can be non-uniformly changed, 

leading to complex visceral response patterns (Gebber, 1990; Morrison, 2001). The 

same specificity can also be applied the PNS (Jänig, 2006). Due to the existence of the 

sympathetic and parasympathetic nervous systems and their various modes of control, 

there is great  flexibility  and  precision  in  the  body’s  ability  to  adjust  internal  states  to  

meet external demands. This flexibility and precision can be easily demonstrated by 

looking at how the ANS controls the function of the heart. 

 

2.3. The Heart and Emotional Responding 
 

The heart is considered to be a sensitive index of emotional responding because 

of its role in regulating the somatic and visceral functions of the body. The heart is 

intimately involved in all aspects of emotional responding and behaviour, as most 

bodily functions are likely to cause adjustments in the cardiovascular system (Obrist, 

Webb, Sutterer, & Howard, 1970). The reason that the heart is so responsive to changes 

in internal and external demands is that it facilitates the preparation and performance of 

most behavioural responses (Schwartz, 1982). In addition to this, unlike most other 

visceral organs, the heart is also innervated by both the SNS and PNS, making it 

responsive to both branches of the ANS (Jänig, 2006). 

 

The heart supplies the cells of the body with oxygen and nutrients via the blood. 

The rate at which the heart pumps blood around the body is generated by the sinoatrial 

node, the natural pacemaker of the heart. The rate of contraction is highly responsive to 

signals from both the ANS and the CNS. As mentioned previously the SNS acts to 

increase the amount of blood pumped around the body via the release of noradrenaline, 

which increases the excitability of the heart tissue and increases the force of contraction 

(Andreassi, 1989). Conversely the PNS inhibits the activity of the sinoatrial node, 

slowing heart rate. Under non-challenging conditions the heart is predominantly 

controlled by the PNS, so the heart beats at a slower rate than the pace of the sinoatrial 

node. Withdrawal of the vagus nerve (influence of the PNS) from the heart causes the 

heart’s  rate  of  contraction  to  rapidly  increase  allowing  for  a  rapid  shift  in  behaviour.  
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Research has shown that parasympathetic-mediated alterations in heart rate occur much 

faster than those mediated by the sympathetic branch of the nervous system, so 

withdrawing the vagus nerve has a quicker effect on the heart than activating the SNS 

(Berntson, Cacioppo, & Quigley, 1993a). Such withdrawal is likely to occur if a threat 

is encountered, allowing the body to prepare for a fight–flight response. 

 

Although measures of heart rate (e.g., beats per minute) can be useful indices of 

cardiovascular reactivity, changes in the activity of the heart occur on a beat-to-beat 

basis. Measures of heart rate average out  the  variability  of  the  heart’s  activity  over  a  

period of time, and this means that heart rate cannot be used to differentiate between the 

influences of the SNS and the PNS. To illustrate this point, increases detected in heart 

rate can be attributed to decreased PNS activity, increased SNS activity, or a 

combination of the two, however it is impossible to identify the source of the changes in 

activity from heart rate alone. Alternative methodologies can be used to resolve this 

issue, for example heart rate variability (HRV) and pre-ejection period (PEP) monitor 

changes  in  the  heart’s  activity  on  a  beat-to-beat basis and respectively index activation 

of the PNS and SNS (Cacioppo, Uchino, & Berntson, 1994). Deconstruction of these 

measures allows for the isolation of changes in the activity of the heart due to 

parasympathetic effects, sympathetic effects, or a combination of both. 

 

In recent times, HRV has been identified as a marker of psychological (Thayer, 

Hansen, Saus-Rose, & Johnsen, 2009) and physiological health (Thayer & Lane, 2007). 

Activation of the vagus nerve – a major determinant of HRV – has been shown to 

influence physiological and emotional responses to acute stressors (Appelhans & 

Luecken, 2006). As mentioned previously, external demands on the ANS can elicit a 

state of fight or flight (characterised by the SNS), or a state of rest and digest 

(characterised by the PNS). When stressors are encountered and a fight–flight response 

is adopted, the power in the low-frequency domain of HRV tends to increase whilst the 

high-frequency power decreases (Berntson & Cacioppo, 2004). In contrast, increases in 

the high-frequency component of HRV represent an increase in parasympathetic 

activity, which is linked with the promotion of rest and digest behaviours. In the longer 

term, overall reductions in HRV and autonomic imbalance (when one branch of the 

ANS dominates over the other) are both thought to contribute to premature ageing and 

disease. Low HRV has been identified as a prognostic marker for cardiovascular 

diseases, such as hypertension and myocardial infarction, as well as psychiatric 
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disorders such as depression and anxiety (Berntson & Cacioppo, 2004; Thayer & 

Friedman, 1997). Consequently patterns in HRV and their autonomic counterparts have 

significance not just for short-term emotional responding, but also longer-term health 

and disease. 

 

The contribution of the heart to emotional responding, and the ability for 

researchers to determine the influences of the SNS and PNS on the heart, has made the 

function of the heart a popular component of psychophysiological research. Models 

have begun to integrate the functions of the mind and the body using the heart as their 

main measure of autonomic functioning. Although these models are commendable, 

some researchers criticise this focus: The heart is only one component of the ANS, and 

it is not necessarily the most important or central one (Berntson, Cacioppo, & 

Grossman, 2007). Associations between the heart and other measures of 

psychophysiological responding also do not imply causation, and it is important to 

recognise this when interpreting models that integrate the mind and body. 

 

2.4. Models of Mind–Body Interaction 
 

For the purpose of this review I am going to focus on two models of mind–body 

interactions: The model of neurovisceral integration (Thayer & Lane, 2000) and 

polyvagal theory (Porges, 1995, 2001, 2003a, 2007a). Both models highlight the 

interactions that occur between the CNS and ANS, and as they are neurobiologically 

grounded models, they emphasise the  influence  of  the  body’s  neural  systems  on  

emotional responding. The models acknowledge that dysfunction of the pathways 

between the brain, autonomic, neuroendocrine, and somatomotor systems, plays a key 

role in the development and maintenance of psychiatric disorders. The research that has 

resulted from both models has provided a better understanding of the deficits caused by 

the dysfunction of such systems, and has also aided the development of intervention and 

treatment strategies to help return the systems to levels of optimal functioning. 

 

2.4.1. Neurovisceral Integration 
 

Researchers are increasingly emphasising the importance of neurobiologically 

based systems that help coordinate emotional responding and social behaviour. Thayer 

and Lane (2000, 2009) proposed a general model of neurovisceral integration, which 
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recognises the interactions between the brain, visceromotor, neuroendocrine, and 

behavioural responses, that function to allow the body to respond rapidly to 

environmental challenges. Thayer and Lane’s  (2000,  2009)  model  is  centred  on  the  

function of the central autonomic network (CAN); a network of brain structures 

implicated in goal-directed behaviour and adaptability (Benarroch, 1993; Thayer & 

Brosschot, 2005). The CAN is comprised of the anterior cingulate, the insula, the 

ventromedial prefrontal cortices, the amygdala, the hypothalamus, the periaqueductal 

gray, the parabrachial nucleus, the nucleus of solitary tract, the nucleus ambiguus, the 

ventrolateral medulla, the ventromedial medulla, and the medullary tegmental field. 

These brain areas are intimately linked to emotional responding, and together they allow 

for tonic and reflexive control of autonomic functions (Benarroch, 1993). The prefrontal 

cortex is proposed to exert a top-down effect on the subcortical structures and play an 

important role integrating signals from the brain and the body. 

 

There are two structures within the CAN that specifically relate to the current 

research: The ventromedial prefrontal cortex (vmPFC) and the dorsal anterior cingulate 

cortex (dACC). The vmPFC has been found to modulate the vagal efferent outflow to 

the heart (Wong, Massé, Kimmerly, Menon, & Shoemaker, 2007), whilst research in 

fear conditioning has shown that activation of the dACC and the vmPFC mediates fear 

expression in humans. Activation of the dACC promotes fear responses whilst 

activation of the vmPFC promotes safety (Milad, Quirk, et al., 2007; Milad, Wright, et 

al., 2007). In the neurovisceral integration model, activation in these regions signals the 

need for either a danger or safety response, which is communicated to the body and 

expressed via the autonomic nervous system (Thayer & Lane, 2000). The prefrontal 

cortices modulate the activation of the subcortical motivation circuits, with 

sympathoexcitatory circuits normally being under tonic inhibitory control (Thayer & 

Brosschot,  2005).  This  prefrontal  inhibition  is  taken  “offline”  in  the  presence  of  

uncertainty, novelty, and threat to let automatic, prepotent processes regulate behaviour 

(Thayer & Lane, 2000, 2009). A reduction in prefrontal activation results in a 

withdrawal of parasympathetic activation and an increase in sympathetic activation, 

which is consistent with defensive responding. Dysregulation of these cortical pathways 

may result in prolonged increases in sympathetic activation, which in the long term 

could result in potential autonomic imbalance. Prolonged action readiness and SNS 

over-activity have been linked to deficits in self-regulation and psychopathology 

(Thayer & Brosschot, 2005).  
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A positive correlation has been found between activation of the prefrontal 

cortices and vagally mediated HRV (Lane et al., 2009). The vagal component of HRV 

has also been related to the efficiency of physiological, cognitive, and emotional self-

regulation (Segerstrom & Solberg Nes, 2007; Thayer & Brosschot, 2005; Thayer & 

Lane, 2009). Due to the direct links between the CAN and the vagal efferents to the 

heart, the model of neurovisceral integration suggests that HRV is a suitable marker of 

central–peripheral neural feedback and CNS–ANS integration (Thayer & Brosschot, 

2005; Thayer & Lane, 2000, 2009). 

 

2.4.2. Polyvagal Theory 
 

Porges’  (1995,  2001,  2003a,  2007a)  polyvagal  theory  emphasises  how  emotional 

responding has its roots based in the evolution of the mammalian ANS. The theory 

attempts to integrate physiology, behaviour, and psychosocial processes in a unified 

framework (Berntson et al., 2007). As discussed previously, the ANS is not a unified 

structure. Polyvagal theory suggests that different substrates of the ANS can provide an 

organising principle that illuminates the adaptive significance of affective processes 

(Porges, 1995). According to the theory, phylogenetic developments have resulted in 

neuroanatomical and neurophysiological links between the vagal regulation of the heart 

and the neural regulation of the striated muscles of the face and head (Porges, 1995, 

2003a, 2007b). In other words the influence of the PNS on the heart is also related to the 

control of motor behaviours that are involved in social engagement (Porges, 2003a). 

Porges argues that social engagement is not a learned behaviour; it is an emergent 

behaviour of our neurophysiology. As a consequence socialisation is dependent on the 

body’s  neuroregulatory  state,  which  either  inhibits  or  promotes  the  expression  of  social  

behaviours (Porges, 2009a). 

 

The vagus, also known as the 10th cranial nerve, can be traced back to two 

origins within the brainstem, the nucleus ambiguus (NA) and the dorsal vagal motor 

nucleus (DVNX; Loewy & Spyer, 1990). These form parts of the ventral vagal complex 

(VVC) and dorsal vagal complex (DVC) respectively (Porges, 1995). Activation of the 

vagus nerve from either of these locations is parasympathetic, inhibiting the sinoatrial 

node to slow heart rate, however the effects of the two vagal branches are qualitatively 

and quantitatively different (Porges, 1995, 2001). It is proposed that in environments 

that  are  perceived  as  ‘safe’,  the  physiological  state  is  largely  dominated  by  activation  of  
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the myelinated vagus nerve originating from the NA. This branch of the vagus nerve is 

the most recent evolutionary component of the polyvagal hierarchy, and is often 

referred to as the ‘newer’ vagus nerve. NA-mediated states occur through the VVC and 

are characterised by bradycardia, increased digestion, and are considered calming and 

self-soothing. This physiological state is linked to pro-social behaviours, with activation 

of a neural network defined as the social engagement system (Porges, 1998, 2001, 

2003a). 

Figure 2.2. The social engagement system (from Porges, 2003a). 
 

The social engagement system (SES) consists of structures innervated by the 

cranial motor nerves V, VII, IX, X, and XI (see figure 2.2). During development these 

nerves originate in the embryonic branchial arches and project to and from the striated 

muscles of the face and head (Patestas & Gartner, 2006). Collectively they are known as 

special visceral efferent fibres and their function is to regulate the facial muscles (for 

facial expressivity), muscles of mastication (for ingestion), neck muscles (for looking 

behaviour), laryngeal and pharyngeal muscles (for vocalisation and intonation), as well 

as the middle ear muscles (for listening to human voice; Porges, 1995). These muscles 

are all involved in social engagement behaviours, such as maintaining eye contact, 

listening to speech, and making appropriate facial expressions. The source nuclei of 

these cranial motor nerves are located in the special visceral efferent column of the 

brainstem and are anatomically linked to the cardiac vagal fibres projecting from the 

NA (see figure 2.3). Consequently the motor nerves that control the muscles of the face 

and head communicate directly with the inhibitory neural system that slows heart rate, 

lowers blood pressure, and reduces arousal in order to produce calm states (Porges, 

2003a). Porges hypothesises that due to this heart–face link in the brainstem, successful 
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social engagement is contingent on the calm and self-soothing physiological states, 

which are determined by activation of the myelinated vagus nerve (Porges, 2003b, 

2009a; Porges & Lewis, 2010). According to polyvagal theory, if activation of the 

myelinated vagus is reduced or withdrawn the SES is down-regulated, and the 

individual’s ability to effectively socialise is compromised. This defensive 

physiological state is likely to arise if the individual is in a situation where they perceive 

their environment as ‘unsafe’. 

 
Figure 2.3. Links between the brainstem and the muscles of the face and head. A: 
Schematic diagram of the brainstem depicting the cranial nerve nuclei. The cranial 
motor nerves of V, VII, IX, X and XI are located in the special visceral efferent (SVE) 
column of the brainstem. Adapted from Romer and Parsons (1986, p. 583). B: Diagram 
of the corresponding muscles of the face and head innervated by the SVE cranial nerves 
(V = orange, VII = purple, IX = pink, X = yellow, XI = green). 

 

Porges (2007b, 2009a) uses the term neuroception to describe how individuals 

evaluate the level of threat in their surrounding environment. To effectively move 

between autonomic substrates and alter one’s behaviour to meet the demands of the 

environment two processes need to occur: Firstly risk must be assessed; secondly if the 

environment is perceived as safe then structures that promote defensive behaviours such 

as fight, flight, or freeze must be inhibited. Neuroception occurs without conscious 

awareness and initiates a sequence of neural processes that facilitate adaptive defence 

behaviours when required. Consequently an individual may exhibit defensive 

behaviours without conscious awareness of the perceived threat.  
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In the presence of threatening stimuli vagal control of the heart is withdrawn. 

This withdrawal allows the organism to orient to the environment and assess the level of 

threat without having to initiate the SNS, which is metabolically demanding for the 

body (Alboni, Alboni, & Bertorelle, 2008). If the threat is only transitory vagal control 

of the heart can be restored. However if the threat is significant or fails to diminish, the 

SNS activates and promotes fight–flight behaviours. To recapitulate, an SNS response is 

one of mobilisation, characterised by increased heart rate, increased sweating, and 

decreased digestion (Cannon, 1929). During defensive states the body is driven mainly 

by sympathetic activation and vagal activity is reduced. This state prepares the body to 

either challenge the threat (fight) or attempt to escape from the threat (flight). Although 

adaptive in allowing the body to deal with potential threats, the reduction of vagal 

activity  is  accompanied  by  deactivation  of  the  SES,  which  limits  the  individual’s  ability  

to socially engage (Porges, 2001, 2003a). 

 

In situations of extreme threat, when environmental stimuli may be perceived as 

‘life  threatening’,  the  older  branch  of  the  vagus  nerve  that  originates  from  the  DVMX  is  

up-regulated. This DVC pathway is unmyelinated and usually maintains tone to the gut 

and regulates digestion (Chang, Mashimo, & Goyal, 2003). Heightened activation of the 

DVC is usually inhibited by the VVC and the SNS. When an extreme threat is present 

however the higher neural circuits are withdrawn, resulting in increased DVC 

activation, which causes bradycardia, apnea, increased gastric motility, and increased 

pain thresholds (Porges, 2007b). This form of autonomic activation also deactivates the 

SES. In the absence of SNS activation, activation of the older unmyelinated vagus nerve 

is exhibited as immobilisation, a primitive form of defence. In inescapable threat 

situations this autonomic state may result in syncope or even fear induced death (C. P. 

Richter, 1957). 

 

From a polyvagal perspective, the ANS should be able to shift autonomic states 

to meet the demands of the environment when needed (Porges, 1995, 2003a, 2007b). 

Problems  will  arise  if  one’s  autonomic  state  alters  in  excess  to  situational  demands,  or  if  

an individual fails to successfully return to a state of calm and self soothing after a 

stressor (Friedman, 2007; Gilbert, 2001). According to polyvagal theory, the flexibility 

of the ANS depends on the dynamic control of the myelinated vagus nerve. The role of 

the myelinated vagus nerve is emphasised because polyvagal theory follows the 

principles of evolution and dissolution proposed by John Hughlings Jackson (1884); 



CHAPTER 2: LITERATURE REVIEW 32 
 

that is, newer components of the ANS will dominate function until the demands of the 

environment overwhelm higher-level systems, causing lower neural substrates to 

assume regulation of the  ANS.  Porges’  claims  that  the  myelinated  vagus  nerve  is  

phylogenetically newer than the SNS and the unmyelinated vagus nerve, which 

prioritises its function over and above the other neural substrates (Porges, 1995, 2001). 

 

It has been reported that the myelinated vagus nerve is largely responsible for 

vagal control of the heart; the role of the unmyelinated vagus nerve in cardiac control is 

less certain (Loewy & Spyer, 1990; D. W. Richter & Spyer, 1990; Stauss, 2003). 

Polyvagal theory assumes that the flexibility of the ANS can be indexed using HRV, as 

this is thought to reflect the efferent activity of the myelinated vagus nerve (Porges, 

1995, 2001, 2003a). The myelinated vagus nerve usually exerts tonic inhibitory control 

over the rest of the ANS, hence why the myelinated vagus is sometimes termed the 

vagal  “brake”  (Porges,  1995,  2001,  2003a).  The  myelinated  vagus  nerve  functions  

rapidly to mobilise or calm individuals by inhibiting or disinhibiting vagal tone to the 

heart. Consequently, the high-frequency component of HRV is an indicator of the 

efficiency of the vagal efferents involved in the coordination of visceral states. In 

support of Porges, appropriate regulation of the vagal brake has been associated with 

self-soothing in infants (Huffman et al., 1998), and has been shown to reflect higher 

self-regulation in adults (Fabes & Eisenberg, 1997). According to polyvagal theory, 

HRV should also index the neural regulation of the cranial nerves involved in emotional 

expression and social communication (Porges, 2007b). Despite this claim, research by 

Demaree and colleagues has so far failed to find a positive relationship between cardiac 

vagal control and emotional expressivity (Demaree, Pu, Robinson, Schmeichel, & 

Everhart, 2006; Demaree, Robinson, Everhart, & Schmeichel, 2004; Pu, Schmeichel, & 

Demaree, 2010). 

 

2.4.3. Neurovisceral Integration vs. Polyvagal Theory 
 

The model of neurovisceral integration (Thayer & Lane, 2000, 2009) and 

polyvagal theory (Porges, 1995, 2001, 2003a, 2007a) both highlight interactions that 

occur between the CNS and ANS. Both use HRV as a measure to index the level of 

inhibitory control exerted by the CNS on lower neuroregulatory systems, and posit that 

HRV is a biological marker of self-regulatory control and autonomic health. The two 

theories are similar and yet there are clear differences in their conceptualisation. The 
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model of neurovisceral integration is a centralised model, focusing on the top-down 

influence of the CAN on the ANS. Polyvagal theory on the other hand is a peripheral 

model, focusing on the influence of the vagal efferents that originate in the brainstem. 

 

Polyvagal theory is unique in its recognition of the two sources of vagal outflow 

identified within the brainstem (Porges, 1995, 2001, 2003a). This differentiation from 

the model of neurovisceral integration offers an explanation as to why sometimes too 

much vagal activity can be detrimental; often it is assumed that greater vagal activity 

relates to greater health, however several areas of research suggest that this is not the 

case, for example in sudden infant death syndrome, stress-induced asthma, stress-

induced gastric ulcerations, and vasovagal syncope (see Ritz, 2009). A second 

distinctive  component  of  polyvagal  theory  is  Porges’  conceptualisation  of  the  heart–face 

link (Porges, 2003b, 2009a; Porges & Lewis, 2010). The cranial nerves controlling the 

face and head are anatomically and functionally linked with the vagal nuclei of the 

brainstem. This connection reinforces the notion that emotional and physiological 

responding are intimately linked, and that both forms of responding modulate 

interpersonal functioning. For these reasons I have chosen to focus on polyvagal theory 

as the predominant model of emotional responding in this thesis; however polyvagal 

theory is not without its deficiencies. 

 

2.4.4. A Critique of Polyvagal Theory 
 

Polyvagal theory makes bold assumptions about the function of the autonomic 

nervous  system.  There  are  several  challenges  to  Porges’  theory  that  must  be  recognised.  

First of all, the term polyvagal is a misnomer, as polyvagal theory divides the vagal 

system  into  two  efferent  systems  not  many;;  Ritz  (2009)  has  suggested  that  “bivagal  

theory”  would  be  a  more  accurate  description.  Secondly,  questions  have  been  raised  

about the utility of dividing the vagal efferents originating from the NA and the DVNX. 

Early research neglected the role of the brainstem in autonomic functioning because it 

contains large numbers of neurons that have no obvious connections to easily 

recognised and defined nuclei (Blessing, 1997): The term nucleus ambiguus perfectly 

represents the perplexity of the brainstem, as the name reflects the ill-defined borders of 

this region (Loewy & Spyer, 1990). Current techniques are unable to ascertain whether 

vagal outflow originates from the NA or the DMNX (Berntson et al., 2007; Grossman 

&  Taylor,  2007),  and  this  has  made  it  impossible  to  verify  Porges’  claims  regarding  
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potential functional differences between the vagal efferent systems, at both 

psychophysiological and behavioural levels (Berntson et al., 2007; Ritz, 2009). 

 

A further consideration is that much of the research used to substantiate 

polyvagal theory has been carried out with juvenile rather than adult populations. For 

example, vagal regulation has been associated with self-soothing in neonates (Huffman 

et al., 1998), facial expressivity in infants (Stifter, Fox, & Porges, 1989), and emotion 

regulation in infants and pre-school aged children (Hastings et al., 2008; Porges, 

Doussard-Roosevelt, Portales, & Greenspan, 1996; Stifter & Jain, 1996). Less empirical 

support has been provided using adult samples. Lower resting (tonic) high-frequency 

HRV has been linked to decreased regulation of negative affect and maladaptive coping 

(Fabes & Eisenberg, 1997; Pu et al., 2010), as well as poorer romantic attachment and 

marital quality (Diamond & Hicks, 2005; Smith et al., 2010). Further to this, smaller 

changes in high-frequency HRV in response to laboratory stressors have been 

associated with emotion regulation difficulties (Austin, Riniolo, & Porges, 2007; 

Hughes & Stoney, 2000; Sahar, Shalev, & Porges, 2001), and inferior social functioning 

(Egizio et al., 2008). Despite this support, there is also evidence that refutes some of 

Porges’  claims,  for  example  Gyurak  and  Ayduk  (2008)  did not find a direct relationship 

between resting HRV and emotion control, and Demaree and colleagues have reported 

that cardiac vagal control does not predict emotional expressivity in response to film 

clips (Demaree, Robinson, et al., 2004; Demaree, Pu, et al., 2006). One explanation for 

the lack of positive findings in these studies relates to the methodology used: 

Supporting evidence in healthy adult populations tends to emerge during highly 

emotional situations (e.g., increased levels of daily stress, Fabes & Eisenberg, 1997), 

and not situations that do not warrant substantial emotional responses (e.g., passively 

viewing film clips, Demaree, Pu, et al., 2006). It may only be under conditions of 

challenge or threat that relationships between ANS function and socio-emotional 

behaviours clearly emerge in healthy adults. 

 

The accumulating evidence is beginning to explore the utility of polyvagal 

theory as an integrative framework that can be used to simultaneously interpret 

physiology, behaviour, and psychosocial processes. Polyvagal theory has generated and 

stimulated new lines of research, but some have found theory to be too simplistic. Since 

its conception two important limitations have been addressed: Beauchaine (2001) has 

refined the repertoire of the SNS within the polyvagal hierarchy, whilst other 
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researchers have strived to differentiate between different forms of immobilisation 

response outside of the polyvagal framework (Bracha, 2004; Schauer & Elbert, 2010). 

These developments are addressed in sections 2.4.4.1 and 2.4.4.2. 

 

2.4.4.1. Integrating polyvagal theory with BIS/BAS. A caveat of polyvagal 

theory is that the basic hierarchy proceeds from a calm and self-soothing state, to 

mobilisation with fear, then to immobilisation (Porges, 1995, 2001, 2007b). The 

fundamental polyvagal framework neglects the occurrence of situations where 

mobilisation occurs without fear, for example during play and exercise. Only more 

recently  has  Porges’  considered  this  limitation:  Porges  (2009b)  attributes  playful  

behaviours to defensive fight–flight arousal coupled with dynamic VVC activation to 

insure safe interactions. Beauchaine (2001) was in fact first to address this issue, and 

instead of co-opting the neural substrates of the polyvagal hierarchy, Beauchaine 

combined  Porges’  polyvagal  theory  with  Gray’s  reinforcement  sensitivity  theory.  

Gray’s  (1987)  theory  hypothesises  that  in  addition  to  fight–flight behaviours, individual 

responding is determined by two motivational systems – the behavioural activation 

system (BAS) and the behavioural inhibition system (BIS) – which independently 

respond to appetitive and aversive stimuli. Incorporating the behavioural inhibition and 

activation systems into the polyvagal hierarchy allows for a greater distinction between 

behaviours determined mainly by SNS activation, for example risky and impulsive 

behaviours (indicative of BAS activation), and hypervigilance and social 

avoidance/withdrawal (indicative of BIS activation). 

 

Beauchaine’s  (2001)  integration  of  the  BIS  and  BAS  into  the  polyvagal  

hierarchy is useful, but Gray has since revised his original reinforcement sensitivity 

theory and altered the structure of the motivational systems outlined above (Gray & 

McNaughton, 2000). The role of the has BAS remained unchanged, responding to all 

positively valenced stimuli and mediating appetitive motivational functions, including 

both approach and active avoidance behaviours. Conversely the revised reinforcement 

sensitivity theory posits that the fight–flight system (FFS), not the BIS, is the system 

which is responsive to aversive stimuli and mediates aversive motivational functions, 

such as defensive aggression (fight) or escape (flight) behaviours. In the revised theory 

the BIS takes the role of inhibiting prepotent behaviours and controls the analysis of 

risk. The BIS is important in resolving conflict that can emerge in situations that contain 

elements of both reward and threat (i.e., conflicting activation of the BAS and the fight–
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flight system). Although the BIS and BAS motivational systems have been altered the 

basic structure is still consistent with the polyvagal hierarchy. 

 

One  aspect  of  Gray  and  McNaughton’s  (2000)  revised  theory  which is not 

completely in line with the polyvagal hierarchy is the reinterpretation of the FFS, which 

is now defined as a fight–flight–freeze system. Temporary freezing, where the 

myelinated vagus nerve is withdrawn without SNS activation, is a response congruent 

with polyvagal theory, however this response is typically interpreted as an orienting 

response not a freeze response. A freeze response according to the polyvagal hierarchy 

is resultant from the absence of SNS activation with increased DVC activation, placing 

the freeze response outside the control of the SNS and FFS. Despite the divergence 

between  Porges’  (1995,  2001,  2007b)  polyvagal  theory  and  Gray  and  McNaughton’s  

(2000) revised theory, the integration of the motivational systems into the polyvagal 

hierarchy is advantageous because it expands the range of behaviours that can be 

explained as a function of the ANS. 

 

2.4.4.2. Beyond fight–flight–freeze responses. It is still possible to argue that 

Beauchaine’s  (2001)  reinterpretation  of  the polyvagal theory is somewhat limited. The 

fight–flight–freeze responses are only a proportion of the defences that can be initiated 

in the presence of threat. Bracha (2004) added the terms fright and faint to the acute 

stress response spectrum, making a distinction between tonic immobility (fright) and 

flaccid immobility (faint).  Bracha’s  (2004)  model  also  defined  the  role  of  the  freeze 

response as one that occurs fairly early in the hierarchy. Porges (1995, 2004a, 2007b) 

and Gray (1987; Gray & McNaughton, 2000) both use the term freeze response, but 

there  is  confusion  as  to  what  point  in  the  defence  repertoire  “freezing”  should  refer  to;;  

in  Porges’  work,  freezing  refers  to  refers  to  the  DVC  being  up-regulated and resulting in 

vasovagal syncope, whilst Gray encapsulated freezing as being analogous to the 

orienting response (which occurs higher up the hierarchy). Bracha (2004) made a clear 

distinction between these responses by proposing a freeze–flight–fight–fright–faint 

hierarchy. The three initial responses in the hierarchy reflect normal responses to acute 

stress.  The  initial  orienting  response  involves  “stop,  look, and  listen”  behaviours  and  

Bracha termed this as the freeze response (in the polyvagal hierarchy orienting occurs 

when the vagal brake is removed, prior to activation of the SNS). This is followed by 

flight and fight responses (commonly attributed to SNS activation). The next response 

according to Bracha is fright, also known as tonic immobility, which is less common as 
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a response to acute stress. This response evolved as an alternative to fight–flight 

tendencies (Alboni et al., 2008). During fright the body is immobile, but should the 

chance to escape arise the body will be able to rapidly initiate a mobilisation response. 

This form of immobility can be distinguished from the last stage of the hierarchy which 

involves flaccid immobility. This last stage Bracha termed faint, and it corresponds to 

Porges’  description  of  the  body  when  the  DVC  is  up-regulated, resulting in vasovagal 

syncope (i.e., a temporary loss of consciousness). This final stage in the response 

hierarchy is the least common form of reaction to acute stress and is usually only 

initiated in times of severe life threat, with the exception of some clinical disorders. 

 

Recent work in the field of post-traumatic stress disorder (PTSD) has 

highlighted the need to examine other possible defence repertoires that can be initiated 

by the autonomic nervous system. Schauer and Elbert (2010) have extended the work of 

Bracha (2004) to increase the cascade of fear responses to cover freeze–flight–fight–

fright–flag–faint. This hierarchy suggests that there is a further nuance in the defence 

cascade than previously discussed. Schauer and Elbert reinforce the hierarchy proposed 

by  Bracha,  but  distinguish  between  “uproar reactions”  and  “shut-down  reactions”.  

Uproar reactions are the initial defences in the cascade. Freeze corresponds to the 

orienting response, which is attentive immobility. This state is characterised by an initial 

bradycardia, followed by cardiac acceleration. Psychologically this stage is one of 

hypervigilance whilst the level of threat is evaluated. If a threat is detected then freeze is 

followed by the stages of flight and fight which are driven by sympathetic activation. 

Flight and fight are states of active mobilisation with tachycardia, peripheral 

vasoconstriction, and increased perspiration. According to Schauer and Elbert, 

sympathetic activation is accompanied by feelings of irreality. In this model of fear 

responding, arousal levels continue to rise whilst threats are imminent, however the 

increasing activation will eventually climax, leading to the initiation of shut-down 

responses. 

 

The first shut-down response to appear in the defence cascade is fright, which 

occurs at the apex of arousal when the SNS and PNS become co-activated, resulting in 

tonic immobility. The physiology at this stage is characterised by tachycardia, 

vasoconstriction, and hypertension. Although during fright the body is immobile, the 

underlying physiology is prepared for mobilisation if given the opportunity (i.e., flight 

or fight). Psychologically this stage is associated with hyperalertness and high 
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emotional arousal. It should be noted that it is not clear from the authors if the PNS 

activation during fright is driven by the VVC or the DVC, although one would presume 

that at this stage in the hierarchy it should be caused by up-regulation of the DVC. 

Combined activation of the SNS and the DVC seems most appropriate, as this pattern of 

activation plausibly leads into the next shut-down response, which is characterised by 

decreasing SNS activation with increasing PNS (DVC) activation; a stage which is not 

well elucidated in the polyvagal hierarchy. Schauer and Elbert (2010) term this stage the 

flag response, which is the penultimate stage in the hierarchy eventually leading to faint 

(flaccid immobility). Flag is associated with bradycardia, vasodilation, and hypotension, 

with corresponding cognitive failure and emotional numbing. As the flag state 

progresses further emotional involvement is thought to decrease, which is consistent 

with a dissociative shut-down response (Schauer & Elbert, 2010). The final stage of the 

hierarchy, faint, occurs when the PNS (DVC) is up-regulated without SNS activation, 

which can result in vasovagal syncope (what Bracha, 2004, terms flaccid immobility). It 

has been hypothesised that this physiological reaction evolved to protect the heart from 

stressful/dangerous conditions, however it appears that this physiological reflex is not 

just limited to physical threat, it can also be induced during emotional stress (Alboni et 

al., 2008). Vasovagal syncope is characterised by brief cardiac acceleration and 

elevation in blood pressure, followed by cardiac deceleration and a drop in blood 

pressure (Bracha, 2004). The hypotension and bradycardia that result are responsible for 

a temporary loss of consciousness. The main distinction between tonic and flaccid 

immobility, is that in the latter the body it immobile, but this time it is not prepared for 

mobilisation should the opportunity arise (Schauer & Elbert, 2010). 

 

The  main  limitation  of  Bracha’s  (2004)  work  and  Schauer  and  Elbert’s  (2010)  

hierarchy is that they focus on the systems that respond to threat, and not the safety 

systems that can alleviate distress and return the body to a state of calm and self-

soothing. Consequently the best way forward in this thesis is not to try and replace one 

hierarchy with another, but to integrate them into one overall hierarchy of autonomic 

responding. An integrated model combining  Porges’  (1995,  2004a,  2007b)  polyvagal  

hierarchy  integrated  with  Gray  and  McNaughton’s  (2000)  revised  reinforcement  

sensitivity  theory  and  Schauer  and  Elbert’s  (2010)  defence  cascade  is  represented  in  

figure 2.4. Although this model conceptualises the full range of responses that may 

occur in response to a challenge/threat, to keep things simple I will mostly refer to just 

two broad classifications of defensive response: mobilisation responses, which are 
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mostly driven by the SNS and include fight–flight behaviours; and immobilisation 

responses, which are mostly driven by the PNS and include fright, freeze, and faint 

behaviours  (Lang,  Davis,  &  Ӧhman,  2000). 

 

 
Figure 2.4. Diagram  of  Porges’  (1995,  2004a,  2007b)  polyvagal  hierarchy  integrated  
with  Gray  and  McNaughton’s  (2000)  revised  reinforcement  sensitivity  theory,  and  
Schauer  and  Elbert’s  (2010)  defence  cascade.  VVC  =  ventral  vagal  complex.  SNS  =  
sympathetic nervous system. BIS = behavioural inhibition system. BAS = behavioural 
activation system. FFFS = fight–flight–freeze system. DVC = dorsal vagal complex.  
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2.4.5. Polyvagal Theory and Psychopathology 
 

Polyvagal theory claims that emotion dysregulation and psychopathology may 

result from abnormal ANS function, as opposed to structural abnormalities within the 

ANS (Porges, 2001, 2003a). This is in line with the functional approach to 

psychopathology, which focuses on dimensions of dysfunction rather than 

classifications of disorder (van Praag et al., 1980). The links made between the 

polyvagal hierarchy and emotion dysregulation in this thesis hitherto have focused 

mostly on fear responses relevant to PTSD; this focus is an artefact of the literature 

reviewed thus far. Polyvagal theory is relevant to several, if not all areas of 

psychopathology, but it is often overlooked in clinically-oriented research because 

many aspects of the theory lack empirical testing. In the following sections I provide a 

brief overview of how polyvagal theory can be applied to several psychiatric disorders: 

Anxiety disorders (section 2.4.5.1), treatment-resistant depression (section 2.4.5.2), 

autistic disorders (section 2.4.5.3), borderline personality disorder (section 2.4.5.4), and 

anorexia nervosa (section 2.4.5.5). 

 

2.4.5.1. Anxiety disorders. Anxiety is usually associated with the basic emotion 

of fear (Barlow, 1988). At low levels anxiety can be seen as an adaptive behaviour, 

however intense anxiety can be disabling, particularly when associated with disorders 

such as generalised anxiety disorder (GAD), panic disorder (PD), and post-traumatic 

stress disorder (PTSD). Worry is a form of recurrent negative thinking found in anxiety 

disorders and is associated with increased arousal caused by SNS activation (Brosschot 

& Thayer, 2004). The Diagnostic and Statistical Manual of Mental Disorders (4th ed. 

text rev.; DSM-IV-TR, American Psychiatric Association, 2000) recognises that anxiety 

disorders are commonly associated with abnormal visceral activity. Physiological 

correlates of anxiety such as rapid heart rate, shortness of breath, and sweating have 

predominantly been viewed as signs of increased SNS activation, which has negated the 

role of the PNS in these disorders (Friedman & Thayer, 1998; Thayer, Friedman, & 

Borkovec, 1996). 

 

Recent research has investigated PNS function in anxiety disorders with some 

illuminating findings. It has been shown that clinically anxious individuals exhibit 

lower resting vagal tone compared to controls (Friedman & Thayer, 1998; Lyonfields, 

Borkovec, & Thayer, 1995; Thayer & Lane, 2000). Yeragani et al. (1990) also found 
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that individuals with PD demonstrated decreased HRV at rest compared to non-anxious 

control participants, whilst Cohen et al. (1998) found that individuals with PTSD at rest 

exhibited reduced high-frequency power and overall HRV compared to control 

participants. It should be noted that in healthy populations increased high-frequency 

HRV at rest has been associated with higher state anxiety (perhaps reflecting increased 

attention and vigilance), but not higher trait anxiety (Jönsson, 2007). This finding 

suggests that patterns of autonomic dysregulation in clinical populations may not be 

present or detectable in healthy populations. 

 

Decreased PNS activation is not only seen at rest in clinically anxious 

individuals, but is also apparent when anxious individuals are confronted with anxiety-

inducing stimuli. Anxious individuals have a low threshold to threatening stimuli, which 

is behaviourally characterised by hypervigilance and high levels of anticipatory stress 

(Cacioppo et al., 1992). Lyonfields et al. (1995) experimentally assessed PNS 

functioning in GAD by assessing vagal tone during baseline, an aversive imagery task, 

and a worrisome thinking task. Compared to non-anxious controls, participants with 

GAD showed lower levels of vagal tone during the initial baseline and little change in 

vagal tone over the experimental tasks. Taken together, these findings suggest that 

anxious individuals are more rigid and inflexible when responding to their environment. 

This has led to a reinterpretation of the aetiology of hyperarousal in anxiety disorders: 

Instead of up-regulation of the SNS being the sole cause of physiological arousal, 

symptoms are now being attributed to decreased activation of the PNS which would 

normally inhibit SNS activation (Friedman, 2007). 

 

From a polyvagal perspective, the resting physiological state of anxious 

individuals makes it more likely that they will initiate defensive behavioural strategies 

when presented with threatening stimuli; their autonomic inflexibility means that the 

PNS is more readily switched off, meaning SNS activation is not adequately inhibited 

(Friedman, 2007). The nature of the stimuli present will determine whether threats result 

in SNS activation characterised by the FFS or a combination of the FFS and BAS (Gray 

& McNaughton, 2000). Aversive threat stimuli is theorised to initiate FFS responses, 

resulting in hypervigilance, phobic avoidance, and active escape behaviours, as seen in 

phobias and panic (Corr, 2008). However if aversive stimuli are accompanied by 

appetitive rewards, goal conflict between the FFS and BAS may occur resulting in 

activation of the BIS. If the BIS cannot successfully resolve the conflict by favouring 
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approach or avoidance behaviours then hypervigilance and hyperarousal may 

simultaneously occur, as seen when people with GAD worry (Corr, 2008). 

 

2.4.5.2. Treatment-resistant depression. Major Depressive Disorder (MDD) is 

characterised by persistent low mood and/or loss of interest in pleasure in daily 

activities, accompanied by symptoms such as changes in appetite, sleep disturbances, 

fatigue, and feelings of guilt (DSM-IV-TR, American Psychiatric Association, 2000). 

Depressive episodes are associated with changes in social functioning, including social 

withdrawal (Rottenberg & Gotlib, 2004), reduced involuntary facial expression (Gaebel 

& Wölwer, 1992), and reduced gaze behaviour (Segrin, 1992). Although a wide range 

of treatments are available for MDD, the initial treatment for many is antidepressant 

medication.  Despite  medication’s  popularity  as  the  first  mode  of  treatment,  Fava  and  

Davidson (1996) reported that up to one third of patients only partially recover from 

initial treatment with antidepressant medication, and up to one fifth are considered to be 

“non-responders”.  MDD  is  often  classed  as  treatment-resistant when symptoms fail to 

improve after at least two courses of antidepressants (Thase & Rush, 1995, as cited in 

Trivedi, 2003). The definition of treatment-resistant depression (TRD) is increasingly 

being extended from failure to show symptomatic improvement after treatment to 

failure to reach symptomatic and functional remission, meaning treatment is only 

considered successful if individuals no longer meet the criteria for MDD (Wijeratne & 

Sachdev, 2008). The nature of TRD means depressive episodes are not only chronic, but 

individuals are also more likely to relapse after they recover from a depressive episode. 

 

Research investigating autonomic functioning in depression suggests that the 

depression is associated with lower resting levels of HRV: Depressed individuals have 

been shown to have lower resting vagal tone than non-depressed controls (Carney et al., 

2001; Rechlin, Weis, Spitzer, & Kaschka, 1994). Depression severity has also been 

linked to vagal indices, with greater severity correlated with lower levels of vagal tone 

(Agelink, Boz, Ullrich, & Andrich, 2002), and increases in the high-frequency 

component of HRV have been linked to successful reductions in self-reported 

depressive symptoms (Schultz, Anderson, & van de Borne, 1997). Findings such as 

these add weight to the idea that vagus nerve stimulation (VNS) may be a suitable 

treatment for managing TRD. VNS is an invasive procedure analogous to a cardiac 

pace-maker: A device is implanted into the chest that is designed to innervate the vagus 

nerve (Rush & Siefert, 2009). Research investigating the effects of VNS on TRD has 



CHAPTER 2: LITERATURE REVIEW 43 
 

shown promising results in terms of symptom reduction and rates of remission, although 

the procedure is costly and has notable side effects (Rush & Siefert, 2009). 

 

Although the majority of research suggests that depression is linked to changes 

in autonomic function (see Rottenberg, 2007, for a review), the findings are mixed with 

some studies finding no differences in HRV between depressed and non-depressed 

controls (e.g., Moser et al., 1998). Findings linking depression and HRV are likely to be 

mixed due to methodological differences across studies. Individual differences in 

depressive symptoms are likely to affect findings; whilst some symptoms are linked to 

increased vagal tone (e.g., sadness), others have been linked to decreased vagal tone 

(e.g., suicidal impulses; Rottenberg, Wilhelm, Gross, & Gotlib, 2002). It should also be 

noted that studies have used diverse samples in which to study depression and HRV, for 

example in some studies data has been collected using cardiovascular patients (e.g., 

Carney et al., 2001). The potential influence of antidepressant medication is another 

well-known confound in the study of depression and HRV (Rottenberg, 2007). 

 

Differing symptoms of depression can be linked to specific neural substrates 

within the polyvagal framework. There is evidence to suggest to depression is 

associated with low levels of BAS functioning, which is predictive of poorer depression 

outcome at 8-month follow up (Kasch, Rottenberg, Arnow, & Gotlib, 2002). Similar to 

worry in anxiety, rumination in depression is associated with heightened arousal caused 

by decreased PNS activation and relative SNS dominance (Brosschot, van Dijk, & 

Thayer, 2007; Ray, Wilhelm, & Gross, 2008). Reduced PNS activation (as indicated by 

low HRV) may account for the some of the social difficulties seen in depression, as this 

should be paralleled by inhibition of the social engagement system (Brosschot et al., 

2007). Social withdrawal and depressed mood may even be attributable to increased 

activity of the DVC. The behavioural repertoire of sickness is mediated by the ANS, 

and research is increasingly linking the pathophysiology of sickness to the 

psychopathology of depression (Eyre & Baune, 2012; Raison, Capuron, & Miller, 

2006). Animal research investigating the role of the DVC in sickness-induced 

behaviours has suggested that activation of the DVC may underlie behaviours which 

parallel some of the symptoms seen in clinical depression. For example loss of interest, 

lethargy, and social withdrawal have all been linked to DVC activation (Marvel, Chen, 

Badr, Gaykema, & Goehler, 2004). 
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2.4.5.3. Autistic disorders. Autistic disorders are pervasive developmental 

disorders defined by impairments in social interaction, communication, and atypical 

behaviour patterns (DSM-IV-TR, American Psychiatric Association, 2000). Social 

deficiencies associated with autistic disorders include a reduction in the ability to 

interpret emotional states, a lack of emotional reciprocity, and impaired nonverbal 

communicative behaviour (e.g., reduced eye-gaze, facial expression, and non-verbal 

gestures; DSM-IV-TR, American Psychiatric Association, 2000). Research has shown 

that individuals with autistic disorders tend to spend less time looking at core features of 

faces (such as the eyes, nose, and mouth) than controls, and are also impaired at 

recognising facial emotional expressions (Pelphrey et al., 2002). 

 

Autonomic functioning has been investigated in individuals diagnosed with 

autistic disorders. Toichi and Kamio (2003) found that unlike healthy control subjects, 

half of their autistic sample did not suppress PNS functioning during mental tasks that 

required sustained attention. They concluded that this finding was attributable to some 

of  the  autistic  participants  being  more  ‘stressed’  under  resting  conditions,  although no 

significant differences in cardiac autonomic function were found between the groups at 

baseline. Goodwin et al. (2006) found that autistic children only showed significant 

physiological responses to a stressor 22% of the time, compared to the healthy control 

group which showed significant physiological responses 60% of the time. Ming, Julu, 

Brimacombe, Connor, and Daniels (2005) also found that children with autism 

exhibited significantly lower resting levels of cardiac vagal tone compared with healthy 

controls. It has been suggested that individuals with autistic disorders show diminished 

cardiovascular reactivity to the environment because they are normally in a general state 

of autonomic defensiveness (Goodwin et al., 2006). 

 

Porges (2004b) directly links his theory to autistic disorders and assumes that 

impaired social communication is associated with functional deficits of the social 

engagement system, as opposed to neuroanatomical or neurophysiological 

abnormalities. Individuals with autistic disorder are hypothesised as having insufficient 

activation of the newer vagus nerve (VVC activation) and therefore have compromised 

activation of the social engagement system. On this basis Porges and colleagues have 

developed biologically-based behavioural interventions to attempt to activate the VVC 

and improve social behaviour (Porges, 2001). One of these interventions is the 

‘Listening  Project’  , which uses acoustic stimuli to increase neural innervation to the 
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muscles of the middle ear (a component of the social engagement system). This acoustic 

intervention has been reported to improve social behaviour in children with autism, for 

example increasing eye gaze, facial expressivity, and social interaction with others 

(Porges, 2001). 

 

2.4.5.4. Borderline personality disorder. Borderline personality disorder 

(BPD) is characterised by a pattern of instability in interpersonal relationships, self-

image, and affects, and marked impulsivity (DSM-IV-TR, American Psychiatric 

Association, 2000). Research has shown that BPD is associated with high sensitivity to 

emotional stimuli, high emotional reactivity, and a slow return to baseline (Linehan, 

1993a). This pattern of reactivity is thought to be linked to a core component of emotion 

dysregulation. The clinical correlates of this disorder are rapidly changing mood states, 

unstable and intense relationships, and recurrent suicidal or self-mutilating behaviours 

(DSM-IV-TR, American Psychiatric Association, 2000). BPD is also often associated 

with chronic feelings of emptiness and severe dissociative symptoms (DSM-IV-TR, 

American Psychiatric Association, 2000). 

 

Two studies have investigated BPD in the context of the polyvagal framework. 

Austin et al. (2007) found that individuals with BPD had similar resting levels of vagal 

tone compared to control participants, however the groups demonstrated different 

physiological responses to a laboratory task. Austin et al. reported that after watching 

emotional film clips individuals with a BPD diagnosis expressed decreasing vagal 

influences on the heart, whilst individuals in a control group expressed increasing vagal 

influences. In contrast, Weinberg, Klonsky, and Hajcak (2009) found that individuals 

with BPD did demonstrate decreased PNS function at rest compared to control 

participants, although Ebner-Priemer et al. (2007) only reported significant differences 

in HRV between healthy control participants and medicated BPD participants (there 

was no significant difference between the controls and non-medicated BPD 

participants). In addition to this, Weinberg et al. (2009) found that individuals with BPD 

responded to a social stressor with increased SNS activation, compared to control 

participants who exhibited decreased SNS activation. In Austin et al. and Weinberg et 

al. the proposed mechanism for the divergence seen between the groups during the 

experimental tasks was that the BPD group may have been detecting invalid risk from 

their environment, either from their interaction with the experimenter or from the 

experimental stimuli. These studies concluded that BPD individuals are more likely to 
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express defensive physiological states that support fight–flight behaviours in response to 

stressors due to invalid neuroception. 

 

From a polyvagal perspective, high sensitivity to emotional stimuli increases the 

likelihood of defensive behavioural strategies being initiated. Dysfunctional 

neuroception will mean states of calm and self-soothing are likely to give way to SNS 

activation even in the presence of only mildly threatening stimuli (Porges, 2004b). The 

risky and impulsive behaviours seen in individuals with BPD can be attributed to the 

SNS and high levels of BIS/BAS activation (Claes, Vertommen, Smits, & Bijttebier, 

2009). In addition to this, the dissociative states seen in BPD may result from increased 

activation of the DVC. Up-regulation of the DVC would lead to the flag response 

proposed by Schauer and Elbert (2010), which is a dissociative shut-down response 

characterised by emotional numbing and feelings of irreality. The self-mutilating 

behaviours seen in BPD have been hypothesised to provide relief from the flag state by 

initiating vasovagal reactions that continue to up-regulate the DVC, resulting in greater 

reductions of emotional involvement (Schauer & Elbert, 2010). 

 

2.4.5.5. Anorexia nervosa. Anorexia nervosa (AN) is predominantly considered 

to be an eating disorder; individuals refuse to maintain a minimally normal body weight, 

are afraid of gaining weight, and have a significant disturbance in perceptions about 

their body shape or size (DSM-IV-TR, American Psychiatric Association, 2000). 

Recently it has been recognised that a substantial number of individuals with AN 

exhibit symptoms characteristic of personality disorders. One of the personality 

subtypes often linked to AN is emotionally constricted personality disorder (Thompson-

Brenner & Westen, 2005; Westen & Harnden-Fischer, 2001). Deficits in emotional 

functioning seen in AN include impaired recognition of emotion in others and reduced 

emotional expression, particularly the expression of negative emotions (Geller, Cockell, 

Hewitt, Goldner, & Flett, 2000). Individuals with AN have also been shown to have 

increased pain thresholds (Papezová, Yamamotová, & Uher, 2005). 

 

Dysregulation of PNS function has been reported in infantile anorexia, with 

anorexic infants demonstrating decreases in HRV during social interaction paradigms, 

whilst control infants exhibited increases in HRV (Chatoor, Ganiban, Surles, & 

Doussard-Roosevelt, 2004). Research in anorexic populations tends to be complex, as 

both short term and chronic starvation are related to increases in HRV (Galetta et al., 
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2003). Individuals with AN tend to show signs of decreased SNS responsiveness, along 

with increased PNS responsiveness (Ishizawa, Yoshiuchi, Takimoto, Yamamoto, & 

Akabayashi, 2008). Zonnevylle-Bender et al. (2005) conducted a study comparing 

anorexic  adolescents’  and  healthy  controls’  subjective  and  physiological  responses  to  a  

public speaking task. Both groups reported increases in negative emotional arousal, with 

the control group also showing parallel increases in heart rate and cortisol. The anorexic 

group however showed a blunted physiological response, with significantly lower 

increases in heart rate and no significant changes in cortisol in relation to the stressor. 

These results suggest that autonomic dysregulation is characteristic of this sample. 

 

There is no clear aetiology of AN, however some of the symptoms can be 

explained using the polyvagal framework. The physiological dysregulation associated 

with anorexia nervosa may mean that anorexic individuals feel the need to carry out 

behaviours, such as restricting their food intake, to help them regulate their physiology 

in  order  to  feel  “normal”.  Behaviours  such  as  reduced  food  intake  could  be  interpreted  

by the body as life threatening. When a threat to survival is detected the body increases 

the activation of the DVC, resulting in inhibition of the SNS and the social engagement 

system. Clinically, individuals with increased DVC activation would present with 

limited emotional expressivity as well as numbing, both of which are seen in anorexia 

nervosa. 

 

2.4.6. The Current Status of Polyvagal Theory 
 

Polyvagal theory provides a novel explanation for some of the physiological, 

behavioural, and socio-emotional deficits seen in psychiatric disorders (Porges, 1995, 

2001, 2003a). However, theories should not just be innovative frameworks for 

organising existing data; new theories must also generate and stimulate original 

research, and provide testable hypotheses (Popper, 1959/2002). The ability for 

polyvagal theory to stimulate and direct research is not refuted, however questions have 

arisen regarding some of the central tenets of polyvagal theory and their testability 

(Berntson  et  al.,  2007).  Evaluating  Porges’  representation  of  the  ANS is currently 

limited by methodological constraints: Researchers are unable to distinguish the vagal 

efferents originating from the NA and the DVNX (Berntson et al., 2007; Grossman & 

Taylor,  2007).  This  means  it  is  currently  impossible  to  falsify  Porges’  claims regarding 

the different qualitative functions of the vagal efferent systems.  
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Although issues revolve around the biological components of polyvagal theory, 

this does not mean that the theory needs to be rejected outright. Lakatos (1970) noted 

that complex theories can be conceptualised as research programs. Research programs 

consist  of  central  “hard  core”  assumptions  that  define  a  problem,  and  auxiliary  

hypotheses that derive from the hard core and make testable predictions. This line of 

reasoning suggests  that  even  though  Porges’  claims  about  the  vagal  systems  cannot  be  

explicitly tested, there are other aspects of polyvagal theory that are open to 

confirmation/falsification. This thesis aims to investigate the utility of polyvagal theory 

by identifying and bringing to the fore testable hypotheses that arise from the theory. 

 

2.4.6.1. Hypotheses arising from polyvagal theory. Polyvagal theory suggests 

that complex behaviours, such as emotion regulation and social communication, depend 

on our physiological state (Porges, 1995, 2001, 2003a). If this premise is valid, our 

physiological, psychological, and social functioning is all dependent on how effectively 

the ANS is regulated. Although current methods cannot differentiate between VVC and 

DVC activation, it is possible to assess reciprocal influences of the PNS and SNS on the 

body using psychophysiology (see section 3.4 for further detail). It is also possible to 

measure socio-emotional functioning using self-report measures and behavioural 

paradigms (see sections 3.5 and 3.6 for further detail). The following hypotheses will be 

directed at investigating associations between ANS function and facets of emotional and 

behavioural  responding  to  test  the  validity  of  polyvagal  theory’s  predictions. 

 

2.4.6.1.1. Psychophysiological responses to laboratory stressors. According to 

polyvagal theory, during calm and self-soothing states the PNS promotes growth and 

restoration by minimising metabolic demands (Porges, 2001). Polyvagal theory clearly 

states that under normal circumstances the PNS should inhibit activation of the SNS, 

however when a threat or challenge is encountered the PNS should be withdrawn and 

the SNS up-regulated (Porges, 1995, 2001, 2003a). SNS activation is energy expending 

and is associated with increased heart rate and sweat response (Cannon, 1929). It is 

therefore hypothesised that: 

 

Hypothesis 1. Laboratory stressors will be associated with decreased PNS activation, 

increased SNS activation, and increased negative affect. In response to a laboratory 

stressor, it is expected that individuals will demonstrate measurable increases in heart 

rate and sweat response (inferring increased SNS activation), coupled with a decrease in 
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high-frequency HRV (inferring decreased PNS activation). It is also expected that 

increased SNS activation will be coupled with increases in self-reported negative affect 

(Feldman et al., 1999). In addition to confirming the effects of laboratory stressors on 

physiological arousal, the aim of this line of research is to identify a stressor that can be 

used to investigate the subsequent hypotheses: As discussed in section 2.4.4, links 

between HRV and socio-emotional functioning may only be apparent during situations 

of challenge or stress (e.g., Fabes & Eisenberg, 1997). Although laboratory stressors 

consistently result in measurable physiological changes, these changes rapidly return to 

baseline as the body resumes its natural balance of PNS and SNS function (Jänig, 2006). 

As a result, there is a need to identify a laboratory stressor that maintains arousal 

beyond the duration of the task itself, to enable the investigation of the effects of 

defensive physiological arousal on socio-emotional functioning. 

 

2.4.6.1.2. Psychophysiological responses to emotion regulation strategies. A 

second tenet of polyvagal theory is that up-regulation of the PNS increasingly inhibits 

activation of the SNS (Porges, 1995, 2001, 2003a). Changes in emotional state are said 

to parallel changes in physiological state, with higher levels of PNS activation being 

associated with increased positive affect (Bazhenova & Porges, 1997). Bidirectional 

links between higher brain structures and the brain stem suggest that not only do our 

visceral states affect how we feel, but our feelings in turn can influence our 

physiological state (Porges, 2009b). Consequently, it is conjectured that interventions 

targeting neural regulation may enhance the activation of the PNS (i.e., increase high-

frequency HRV), accelerate down-regulation of the SNS, and improve affect (Porges, 

2007a). As a result the following hypothesis is proposed: 

 

Hypothesis 2. Emotion regulation strategies will be associated with increased activation 

of the PNS, and accelerate the down-regulation of physiological and psychological 

arousal after a stressor. Researchers have begun to investigate the usefulness of 

strategies that enhance cardiac vagal control and self-regulation. Interestingly, emotion 

regulation strategies that generate positive emotion are often associated with enhanced 

vagal control. For example, increases in vagal indices have been reported when 

participants have been instructed to consciously focus on feelings of care, appreciation, 

and social connectedness (Kok & Fredrickson, 2010; McCraty, Atkinson, Tiller, Rein, 

& Watkins, 1995), as well as when carrying out structured meditation and relaxation 
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exercises (Ditto, Eclache, & Goldman, 2006; Lehrer, Sasaki, & Saito, 1999; Sakakibara, 

Takeuchi, & Hayano, 1994; Tang et al., 2009). 

 

2.4.6.1.3. Socio-emotional functioning during defensive physiological arousal. 

Polyvagal theory asserts that activation of the neurophysiological systems that drive 

defensive behavioural repertoires will down-regulate the neural accessibility of the 

social engagement system, thus limiting the effectiveness of social engagement 

behaviours during times of threat (Porges, 2001, 2003a). Although links have been 

made between vagal tone and socio-emotional functioning in infants (for example, 

Bazhenova & Porges, 1997; Huffman et al., 1998; Stifter & Fox, 1990; Stifter et al., 

1989; Stifter & Jain, 1996), fewer studies have been attempted with adults. 

 

Porges has suggested that calm and self-soothing states should result in facial 

expressivity, physiological and behavioural flexibility, and social awareness (Porges, 

2003a, 2009b). Similar to this, Scherer (2007) has proposed the existence of three 

emotional competencies that parallel the theorised outputs of the social engagement 

system: Emotion production competence (the ability to adaptively respond to an event, 

both physiologically and behaviourally); emotion regulation competence (the ability to 

monitor  and  manipulate  one’s  emotional  state  and  its  motor  expression);;  and  emotion 

perception competence (the ability to accurately perceive and interpret the emotional 

states of others). The outputs of the social engagement system also resemble the three 

nonverbal social skills identified by Riggio (1986): Emotional expressivity (i.e., 

encoding ability); emotional control (i.e., regulation ability); and emotional sensitivity 

(i.e., decoding ability). All of these frameworks suggest that deficiencies in any one of 

these competencies will impact the success of social engagement interactions. One 

aspect of social engagement that is often addressed in emotion research is affiliation 

(i.e.,  one’s  willingness  to  spend  time  with  others;;  Gump  &  Kulik,  1997;;  Taylor  et  al.,  

2000; Taylor, 2006). As a result, three hypotheses have been formulated regarding the 

effects of defensive physiological arousal on socio-emotional functioning: 

 

Hypothesis 3. Increased activation of the SNS in response to a laboratory stressor will 

be associated with decreased facial expressivity. Vagal tone has been linked to 

emotional expressivity in infants (Stifter et al., 1989), however less convincing evidence 

has been reported with adults. Demaree and colleagues have repeatedly reported that 

indices of vagal tone do not predict greater emotional expressivity to film clips 



CHAPTER 2: LITERATURE REVIEW 51 
 

(Demaree, Robinson, et al., 2004); if anything increased vagal tone has been linked to 

reduced expression of negative affect (Demaree, Pu, et al., 2006; Pu et al., 2010). A 

potential limitation of the work by Demaree and colleagues is that emotional 

expressivity has been measured during passive viewing tasks, and not during challenge 

or threat situations. It is hypothesised that manipulating physiological arousal with a 

laboratory stressor may enhance the relationship between ANS function and facial 

expressivity, making it more accessible to measurement. 

 

In addition to this, it was hypothesised that reduced facial expressivity may 

impact  on  one’s  ability  to  infer  emotions  from  others’  facial  expressions.  Hypothesis  4  

is as follows: 

 

Hypothesis 4. Increased activation of the SNS in response to a laboratory stressor will 

be associated with decreased emotional sensitivity (i.e., the ability to recognise 

emotions in others). Facial mimicry is a proposed mechanism by which we are able to 

infer the emotional states of others (Stel & van Knippenberg, 2008; Stel & van den Bos, 

2010). Following on from hypothesis 3, it is logical to suggest that changes in ANS 

function may affect emotional sensitivity as well as emotional expressivity; this is 

possibly what Porges (2003a, 2009b) means when he theorises that defensive 

physiological  arousal  reduces  “social  awareness”.  Surprisingly  few  studies  have  

investigated the effect of stressors on emotion recognition, although Hänggi (2004) 

reported that stress has a negative effect on emotional sensitivity. 

 

The final hypothesis of this thesis aims to explore the relationship between ANS 

and  one’s  willingness  to  spend  time  with  others: 

 

Hypothesis 5. Increased activation of the SNS in response to a laboratory stressor will 

be associated with decreased affiliation tendencies. Polyvagal theory proposes that 

defensive physiological states are not compatible with social engagement behaviours 

(Porges, 2001, 2003a). In support of this, studies have suggested that increased cardiac 

vagal control is related to greater sociability in infants (Fox, 1989; Stifter & Corey, 

2001; Stifter et al., 1989), and in adults’ indices of vagal tone have been positively 

associated with measures of romantic attachment (Diamond & Hicks, 2005), marital 

quality (Smith et al., 2010), and social functioning (Egizio et al., 2008). One mechanism 

that  may  be  affected  by  defensive  physiological  arousal  is  one’s  willingness  to  spend  
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time with others. There is some evidence to suggest that stress may actually increase 

affiliation tendencies (Gump & Kulik, 1997; Taylor et al., 2000; Taylor, 2006), however 

most of these studies to date have focused on self-report, behavioural, and 

neuroendocrine measures of arousal. Although neuroendocrine measures reflect ANS 

activation, they are qualitatively different from autonomic measures such as heart rate 

and sweat activity. As a result, it is proposed that a negative pattern of coherence 

between ANS function and affiliation tendencies may emerge when measures 

specifically reflect activation of the SNS. 

 

2.5. Summary and Aims of the Thesis 
 

This review has highlighted the role physiology plays in socio-emotional 

responding. Polyvagal theory (Porges, 1995, 2001, 2003a) is acknowledged as a suitable 

model of emotional responding that integrates physiological, behavioural, and social 

functioning,  with  autonomic  regulation  recognised  as  the  “linchpin”  of  physical,  

psychological, and social development (Porges, 2009b). Although some aspects of 

polyvagal  theory  have  been  verified  by  empirical  work,  many  of  Porges’  propositions  

are theoretical and lack supporting evidence. Although current methods are unable to 

address the distinction made between the vagal efferent systems in polyvagal theory, 

Porges’  claims  regarding  links  between  ANS  function  and  social  engagement  

behaviours can be empirically tested. The review identified five key hypotheses that 

will be addressed in this thesis: 

 
Hypothesis 1. Laboratory stressors will be associated with decreased PNS activation, 

increased SNS activation, and increased negative affect. 
 
Hypothesis 2. Emotion regulation strategies will be associated with increased activation 

of the PNS, and accelerate the down-regulation of physiological and 
psychological arousal after a stressor. 

 
Hypothesis 3. Increased activation of the SNS in response to a laboratory stressor will 

be associated with decreased facial expressivity. 
 
Hypothesis 4. Increased activation of the SNS in response to a laboratory stressor will 

be associated with decreased emotional sensitivity (i.e., the ability to recognise 
emotions in others). 

 
Hypothesis 5. Increased activation of the SNS in response to a laboratory stressor will 

be associated with decreased affiliation tendencies.  
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These hypotheses will be examined in healthy adult participants. However, 

before these hypotheses are addressed, it is necessary to clarify the methodology that 

will be used in this thesis. The next chapter will establish theoretically-relevant 

measures that can be used to index autonomic function, as well as a set of dependent 

measures to assess emotional expressivity, emotional sensitivity, and affiliation 

tendencies. 
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Chapter 3: Measures of Socio-Emotional Responding 
 

Emotions are associated with changes in cognitions, feelings, behaviours, and 

physiology (Mauss, Levenson, McCarter, Wilhelm, & Gross, 2005). To appreciate the 

widespread changes that occur throughout the emotion generation process, 

psychophysiological researchers have attempted to measure changes at subjective, 

behavioural, and physiological levels. Numerous techniques have been developed to 

capture the activation of the autonomic nervous system (ANS) to elucidate the role of 

the body in the generation and maintenance of emotions. This chapter discusses the 

rationale for the measures and methodologies used in this thesis; for a more general 

review of measures of emotional responding see Mauss and Robinson (2009). 

 

3.1. Coherence between Measures of Socio-Emotional Responding 
 

Polyvagal theory (Porges, 1995, 2001, 2003a) suggests that three broad 

categories of neurophysiological state are sufficient to organise the range of 

physiological responses to different classes of environmental stimuli and their 

associated behaviours (safe stimuli: calm and self-soothing; threatening stimuli: 

mobilisation with fear; life threatening stimuli: immobilisation). As discussed in 

Chapter 2, it has been contended that three states fail to capture the nuances of 

emotional responding, and additional physiological stages have been hypothesised: 

sympathetic nervous system (SNS) responses have been split into mobilisation with fear 

and mobilisation without fear (see section 2.4.4.1; Beauchaine, 2001); and tonic 

immobility as a parasympathetic nervous system (PNS) response has been distinguished 

from flaccid mobility (see section 2.4.4.2; Bracha, 2004; Schauer & Elbert, 2010). 

 

Although in general broad classifications of sympathetic (mobilisation) and 

parasympathetic (immobilisation) responses can be useful, this distinction can also be 

an over-simplification. Unfortunately, due to methodological constraints it is impossible 

to differentiate between several of the proposed neurophysiological states using 

established measures of autonomic function (Berntson, Cacioppo, & Grossman, 2007; 

Grossman & Taylor, 2007). For example PNS activation from the ventral vagal 

complex (VVC; arising from the nucleus ambiguus) cannot be accurately differentiated 

from the activation of dorsal ventral complex (DVC; arising from the dorsal motor 

nucleus of the vagus nerve). Consequently, this thesis will use measures of autonomic 
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functioning to distinguish between activation of the PNS and SNS, without attributing 

function to specific levels of the polyvagal hierarchy. 

 

In the following experiments a range of measures were used in order to capture 

the influence of physiological state on emotional responding and social behaviours. The 

first objective of using psychophysiology was to obtain objective indices of arousal, to 

ensure that participants were in a defensive physiological state after the stressor 

manipulations. It was expected that the stressor manipulations would result in increased 

SNS activation and decreased PNS activation: Increases in SNS activation should result 

increases in self-reported negative affect, along with increases in heart rate and sweat 

response, and decreased PNS activation should result in a decrease in high-frequency 

heart rate variability (Tuvblad et al., 2010). The second purpose of measuring 

psychophysiology was to examine the effects of emotion regulation strategies and 

behavioural  laboratory  tasks  on  participants’  physiological  return  to  baseline.  Finally,  

measuring psychophysiology would allow links to be drawn between ANS function and 

behavioural measures of social functioning. 

 

It is important to note that although experimental manipulations often result in 

observable patterns of physiological activation, there is not always a clear coupling 

between response systems. Emotional responses are multifaceted, and response systems 

can show incoherent patterns of activation when emotions are experienced. There is 

some evidence for autonomic specificity in relation to basic emotions (see Ekman, 

Levenson, & Friesen, 1983), but there is also a great deal of evidence to the contrary: 

For example self-reports of emotion do not always link to behaviours (Bonanno & 

Keltner, 2004), and self-reports and behaviours do not always link to patterns of 

autonomic activation (Mauss et al., 2005). At best emotional response systems are 

thought  to  be  “loosely  coupled”  (Lang  &  Cuthbert,  1984).  It  is  convenient  at  this  point  

to mention that a similar critique arises for measures of social functioning. Like 

emotion,  the  construct  of  “social  function”  has  been  operationalised through self-report 

measures, observer ratings, and behavioural assessments; however these measures also 

tend to show poor correspondence to one another (Segrin, 1998). Consequently 

researchers are often required to use a variety of physiological, self-report, and 

behavioural measures in order to capture the nuances of both emotional responding and 

social functioning. 
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A critique of using physiology along with other measures of emotion and social 

function is how much can be inferred from them: Researchers can be prone to suggest 

that a specific pattern of ANS activity relates to a particular response or function, 

however this view neglects the general-purpose nature of the ANS and its role in 

homeostasis, and other functions such as effort and attention (Cacioppo, Berntson, 

Larsen, Poehlmann, & Ito, 2000; Mauss & Robinson, 2009). Indices of ANS function 

are not end-points, and singular physiological measures cannot be used to infer 

psychological states or processes (Berntson et al., 2007). 

 

Whilst the difficulties of measuring independent aspects of socio-emotional 

responding are recognised, investigating patterns of ANS function and socio-emotional 

behaviours are important when evaluating the polyvagal framework. Polyvagal theory 

(Porges, 1998, 2003a) suggests that there is a direct coupling between ANS function 

and the expression of social engagement behaviours. Consequently if the findings 

indicate that increased SNS activation results in measurable changes in facial 

expressivity, social awareness, or affiliation tendencies, this will provide empirical 

support for polyvagal theory. On the other hand, the absence of a link between 

autonomic indices and behavioural measures of social engagement may suggest that 

polyvagal theory is not a valid model of emotional responding. 

 

3.2. Research Design 
 

To put the measures in context, first I will give an overview of the general 

design of the current experiments. To investigate potential relationships between 

physiology and social engagement behaviours, a series of laboratory-based experiments 

were  devised.  Experimental  designs  were  chosen  as  they  allowed  the  participants’  

physiology to be manipulated using laboratory-based stressors (see section 3.3). The 

effects of the stressor manipulations were assessed using autonomic indices, self-report 

questionnaires, and measures of behaviour. The participants recruited in the current 

experiments were healthy undergraduate students with no history of psychological or 

psychiatric disorders. Porges (2001, 2003a) claims that many of the socio-emotional 

deficits seen in psychiatric disorders are due to functional abnormalities; associations 

between ANS function and social engagement behaviours should therefore be 

observable in healthy populations. As discussed in Chapter 2 it was hypothesised that 

the relationship between ANS function and socio-emotional behaviours should be 
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particularly salient during conditions of challenge or threat, hence the use of stressor 

manipulations. Although it may have been advantageous to use a clinical population in 

this research to establish the clinical utility of polyvagal theory, it would be impossible 

to verify that any observed deficits in the expression of socio-emotional behaviours 

were due to functional and not disorder-specific anatomical abnormalities. The ability to 

generalise the findings to other populations would also be limited. The purpose of using 

healthy populations and experimental designs means that the findings can be used to 

evaluate polyvagal theory as a universal model of emotional responding. 

 

3.3. Stressor Manipulations 
 

Acute stressors are commonly used in emotion research to induce perceived 

threat and increase negative affect (Feldman et al., 1999). Difficult cognitive, social, or 

psychomotor tasks are often considered to be psychological stressors, however they also 

contribute to changes in physiology. The changes elicited depend on the nature of the 

stressor task, and a notable distinction has been made between active tasks and passive 

tasks (Obrist, 1981; Tomaka, Blascovich, Kelsey, & Leitten, 1993): Active stressors 

such as mental arithmetic and public speaking require motivated responses, and 

generally initiate physiological responses driven by activation of the SNS. Passive 

stressors such as viewing films or listening to music do not require instrumental action, 

and tend to initiate physiological responses that are milder in intensity. It has been 

suggested that active stressors produce more meaningful changes in physiology than 

passive stressors, because changes in ANS function are more likely to correspond to an 

individual’s  psychological  state  when  they  are  actively  attempting  to  cope  with  the  

demands of the environment (Obrist, 1981). 

 

Eliciting stress in laboratory settings is advantageous as it allows for the control 

of extraneous variables, however laboratory stressors are generally less aggravating than 

the types of stressor encountered in real life (Dimsdale, 1984). Because of this, 

researchers have continually questioned the ecological validity of laboratory stressors 

and how well they reflect real-world responding (Dimsdale, 1984; Kamarck & Lovallo, 

2003; van Egeren & Sparrow, 1989). Two approaches can be used to increase the 

ecological validity of laboratory experiments. The first approach is to use tasks that 

revolve around social functioning; this is because daily stressors are often social in 

nature (Kamarck & Lovallo, 2003; Linden, Rutledge, & Con, 1998). A second approach 
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is to use virtual reality. Virtual reality tasks are increasing in popularity as virtual reality 

tools can be used to simulate real-world scenarios, whilst maintaining experimental 

conditions (Riva et al., 2007). 

 

In the current experiments effective stressor manipulations were required to 

induce perceived challenge and/or threat in order to up-regulate the SNS. Activation of 

the SNS is hypothesised to limit the accessibility of the social engagement system 

(Porges, 2001, 2003a), and it is proposed that increased SNS activation will reveal 

greater coherence between ANS function and measures of socio-emotional behaviour. 

To ensure the stressor manipulations employed in the current research were effective at 

increasing the activation of the SNS, the first empirical chapter investigated the effects 

of two active social stressors: A virtual reality maze and a speech task (see Chapter 4). 

 

3.4. Physiological Measures of Socio-Emotional Responding 
 

To determine the effectiveness of the stressor manipulations and evaluate their 

effects on socio-emotional responding, several physiological measures were recorded 

during the experiments. Measures of physiology primarily index ANS function, but they 

are also thought to provide objective, external representations of the private emotional 

experience. Physiological changes occur during emotionally salient situations because 

emotions are inherently linked to underlying motivational states that guide behaviour 

(Bradley, Codispoti, Cuthbert, & Lang, 2001). It has been suggested that opposing 

appetitive and defensive motivational systems evolved to respond to environmental 

demands that promoted or threatened survival (Lang, Bradley, & Cuthbert, 1998). The 

physiological response elicited in any given situation will depend on the valence of the 

situation (i.e., pleasant–appetitive vs. unpleasant–defensive), and its associated arousal 

level (i.e., the strength of motivational activation). Changes in physiology facilitate the 

processing of the environment and prepare the body for an appropriate response. 

 

Polyvagal theory suggests that the physiological determinants of the 

motivational systems index whether or not the body is in a state of calm and self 

soothing (i.e., safety) or a state of defence (Porges, 1995, 2001, 2003a, 2007b). If an 

individual is presented with an acute challenge that exceeds a critical level with respect 

to intensity and/or duration they will exhibit a defensive stress response (Boucsein, 

1992). Autonomic defensive physiological states are often thought to be driven by SNS 
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activation, however, as emphasised by Berntson, Cacioppo, and Quigley (1991) 

physiological responses can result from the SNS and PNS being reciprocally activated, 

coactivated, coinhibited, or uncoupled. As a consequence, experiments measuring 

physiological responses to stress need to assess both SNS and PNS activation to capture 

the dynamic function of the ANS. In the current experiments skin conductance level 

was chosen as a marker of SNS activation (see section 3.4.1). Although heart rate can 

also be used to infer SNS activation, the heart is influenced by both the SNS and PNS. 

Heart rate was measured in the following experiments, but the data is interpreted with 

some caution (see section 3.4.2). In contrast to skin conductance level, high-frequency 

heart rate variability was used to index PNS activation (see section 3.4.3). The separate 

physiological indices and their methodological considerations are presented in the 

following sections. 

 

3.4.1. Skin Conductance Level 
 

One of the most simplistic indexes of autonomic responding is the measurement 

of electrodermal activity (i.e., the measurement of sweat gland activity on the surface of 

the skin). The most common type of sweat gland is the eccrine sweat gland, which is 

distributed across most regions of the body, especially the forehead, palms, and soles. 

The main function of eccrine sweat glands is to help regulate body temperature through 

evaporation (Boucsein, 1992). It is generally accepted that eccrine sweat glands are 

innervated by sympathetic fibres, although there is some debate regarding the role of the 

PNS in the regulation of sweat gland activity; decreases in electrodermal activity could 

arguably occur from a decrease in sympathetic activation and/or an increase in 

parasympathetic activation (Boucsein, 1992). Despite this caveat, increases in sweat 

activity are generally regarded to primarily index SNS activation (Dawson, Schell, & 

Filion, 2000; Jänig, 2006; Venables, 1991). 

 

Electrodermal activity (EDA) can be measured by calculating changes in skin 

potential or skin resistance using electrodes placed on the surface of the skin (Jänig, 

2006); this form of recording is termed exosomatic. Passing direct current across the 

surface of the skin results in tonic (skin conductance level) as well as phasic (skin 

conductance response) measures of EDA. Emotion researchers are interested in EDA 

due to the role it plays in emotional responding. Increased sweat gland activity is a 

concomitant of psychological and emotional states; a response that has been coined as 



CHAPTER 3: MEASURES OF SOCIO-EMOTIONAL RESPONDING 60 
 

“emotional  sweating”  (Boucsein,  1992). EDA is considered to be a sensitive indicator 

of general arousal, demonstrating linear increases with indices of motivational 

activation strength. For example, Lang, Greenwald, Bradley, and Hamm (1993) 

reported a correlation of r = .81 between skin conductance and arousal rankings of 

affective pictures. The components of EDA tend to exhibit moderate test–retest 

reliability (generally between .50-.70), but these effects are task-dependent, with 

reliabilities across tasks usually reported as much lower (Dawson et al., 2000; Schell, 

Dawson, & Filion, 1988). 

 

In the following studies, tonic EDA (i.e., skin conductance level [SCL]) was 

continuously  measured  with  a  sampling  rate  of  125  Hz,  using  a  BIOPAC™  MP150  

system connected to a computer running AcqKnowledge 4.1 software (BIOPAC 

Systems; Goleta, CA). Two grounded Ag/AgCl electrodes were attached to the medial 

phalanx of the index and middle fingers of the non-dominant hand. The second 

phalanges were used for recording because they are less prone to movement artefacts 

and tend to have less scaring than the fingertips (Boucsein, 1992). 

 

3.4.2. Heart Rate 
 

Heart rate is another indicator of ANS activity that is easily measured using non-

invasive techniques. As mentioned in Chapter 2, the heart is intimately involved in all 

aspects of emotional responding and behaviour because of its role in preparing the body 

for behavioural responses (Schwartz, 1982). Heart rate has been shown to be a sensitive 

and specific index of valence (Boucsein, 1992), but it also plays in a role in more 

general emotional responding. The heart is a muscle located in the upper region of the 

torso which consists of four chambers: The atria (the two superior chambers) and the 

ventricles (the two inferior chambers). Its function is to supply oxygen and nutrients to 

the cells of the body. It does this by pumping deoxygenated blood from the right side of 

the heart, through the right atrium and right ventricle, to the lungs where gaseous 

exchange occurs (carbon dioxide is unloaded and passed through the alveoli to be 

exhaled, and is replaced with inhaled oxygen). The freshly oxygenated blood is then 

passed back through the heart, through the left atrium and left ventricles to be pumped 

to the rest of the body. Valves within the heart open and close to prevent a backflow of 

blood, and the opening and closing of these structures is what causes the lub-dub sound 

associated with the beating of the heart.  
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The natural rhythm of the heart arises because the heart is made up of 

autorhythmic fibres. These fibres intrinsically generate action potentials and trigger the 

contraction of the heart muscle (Tortora & Derrickson, 2006). To keep this intrinsic 

rhythm under control the heart has a pacemaker, called the sinoatrial node, which 

regulates the rate of contraction of the  heart’s  fibres.  Despite  its  autonomy,  the  heart  is  

not detached from the rest of the body; nerve impulses from the brain stem and 

hormones released by the adrenal medullae can efficiently change the timing and 

strength of each heartbeat in order to meet the demands of the viscera and somatomotor 

systems (Somsen, Jennings, & van der Molen, 2004). 

 

The heart is one of the few organs that is innervated by both the PNS and SNS 

(Jänig, 2006). The PNS influences the heart via the vagus nerve. Vagal axons 

terminating in the heart release acetylcholine, which decreases heart rate by slowing the 

rate of depolarisation in the autorhythmic fibres. Under conditions of rest the vagus 

nerve has an inhibitory effect on heart rate, with the heart beating at a slower rate than 

the pace of the sinoatrial node. This neurophysiological arrangement has been termed 

the vagal brake (Porges, 1995, 1999). Withdrawal of the vagal brake allows for a rapid 

increase in heart rate, without relying on the activation of the SNS (Berntson, Cacioppo, 

& Quigley, 1993a). In the short term the heart is able to adjust its output solely via 

parasympathetic influences in order to align with rapid shifts in behaviour. Behaviours 

that require more prolonged increases in heart rate are normally sustained by increases 

in SNS activation. The SNS triggers cardiac accelerator nerves to release noradrenaline, 

which speeds  up  the  rate  of  depolarisation  and  increases  the  heart’s  force  of  contraction,  

allowing a greater volume of blood to be pumped around the body (Andreassi, 1989). 

 

The speed at which the heart contracts (i.e., heart rate) can be a useful index of 

cardiovascular reactivity, although dual innervation from the SNS and PNS makes it 

difficult to determine the source of changes using heart rate alone (for example 

increases in heart rate can result from decreased PNS activation, increased SNS 

activation, or a combination of both). Despite this drawback, heart rate is popular 

measure of autonomic function that has received a lot of attention over the years. 

Research has established that heart rate is generally a stable marker of cardiovascular 

reactivity, for example Cohen et al. (2000) reported a test–retest reliability of .64 when 

heart rate was measured in response to public speaking tasks carried out two weeks 

apart. It must be noted however, that although heart rate tends to demonstrate moderate 
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to high correlations within laboratory tasks, correlations are more modest across 

laboratory tasks (Kelsey, Ornduff, & Alpert, 2007). Cardiovascular reactivity is 

particularly unstable across laboratory and natural settings, suggesting that the ability to 

generalise reactivity from laboratory to real-life stressors may be limited (Abel & 

Larkin, 1991). 

Figure 3.1. Example of an electrocardiogram (ECG). P wave = depolarisation of the 
atria at the onset of atrial contraction. QRS complex = onset of ventricular 
depolarisation. T wave = ventricular repolarisation. 

 

Despite the limitations of using heart rate as a marker of autonomic function, 

due to the relative ease of measuring heart rate, it is a popular outcome measure in 

psychophysiological research. It is possible to measure the activity of the heart using an 

electrocardiogram (ECG). Electrical currents are generated as action potentials 

propagate through the heart muscle, and it is possible to detect these on the surface of 

the body. The pattern of these signals can be decomposed to reflect the cardiac cycle 

and establish the function of the heart (see figure 3.1). An ECG wave contains three 

typical signals: The P wave, small upward deflection of the ECG which represents atrial 

depolarisation; the QRS complex, which begins as a small downward reflection, 

continues as a large, upright, triangular wave and ends as a downward wave, which 

represents rapid ventricular depolarization; and the T wave, a dome-shaped upward 

deflection towards the end of the cycle which indicates repolarisation (Tortora & 

Derrickson, 2006). 

 

In the following experiments heart rate was continuously sampled at 512 Hz 

using surface electrodes arranged in a type II lead configuration  with  a  BIOPAC™  

MP150 system. Heart rate (HR) was determined using AcqKnowledge 4.1 (BIOPAC 

Systems; Goleta, CA). Offline a 0.5-35 Hz bandpass filter was applied to the heart rate 
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data, using 4000 co-efficients. Heart rate was then derived by detecting the R-peaks in 

the ECG wave and calculating the corresponding rate (in beats per minute). 

 

3.4.3. Heart Rate Variability 
 

Heart rate is a sensitive measure of emotional responding, but it only reflects the 

mechanical functioning of the heart and not the autonomic mechanisms driving cardiac 

function (Appelhans & Luecken, 2006). In Chapter 2 it was highlighted that changes in 

the activity of the heart can occur on a beat-to-beat basis. Measures of heart rate average 

out  the  changeability  of  the  heart’s  activity  over  a  period  of  time,  and  fail  to  provide  

information about variations in the influence of the PNS and SNS on the heart. This 

information can be sourced from the ECG by using the variation in R-R intervals (i.e., 

the time between two consecutive R-peaks) to calculate heart rate variability (HRV). 

 

Because the heart is intrinsically connected with other aspects of bodily 

functioning, oscillating rhythms within the ECG can be identified and linked to other 

physiological processes (Berntson et al., 1997). One of the most prominent relationships 

that can be found is between heart rate and respiration. The respiratory rhythm that can 

be identified in HRV is known as respiratory sinus arrhythmia (RSA; Berntson et al., 

1993a). Stretch receptors in the torso activate on inspiration and are linked to a gating 

effect of the PNS. Subsequently RSA corresponds to an acceleration of the heart during 

inspiration and a deceleration of the heart during expiration (Jänig, 2006). Identifying 

the respiratory rhythms driven by the PNS can therefore be used as an index of cardiac 

vagal control (Porges, 1986). There is some limited evidence to suggest that RSA 

indexes the activation of the myelinated nerve arising from the nucleus ambiguus, rather 

than the unmyelinated vagus nerve originating from the dorsal motor nucleus of the 

vagus nerve (for example Rentero et al., 2002; Richter & Spyer, 1990), however this 

premise is still widely debated (Berntson et al., 2007; Blessing, 1997; Grossman & 

Taylor, 2007; Ritz, 2009). In the current thesis, vagal control of the heart will be 

interpreted as activation of the PNS without specifically attributing activation to the 

VVC or DVC. It should be noted at this point that there are several terms that can be 

used to describe measures of vagal activity, including HRV, RSA, and vagal tone. 

Differences in terminology do not always imply differences in measurement, although 

more than one methodology can be used to calculate vagal activity. 
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HRV can be calculated by generating a time series of the R-R intervals from an 

ECG to capture the variation in R-peaks. R-R intervals decrease when the heart is 

beating faster and increase when the heart is beating slower. The variation of the R-R 

intervals is what determines HRV (Berntson et al., 1997; Task Force of the European 

Society of Cardiology and the North American Society of Pacing and 

Electrophysiology, 1996). There are two main approaches that can be used to quantify 

HRV; time-domain methods and frequency-domain methods. There is no consensus on 

which methodology is most appropriate for measuring HRV (see Grossman & Taylor, 

2007; Grossman, van Beek, & Wientjes, 1990; and Porges, 1986), and most measures of 

HRV seem to be relatively comparable (often correlating above r = .90, Grossman et 

al., 1990; Pumprla, Howorka, Groves, Chester, & Nolan, 2002). More often than not it 

is the research design that will determine the methodology for quantifying HRV. In the 

following experiments the frequency domain method was used to calculate HRV, as the 

Task Force (1996) recommended using frequency-domain methods rather than time-

domain methods for short-term recordings. 

 
Figure 3.2. Example of a heart rate (HR) power spectrum. Hz = hertz. LF = low -
frequency. HF = high-frequency. RSA = respiratory sinus arrhythmia. 
 

The frequency-domain method used in the following experiments involved the 

application of a fast Fourier transformation to the cardiovascular time series, which 

resulted in power spectral analyses (CARSPAN program, Groningen, The Netherlands; 

Mulder et al., 2007). An example of a heart rate power spectrum is shown in figure 3.2. 

Once a power spectrum has been generated it is possible to identify different peaks in 

the spectral analysis that fall into different frequency domains. These different 

frequency domains correspond to one or more physiological processes. The power 
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represented in the different frequency bands can be used to assess short-term 

cardiovascular functioning (Berntson et al., 1997). The high-frequency (HF) band of 

HRV (0.15 to 0.4 Hz) largely reflects the variations in sinoatrial control associated with 

respiration. The power in the HF power band consequently corresponds to RSA and is 

generally considered a marker of parasympathetic input. Conversely the low-frequency 

(LF) band (0.05 to 0.15 Hz) contains variability attributable to both sympathetic and 

parasympathetic rhythms. Due to the lack of clarity about this bandwidth, the LF 

domain has received less attention in the psychophysiological literature (Sokolov & 

Cacioppo, 1997). 

 

The power in the HF band is considered the most important component of the 

HRV power spectrum in our research, because as well as being an index of cardiac 

vagal control it is also suggested that HF-HRV is a biological marker for the 

accessibility of the social engagement system (Porges, 1998, 2003a). The use of HRV 

as a marker for generalised vagal efferent activity is not without criticism however. HF-

HRV is only a marker of cardiac vagal tone, and if one is being conservative then 

inferences made using HRV should only relate to the function of the heart and not the 

wider ANS (Ritz, 2009). Despite this caveat, cardiac vagal tone is still a known marker 

of PNS function, and HF-HRV has been linked to the self-regulation of cognition, 

emotion, and physiology (Segerstrom & Solberg Nes, 2007; Thayer & Brosschot, 2005; 

Thayer & Lane, 2009). This makes HF-HRV an informative measure with or without 

consideration of the social engagement system. 

 

Research suggests that short-term measures of HRV tend to be fairly stable 

within individuals. For example Sinnreich, Kark, Friedlander, Sapoznikov, and Luria 

(1998) reported a test–retest correlation of .76 for the high-frequency component of 

HRV when short-term recordings were carried out two months apart. It should be noted 

that a review by Sandercock, Bromley, and Brodie (2005) emphasised that short-term 

measures of HRV tend to be more reliable at rest than during interventions such as 

orthostatic tilt and pharmacological blockade, and that HRV tends to be more stable in 

healthy populations rather than clinical populations. 

 

In the following studies, HRV was calculated by extracting the interbeat 

intervals (IBI) of the ECG from AcqKnowledge 4.1 (BIOPAC Systems; Goleta, CA), 

which resulted in an IBI time series. Before subjecting the IBI time series to a fast 
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Fourier transformation the R-R data were scrutinized for artefacts. This process covered 

two criteria: (1) if an interbeat interval deviated more than five standard deviations from 

the running mean, or (2) the difference between two consecutive interbeat intervals was 

larger than five standard deviations, then a new interbeat value (based on R-peak times) 

was calculated using an interpolation between two preceding and two succeeding 

correct values (CARSPAN program, Groningen, The Netherlands; Mulder, Hofstetter, 

& van Roon, 2007). Once the time series had been corrected for artefacts a discrete fast 

Fourier transformation was applied, based on the non-equidistant sampling of the R-

wave incidences, which resulted in an HRV power spectrum (CARSPAN program, 

Groningen, The Netherlands; Task Force, 1996). HRV power (ms2) was calculated for 

the high-frequency band (HF-HRV: 0.15-0.4Hz) only. 

 

3.4.4. Summary of Physiological Recordings 
 

In summary, the physiological measures used in the current experiments were 

set up using the following protocol: Continuous measurements were made of heart rate 

(HR)  and  skin  conductance  level  (SCL)  using  a  BIOPAC™  MP150 system connected to 

a computer running AcqKnowledge 4.1 software (BIOPAC Systems; Goleta, CA). HR 

was recorded using two disposable Ag/AgCl electrodes positioned in a type II 

configuration and was sampled at 512Hz. SCL was measured using two grounded 

Ag/AgCl electrodes attached to the medial phalanx of the index and ring fingers of the 

non-dominant hand and was sampled at 125Hz. Analysis of the HR and SCL data was 

done using AcqKnowledge 4.1 (BIOPAC Systems; Goleta, CA). To assess heart rate 

variability (HRV), interbeat intervals (IBI) of the ECG were calculated using R-top 

detection in AcqKnowledge, which resulted in an IBI time series. The IBI time series 

was subjected to a discrete Fourier transform, based on non-equidistant sampling of the 

R-wave incidences, which resulted in an HRV power spectrum (CARSPAN program, 

Groningen, The Netherlands; Task Force, 1996). HRV power (ms2) was calculated for 

the high-frequency band (HF-HRV: 0.15-0.4Hz) only. Note that in the experiments 

evaluating the physical presentation of the speech, HF-HRV was not calculated for the 

presentation period itself. Talking aloud is known to affect the reliability of HRV 

indices making it an unsuitable measure during tasks that involve speech (Beda, Jandre, 

Phillips, Giannella-Neto, & Simpson, 2007; Tininenko, Measelle, Ablow, High, 2012). 
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3.5. Self-Report Measures of Socio-Emotional Responding 
 

Porges  claims  that  the  function  of  the  ANS  should  influence  one’s  emotional  

state and vice versa (Porges, 1999, 2009a). One of the main predictions of this thesis is 

that up-regulation of the SNS should increase negative affect, whilst down-regulation of 

the SNS should decrease negative affect. The subjective experience of emotion is one of 

the most salient aspects of emotional responding, and it can be measured by asking 

participants to report how they are feeling. This is often achieved using standardised 

self-report measures that assess several domains of the emotional experience. Measures 

of subjective emotion can be categorical i.e., they assess a broad range of discrete 

emotions that tend to cluster together to form higher order factors (e.g. see Ekman, 

1992), or they can be dimensional i.e., they assess a narrow range of fundamental 

dimensions that organise into emotional responses (dimensions such as valence and 

arousal; Bradley & Lang, 1994; Russell, 1994). 

 

Measures of subjective emotion can measure either  trait  emotionality  (i.e.,  one’s  

tendency to respond positivity or negatively to stimuli) or state emotionality (i.e., the 

moment-to-moment experience of emotion). The latter is more useful when researching 

short-term changes in mood, particularly when an emotional response is directed at a 

particular event/stimulus. The timing of state measures is important, as it has been 

argued that self-reports of recent emotional responding (particularly if they target the 

current moment) are more valid than self-reports concerning past, future, or trait 

emotional responding (Robinson & Clore, 2002). A challenge of using subjective 

measures of emotion, is that some participants can find it difficult to articulate how they 

are feeling (e.g., individuals with Alexithymia; Pollatos, Schubö, Herbert, Matthias, & 

Schandry, 2008) whereas others can report being disconnected from the experience of 

emotion altogether (e.g., individuals in dissociative states; Bremner et al., 1998). 

Although a stimulus may affect changes in behaviour, they may not be directly 

attributed to changes in mood (Bonanno & Keltner, 2004). Even when participants are 

able to report on emotional states, it is possible that self-report measures may not be 

sensitive enough to measure changes in emotional responding. Moreover, social 

desirability can play a role in how people respond to self-report measures of emotion, 

which again affects their validity (Feldman Barrett, 1996). 
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Despite the methodological limitations inherent in using self-report measures, 

the experiential component of an emotion is integral to an emotional response. Failure 

to account for subjective experience when studying emotion may mitigate or bias 

results. Thus, in the current experiments several established self-report measures of 

emotion were used: The Profile of Mood States – Short Form (Shacham, 1983) was 

used to capture short-term changes in emotion; to control for trait emotionality the 

depression scale from the Hospital Anxiety and Depression Scale (Zigmond & Snaith, 

1983) or the Beck Depression Inventory – II (Beck, Steer, & Brown, 1996) were used to 

measure depression symptoms, and the anxiety scale from the Hospital Anxiety and 

Depression Scale (Zigmond & Snaith, 1983) or the 7-item Generalized Anxiety 

Disorder Scale (Spitzer, Kroenke, Williams, & Löwe, 2006) were used to measure 

anxiety symptoms; finally additional measures were used to capture self-reported 

behavioural expressivity (the Berkeley Expressivity Questionnaire; Gross & John, 

1995), emotion regulation difficulties (the Difficulties in Emotion Regulation Scale; 

Gratz & Roemer, 2004), psychological flexibility (the Acceptance and Action 

Questionnaire-II; Bond et al., 2011), and social safeness (the Social Safeness and 

Pleasure Questionnaire; Gilbert et al., 2009). The measures used in the current 

experiments and their psychometric properties are discussed in the following sections: 

 

3.5.1. Demographic Screening Questionnaire (see appendix 1) 

 

To capture sociobiographic information, all participants completed a 

demographic screening questionnaire at the beginning of the testing session. 

Participants reported their age, gender, education status, ethnicity, smoking status, 

coffee consumption, and past or current treatment for psychological or psychiatric 

problems. Participants who reported past or current treatment for psychological or 

psychiatric reasons were excluded from taking part in the experiments. The other factors 

reported in the questionnaire were analysed as possible covariates. 

 

3.5.2. Profile of Mood States – Short Form Questionnaire (see appendix 2) 

 

  The Profile of Mood States – Short Form (POMS-SF; Shacham, 1983) is 

an abbreviated version of the Profile of Mood States (POMS) scale developed by 

McNair, Lorr, and Droppleman (1971). The POMS-SF measures six domains using 37 

items (Fatigue–Inertia, Vigour–Activity, Tension–Anxiety, Depression–Dejection, 
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Anger–Hostility, and Confusion–Bewilderment). The subscales can also be used to 

calculate a total distress score (often referred to as total mood disturbance). Respondents 

indicate the degree to which each adjective describes themselves right now using a five-

point Likert scale (0 not at all, 4 extremely). In the following studies the POMS-SF was 

used to assess current mood state by applying the how are you feeling right now variant 

of the questionnaire. This is because using short-term instructions amplifies the 

questionnaire’s  sensitivity  to  change  (Rossi  &  Pourtois,  2011). 

 

An advantage of using the shortened version of the POMS is that it takes less 

time to complete than the original version, and there is some evidence to suggest that 

the Tension–Anxiety subscale of the 37-item version is psychometrically superior to 

that of the original POMS (Curran, Andrykowski, & Studts, 1995; Rossi & Pourtois, 

2011). Shacham (1983) initially reported that the internal consistency estimates of the 

six subscales of the POMS-SF ranged from .80-.91. Similar levels of internal 

consistency have been reported in studies sampling both healthy (Curran, Andrykowski, 

& Studts, 1995) and clinical populations (Baker, Denniston, Zabora, Polland, & Dudley, 

2002). A further consideration of using the POMS-SF is its construct validity. Baker et 

al. (2002) carried out a confirmatory factor analysis that supported the six-factor 

structure of the POMS-SF. By maintaining the six subscales of the original POMS, the 

POMS-SF maintains a good level of specificity whilst also being able to provide a total 

distress score. The main rationale for using the POMS-SF in the current experiments is 

that the questionnaire is able to capture changes in state anxiety (an indicator of 

negative affect), as well as other changes in other mood states (Rossi & Pourtois, 2011). 

 

3.5.3. Hospital Anxiety and Depression Scale (see appendix 3) 

 

The Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 1983) 

is 14-item self-report measure of depression and anxiety symptoms. Each item is rated 

from 0 to 3 according to severity. The measure results in two scores: A depression score 

(HADS-D) and an anxiety score (HADS-A). Each subscale score can range from 0 to 

21, with higher scores indicating higher levels of difficulty. Both factors of the HADS 

have demonstrated acceptable internal consistency in clinical populations (HADS-D 

alpha 0.84, Cameron, Crawford, Lawton, & Reid, 2008; HADS-A alpha 0.81, 

Spinhoven et al., 1997) and healthy populations (HADS-D alpha 0.82, HADS-A alpha 

0.77; Crawford, Henry, Crombie, & Taylor, 2001). In addition to this, the HADS 
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subscales have demonstrated high test–retest reliabilities (HADS-D alpha 0.86, HADS-

A alpha 0.89; Spinhoven et al., 1997). 

 

Research has supported the two-factor structure of the HADS, but the scales are 

heavily correlated (for a review see Bjelland, Dahl, Haug, & Neckelmann, 2002). Both 

scales not only correlate with each other, but they also correlate interchangeably with 

other measures of depression and anxiety (Savard, Laberge, Gauthier, Ivers, & 

Bergeron, 1998). This may suggest that the HADS is more suited as a measure of 

symptoms that co-vary across depression and anxiety, rather than a measure that is able 

to distinguish depression from anxiety (Spinhoven et al., 1997). Most of the contention 

seems to lie with the anxiety scale. To avoid overlap with general medical conditions, 

the HADS-A subscale minimises the significance of physical arousal, meaning it 

demonstrates poor specificity (Spinhoven et al., 1997). The HADS-A also tends to over-

estimate the extent of anxiety symptoms in student populations (Andrews, Hejdenberg, 

& Wilding, 2006). The HADS was used in the first two empirical studies as a trait 

measure of depression and anxiety, but was later replaced with the Beck Depression 

Inventory – II (see section 3.5.4) and the Generalised Anxiety Disorder Scale (see 

section 3.5.5). 

 

3.5.4. Beck Depression Inventory-II (see appendix 4) 

 

The Beck Depression Inventory-II (BDI-II; Beck, Steer, & Brown, 1996) is a 

21-item measure of depressive symptoms. Scores can range from 0-63, with higher 

scores representing greater depression severity. The BDI has been found to correlate 

well with other measures of depression (such as the HADS-D; Savard et al., 1998; 

Tedman, Young, & Williams, 1997). An advantage of the BDI-II is that it has very 

robust psychometric properties, and is a useful measure of depressive symptoms even in 

student populations. Storch, Roberti, and Roth (2004) used confirmatory factor analysis 

with a student sample and identified a two-factor structure for the BDI-II: A cognitive-

affective factor and a somatic factor. Both factors demonstrated good internal 

consistency (cognitive-affective alpha .87; somatic alpha .74), as did the total score 

(alpha .90). In addition to this, Sprinkle et al. (2002) examined the utility of the BDI-II 

in a sample of students receiving treatment at a university counselling centre. They 

found that BDI-II scores correlated highly with the number of depression items 

endorsed from the major depressive episode section of the Structured Clinical Interview 
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for the DSM-IV (r = .83). In a second sample of students, Sprinkle et al. also found a 

test–retest reliability of .96 for the BDI-II when it was completed over two separate 

sessions (intervals ranged from 1-12 days apart). In the current experiments participants 

with self-reported depression were excluded prior to testing, so this measure was used 

to infer trait levels of depression symptomatology only. 

 

3.5.5. Generalized Anxiety Disorder Scale (see appendix 5) 

 

The seven-item Generalized Anxiety Disorder Scale (GAD-7; Spitzer, Kroenke, 

Williams, & Löwe, 2006) is designed to assess general anxiety symptoms. Scores can 

range from 0-21, with higher scores representing higher anxiety symptoms. Although 

the scale was designed to detect symptoms of general anxiety disorder, the domains 

measured are not exclusive to this disorder, and the scale has been shown to also be a 

sensitive index of panic, post-traumatic stress disorder, and social phobia (Kroenke, 

Spitzer, Williams, Monahan, & Löwe, 2007). A strength of the GAD-7 is its focus on 

general anxiety symptoms rather than worry symptoms (cf. the Penn State Worry 

Questionnaire; see Dear et al., 2011). The GAD-7 is also a pure measure of anxiety, 

unlike other measures that have been shown to inadvertently assess depression 

symptoms as well (cf. the State–Trait Anxiety Inventory, see Bieling, Antony, & 

Swinson, 1998; and the HADS-A, see Savard et al., 1998). Spitzer et al. (2006) initially 

reported that the GAD-7 had high internal consistency (alpha .92) and a test–retest 

reliability of .83. Dear et al. (2011) confirmed the single factor structure of the GAD-7 

using factor analysis, and verified that the internal consistency of the GAD-7 is 

acceptable in clinical populations (pre- and post-treatment alphas ranged from .79-.91). 

In the following experiments participants with self-reported anxiety disorders were 

excluded prior to testing, so this measure was used to infer trait levels of anxiety only. 

 

3.5.6. Berkeley Expressivity Questionnaire (see appendix 6) 

 

The Berkeley Expressivity Questionnaire (BEQ; Gross & John, 1995) is a 16-

item measure of individual differences in emotional expressivity. Respondents indicate 

the degree to which each item describes themselves using Likert scales ranging from 1 it 

does not apply to me at all to 7 it applies to me completely. The questionnaire assesses 

three facets of emotional expressivity: The negative expressivity subscale consists of six 

items referring to the degree to which a person tends to express negative emotions (e.g., 
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"I've learned it is better to suppress my anger than to show it"); the positive expressivity 

subscale consists of four items indicating the degree to which a person tends to express 

positive emotions (e.g., "Whenever I feel positive emotions, people can easily see 

exactly what I am feeling"); and the impulse strength subscale consists of six items 

which indicate the general strength of emotion (e.g., "I have strong emotions"). The 

subscales can also be used to calculate a general expressivity score. 

 

The psychometric properties of the BEQ have been explored in several studies. 

In the original study, Gross and John (1995) reported  that  the  Cronbach’s  alphas  for  the  

subscales ranged from .68-.78, and that after a 2 month interval the scales demonstrated 

a test–retest reliability of .71 and above. In a follow up study Gross and John (1997) 

reported  similar  Cronbach’s  alphas  for the subscales using both self-report and observer 

versions of the questionnaire. They also found significant correlations between scores 

on  the  BEQ  and  participant’s  emotionally  expressive  behaviour  whilst  they  watched  

emotion-inducing film clips. The three factor structure of the BEQ has been confirmed 

using confirmatory factor analysis (Gross & John, 1997), although not everyone has 

replicated these findings, for example Dobbs, Sloan, and Karpinski (2007) did not find 

support for the three factor structure of the BEQ. A notable criticism of the BEQ is that 

the positive and negative expressivity scales represent some emotions better than others, 

for example Trierweiler, Eid, and Lischetzke (2002) suggest that the negative 

expressivity scale does not address the emotions of anger and shame. Although the BEQ 

has these limitations, Gross and John (1998) have found substantial correlations 

between the BEQ and other expressivity scales, suggesting that self-report measures of 

emotional expressivity share a common understanding of what constitutes the core 

domain of emotional expressivity. It has been suggested that to maximise the accuracy 

of self-report measures of emotional expressivity they should be combined with other 

methodologies, such as observation (Dobbs et al., 2007). 

 

3.5.7. Difficulties in Emotion Regulation Scale (see appendix 7) 

 

The Difficulties in Emotion Regulation Scale (DERS; Gratz & Roemer, 2004) is 

a 36-item measure used to assess six facets of difficulties in regulating emotion: Non-

acceptance of emotional responses, difficulties engaging in goal-directed behaviour, 

impulse control difficulties, lack of emotional awareness, limited access to effective 

emotion regulation strategies, and lack of emotional clarity. Participants rate each item 
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on a scale from 1 (almost never, 0–10%) to 5 (almost always, 90-100%). The subscales 

can be used individually, or can be summed to calculate a total score, with higher scores 

being indicative of greater difficulties in emotion regulation. 

 

Gratz and Roemer (2004) originally explored the psychometric properties of the 

DERS using a sample of undergraduate students. The DERS demonstrated high internal 

consistency  for  the  total  score  (Cronbach’s  alpha  .93),  adequate  internal  consistency  for  

the  subscales  (Cronbach’s  alphas above .80), and good test–retest reliabilities over a 

four-week  period  (ρi  =  .88,  p < .01). Although the DERS has since been used in several 

studies using clinical populations (for example anxiety samples Salters-Pedneault, 

Roemer, Tull, Rucker, & Mennin, 2006; and depression samples Ehring, Fischer, 

Schnu, Bo, & Tuschen-Caffier, 2008), few studies have questioned the psychometric 

properties of the DERS. Data cited by Ehring et al. (2008) suggests that a German 

translation of the DERS has demonstrated similar psychometric properties to the 

original: Principle components analysis confirmed the six factor structure of the DERS, 

the  subscales  were  reported  to  show  good  internal  consistency  (alpha’s  ranging  from  

.81-.95), and the subscales showed good stability  over  a  two  week  period  (alpha’s  

ranging from .72-.87). The DERS was also reported to correlate with other measures of 

emotion regulation. 

 

3.5.8. Acceptance and Action Questionnaire-II (see appendix 8) 

 

The Acceptance and Action Questionnaire – II (AAQ-II; Bond et al., 2011) is a 

brief seven-item scale designed to measure experiential avoidance and psychological 

inflexibility. Respondents indicate the degree to which each item describes themselves 

using a seven-point Likert scale (1 always true, 7 never true). Scores can range from 7-

49, and in the current experiments the items were reverse-scored so that higher scores 

reflected greater psychological flexibility. 

 

The original version of the Acceptance and Action Questionnaire had 16 items 

and was a predictive measure of outcomes such as depression, anxiety, and general 

mental health (for a review see Hayes, Luoma, Bond, Masuda, & Lillis, 2006). However 

its  psychometric  properties  were  modest;;  the  scale  had  a  Cronbach’s  alpha  of  .70  and  a  

test–retest reliability of .64 after a four-month interval (Hayes et al., 2004). Reducing 

the number of items in the AAQ–II improved the reliability of the questionnaire. Bond 
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et al. (2011) evaluated the AAQ-II as a measure of psychological flexibility using six 

samples, and reported  superior  internal  consistencies  for  the  revised  scale  (Cronbach’s  

alphas ranged from .78-.88), and a test–retest reliability of .81 at three months and .79 at 

12 months. Confirmatory factor analysis with three of the samples also confirmed the 

single-factor structure of the AAQ–II. 

 

3.5.9. Social Safeness and Pleasure Scale (see appendix 9) 

 

The Social Safeness and Pleasure Scale (SSPS; Gilbert et al., 2009) is a scale 

designed to measure the extent to which people experience their social worlds as safe, 

warm, and soothing. The eleven items relate to feelings of belonging, acceptance, and 

feelings  of  warmth  from  others  (e.g.,  “I  feel  content  within  my  relationships”  and  “I  feel  

secure  and  wanted”).  Responses  are  made  on  a  five-point Likert scale ranging from 0 

almost never to 4 almost all the time. Scores can range from 0-44, with higher scores 

indicating higher social safeness. 

 

The SSPS has not yet been psychometrically evaluated in full, and has so far 

only been used with student populations. In their original study, Gilbert et al. (2009) 

reported  that  the  scale  had  a  Cronbach’s  alpha  of  .91,  and  verified  the  single  factor  

structure of the scale using exploratory factor analysis. In terms of test–retest reliability, 

a more recent study by A. C. Kelly, Zuroff, Leybman, and Gilbert (2012) used the SSPS 

as a daily measure of social safeness over a seven day period. Scores for the SSPS 

demonstrated little variability during the study suggesting that the SSPS is a trait 

measure of social safeness (A. C. Kelly et al., 2012). Despite being a relatively stable 

measure, social safeness was reported as higher on days when participants also reported 

more received social support. Consequently the SSPS is an affective measure that 

relates to affiliative behaviour (although the direction of the relationship between social 

safeness and affiliative responding has yet to be determined). 

 

3.6. Behavioural Measures of Socio-Emotional Responding 
 

Several of the main hypotheses in this thesis are targeted at investigating the 

relationship between physiology and socio-emotional behaviours. This chapter has 

already introduced methodologies that can be used to infer activation of the SNS and 

PNS, as well as measures that can be used to assess the subjective component of 
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emotional responding. This last section addresses several methods that can be used to 

measure socio-emotional behaviour. Socio-emotional behaviours facilitate 

communication and social engagement, and are usually measured in terms of two core 

competencies: The successful production of emotional facial expressions, gestures and 

actions (known as encoding ability), and the successful perception and interpretation of 

such gestures (known as decoding ability; Riggio, 1986; Scherer, 2007). Deficits in 

these competencies have been linked to impaired communication and reduced success 

in social interactions, which can have implications for health. For example, deficits in 

encoding and decoding emotions have been associated with depression (Gehricke & 

Shapiro, 2000; Segrin, 2000), autism (Travis & Sigman, 1998), and schizophrenia 

(Gaebel & Wölwer, 1992). Impaired social functioning has also been shown to 

influence  one’s  willingness  to  spend  time  with  others  (e.g.,  decreased  facial  expressivity  

reduces feelings of rapport and affiliation; Butler et al., 2003). Consequently, the current 

research needs to consider both the sending and receiving aspects of socio-emotional 

behaviours, and how they affect interpersonal functioning. This section will review 

behavioural measures of emotional expressivity (section 3.6.1), followed by behavioural 

measures of emotional sensitivity (section 3.6.2), and will conclude with behavioural 

measures of affiliation (section 3.6.3). 

 

3.6.1. Emotional Expressivity 
 

The experience of an emotion is often associated with a display of emotion; this 

is most apparent through changes in facial expression. Emotions can result in changes in 

facial activity that are observable (Ekman, Friesen, & Ancoli, 1980), as well as changes 

that are invisible to the naked eye (Cacioppo, Petty, Losch, & Kim, 1986; Dimberg, 

1990; Dimberg, Thunberg, & Elmehed, 2000). Distinct patterns of facial expression 

have been found to correspond with discrete emotions (e.g., Ekman, Freisen, & Ancoli, 

1980; Weiss, Salloum, & Schneider, 1999), although observable displays of emotion do 

not always correspond with the felt emotional experience (see Bonanno & Keltner, 

2004). This is particularly noticeable when one considers display rules, the cultural 

norms that dictate whether or not it is acceptable to display certain emotions in 

particular contexts (Ekman & Friesen, 1969). 

 

Facial expressions are not only a concomitant of experiencing an emotion, but 

also play a role in regulating emotion. This concept goes back to as far as Darwin 
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(1872/2009), and was later taken up by Gellhorn (1964) and Izard (1971). Afferent 

signals from facial muscles can elicit ANS changes as well as changes in the emotional 

experience (Hennenlotter et al., 2009; Levenson, Ekman, & Friesen, 1990). This 

corresponds to the notion that facial expressions are not only a readout of our emotional 

experience, but they also have a feedback role which shapes how the emotional 

experience changes over time (see Buck, 1980). For further discussion on the function 

of facial expressions in this thesis see Chapter 6. 

 

Many have suggested that emotional expressions have a biological basis. This 

notion is reinforced when one looks at the universality of emotional facial expressions. 

Ekman and colleagues (Ekman, 1972; 1992; Ekman & Friesen, 1969, 1971; Ekman et 

al., 1987; Ekman, Sorenson, & Friesen, 1969) have found evidence of six basic 

emotions that are inherent across cultural and geographic divides (anger, fear, 

happiness, disgust, sadness, and surprise); other emotional categories are often marked 

as variants or blends of the basic prototypes (Ekman et al., 1987; Ekman, 1992b). There 

is some debate as to whether or not emotions are categorical and therefore have discrete 

facial expressions (Ekman et al., 1980; Etcoff & Magee, 1992; Young et al., 1997), or 

whether emotions and their corresponding facial expressions can be considered 

dimensional (e.g., expressed in terms of valence and arousal; Russell, 1994). Despite a 

lack of consensus regarding the organisation and primary function of facial expressions, 

the measurement of facial motor activity is popular in emotion research. 

 

It is generally accepted that certain anatomical facial movements (known as 

action units) are coupled with certain emotional responses (e.g., genuine smiles are 

associated with positive affect; Ekman & Friesen, 1982; Soussignan, 2002). Specific 

patterns of facial movements can be captured using a variety of techniques to infer the 

presence of an emotion. The current studies used emotion recognition software and 

electromyography as measures of behavioural expressivity. The rationale for these 

measures will be provided in the following sections. 

 

3.6.1.1. Emotion recognition software. Emotion recognition software is a 

useful measure of facial activity when more invasive measures of facial expression may 

be inappropriate, for example when experimental designs do not allow for obstruction 

of the face, making the use of electrodes inappropriate. Emotion recognition software 

tends to use algorithms that replicate facial coding systems used by human observers, 
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such  as  Ekman  and  Friesen’s  Facial  Action  Coding  System  (FACS;;  Ekman  &  Friesen,  

1978; Ekman, Friesen, & Hager, 2002). By mapping the contours of the face, software 

can  be  used  to  ‘read’  emotions.  Often  software  will  adhere  to  the  basic  classifications  of  

anger, fear, sadness, happiness, surprise, and disgust. An advantage of emotion 

recognition software is that it is more objective than subjective observers, however such 

technology can be costly and it relies on good quality video (for example faces need to 

be clearly visible and can be affected by artefacts such as movement). Although 

software can be very good at detecting facial movements, arguably most software is not 

very adept at detecting other emotional gestures (such as head nodding or shrugging 

shoulders), and they do not tend to interpret gaze direction. 

 

In Chapter 6 participants were filmed modulating their facial expressions, and 

the  videos  were  analysed  for  emotional  expressivity  using  Visual  Recognition’s  

eMotion software (version 1.21), developed at the University of Amsterdam (Gevers, 

2008; see also Sebe et al., 2007). This software is able to categorise how fully six basic 

emotions (happiness, sadness, disgust, surprise, fear, and anger) are expressed in videos 

of facial activity. The absence of emotion is also categorised as neutral expression. 

Once a file has been targeted in the eMotion software, the user is able to map a mesh 

computer model onto the features of the face in the video (see figure 3.3). eMotion 

calculates the level of facial expressivity in the video by evaluating the moving vectors 

of the facial points, identifying movements such as curvature of the lips, raising of the 

eyebrows, and cheek contraction (in accordance with Ekman et al.'s, 2002, FACS). The 

output of eMotion is a text file that contains the percentage of each of the six emotions 

and the percentage of neutral expression shown within each frame of the video. 
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Figure 3.3. Screenshot from the eMotion software. The green line shows the markers of 
the computer model that can be adjusted to align the model to the contours of the face. 

 

The videos in the current experiments were digitalised with a frame rate of 25 

frames per second, resulting in 250 frames of eMotion output per 10-second video. 

Indices of positive and negative emotion were created by combining the percentages of 

the basic emotion scales: The positive emotion index consisted of the happy and 

surprise scales; the negative emotion index consisted of the sadness, disgust, fear, and 

anger scales. The positive and negative indices of emotional expressivity were used to 

calculate an expressive enhancement ability score, whilst the neutral scale was used to 

calculate an expressive suppression ability score (see Chapter 6 for more details). 

 

3.6.1.2. Electromyography. Electromyography (EMG) is a physiological 

measure of facial muscle activity. This measure has been placed in the behavioural 

section of this chapter, because in the current experiments emotional expressivity is 

conceptualised as a behavioural outcome rather than an index of ANS function. EMG is 

a useful method for measuring emotional expressivity because the EMG signal is 

instantaneously recorded, meaning that the data does not require a large amount of 

visual inspection or coding from observers which can be costly and time consuming. 

EMG is extremely sensitive to changes in muscle activity. EMG amplitude has been 

shown to provide a reliable and valid index of muscle action, even when there are no 

perceptible muscle contractions (Cacioppo et al., 1986). This is important, as rapid 

automatic and unconscious facial movements can occur in response to emotive stimuli, 

which can be easily missed using observation methods (Dimberg, 1990). 
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Three recording sites on the face have been identified as valid and reliable 

indices of specific muscle actions that are able to differentiate between emotional 

processes (Fridlund & Cacioppo, 1986; Tassinary, Cacioppo, & Green, 1989): The 

corrugator supercilii (CS) is the muscle responsible for brow furrowing and is typically 

related to negative affect (Tassinary & Cacioppo, 1992); the zygomaticus major (ZM) is 

the cheek muscle which retracts the corner of the mouth and is typically related to 

positive affect (Tassinary & Cacioppo, 1992); the third muscle is the levator labii (LL) 

which pulls up the top lip and is seen in prototypical facial expressions of disgust 

(Vrana, 1993). In Chapter 7, EMG was used to measure the level of mimicry shown by 

participants in response to facial displays of emotion. 

 

3.6.2. Emotional Sensitivity 
 

Emotional sensitivity refers to the threshold at which emotions can accurately be 

recognised (Lynch et al., 2006). Although emotional sensitivity can be measured in a 

range of modalities, most research has focused on the recognition of emotion from 

facial expressions. Arguably facial displays are the most salient signals of emotion and 

they are the easiest to decode (Wallbott, 1998; Wallbott & Scherer, 1986). A common 

measure of emotion recognition using facial displays involves presenting participants 

with photographs of prototypical facial expressions, which participants are then asked to 

categorise (e.g., the Pictures of Facial Affect, Ekman & Friesen, 1976). The use of static 

photographs in emotion research has been heavily criticised however (see Adolphs, 

2006; Blairy, Herrera, & Hess, 1999; Hess & Blairy, 2001). First of all, photographs of 

facial displays tend to depict intense, prototypical emotional expressions, and these are 

often presented for several seconds at a time (Hess & Blairy, 2001). This has been 

contrasted to real life displays of emotion, where faces are dynamic and display a large 

range of expressions that are often low in intensity and short in duration (Blairy et al., 

1999). Static pictures therefore have questionable ecologically valid. A second criticism 

of asking participants to categorise prototypes of emotional expressions is that this 

method measures emotional accuracy, and not emotional sensitivity (Wehrle, Kaiser, 

Schmidt, & Scherer, 2000). As most batteries of facial displays are typical emotional 

expressions that are easily categorised, this can lead to ceiling effects in healthy 

populations (Coupland et al., 2004). 
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To overcome these limitations several approaches have been adopted. One 

approach has been to modify static images to make recognising the emotions more 

difficult, such as isolating parts of the face (e.g., the Reading the Mind in the Eyes Task; 

Baron-Cohen, Wheelwright, Hill, Raste, & Plumb, 2001). These techniques still lack 

ecological validity however, as in real life situations faces are normally perceived whole 

(K. J. Kelly & Metcalfe, 2011). Another technique has been to morph or blend 

photographs of different emotions to produce graded levels of expression (Calder, 

Young, Perrett, Etcoff, & Duncan, 1996). Blended emotions are more difficult to 

categorise than pure emotions; the closer a face is to the prototype emotion, the easier it 

is to correctly identify (Calder et al., 1996; Young et al., 1997). Although blended facial 

expressions are often more true to life than prototypical expressions, this methodology 

still lacks ecological validity if the blended emotions are presented as static images. The 

role of motion is increasingly being emphasised in emotion recognition research, as 

facial action units have been shown to be important emotional cues (Kilts, Egan, 

Gideon, Ely, & Hoffman, 2003). Facial action units are visible in dynamic presentations 

of emotional expressions, and using moving facial stimuli has been show to have a 

facilitative effect on emotion recognition (Wehrle et al., 2000). A major advantage of 

using dynamic presentations is that facial displays of increasing emotional intensity can 

be used to measure the threshold at which an emotion is recognised i.e., these tasks can 

be used to measure emotional sensitivity as well as emotional accuracy (Blair, Colledge, 

Murray, & Mitchell, 2001; Wehrle et al., 2000). 

 

3.6.2.1. Multimorph Facial Affect Recognition Task. In the current 

experiments the Multimorph Facial Affect Recognition Task (Blair et al., 2001) was 

identified as an appropriate measure of emotional sensitivity. The Multimorph Facial 

Affect Recognition Task (Blair, Colledge, Murray, & Mitchell, 2001) is based on the 

Pictures of Facial Affect (Ekman & Friesen, 1976). The Pictures of Facial Affect consist 

of 110 still photographs of emotional facial expressions. All of the photographs are 

black and white, and show actors producing facial configurations that relate to six basic 

emotions: Happiness, sadness, fear, anger, disgust, and surprise. The photographs have 

been validated in numerous studies, with research showing high agreement across 

cultures in the assignment of the six basic emotions to the corresponding facial 

expressions (see Ekman, 1989). The Pictures of Facial Affect are often used as a basic 

measure of emotion recognition; participants simply have to identify the emotion shown 

in the photograph. Consequently the principle measure of this battery in its original 
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form is the percentage of correct judgments made for each emotion. As previously 

mentioned, a drawback of the Pictures of Facial Affect is that they are prototypical, high 

intensity, still photographs that lack ecological validity (Hess & Blairy, 2001). 

 

The Multimorph Task (Blair et al., 2001) overcomes the limitation of the 

Pictures of Facial Affect battery by using collections of the original stimuli to create 

dynamic presentations of emotional facial expressions. This effect is achieved by 

blending the photographs of the prototypical emotional facial expressions (i.e., 100% 

emotion)  with  the  corresponding  individual’s  demonstration  of  a  neutral  expression  (0%  

emotion). In practice, the Multimorph Task requires participants to identify the 

emotional expression shown whilst the facial expression changes from a neutral to an 

emotional expression. Each trial begins with a neutral face, which gradually morphs 

through 39 stages of 450 ms each into one of the six prototypic emotional expressions 

(happiness, sadness, fear, anger, disgust, and surprise). In total there are 36 stimuli; the 

six distinct emotional expressions are each portrayed by three male and three female 

actors. The advantage of the design of the Multimorph Task is that the tool assesses 

speed of recognition (i.e., the mean number of stages required to achieve the correct 

classification of emotion), as well as the level of accuracy for the emotion at 100% 

expression. 

 

3.6.3. Affiliation Tendencies 
 

The term affiliation describes enjoying and valuing close interpersonal bonds, 

and being warm and affectionate (Depue & Collins, 1999). A distinction has been made 

between affiliation as a disposition (Depue & Morrone-Strupinsky, 2005; Hill, 1991), 

and affiliation as a set of behaviours that emerge during social interactions (Gonzaga, 

Keltner, Londahl, & Smith, 2001; Gump & Kulik, 1997; Park & Maner, 2009). A 

challenge of this distinction is that although participants may have an affiliative 

disposition, they may not have the opportunity to express affiliative behaviours during 

experimental conditions (Depue & Morrone-Strupinsky, 2005). This is important to 

consider when choosing affiliation measures. 

 

The current experiments were designed to evaluate the relationship between 

ANS function and state affiliation. As a result the current experiments required short-

term indices of affiliation tendencies. One method that can be used to measure 
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affiliation is to observe the frequency and duration of affiliation cues during social 

interactions, such as looking behaviours, smiling, and nodding (Gonzaga et al., 2001; 

Gump & Kulik, 1997). A caveat of this method is that it is open to bias, as observers 

often have to make subjective inferences whilst coding behaviours (Luxen, 2005). 

Another method that can be used to measure affiliation is affiliate–choice paradigms; 

this is where participants are asked if they would prefer to be alone or with others 

during a phase of the experiment (for example Rofé, 1984; Schachter, 1959). A 

criticism of this technique is that the paradigm involves a forced choice (i.e., alone vs. 

with others), and any given response does not capture the strength of the willingness to 

spend time with others. To overcome this, the outcome of affiliate–choice paradigms 

can be made more complex. For example participants can be given a choice of more 

than one affiliation partner, or can be asked to indicate their preference for the available 

interactions (Hill, 1991; Li, Halterman, Cason, Knight, & Maner, 2008). Although this 

method is more reliable, the number of times participants can be presented with 

plausible interaction scenarios within one experiment is limited. 

 

An alternative measure of affiliation is to ask participants to rate how much they 

want to spend time with others, or how willing they would be to form a friendship with 

others (Butler et al., 2003; Cheng & Chartrand, 2003; Park & Maner, 2009). Ratings are 

a  quick  and  easy  way  of  capturing  the  intensity  of  participants’  willingness  to  interact  

with others, and are a useful indication of affiliation tendencies when numerous 

measurements are required. In Chapter 8 participants were presented with videos of 

individuals responding to affective pictures (the Rating Faces Task, see section 8.2.2.1). 

Participants were asked to complete several rating scales, including how much time they 

would like to spend with the respondents on a seven-point scale (1 not much time to 7 a 

lot of time). This rating was averaged over a number of trials to indicate a general 

willingness to spend time with others. 

 

3.7. Overview of the Empirical Chapters 
 

To investigate the relationship between ANS function and socio-emotional 

responding in healthy adults, a series of laboratory-based experiments was conducted. 

Chapter 4 describes the effects of two stressor manipulations on ANS function and 

mood state using measures of heart rate, sweat response, high-frequency heart rate 

variability, and the Profile of Mood States – Short Form (Shacham, 1983). In Chapter 5 
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the influence of positive emotion regulation strategies on the down-regulation of arousal 

after a stressor manipulation was explored using the same measures. 

 

The subsequent empirical chapters evaluate the effect of increased SNS 

activation on socio-emotional responding. Psychophysiology was measured during all 

of the experiments, and various combinations of the self-report measures were used to 

obtain state and trait indices of emotional responding. The experiments mainly differ in 

their use of behavioural outcome measures, which were repeated in each of the 

experiments before and after a stressor manipulation designed to increase SNS 

activation. In Chapter 6 eMotion (Gevers, 2008) was used to calculate facial 

expressivity in response to an expressive regulation task (Bonanno, Papa, Lalande, 

Westphal, & Coifman, 2004); this experiment aimed to investigate the relationship 

between ANS function and expressive ability (i.e., encoding ability). In Chapter 7 the 

Multimorph Facial Affect Recognition Task (Blair et al., 2001) was used to investigate 

the relationship between increased SNS activation and emotional sensitivity (i.e., 

decoding ability). In Chapter 7 electromyography was also used to measure facial 

mimicry to further explore the relationship between SNS activation and facial 

expressivity. As a final measure of socio-emotional behaviour, in Chapter 8 participants 

completed a Rating Faces Task, which involved rating how much time they would be 

willing to spend with others. This was designed to investigate whether ANS function 

influences affiliation tendencies. As a conclusion to the thesis, a summary of the results 

and conclusions is presented in Chapter 9. 
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Chapter 4: The Psychophysiological Effects of Laboratory Stressors 
 

Environmental stimuli elicit psychological and physiological changes in the 

body. This is because the body will automatically adapt and respond to external 

demands in order to promote survival (Porges, 2009b). More often than not, challenge 

will result in down-regulation of the parasympathetic nervous system (PNS) and up-

regulation of the sympathetic nervous system (SNS), eliciting detectable changes in 

functions such as heart rate and sweat response. Laboratory stressors have been shown 

to be reliable tools for inducing arousal, a product of SNS activation (Hughes & Stoney, 

2000; Schubert et al., 2009). As well as causing physical changes, stressors are also able 

to consistently increase negative emotion (Feldman et al., 1999). The 

psychophysiological changes that arise from being stressed in a laboratory are often 

thought to parallel the changes that occur when we encounter threats in the real world 

(but see Dimsdale, 1984). Common tasks used in laboratory settings to induce arousal 

include the passive viewing of film clips and affective pictures (e.g., Gross & Levenson, 

1995; Lang, Bradley, & Cuthbert, 1999), as well as more active tasks such as mental 

arithmetic and speech tasks (Feldman, Cohen, Hamrick, & Lepore, 2004; Kirschbaum, 

Pirke, & Hellhammer, 1993). 

 

When investigating the psychophysiological sequelae of stressors, it is important 

to select an appropriate stressor manipulation. As discussed in Chapter 2, there are two 

main opposing domains of stress response: mobilisation (e.g., fight–flight behaviours 

involving the SNS) and immobilisation (e.g., fright, freeze, and faint behaviours 

involving the SNS and/or the PNS). Most laboratory stressors are associated with 

mobilisation responses; human immobilisation responses in the laboratory have 

received less attention (Schmidt, Richey, Zvolensky, & Maner, 2008). This is possibly 

because techniques have precluded the measurement of freezing responses, but may also 

be a factor of most laboratory stressors being too insignificant to initiate pure defensive 

immobilisation, particularly as the strength of laboratory stressors are limited by ethical 

constraints. As an aside, it is worth mentioning that researchers are increasingly 

investigating freeze responses in laboratory settings (Roelofs, Hagenaars, & Stins, 2010; 

Schmidt et al., 2008). 

 

The focus of the current research was to identify a stressor manipulation that can 

be used to effectively induce a mobilisation response (i.e., increase SNS activation). 
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Although both active and passive stressors have been shown to induce mobilisation 

responses in the laboratory, active stressors are more likely to elicit physiological 

changes that are stronger in intensity because they require motivated action (Obrist, 

1981; Tomaka, Blascovich, Kelsey, & Leitten, 1993). This has been demonstrated 

empirically, with active stressors resulting in more myocardial reactivity (i.e., detectable 

changes in the activity of the heart), and passive stressors eliciting more vascular 

reactivity (i.e., peripheral changes indexed by measures such as total peripheral 

resistance; Gregg, James, Matyas, & Thorsteinsson, 1999; Hartley, Ginsburg, & 

Heffner, 1999). 

 

The aim of this study was to identify a stressor manipulation that would not only 

increase SNS activation during the task, but would also cause arousal to remain elevated 

after the task. This was so the stressor manipulation could be used in the following 

empirical studies to identify strategies that target the PNS, and to investigate the social 

consequences of defensive physiological states. As mentioned in Chapter 3, laboratory 

stressors that are ecologically valid are more likely to elicit changes in physiology that 

parallel real-world responding (Dimsdale, 1984). Virtual reality and social stressors 

have both been identified as ways of increasing ecological validity in laboratory-based 

experiments (Kamarck & Lovallo, 2003; Riva et al., 2007). As a result the current 

research investigated the effects of virtual reality and social stress on changes in 

physiology. In Experiment 1, two active stressors were identified and developed: A 

virtual reality maze and a speech task. The experiment used a within subjects design to 

test the following hypothesis: 

 

Hypothesis 1. Laboratory stressors will be associated with decreased PNS activation, 

increased SNS activation, and increased negative affect. 

 

For a task to be considered an effective laboratory stressor, participants needed 

to demonstrate decreases in PNS activation (i.e., suppressed high-frequency heart rate 

variability), increases in SNS activation (i.e., increased heart rate and sweat response) 

and increases in negative affect (i.e., self-reported changes in mood state). Although 

both tasks elicited measurable changes in physiology and self-reported mood state, only 

the speech task elicited changes that were clearly consistent with a mobilisation 

response. Experiment 2 focused on refining the speech task to increase its effectiveness 

in maintaining arousal after the completion of the task.  
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4.1. Experiment 1: The Psychophysiological Effects of Active Stressors 
 

The active stressors investigated in this experiment were identified as 

ecologically valid ways of inducing stress in laboratory settings (Kamarck & Lovallo, 

2003; Riva et al., 2007). Virtual reality (VR) environments are being increasingly used 

in laboratory-based research, as they allow researchers to simulate real-life 

environments as a means of enhancing mood inductions (Riva et al., 2007). Simulated 

environments can be tailored to promote different emotional experiences, and VR has 

been utilised to induce both positive and negative emotion (Riva et al., 2007). VR has 

also been used to create stressful environments that result in defensive physiological 

arousal (Meehan, Insko, Whitton, & Brooks, 2002). Because of its success, VR is also 

being increasingly used in therapeutic practice as a component of exposure-based 

treatments, for example VR has been used to treat fear of flying (Rothbaum, Hodges, 

Smith, & Price, 2000), substance abuse (Bordnick et al., 2008; Saladin, Brady, Graap, & 

Rothbaum, 2006), and spider phobias (Garcia-Palacios, Hoffman, Carlin, Furness, & 

Botella, 2002). An advantage of VR is that the software has strict control parameters, 

resulting in standardised presentations across participants, which increases the internal 

validity of experiments (Botella, Perpiña, Baños, & García-Palacios, 1998). Combining 

VR with psychophysiological measures enables researchers to look at how the 

properties of an environment can influence participants’  subjective  experiences  as  well  

as their physiology. 

 

In contrast to VR, speech tasks are a well-established method used to induce 

stress in laboratory settings. Speech tasks became popular laboratory stressors after their 

utility was demonstrated as part of the Trier Social Stress Test (TSST; Kirschbaum et 

al., 1993). Humans are sensitive to social challenge (Gilbert, 2001) and are influenced 

by feelings of control (Isowa, Ohira, & Murashima, 2006). The social-evaluative threat 

and uncontrollability factors inherent in public speaking are thought to drive the 

psychological and physiological responses induced by speech tasks (Dickerson & 

Kemeny, 2004). Several formats of speech task exist, for example the task has been 

successfully adapted for youths, allowing the speech to be prepared beforehand 

(Westenberg et al., 2009), whilst another format of the task allow for group 

administrations  (von  Dawans,  Kirschbaum,  &  Heinrichs,  2011).  The  task’s  ability  to  

produce reliable changes in arousal and affect, even when the format is modified, 

explains why it is such a popular manipulation in stress-related research.  
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Both VR (Meehan et al., 2002) and speech tasks (Schubert et al., 2009) have 

previously been shown to elicit immediate physiological stress responses in laboratory 

settings. However, whether residual arousal remains once the tasks are terminated has 

yet to be explored. Research has shown that prior exposure to a stressor can have 

cardiovascular carryover effects (Kelsey et al., 1999), but there is less clarity on how 

residual arousal from the current stressors could affect subsequent performance on 

secondary tasks. The aims of Experiment 1 were to investigate the psychophysiological 

changes associated with each stressor task, and to evaluate arousal levels once the tasks 

had been terminated. The recovery period after the tasks was set as five minutes; this is 

because elevations in SNS activation over this duration would be sufficient to 

investigate the consequences of defensive physiological arousal in the subsequent 

studies. 

 

4.2. Method 
 

4.2.1. Participants 
 

Thirty-six undergraduate psychology students volunteered to participate in the 

study and were awarded course credits as part of their undergraduate course 

requirements. Exclusion criteria were assessed using self-report questionnaires and 

included current or past diagnoses of Axis I or II psychiatric disorders, current 

psychological or pharmacological treatment and a history of epilepsy or migraines. Five 

participants were excluded from taking part in the study: Three due to current anti-

depressant use, one due to past depression, and one due to a history of migraines; one 

participant withdrew from the study due to cybersickness during the VR maze. The final 

dataset comprises data from thirty participants (3 males, 27 females). They ranged in 

age from 18–30 with a mean age of 19.77 years (SD = 2.54). 90.0% of these 

participants identified themselves as Caucasian, 3.3% as Mixed, 3.3% as Asian, and 

3.3% as Other. 
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4.2.2. Stressor Manipulations 
 

4.2.2.1. The virtual reality maze. The VR maze was designed for this study 

using VR Worlds 2 (Psychology Software Tools Inc.). The program was used to 

simulate a series of corridors, which constituted an unsolvable maze. The maze was 

designed so participants could interact with the environment by walking around, moving 

their view to change their perspective, and were able to control opening and closing 

doors. Within the maze a guard dog was simulated and programmed to growl and 

follow the participants to encourage them to move around the maze quicker (see figure 

4.1). 

Figure 4.1. Screen shot of the virtual reality maze with the guard dog. 
 

The  VR  maze  was  presented  on  a  17”  monitor  (screen  size,  1024  x  768  pixels)  

connected to a desktop computer. Participants were told that they were going to 

experience a VR maze that they needed to try and solve by finding the exit. Instructions 

were provided on how to move around the maze using the mouse and keyboard. Once 

familiar with the controls, participants were given three minutes to solve the maze and 

were told that most people managed to find the exit within this time. Participants were 

not warned in advance of the guard dog and were given no further instructions. 

 

4.2.2.2. The speech task. The speech task was based on the procedure used by 

Schubert et al. (2009). Participants were informed that they would have to prepare and 

present a three-minute speech in which they were to argue for and against the legality of 

euthanasia (Lepore, Allen, & Evans, 1993). During a three-minute preparation period 

the participants were given a list of bullet points on the topic of euthanasia and a pen 

and paper to help prepare their speech. A video camera was prominently displayed in 
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the room and the participants were informed that they would be filmed during the 

presentation of their speech so they could be evaluated later on several criteria, e.g., 

speaking clearly. After the preparation period the participants were instructed to present 

their speech to the video camera for three minutes. If the participants stopped talking 

before the end of the three minutes, they were asked to continue talking by summarizing 

the main points. 

 

4.2.3. Performance Ratings 
 

4.2.3.1. Post-task questionnaire. At the end of each stressor task participants 

were asked to rate their performance on three nine-point Likert scales (1 not at all true 

to 9 very true). For the VR maze participants were asked to rate themselves on the 

following statements: I felt fully engrossed in the virtual reality environment, I thought 

the virtual reality environment was realistic, and I felt nervous during the maze. For the 

speech task participants rated themselves on the following statements: I felt as though I 

had enough time to prepare my speech, I felt my performance was satisfactory, and I 

felt nervous during the speech. 

 

4.2.4. Procedure 
 

Participants attended a single testing session in an air-conditioned, sound 

attenuated room. After obtaining written consent participants completed the 

demographic screening questionnaire (see section 3.5.1) and the Hospital Anxiety and 

Depression Scales (HADS; Zigmond & Snaith, 1983, see section 3.5.3). After the 

questionnaires were completed electrodes for recording heart rate (HR) and skin 

conductance levels (SCL) were applied following standard procedures (see section 

3.4.4). Recording HR allowed for the calculation of heart rate variability (HRV, see 

section 3.4.3). A five-minute baseline recording was carried out during which the 

participants were asked to sit quietly. After these five minutes participants completed 

the Profile of Mood States – Short Form (POMS-SF; Shacham, 1983, see section 3.5.2) 

to assess their current mood state. Instructions were then given for one of the stressors: 

the virtual reality maze or the speech task. The order of the virtual reality task and 

speech task was counterbalanced across participants. Each stressor manipulation was 

followed by a five-minute recovery period and re-administration of the POMS-SF. For 

each stressor task participants also completed a post-task questionnaire rating their 
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performance. Once the participants had completed the post-task questionnaire the 

second stressor manipulation was carried out, with the POMS-SF administered pre- and 

post-stressor again. A flowchart diagram of the laboratory stressors procedure can be 

found in appendix 10. 

 

4.3. Results 
 

4.3.1. Statistical Analyses 
 

For the statistical analyses PSAW Statistics (version 18.0.2, SPSS Inc., Chicago 

IL) was used, with the alpha set to .05. The dependent variables were examined for 

normality of distribution using histograms and Kolmogorov–Smirnov tests. To identify 

potential covariates, the relationships between potential confounds (i.e., age, ethnicity, 

sex, anxiety and depression scores) and the dependent variables (i.e., HR, SCL, HF-

HRV, and the POMS-SF) were examined. Correlations revealed no significant 

associations between age, ethnicity, sex, self-reported anxiety (M = 7.87, SD = 3.93) or 

self-reported depression symptoms (M = 3.87, SD = 3.56) with any of the dependent 

variables (all ps < .10). Thus, no demographic covariates were included in analyses. 

 

Mean HR and SCL values were calculated for the baseline periods and each 

minute of the stressor manipulations. High-frequency heart rate variability (HF-HRV) 

was also calculated using the HR data (see section 3.4.3); as HRV is more reliable when 

calculated over larger windows of time (i.e., at least 10 cycles of the target rhythm; 

Berntson et al., 1997), HF-HRV was calculated using data from three minutes of the 

baseline periods, as well as the three-minute stressor manipulation tasks. It should be 

noted that HF-HRV during the presentation period of the speech task was not calculated 

due to the known effects of respiratory changes on HRV indices (Beda, Jandre, Phillips, 

Giannella-Neto, & Simpson, 2007; Tininenko, Measelle, Ablow, High, 2012). Analyses 

were performed to establish if there were any baseline differences between the stressor 

manipulations. Analyses of variance (ANOVAs) with the physiological data from the 

baseline periods (HR, SCL, and HF-HRV) as the dependent variables revealed no 

differences in physiology across the baseline periods (all ps > .10). A separate ANOVA 

with the POMS-SF data for the baseline periods also failed to reveal any significant 

baseline differences between the stressor manipulations (all ps > .10). 
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The first main group of analyses investigated the physiological changes 

associated with each of the stressor manipulations. To evaluate reactivity within each 

stressor manipulation, repeated-measures ANOVAs (with the repeated factor: Time) 

were carried out using the raw HR, SCL, and HF-HRV data. Then, as the baseline 

physiological variables did not differ across the stressor manipulations, reactivity scores 

(differences from baseline) were used to evaluate differences in reactivity between the 

stressor manipulations. Reactivity scores were calculated for HR and SCL by 

subtracting the data for the last minute of each pre-task baseline period from the data for 

each minute of the corresponding stressor manipulation period; reactivity for HF-HRV 

was calculated using the complete three-minute data for these periods (Kamarck et al., 

1992; Llabre, Spitzer, Saab, Ironson, & Schneiderman, 1991). Repeated-measures 

ANOVAs (with the repeated factor: Task) were performed on the reactivity scores for 

HR, SCL, and HF-HRV with the Huynh-Feldt degrees of freedom correction applied 

where necessary (i.e., when factors violated sphericity assumptions, as confirmed by 

Mauchly’s  tests).  Significant main effects were followed up by pairwise comparisons, 

and interactions were examined through analyses of simple effects. All pairwise 

contrasts were evaluated using Bonferroni critical values of .05. To investigate whether 

changes in ANS function were related to changes in self-reported emotion, correlations 

were carried out between the mean HR, SCL, and HF-HRV reactivity scores and the 

mean POMS-SF reactivity scores. No significant relationships were revealed within the 

virtual reality maze data or the speech task data. 

 

A second main group of analyses investigated the effects of each stressor 

manipulation on self-reported affect. Repeated-measures ANOVAs (with the repeated 

factors: Time and Scale) were used to identify significant changes in the POMS-SF 

subscales within each of the stressor manipulations. As a further investigation into the 

effects of each stressor manipulation, descriptive analyses were also carried out on the 

post-task questionnaire data. Similar to the physiological data, a repeated-measures 

ANOVA (with the repeated factors: Task and Scale) was carried out using POMS-SF 

reactivity scores (differences from baseline) to evaluate differences in reactivity 

between the stressor manipulations. 

 

The third main group of analyses evaluated physiological return to baseline after 

the stressor manipulations. Recovery scores were calculated for HR and SCL by 

subtracting the data for each minute of the recovery period from the last minute of each 



CHAPTER 4: LABORATORY STRESSORS 92 
 

stressor manipulation period (some researchers prefer to use residualised change scores 

for recovery, however Llabre et al., 1991 suggest this is not necessary in many cases). 

Repeated-measures ANOVAs (with the repeated factor: Time) were performed on the 

recovery scores for HR and SCL to investigate how the physiological variables changed 

over the course of the recovery period. Again the Huynh-Feldt correction was applied 

where necessary. Paired t-tests using the raw physiological data were also used to 

compare each minute of the recovery period with the baseline period to establish if 

participants returned to physiological baseline after each task. To investigate recovery 

effects on HRV, HF-HRV power during the recovery period was compared to baseline 

HF-HRV power for each stressor manipulation using repeated-measures ANOVAs 

(with the repeated factor: Task); the baseline period was used as the comparison period 

rather than the stressor manipulation because HF-HRV was not calculated during the 

presentation period of the speech. 

 

4.3.2. Physiological Reactivity to the Stressor Manipulations 
 

The first set of analyses was conducted to test the hypothesis that the stressor 

manipulations would be associated with decreased PNS activation and increased SNS 

activation: 

 

4.3.2.1. The virtual reality maze. As shown in table 4.1, the VR maze resulted 

in initial changes in HR and SCL, but these were not sustained for the duration of the 

task. Repeated-measures ANOVAs for HR and SCL were performed for each minute of 

the VR maze to determine the effects of the stressor over time. A repeated-measures 

ANOVA comparing baseline and the three one-minute sections of the VR maze for the 

HR data found a significant effect of Time, F(2.60, 75.32) = 3.85, p = .017. Linear 

contrasts revealed that the decrease in HR from baseline was only significant for the 

first minute, F(1, 29) = 4.84, p = .036. A second repeated-measures ANOVA was 

performed on the SCL data which also revealed a significant effect of Time, F(1.26, 

36.59) = 6.85, p = .009. A linear contrast revealed that the increase in SCL from 

baseline was again only significant for the first minute, F(1, 29) = 13.43, p = .001. HF-

HRV power was calculated for baseline and the full duration of the VR maze. A 

repeated-measures ANOVA revealed that HF-HRV power was significantly lower 

during the VR maze than during the baseline period, F(1, 29) = 4.69, p = .039.
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Table 4.1 

Effects of the stressor manipulations on heart rate, skin conductance level, and high-frequency heart rate variability. 
 Pre-task Baseline Stressor Manipulation Period F df p 
  1st min 2nd min 3rd min 4th min 5th min 6th min (time)   

VR Maze Task           
HR (bpm) 76.11 (10.20) 74.00 (9.89)* 74.68 (8.77) 76.15 (8.89) --- --- --- 3.85 2.60, 75.32 .017 
SCL (µS) 2.71 (3.06) 3.62 (2.51)* 3.20 (2.17) 3.03 (2.06) --- --- --- 6.85 1.26, 36.59 .009 
HF-HRV (ms2) 7.24 (1.18) 6.91 (0.74)*  4.69 1, 29 .039 
         

Speech Task         

HR (bpm) 77.05 (9.71) 87.25 
(11.15)*** 

86.68 
(13.28)*** 

87.04 
(11.19)*** 

96.47 
(11.30)*** 

87.62 
(9.21)*** 

85.44 
(9.43)*** 29.56 3.35, 93.69 .001 

SCL (µS) 1.78 (1.26) 3.98 (2.32)*** 3.69 (1.98)*** 3.64 (2.07)*** 4.87 (3.03)*** 4.57 
(2.89)*** 

4.51 
(2.95)*** 23.63 1.92, 55.64 .001 

HF-HRV (ms2) 6.98 (1.02) 6.71 (1.02)** --- 7.60 1, 29 .010 
Note. Standard deviations are reported in parentheses. HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
Significant difference from baseline * p < .05, ** p < .01, ***p < .001 



CHAPTER 4: LABORATORY STRESSORS 94 
 

4.3.2.2. The speech task. The speech task resulted in noticeable increases in HR 

and SCL (as shown in table 4.1). A repeated-measures ANOVA comparing baseline and 

the one-minute sections of the speech task for HR found a significant effect of Time, 

F(3.35, 93.69) = 29.56, p < .001. Linear contrasts revealed that HR was significantly 

higher than baseline throughout all time periods of the speech task (significant at the p < 

.001 level). A repeated-measures ANOVA was performed on the SCL data which also 

revealed a significant effect of Time, F(1.92, 55.64) = 23.63, p < .001. Linear contrasts 

revealed that SCL was also significantly higher than baseline throughout all time 

periods of the speech task (significant at the p < .001 level). In addition to the changes 

in HR and SCL, a repeated-measures ANOVA revealed a significant decrease in the 

HF-HRV power band during the preparation period of the speech task, F(1, 29) = 7.60, 

p = .010 (HF-HRV during the speech was not analysed). It is worth mentioning that 

although arousal peaked during the presentation period of the speech, the HR and SCL 

data both show gradual declines across the final three minutes of the task. This is an 

important factor to consider when evaluating recovery after the task. 

 

4.3.2.3. Comparison of the stressor manipulations. Repeated-measures 

ANOVAs using HR and SCL reactivity scores were used to compare the effects of the 

stressor manipulations on increases in physiology from baseline. To equate for 

differences in the duration of the stressor manipulations, the VR maze was only 

compared to the preparation period of the speech task. For HR reactivity, there were 

significant main effects of Task, F(1, 29) = 20.22, p < .001, and Time, F(1, 29) = 21.84, 

p < .001, and a significant interaction effect of Task x Time, F(1, 29) = 43.86, p < .001. 

Bonferroni pairwise comparisons confirmed that HR significantly increased during the 

preparation phase of the speech task, but significantly decreased during the VR maze 

task (significant at p < .05). For SCL reactivity, there was also a significant main effect 

of Time, F(1, 29) = 71.91, p < .001, and a significant interaction effect of Task x Time, 

F(1, 29) = 10.37, p = .003. Bonferroni pairwise comparisons revealed that although 

SCL increased during both stressor manipulations, the increase in SCL was significantly 

higher during the preparation phase of the speech task than during the VR maze task 

(significant at p < .05). Taken together the HR and SCL reactivity scores indicate that 

the speech task was more arousing than the VR maze. Despite these effects, a repeated-

measures ANOVA failed to reveal any significant differences in HF-HRV reactivity 

across the stressor manipulations; both tasks resulted in significant decreases in HF-

HRV.
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Table 4.2. 

Mean scores for the POMS-SF subscales before and after each stressor manipulation 
 VR Maze Speech Task F df p 
 Before After Before After (time x task)   

Depression–Dejection  1.60 (3.16) 1.67 (3.30) 1.67 (3.80) 2.57 (4.12) 1.82 1, 29 .188 
Vigour–Activity 6.00 (3.44) 4.50 (3.13)* 5.30 (3.97) 4.60 (3.18) 0.84 1, 29 .367 
Anger–Hostility 1.03 (2.33) 1.07 (1.91) 0.97 (1.90) 1.83 (3.66) 1.49 1, 29 .232 
Tension–Anxiety 3.23 (2.19) 3.37 (3.33) 2.70 (2.52) 5.10 (3.67)*** 7.03 1, 29 .013 
Confusion–Bewilderment 1.93 (1.64) 2.43 (2.27) 2.10 (1.90) 2.70 (2.35) 0.75 1, 29 .859 
Fatigue–Inertia 3.27 (3.32) 3.70 (3.14) 4.07 (3.22) 3.47 (3.33) 2.41 1, 29 .131 

Note. Standard deviations are reported in parentheses. 
Significant change from baseline * p < .05, ***p < .001 
 

Table 4.3. 

Mean recovery scores (recovery period – stressor manipulation) for heart rate and skin conductance level during the five-minute recovery period after 
each stressor manipulation 

 Recovery Period F df p 
 1st min 2nd min 3rd min 4th min 5th min (time)   
Maze Task         
HR Recovery 1.03 (4.08) -0.24 (3.62) 0.43 (4.44) -0.62 (3.92) -0.56 (5.11) 2.19 3.95, 114.56 .076 
SCL Recovery 0.27 (0.50) 0.02 (0.64) -0.12 (0.61) -0.20 (0.62) -0.29 (0.58) 15.00  2.17, 63.06 .001 
         

Speech Presentation         
HR Recovery -5.87 (7.38) -9.84 (7.16) -9.31 (6.44) -9.19 (7.29) -9.88 (7.95) 9.28 2.54, 73.54 .001 
SCL Recovery -0.27 (0.36) -0.75 (0.69) -1.07 (1.04) -1.24 (1.13) -1.41 (1.29) 23.80 1.43, 41.57 .001 

Note. Standard deviations are reported in parentheses. HR = heart rate; SCL = skin conductance level. 
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4.3.3. Mood Effects of the Stressor Manipulations 
 

The second set of analyses was carried out to evaluate the hypothesis that the 

stressor manipulations would be associated with increased self-reported negative affect: 

 

4.3.3.1. The virtual reality maze. A repeated-measures ANOVA with the 

POMS-SF data for the VR maze revealed a significant main effect of Scale, F(4.10, 

118.78) = 15.93, p < .001, and a significant Scale x Time interaction, F(3.52, 343.28) = 

3.41, p = .015. Paired t-tests revealed that the only significant change related to the VR 

maze was a decrease in the vigour–activity scale, t(29) = 2.37, p = .025 (see table 4.2). 

Descriptive analyses on the post-task questionnaire data (scales ranging from 1 not at 

all true, to 9 very true) revealed that although participants felt moderately engrossed in 

the virtual reality environment (M = 4.59, SD = 2.16), the maze did not make 

participants feel overly nervous (M = 3.86, SD = 2.24) and did not come across as 

realistic (M = 2.83, SD = 1.85). 

 

4.3.3.2. The speech task. A repeated-measures ANOVA with the POMS-SF 

data for the speech task revealed a significant main effect of Scale, F(3.93, 114.04) = 

8.03, p < .001, and a significant Scale x Time interaction, F(3.76, 108.89) = 4.45, p = 

.003. Paired t-tests revealed a significant increase in the POMS-SF tension–anxiety 

subscale after the speech task, t(29) = -4.19, p < .001 (see table 4.2). In addition to this, 

the post-task questionnaire (scales ranging from 1 not at all true, to 9 very true) 

revealed that the speech task made the participants feel reasonably nervous (M = 6.13, 

SD = 2.37). The other post-task ratings demonstrated that the participants felt like they 

did not have enough time to prepare for the speech (M = 3.83, SD = 2.38), however 

they were moderately satisfied with their performance (M = 4.47, SD = 2.08). 

 

4.3.3.3. Comparison of stressor manipulations. A repeated-measures ANOVA 

using reactivity scores for the POMS-SF data was used to compare the effect of the 

stressor manipulations on changes in self-reported mood. The analysis found a 

significant main effect of Scale, F(3.43, 99.56) = 5.23, p < .001, and a significant Scale 

x Task interaction, F(3.25, 94.32) = 3.24, p = .023. Paired t-tests revealed that the only 

significant difference in the POMS-SF reactivity scores between the stressor 

manipulations was for the tension–anxiety scale, with the speech task demonstrating 

greater change than the VR maze, t(29) = 2.65, p = .013. In addition to this, a paired t-
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test on the post-task questionnaire ratings confirmed that participants reported feeling 

significantly more nervous during the speech task (M = 6.13, SD = 2.37) than the VR 

maze (M = 3.86, SD = 2.24), t(29) = 3.49, p = .002. 

 

4.3.4. Recovery from the Stressor Manipulations 
 

The final set of analyses was carried out to investigate the levels of arousal 

remaining after the completion of each stressor task. Recovery scores were used to 

investigate physiological changes within each of the stressor manipulations. 

Comparisons were not made across the tasks, as the stressor manipulations did not 

result in equivalent changes in physiological arousal. 

 

4.3.4.1. The virtual reality maze. At the end of the VR maze, the physiological 

indices were not significantly different from baseline; however the five-minute recovery 

period was still investigated for recovery effects (see table 4.3). A repeated-measures 

ANOVA on the HR recovery scores for the VR maze did not find a significant effect of 

Time, suggesting that HR remained stable during the recovery period. Paired t-tests on 

the raw HR data confirmed that HR was not significantly different from baseline during 

the five minutes following the VR maze. In contrast to this, a significant effect of Time 

was found for the SCL recovery scores, F(2.17, 63.06) = 15.00, p < .001. Paired t-tests 

using the raw SCL data confirmed that SCL was significantly higher than baseline 

during the first minute of the recovery period, t(29) = -2.16, p = .039, but only during 

this epoch. A repeated-measures ANOVA failed to find any differences between HF-

HRV power during the recovery period (M = 7.18, SD = 0.84) and the baseline period 

for the VR maze (M = 7.24, SD = 1.18). 

 

4.3.4.2. The speech task. As mentioned previously, the HR and SCL data were 

already exhibiting reductions during the presentation period of the speech, indicating 

that arousal levels were falling in advance of the recovery period. A repeated-measures 

ANOVA using the HR recovery scores for the speech task revealed a significant effect 

of Time, F(2.54, 73.54) = 9.28, p < .001 (see table 4.3). Paired t-tests using the raw HR 

data confirmed that HR was significantly higher than baseline during the first minute of 

the recovery period, t(29) = -2.37, p = .025, but was not significantly different during 

the remaining four minutes. The recovery for SCL was more linear, with SCL showing 

a general decline across the whole five-minute recovery period. A repeated-measures 
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ANOVA confirmed that the effect of Time was significant for SCL recovery, F(1.43, 

41.57) = 23.80, p < .001. Paired t-tests using the raw SCL data revealed that SCL 

remained significantly higher than baseline during the whole five-minute recovery 

period (smallest t = 3.77, largest p = .001). In addition to the HR and SCL effects, HF-

HRV was significantly higher during the recovery period (M = 7.44, SD = 0.93) than it 

had been at baseline for the speech task (M = 6.98, SD = 1.02), F(1, 29) = 29.30, p < 

.001. 

 

4.4. Discussion 
 

Experiment 1 was designed to demonstrate the psychophysiological effects of 

two active stressors. The stressor manipulations were evaluated for their effects on 

physiological reactivity, changes in mood state, and physiological recovery. 

 

4.4.1. Physiological Reactivity 
 

Rather than inducing a mobilisation response, the VR maze was found to initiate 

a response associated with orienting and sustained attention (reduced HR, increased 

SCL, and reduced HF-HRV; Bradley, Codispoti, Cuthbert, & Lang, 2001). This profile 

is more consistent with a response that is represented by co-activation of the SNS and 

PNS. Contrastingly, the speech task induced increases in HR and SCL, accompanied by 

a decrease in HF-HRV. These physiological changes were maintained throughout both 

the preparation and presentation periods of the speech task. This profile of response is 

consistent with previous research evaluating the effects of speech task paradigms, and 

suggests that speech tasks are able to induce up-regulation of the SNS coupled with 

down-regulation of the PNS (i.e., induce a defensive mobilisation response; Feldman et 

al., 2004; Kirschbaum et al., 1993). Consequently only the speech task upheld the 

hypothesis that laboratory stressors would be associated with decreased PNS activation 

and increased SNS activation. 

 

4.4.2. Changes in Mood State 
 

Both tasks initiated changes in mood state that are normally indicative of 

increased negative affect (McNair, Lorr, & Droppleman, 1971; Shacham, 1983). Whilst 

the VR task was associated with a significant reduction in the vigour–activity subscale 
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of the POMS-SF, the speech task was associated with a significant increase in the 

tension–anxiety subscale. Analyses comparing the effects of the stressor manipulations 

revealed that the speech task was associated with significantly larger changes in mood 

state than the VR maze. Taken together, the findings of this experiment suggest that the 

speech task is a valid laboratory stressor, as it initiates changes in both physiology and 

subjective mood state. 

 

4.4.3. Physiological Recovery 
 

As the VR maze did not result in sustained changes in physiology during the 

stressor manipulation period, it was expected that the physiological indices would not 

be significantly different from baseline during the recovery period. This was supported 

by the analyses of the recovery data. A disparate pattern of physiological reactivity and 

recovery was seen with the speech task. The speech task induced physiological changes 

associated with the fight–flight response (withdrawal of the PNS and activation of the 

SNS). The observed increases in physiological arousal were accompanied by increased 

self-reports of tension and anxiety (as measured by the POMS-SF). Although the speech 

task was successful at inducing an initial mobilisation response, further analyses 

revealed that the increase in HR caused by the speech task did not remain significantly 

above baseline once the task was terminated. SCL increases were maintained, but 

showed a steady decline over the five-minute recovery period; this suggests that the 

SNS was less active during this time. HF-HRV also demonstrated a significant increase 

during the recovery period; this is indicative of increased PNS activation. 

 

A potential motivator behind the return to baseline after the speech task could be 

the body simply adapting to the stressor. Reactivity to acute stressors tends to peak early 

during the initial presentation of a task, when novelty and uncertainty are greatest 

(Kelsey  et  al.,  1999).  As  mentioned  in  Chapter  2,  shifts  away  from  the  body’s  normal  

physiological balance will initiate processes to return the body to a state of homeostasis 

(Jänig, 2006); hence up-regulation of the SNS during a stressor will usually be followed 

by increased activation of the PNS. A second factor that may have prompted the 

physiological return to baseline is inherent to the presentation period of the speech task; 

the majority of participants rated that they were moderately satisfied with their 

performance, an appraisal that may have helped them to down-regulate their response to 

the task. In addition to this, the completion of the speech may have prompted 
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participants to actively engage in self-regulation to reduce any remaining arousal from 

the task. The increase observed in HF-HRV would be consistent with this inference, as 

this measure has been linked to self-regulatory effort (Segerstrom & Solberg Nes, 

2007). Regardless of the mechanism behind the return to baseline, the decrease in 

arousal seen during the presentation period and subsequent recovery period limits the 

use of the speech task as a stressor in the remaining studies. 

 

4.5. Experiment 2: Speech Task Anticipation 
 

Experiment 1 demonstrated the utility of a speech task in initiating a 

mobilisation response. As mentioned in the previous experiment, the speech task was 

limited in its ability to maintain arousal levels significantly above baseline once the task 

had ended. The speech task in its current format is therefore limited in its use as a 

manipulation to investigate how arousal influences socio-emotional responding. In the 

first instance, the speech task cannot be used to investigate the effectiveness of emotion 

regulation strategies in reducing arousal (Chapter 5): Administering interventions 

designed to facilitate recovery from stress need to have residual arousal to down-

regulate; otherwise  their  effects  may  be  confounded  with  the  body’s  normal  return  to  

baseline. In the second instance, the current thesis is interested in the effect of defensive 

physiological states on facial expressivity (Chapter 6), emotional sensitivity (Chapter 7), 

and social affiliation tendencies (Chapter 8). In order to elucidate the effects of SNS 

activation on socio-emotional responding participants need to remain in defensive 

physiological states during measures of these competencies; the proposed designs for 

the subsequent experiments require a stressor that has carryover effects in terms of 

arousal. 

 

One way to overcome the limitations of the speech task could be to use the 

preparation period of the task more effectively. It has been documented that the 

preparation period before giving a speech can significantly increase arousal (as shown 

in Experiment 1, see also Feldman, Cohen, Hamrick, & Lepore, 2004; and Waugh et al., 

2010). Research has shown that anticipation of a stressor can elicit a similar stress 

response to that caused by an actual stressor (Brosschot, Pieper, & Thayer, 2005; 

Waugh et al., 2010). It has also been shown that the physiological changes that arise 

during anticipation of a stressor may persist longer than the stressor itself (Gregg et al., 

1999). Studies have used the preparation component of speech tasks when investigating 
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differences between high and low anxious individuals, as these populations only tend to 

show measurable differences when under threat/challenge (for example Garner, Mogg, 

& Bradley, 2006; and Mansell, Clark, Ehlers, & Chen, 1999). Despite using the 

preparation component of speech tasks as a stressor manipulation, only behavioural 

outcomes have been reported in these studies; investigators have yet to report on how 

well defensive arousal is maintained during the secondary tasks in these populations. 

 

The aim of Experiment 2 was to explore the potential use of a short anticipation 

period before the speech presentation. A between subjects design was used to compare 

the physiological recovery of a group of participants anticipating the speech 

presentation (n = 20), to the physiological recovery of the speech group (n = 30) from 

Experiment 1. It was hypothesised that arousal levels would remain elevated for longer 

in the group where the five-minute rest period was undertaken before presenting the 

speech (anticipation), in comparison to the group where the five-minute rest period was 

taken after presenting the speech (recovery: as in Experiment 1). The assumption 

underlying this hypothesis  is  that  participants’  initial  arousal  levels  are  linked  to  the  

anticipation of the speech, not the physical presentation of the speech. 

 

4.6. Method 
 

4.6.1. Participants 
 

Twenty different undergraduate students (6 males, 14 females) participated in 

Experiment 2 (anticipation group). They ranged in age from 18–35 with a mean age of 

21.55 years (SD = 5.37). Participants were awarded course credits as part of their 

undergraduate course requirements. 95% of these participants identified themselves as 

Caucasian and 5% as Other. Exclusion criteria were the same as Experiment 1. The data 

collected from the original speech task in Experiment 1 (recovery group, n = 30: 3 

males, 27 females; mean age = 19.77, SD = 2.54) was used as comparison data. 

 

4.6.2. Procedure 
 

The procedure was similar to that in Experiment 1, except for a change in the 

design of the speech task. After completing the consent form, the demographic 

screening questionnaire (see section 3.5.1) and the HADS (Zigmond & Snaith, 1983, 
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see section 3.5.3), electrodes for recording HR and SCL were applied (see section 3.4.4) 

and a five-minute baseline recording was carried out. Participants then completed the 

POMS-SF (Shacham, 1983; see section 3.5.2) and were given instructions for the 

speech task. The three-minute preparation period of the speech task was carried out as 

before (as in Schubert et al., 2009; see section 4.2.2.2), but after the preparation period 

the pen and paper were taken away and the participants were asked to rest quietly for 

five minutes before presenting their speech (five-minute anticipation period). After the 

anticipation period the participants completed a second POMS-SF and were then 

instructed to present their speech to the video camera for three minutes. A flowchart 

diagram of the speech task anticipation procedure can be found in appendix 11. 

 

4.7. Results 
 

4.7.1. Statistical Analyses 
 

The analyses are similar to those from Experiment 1. The dependent variables 

were examined for normality of distribution using histograms and Kolmogorov–

Smirnov tests. In addition to this the relationship between potential confounds and the 

dependent variables were examined. Bivariate correlations revealed a significant 

relationship between self-reported depression symptoms (M = 3.75, SD = 2.94) and 

baseline SCL (r = -.47, p = .035). Correlations revealed no other significant associations 

between age, ethnicity, sex, or self-reported anxiety symptoms (M = 8.25, SD = 3.40) 

with any of the dependent variables (all ps < .10). Due to the relationship between the 

HADS depression score and baseline SCL, analyses with the SCL data were repeated 

with the HADS depression score (HADS-D) as a covariate. 

 

As in Experiment 1 mean HR and SCL values were calculated for the baseline 

period and each minute of the speech task. HF-HRV was also calculated for the baseline 

period and speech task preparation period (see section 3.4.3). Basic analyses were first 

performed to establish if there were any baseline differences between the anticipation 

group and the recovery group. The groups did not significantly differ in terms of sex, 

ethnicity, self-reported anxiety or self-reported depression symptoms, however the 

anticipation group were significantly older (mean age 21.55 years) than the recovery 

group (mean age 19.77 years), t(48) = -1.58, p = .007. Due to significant differences in 

age between the two samples, analyses that compared the groups were repeated with 
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Age entered as a covariate. Univariate ANOVAs did not reveal any significant 

differences between the groups for HR, SCL, HF-HRV, the POMS-SF subscales, or the 

HADS subscales at baseline. The raw physiological data for the anticipation group is 

shown in table 4.4; the POMS-SF data can be found in table 4.5. 

 

The first main set of analyses carried out in the current experiment was to 

investigate whether the groups exhibited equivalent responses to the speech task 

preparation period. Repeated-measures ANOVAs were carried out using the raw HR, 

SCL, HF-HRV, and POMS-SF data from the anticipation group to evaluate within 

group changes. Then, as in Experiment 1, reactivity scores were calculated for the HR, 

SCL, HF-HRV, and the POMS-SF data. Mixed-factorial ANOVAs (with the repeated-

measures factor Time; and between subjects factor Group) were carried out to compare 

the  anticipation  group’s  reactivity  scores  with  the  reactivity  scores  of  the  recovery  

group. The analyses were repeated with Age as a covariate; however inclusion of this 

factor did not affect the reported findings. To investigate whether changes in ANS 

function were related to changes in self-reported emotion, correlations were carried out 

between the mean HR, SCL, and HF-HRV reactivity scores and the mean POMS-SF 

reactivity scores. Positive relationships were identified between HR reactivity and 

changes in the POMS-SF confusion–bewilderment subscale (r = .48, p = .031) and SCL 

reactivity and the changes in POMS-SF vigour–activity subscale (r = .58, p = .008). The 

directions of these relationships suggest that larger increases in SNS activation were 

associated with greater negative affect. In addition to this, negative relationships were 

revealed between HF-HRV reactivity and the POMS-SF tension–anxiety subscale (r = -

.65, p = .008) and the POMS-SF confusion–bewilderment subscale (r = -.52, p = .018), 

suggesting that larger decreases in PNS activation were also associated with larger 

increases in indices of negative affect. 

 

The second set of main analyses was carried out to evaluate group differences in 

physiological recovery. Recovery scores for each minute of the recovery period were 

calculated for HR and SCL; for the anticipation group difference scores were calculated 

using the last minute of the preparation period, as opposed to the presentation period as 

in Experiment 1. Recovery scores for HF-HRV were also calculated by subtracting 

baseline HF-HRV from the recovery period HF-HRV. Mixed-factorial ANOVAs (with 

the repeated-measures factor Time; and between subjects factor Group) were carried out 

to  compare  the  groups’  recovery  from  the speech tasks.  
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4.7.2. Reactivity to the Speech Tasks 
 

4.7.2.1. Reactivity in the anticipation group. First, analyses were carried out 

to confirm that the participants in the anticipation group reacted to the speech task (see 

table 4.4). A repeated-measures  ANOVA  on  the  anticipation  group’s  HR  data,  

comparing the three one-minute sections of the preparation period with baseline found a 

significant effect of Time, F(1.81, 86.77) = 41.44, p < .001. Linear contrasts confirmed 

that HR was significantly higher than baseline throughout the preparation period 

(significant at the p = .003 level). A repeated-measures ANOVA was also performed on 

the SCL data revealing a significant effect of Time, F(1.79, 34.08) = 54.07, p < .001. 

Linear contrasts confirmed that SCL was also significantly higher than baseline 

throughout the preparation period (significant at the p < .001 level). These effects 

remained significant when the HADS-D was entered as a covariate. In addition to these 

changes, a repeated-measures ANOVA revealed a significant decrease in the HF-HRV 

power band during the preparation period of the adapted speech task, F(1, 19) = 11.52, 

p = .003. 

 

In addition to the physiological measures, a repeated-measures ANOVA on the 

POMS-SF data revealed significant main effects of Time, F(1, 19) = 4.58, p = .046, and 

Scale, F(2.86, 54.23) = 7.42, p < .001, along with a significant Scale x Time interaction, 

F(4.35, 82.64) = 7.91, p < .001. Paired t-tests confirmed that the anticipation group only 

exhibited a significant change in the tension–anxiety subscale, t(19) = -4.42, p < .001; 

see table 4.5. 
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Table 4.4. 

Mean effects of the adapted speech task on heart rate, skin conductance level, and high-frequency heart rate variability. 
 Baseline Speech Preparation period F df p 
  1st min 2nd min 3rd min (time)   

HR (bpm) 78.74 (9.85) 91.78 (12.43)*** 90.26 (14.16)** 89.30 (13.23)** 41.44 1.81, 86.77 .001 
SCL (µS) 1.43 (1.04) 3.46 (1.89)*** 3.26 (1.58)*** 3.24 (1.56)*** 54.07 1.79, 34.08 .001 
HF-HRV (ms2) 7.27 (1.07) 6.52 (1.08) 11.52 1, 19 .003 

Note. Standard deviations are reported in parentheses. HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
Significant difference from baseline ** p < .01, ***p < .001 

 

Table 4.5. 

Mean scores for the POMS-SF subscales before and after the anticipation period 
 Speech Task Anticipation t df p 
 Before After    
Depression–Dejection  2.40 (4.33) 4.20 (5.20) -1.49 19 .154 
Vigour–Activity 5.80 (3.69) 5.50 (3.33) 0.55 19 .587 
Anger–Hostility 1.45 (1.82) 2.90 (4.72) -1.39 19 .180 
Tension–Anxiety 3.80 (2.78) 8.90 (5.96)*** -4.44 19 .001 
Confusion–Bewilderment 2.90 (2.83) 4.25 (4.40) -1.50 19 .151 
Fatigue–Inertia 4.25 (2.83) 3.30 (3.01) 1.30 19 .209 

Note. Standard deviations are reported in parentheses. 
Significant difference from baseline ***p < .001 
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4.7.2.2. Group differences in reactivity. To establish whether the speech tasks 

induced a similar level of arousal during the preparation period in the anticipation and 

recovery groups, mixed-factorial ANOVAs were performed on the reactivity scores for 

HR and SCL. A univariate ANOVA was also performed using the HF-HRV reactivity 

score. No significant differences were found suggesting that both groups found the 

preparation period equally stressful. These analyses remained insignificant when Age 

and the HADS-D scores were entered as covariates. In addition to the physiological 

indices, a repeated-measures ANOVA using reactivity scores for the POMS-SF data 

was used to evaluate group differences in changes in self-reported mood. The analysis 

found a significant main effect of Scale, F(2.90, 138.96) = 12.30, p < .001. Both groups 

demonstrated significant increases in the POMS-SF anxiety–tension subscale 

(significant at the p < .001 level), but not the other scales. No main effects or 

interactions were found involving Group suggesting that the groups experienced 

equivalent changes in mood state. 

 

4.7.3. Physiological Recovery from the Speech Tasks 
 

Comparisons were made between the five-minute rest period of the adapted 

speech task (anticipation: completed before the presentation period) and the five-minute 

rest period of the original speech task (recovery: completed after the presentation 

period). As in Experiment 1, recovery scores were used to investigate the changes in 

arousal during the rest periods. No adjustments were made for baselines in these 

analyses, because univariate ANOVAs revealed comparable physiological baselines for 

each of the speech tasks: The physiological indices for the last minute of preparation in 

the anticipation group were not significantly different from the physiological indices for 

the last minute of the presentation in the recovery group (all ps > .05). 

 

A repeated-measures ANOVA on the HR recovery scores revealed significant 

main effects of Time F(2.81, 134.82) = 16.86, p < .001, and Group, F(1, 48) = 4.08, p = 

.049. Both groups demonstrated decreases in HR across the rest periods (as shown in 

figure 4.2), but the recovery group demonstrated a significantly larger decrease than the 

anticipation group (confirmed by Bonferroni pairwise comparisons, p < .05). Paired t-

tests with the raw HR data revealed that HR in the recovery group only remained 

significantly above baseline for the first minute of the rest period (p = .023), whereas 

HR in the anticipation group remained significantly above baseline throughout the 
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whole rest period (significant to at least p = 0.13). When the ANOVA was repeated with 

Age as a covariate the main effects remained significant. 

 

 
Figure 4.2. Mean heart rate recovery scores for each minute of the anticipation/recovery 
period for the recovery group (original speech design) and the anticipation group 
(adapted speech design). Error bars represent the standard error. 

 

For SCL recovery, significant main effects were found for Time, F(1.49, 71.45) 

= 21.96, p < .001, and Group, F(1, 48) = 43.16, p < .001, as well as a significant Time x 

Group interaction, F(1.49, 71.45) = 6.11, p =.008. Paired t-tests with the raw SCL 

means confirmed that SCL remained significantly higher than baseline throughout the 

full five minutes of the rest period in both groups (at least p = .001). Further analysis 

revealed that the slope of SCL recovery for the anticipation group was significantly 

different from the recovery group (Linear contrast, F(1, 48) = 26.19, p < .001), with the 

anticipation group exhibiting a slower decrease in SCL over the five minutes (shown in 

figure 4.3). The effects remained significant when HADS-D scores were entered as a 

covariate, but when Age was entered into the ANCOVA there was no longer a 

significant main effect of Time, although the Group and Group x Time effects remained 

significant. 
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Figure 4.3. Mean skin conductance level recovery scores for each minute of the 
anticipation/recovery period for the recovery group (original speech design) and the 
anticipation group (adapted speech design). Error bars represent the standard error. 

 

A final univariate ANOVA with the HF-HRV recovery scores revealed a 

significant effect of Group on recovery, F(1, 49) = 9.66, p =.003. Whilst the recovery 

group demonstrated a significant increase in HF-HRV during their rest period 

(significant at the p < .001 level), the anticipation group exhibited a non-significant 

decrease in HF-HRV. When the ANOVA was repeated with Age as a covariate the 

effect of Group remained significant. 

 

4.8. Discussion 
 

Experiment 1 established that completing a speech task initiates a mobilisation 

response. A complication of the task however, is that presenting the speech is associated 

with a physiological return to baseline. This means that the task has limited carryover 

effects (i.e., by the end of the task participants are no longer in a defensive physiological 

state). The main aim of Experiment 2 was to investigate whether the preparation period 

of the speech task could be utilised to produce arousal that would remain above baseline 

for a longer period of time. 

 

The design of the speech task was adapted in Experiment 2 to introduce a five-

minute rest period after the preparation period. It was expected that during this time 

anticipation of the speech would prevent arousal levels from returning to baseline 

(Gregg et al., 1999; Waugh et al., 2010). Analyses comparing data from the speech task 
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period from the current experiment (adapted speech task design) revealed that HR 

remained significantly higher in the anticipation group. In addition to this, SCL levels 

remained significantly elevated in both groups, but the anticipation group demonstrated 

a slower rate of decline during the five minutes of the rest period. In Experiment 2 

baseline SCL was significantly associated with self-reported depression symptoms, 

although controlling for the HADS-D scores did not affect any of the observed 

differences in reactivity or recovery between the groups. The residual arousal seen in 

the anticipation group is indicative of SNS activation (Jessell, 1995). 

 

In Experiment 1 it was revealed that the decrease in SNS activation during the 

recovery period was also accompanied by a significant increase in HF-HRV, suggesting 

up-regulation of the PNS (Cacioppo, Uchino, & Berntson, 1994). The anticipation 

group in the current experiment did not exhibit a significant difference in HF-HRV 

during the rest period, suggesting that the anticipation group were not engaging the 

activation of the PNS during this time. Taken together, the physiological findings 

support the hypothesis that a five-minute anticipation period before the presentation of a 

speech can be used to maintain arousal levels above baseline. 

 

4.9. General Discussion 
 

The aim of the current study was to identify an active stressor than not only 

increased arousal during the task but caused arousal levels to remain above baseline 

after the task was completed. Healthy undergraduate students completed a VR maze and 

a speech task in Experiment 1. The experiment highlighted the usefulness of speech 

tasks in increasing arousal, but the suitability of the task was limited by a rapid return to 

physiological baseline once the speech was presented. Experiment 2 found that 

introducing a five-minute anticipation period before the presentation of the speech was a 

suitable way of maintaining elevations in arousal. This finding is consistent with 

previous studies that have highlighted the role of anticipation in initiating and 

maintaining defensive arousal: Anticipation of a threat or challenge is a powerful way 

of inducing arousal that is sustained for a short period of time (Feldman et al., 2004; 

Gregg et al., 1999; Waugh et al., 2010). 

 

For the subsequent studies, it is hypothesised that the residual arousal from the 

anticipation period may remain elevated long enough for secondary tasks to be 
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administered whilst the participants remain in a defensive physiological state. A 

limitation of this study is that it is unknown how strong the carryover effects from the 

preparation period will be once a secondary task is undertaken during this time. 

Although uninterrupted anticipation is associated with maintained arousal, secondary 

tasks carried out during the anticipation period may cause a distraction effect, and also 

have physiological effects of their own. It is beyond the scope of this study to establish 

the effects of such secondary tasks, as each individual task is likely to initiate a unique 

emotional and physiological response. The effects of secondary tasks during the 

anticipation period will need to be investigated in the subsequent experiments. 

 

To conclude, the current experiments identified an active stressor that can be 

used to induce and maintain arousal. The anticipation of a speech task causes significant 

changes in HR, SCL, and HF-HRV, as well as self-reported tension and anxiety. This 

change is consistent with a mobilisation response, and reflects activation of the SNS. 

The defensive arousal associated with presenting a speech can be sustained for a few 

minutes if an anticipation period is employed, as demonstrated by increased HR and 

SCL. The anticipation period is a window of opportunity when the participant is still in 

a defensive physiological state for secondary tasks to be administered (as in Garner et 

al., 2006; and Mansell et al., 1999). Based on the findings from this study, anticipation 

of a speech task was used as a stressor manipulation in the following chapters. 
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Chapter 5: The Psychophysiological Effects of Regulatory Strategies 
 

The aim of Chapter 4 was to identify an active stressor that could be used to 

activate the sympathetic nervous system (SNS). The experiments in Chapter 4 

demonstrated that a defensive physiological state could be induced in healthy 

participants by engaging them in a public speaking task. Anticipation of the speech task 

caused reliable increases in heart rate and sweat response, with a decrease in high-

frequency heart rate variability. Increased activation of the SNS plays an important role 

in the following studies, of equal importance however, is the role of the parasympathetic 

nervous system (PNS) in being able to dampen the effects of the SNS. There is a need 

for understanding  how  the  body’s  physiology  can  be  manipulated  to  down-regulate 

defensive physiological arousal to facilitate the promotion of calm and self-soothing 

states. 

 

This chapter provides an overview of emotion regulation processes, and 

discusses the limitations of cognitive and behavioural regulation strategies. In place of 

these approaches, it is argued that strategies which directly target functioning of the 

autonomic nervous system (ANS) may be more appropriate for regulating emotion. The 

current experiment was designed to investigate the effects of three positive emotion 

regulation strategies: deliberate smiling (testing the facial feedback hypothesis), mindful 

breathing, and a loving-kindness meditation. These strategies were hypothesised to be 

able to reduce arousal levels by enhancing the activation of the myelinated vagus nerve 

(i.e., the PNS). Activation of the PNS should inhibit the SNS, causing a reduction in 

sympathetic arousal. 

 

5.1. Emotion Regulation 
 

To be able to change the course of an emotional response, we must first 

understand how emotions are generated. Emotional responses are multifaceted and 

produce changes in cognitions, feelings, behaviours, and physiology (Mauss, Levenson, 

McCarter, Wilhelm, & Gross, 2005). Whilst emotions help to shape behaviours, 

influence decision making, and facilitate interpersonal interactions, at times emotions 

can be more of a hindrance than a help. According to polyvagal theory defensive 

physiological states triggered by emotions can affect our ability to further regulate 

complex behaviours such as attention and social engagement (Porges, 1995, 2001). 
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When an emotion is generated in an inappropriate context or at an inappropriate 

intensity level it can cause problems. Inappropriate emotional responses are intrinsic to 

psychopathology, social difficulties, and even physical illness (Gross & Muñoz, 1995; 

Sapolsky, 1997). Being able to successfully regulate emotions is essential for everyday 

functioning. 

 

 According to the modal model of emotion, emotion generation involves a 

four-stage process (see figure 5.1, Gross & Thompson, 2009). The process begins with a 

psychologically relevant situation. To generate an emotion the situation must be 

attended to, and then appraised by the individual. Appraisal of the situation leads to 

changes in experiential, behavioural, and physiological response systems. Although this 

process may seem prescriptive there is actually a great deal of flexibility in generating 

an emotional response. Firstly, generating an emotion is a constant process of change 

and modification which involves feedback loops; a salient situation demands attention 

and appraisal resulting in a response, and as soon as a response occurs, it automatically 

alters the demands of the original situation so the situation needs to be re-appraised and 

the process begins again. This process will occur repeatedly during the generation of an 

emotion. Secondly, humans are not passive spectators when emotions are generated; an 

individual can intervene at any stage to modify an aspect of the emotional response, 

which in turn will affect the subsequent stages of the process. 

 

Figure 5.1. A process model of emotion regulation that highlights five types of emotion 
regulation strategies (from Gross & Thompson, 2009). 

 

The modal model of emotion conceptualises how emotions are generated, 

however the model suggests that a situation or event must be appraised before a 

response is initiated (Gross & Thompson, 2009). The role of cognition in the generation 
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of emotions is a hotly contested topic (see arguments from Lazarus, 1991, and Zajonc, 

1980, 1984). I will begin by giving a brief overview of emotion regulation approaches 

that are consistent with the modal model, before considering alternative emotion 

regulation techniques that are more consistent with the reasoning of polyvagal theory. 

 

5.1.1. Emotion Regulation Approaches 
 

Emotion  regulation  has  been  defined  as  “the  processes  by  which  individuals  

influence which emotions they have, when they have them, and how they experience 

and  express  these  emotions”  (Gross,  1998a,  p.  275).  The  strategies  used  to  regulate  

emotions can be consciously or unconsciously driven, and some efforts to regulate 

emotions are more adaptive than others. Because emotional responses do not develop in 

a synchronised fashion there are several components of the emotion generation process 

that can be regulated. Antecedent-focused strategies are those that are initiated before an 

emotional response is fully elicited (Gross, 1998b). In anticipation of a situation 

eliciting an emotion individuals can chose to engage in or avoid the situation (situation 

selection) or can undertake efforts to modify the situation to alter its emotional impact 

(situation modification). It is also possible to regulate emotions without changing the 

environment: individuals can redirect their attention away from the stimuli (attentional 

deployment) or can reappraise the situation and give it a different meaning (cognitive 

change). Response-focused strategies on the other hand are those that attempt to alter 

the physiological, experiential, or behavioural aspects of emotional responding once a 

response tendency has been elicited (response modulation) (Gross, 1998b). 

 

Teaching people how to regulate their emotions appropriately is central to 

several types of psychotherapy. There are currently two mainstream approaches to 

psychotherapeutic practice: cognitive therapy and behaviour therapy. Cognitive and 

behavioural strategies focus on different aspects of the emotion generation process. As 

examples of each approach, I will briefly consider the roles cognitive reappraisal and 

behavioural exposure can play in emotion regulation. 

 

5.1.1.1. Reappraisal. Cognitive restructuring (i.e., altering faulty thoughts) is a 

popular tenet of several psychotherapies, most notably cognitive behavioural therapy 

(CBT; Beck et al., 1979; Campbell-Sills & Barlow, 2009). Maladaptive appraisals are 

thought to be at the core of several psychological disorders (Aldao, Nolen-Hoeksema, & 
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Schweizer, 2010). Cognitive techniques focus on teaching clients to recognise and alter 

inappropriate appraisals, with the aim of helping clients to develop more realistic and 

adaptive appraisals, which should in turn facilitate the regulation of their emotional 

state. Barber and DeRubeis (1989) label the strategies taught in cognitive therapy as 

compensatory skills. This is because cognitive strategies such as reappraisal do not 

change the content of primary appraisals; instead, cognitive strategies introduce 

dissonance into the belief system, allowing the opportunity for the development of more 

adaptive cognitions that can substitute the primary appraisal i.e., compensate for the 

original thought. 

 

There are two salient limitations that can influence the effectiveness of cognitive 

strategies. Firstly, not all cognitions and behaviours are under conscious control. In fact, 

our nervous system is hypothesised to constantly evaluate and respond to risk outside of 

conscious control (Porges, 2004b). It may therefore be challenging to try and regulate 

unconscious responses using strategies that are consciously driven. Secondly, cognitive 

strategies minimise the role of the body in initiating and maintaining emotional 

responses. If the target of a strategy (i.e., thoughts) is not the main determinant of an 

emotional response, the strategy is likely to have a limited effect. 

 

5.1.1.2. Behavioural exposure. Behavioural strategies can be used as 

alternatives to cognitive interventions, or can be used to complement them (as in CBT, 

Beck et al., 1979). From a behavioural perspective individuals respond to defined 

stimulus conditions in consistent ways; these patterns of behaviour are termed habits. 

Habits are formed via the processes of conditioning and associative learning. Because 

habits are learned, they should decline in strength if they fail to continue to be adaptive. 

With emotional disorders, maladaptive behaviours are assumed to be learned behaviours 

that have failed to decline in strength even though the behaviours are debilitating (such 

as social withdrawal) or harmful (such as substance abuse). 

 

Behavioural techniques focus on the process of relearning; their aim is to 

weaken the association between stimulus conditions and habits. Wolpe's (1968, 1969) 

theory of reciprocal inhibition proposed that competing behavioural responses to 

anxiety-evoking stimuli could be enacted to inhibit the expression of unwanted 

behaviours. For example relaxation is thought to be incompatible with anxiety; in 

anxiety provoking situations relaxation could be used to inhibit and displace the 
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previous behavioural habits associated with the stimulus conditions. A similar technique 

to this is taught in dialectical behavioural therapy (DBT; Linehan, 1993a): Opposite 

action involves  encouraging  clients  to  act  in  a  manner  opposite  to  an  emotion’s  action  

tendency; such as deep, slow breathing to generate physiological relaxation when a 

client is feeling anxious (McMain, Korman, & Dimeff, 2001). Clients are encouraged to 

adopt facial expressions, body postures, movements, and thoughts that oppose the 

behaviour  prompted  by  the  emotion.  Behaving  in  an  opposite  manner  to  the  emotion’s  

action tendency may allow for the meaning of the emotional event to be altered 

automatically and without conscious effort (Linehan, Bohus, & Lynch, 2009). 

 

A major limitation of exposure-based treatments is that learning new 

associations does not destroy old learning (Kehoe & Macrae, 1998). This means that 

stimulus–habit pairings can be rapidly reinstated, either through spontaneous recovery 

or reacquisition (Bouton, 1988). Several factors that contribute to renewal effects (i.e., 

the return of unwanted behaviours after extinction) have been identified; these include 

the role of contextual cues in maintaining conditioned change (Bouton & Nelson, 1998; 

Vansteenwegen et al., 2005) and the ability for interoceptive cues (i.e., the perception of 

internal states) to cue unwanted behaviours (Bouton & Swartzentruber, 1991). 

Behavioural techniques may therefore limited by both external and internal cues. 

 

5.1.2. Emotion Regulation: A Third Way? 
 

Both cognitive and behavioural techniques are hypothesised to work by using 

compensatory strategies: cognitive reappraisal aims to replace inappropriate negative 

cognitions, whilst behaviour therapy aims to replace inappropriate stimulus–habit 

pairings. In neither case is the original response completely extinguished (primary 

appraisals remain present, and original stimulus–habit pairings remains to compete with 

newer associations). The existence of original responses is a limitation of these 

approaches, because there is always the possibility that they will become reactivated. 

Activation of an original response is likely to trigger the neural circuits that respond to 

challenge and threat (SNS or DVC activation; Porges, 2004b). Being in a state of 

physiological defensiveness may reduce the effectiveness of cognitive or behavioural 

strategies, because individuals will be less successful at modulating their thoughts and 

behaviours. 
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Taking an optimistic stance, we can use our understanding of cognitive and 

behavioural strategies to inform a third approach to emotion regulation. Rather than 

trying to target cognitions or behaviours directly, polyvagal theory suggests that we can 

take advantage of the bidirectional pathways between the peripheral nervous system and 

the brain, and use biologically-based  strategies  to  target  the  body’s  physiology  as  a  

means of targeting unwanted cognitions and behaviours (Porges, 1995, 2001, 2003a). 

Research has demonstrated that lower level neural circuits can regulate the processing 

of higher neural structures; this means that our physiology can influence cognitive, 

attentional, and affective processes (Berntson, Cacioppo, & Sarter, 2003). If polyvagal 

theory is a valid model of emotional responding, instead of using cognitive and 

behavioural techniques to regulate emotions, therapists should be teaching strategies 

that influence the function of the ventral vagal complex (i.e., the PNS). Stimulating 

pathways that activate the ventral vagal complex should not only reduce the expression 

of unwanted behaviours, but should also promote calming and self-soothing states and 

increase the accessibility of higher level cognitive structures (Porges, 2009b). Once 

clients have learned to regain control of their physiological state, it may then be more 

effective to use cognitive or behavioural strategies if deemed necessary. Although this 

approach sounds promising, despite a large theoretical basis, polyvagal theory does not 

explicitly identify strategies that are able to up-regulate the ventral vagal complex (with 

the exception of an acoustic intervention that has not been empirically tested; Porges, 

2003a). 

 

5.1.3. Positive Emotions and Emotion Regulation 
 

Our emotional state is thought to parallel our physiological state. Positive 

emotions have been associated with activation of the ventral vagal complex and the 

PNS (Bazhenova & Porges, 1997), whilst negative emotions have been linked to 

activation of the SNS (Fredrickson, Mancuso, Branigan, & Tugade, 2000). Polyvagal 

theory is based on the assumption that our visceral states affect how we feel, and in turn 

our feelings affect our physiological state (Porges, 2009a). It is conjectured that 

interventions that target the  body’s  physiology  may  be  able  to  enhance  the  activation  of  

the PNS and accelerate down-regulation of the SNS (Porges, 2007a). These 

physiological changes should be accompanied by reduced levels of subjective distress 

and increased social engagement (Porges, 2001). These are important aims in clinical 
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practice for clients who have difficulties regulating their emotions and sustaining 

interpersonal relationships. 

 

Behavioural interventions that target biological systems (i.e., biobehavioural 

strategies) are increasingly being incorporated into psychotherapeutic practices. For 

example DBT has a distinct set of skills that are specifically aimed at down-regulating 

physiological arousal (Linehan et al., 2009). The advantage of biobehavioural skills is 

that they do not require a high level of cognitive processing to complete, yet they have a 

high impact on physiological arousal (Linehan et al., 2009). Based on polyvagal theory, 

it is conjectured that combining biobehavioural strategies with techniques that promote 

positive emotion may enhance their overall effectiveness. Several strategies aimed at 

increasing positive emotion have been associated with enhanced cardiac vagal control 

and self-regulation. In the current research, three positive emotion regulation strategies 

were identified as potential techniques that may be used to increase activation of the 

PNS: smiling, mindful breathing, and a loving-kindness meditation. These techniques 

are discussed individually in the following sections. 

 

5.1.3.1. Smiling. Teaching clients to smile when feeling distressed is part of the 

opposite action repertoire of emotion regulation skills (Linehan, 1993a). The ability for 

smiling to induce positive affect and changes in physiology relies on feed-back rather 

than feed-forward processes; in this sense smiling is a bottom-up strategy, rather than a 

top-down strategy (Berntson et al., 2003; Taylor, Goehler, Galper, Innes, & 

Bourguignon, 2010). Smiling targets the afferent pathways of the face, making it 

plausible that this strategy  may  influence  the  body’s  physiology  by  stimulating  lower  

order neural pathways. Afferent pathways from the face have source nuclei in the 

brainstem near to where the cardiac vagal motor neurons originate (Porges, 1995; 

Sawchenko, 1983). Activating these source nuclei may result in up-regulation of the 

cardiac vagal motor neurons, resulting in increased activation of the PNS. 

 

Several emotion theorists believe facial expressions play a key role in the 

experience of emotions (Izard, 1971; Tomkins, 1962). Darwin (1872/2009) was one of 

the first to recognise that enhancing or inhibiting the expression of an emotion can alter 

the intensity of the emotional experience. It has been proposed that facial expressions 

can affect emotional experience because of bidirectional links between the motor cortex 

and the brain regions involved in generating emotional responses (Hennenlotter et al., 
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2009; Levenson, Ekman, & Friesen, 1990). Posed facial expressions involve different 

neuronal pathways from spontaneous facial expressions (Matsumoto & Lee, 1993), but 

despite the different efferent pathways both forms of expression result in afferent 

feedback from the facial muscles. Afferent feedback from the face is presumed to be 

able to modulate the emotional experience: This theory is known as the facial feedback 

hypothesis (Buck, 1980; Strack, Martin, & Stepper, 1988; Tomkins, 1962; Zuckerman, 

Klorman, Larrance, & Spiegel, 1981). It is important to note that there is contrasting 

evidence refuting the influence of facial feedback (Matsumoto, 1987; Tourangeau & 

Ellsworth, 1979), however the theory has received a great deal of attention over the last 

three decades. 

 

The facial feedback hypothesis suggests that positive facial expressions (e.g., 

smiling) should not only be accompanied by greater self-reports of positive affect, but 

also their psychophysiological counterparts (Zuckerman et al., 1981). Positive emotion 

coupled with spontaneous smiling has been associated with faster cardiovascular 

recovery from negative mood inductions (Fredrickson & Levenson, 1998). Positive 

emotional expression has also been linked with psychological flexibility and increased 

attention (Johnson, Waugh, & Fredrickson, 2010). Consequently encouraging 

individuals to produce smiles when experiencing negative emotions may help to reduce 

the experience of negative emotions, and may also reduce their psychophysiological 

arousal. 

 

To produce a smile involves contraction of the zygomaticus major muscle (the 

cheek muscle which pulls up the corner of the mouth; Fridlund & Cacioppo, 1986). This 

muscle is controlled by cranial nerves that originate in the brainstem proximal to the 

source nuclei of the myelinated vagus nerve. Porges (1995, 2003a, 2003b) has theorized 

that the anatomical overlap between the cranial nerves controlling the face and head and 

the myelinated vagus nerve has resulted in a heart–face link that also has direct 

connections to the prefrontal  cortex.  Porges’  terms  this  network  the  social engagement 

system (SES; Porges, 1998, 2003a). Utilising the bidirectional pathways between the 

heart and face through smiling may directly stimulate the SES and increase the 

activation of the myelinated vagus nerve. Up-regulation of the SES should ultimately 

result in decreased defensive arousal due to the dampening effects of the myelinated 

vagus nerve on SNS activation.  
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5.1.3.2. Mindful breathing. A  second  technique  that  targets  the  body’s 
physiology and is associated with positive emotion is mindful breathing. A basic 

definition  of  mindfulness  is  “moment-by-moment  awareness”  (Germer,  2005,  p.  6).  The  

primary goal of mindfulness is not to relax, but to observe arising stimuli from a non-

judgemental perspective (Baer, 2003). Mindfulness is a state of mind that is accessible 

in all situations, and its practice has been linked to increases in psychological 

functioning as well as increases in well-being (Carmody & Baer, 2008; Segal, Williams, 

& Teasdale, 2002). Due to the psychological benefits associated with mindfulness it is 

increasingly being included in psychotherapeutic treatment programs, for example 

mindfulness-based cognitive therapy (MBCT; Segal et al., 2002) and dialectical 

behavioural therapy (DBT; Linehan, 1993a). 

 

Mindfulness  does  not  involve  consciously  directing  one’s  attention  to  positive  

experiences, however there is a wide range of evidence to suggest that mindfulness can 

increase positive affect by creating conditions for positive emotions to develop 

(Fredrickson, 2000). Awareness itself has qualities that are similar to positive emotions 

(Fredrickson, 2003), and it has been suggested that mindfulness practices may create a 

positively valenced state of mind (Garland, Gaylord, & Park, 2009). Mindfulness may 

increase engagement with positive emotions, as the act of mindfulness can foster 

awareness and attention to positive events and feelings (Erisman & Roemer, 2010). 

Indeed greater mindfulness training has been shown to correspond to decreased negative 

affect and increased positive affect (Jha, Stanley, Kiyonaga, Wong, & Gelfand, 2010), 

and has also been found to activate areas of brain involved in the experience of positive 

emotion (Davidson et al., 2003). 

 

Several behavioural techniques have been developed to enhance mindfulness 

skills, including body scan techniques, mindfulness meditations, and breathing practices 

(Kabat-Zinn, 1994; Linehan, 1993a). Using the breath as a focus of attention is a basic 

mindfulness practice where the breath itself is not manipulated. The focus is on the 

physical sensations of the breath, and other thoughts, feelings, and sensations are simply 

observed without controlling attention (Segal et al., 2002). Focusing attention on the 

breath reminds individuals to recognise their experience in the present moment. When 

the mind wanders from the breath, individuals are gently encouraged to bring their 

attention back to their breathing. Being aware that the mind has wandered and bringing 

attention back to the breath is an important aspect of the practice. Mindful breathing 
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practices are highly accessible because the breath is a neutral object of attention for 

most people, and individuals can tune into the sensations of their breath at any given 

moment (Teasdale, Segal, & Williams, 1995). 

 

In terms of physiology, breathing is a bodily function that is regulated by the 

autonomic nervous system. Breathing in is associated with an increase in heart rate, 

whilst breathing out is associated with a decrease in heart rate. The coupling between 

respiration and the heart is a determinant of heart rate variability (HRV; Berntson, 

Cacioppo, & Quigley, 1993b). Even though mindfulness practices do not actively 

manipulate bodily functions such as the rate or depth of breathing, participants 

practicing mindfulness techniques have been found to show increases in HRV (Ditto, 

Eclache, & Goldman, 2006; Lehrer, Sasaki, & Saito, 1999; Wu & Lo, 2008). Recently it 

has been shown that even short-term meditation training (five days of 20 minutes) can 

improve HRV (Tang et al., 2009). The changes in HRV have been attributed to 

increases in vagal activity, suggesting a link between mindfulness and the PNS. 

 

5.1.3.3. Loving-kindness meditations. A second closely related meditation 

practice to mindfulness is loving-kindness. Loving-kindness meditations are used to 

consciously increase feelings of warmth and care for the self and others (Salzberg, 

1995). Fredrickson et al. (2008) demonstrated that the practice of loving-kindness can 

lead to increases in a wide range of positive emotions, including love, joy, contentment, 

interest, and amusement. Techniques that promote positive emotions have been shown 

to help people regulate their emotions and maintain calm states (Fredrickson et al., 

2008; Gilbert & Procter, 2006; Linehan, 1993a). Loving-kindness meditation practices 

have also been linked to increases in personal resources, for example increased social 

support and decreased illness symptoms (Fredrickson et al., 2008). Further to this 

loving-kindness meditations have been shown to reduce psychological distress and 

chronic pain, as well as increase feelings of social connectedness (Carson et al., 2005; 

Hutcherson, Seppala, & Gross, 2008). Calling into mind feelings of support and 

connectedness in the absence of meditation has itself been linked to attenuated 

cardiovascular activity (Ratnasingam & Bishop, 2007). 

 

From a physiological point of view, the positive emotions generated by loving-

kindness  meditations  are  thought  to  be  able  to  ‘undo’  the  after-effects of negative 

emotions i.e., they can down-regulate the psychophysiological effects of negative 
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emotions that activate fight–flight behaviours (Fredrickson & Levenson, 1998; 

Fredrickson et al., 2000). Little empirical research has been carried out to explore the 

link between loving-kindness meditations and the autonomic nervous system, although 

increased PNS activation is a possible mechanism by which positive emotions may 

down-regulate the psychophysiological effects of negative emotions. Rockliff, Gilbert, 

McEwan, Lightman, and Glover (2008) found that compassion-focused imagery could 

increase HRV and stimulate self-soothing in some individuals, however individuals who 

were more self-critical with insecure attachment styles responded defensively to the 

imagery and showed a reduction in HRV. Increases in vagal indices have also been 

reported when participants consciously focus on feelings of care, appreciation, and 

social connectedness (Kok & Fredrickson, 2010; McCraty, Atkinson, Tiller, Rein, & 

Watkins, 1995). 

 

Porges (1998) has explored the relationship between love and the autonomic 

nervous system from a polyvagal perspective. Feelings of love are important in 

facilitating social interactions and reproduction. To increase the possibility of social 

interactions and reproduction occurring proximity must be increased. Consequently the 

social behaviours associated with love (e.g., social engagement and courtship) rely on 

feelings of safety and activation of the myelinated vagus nerve. Activation of the 

myelinated vagus nerve may help to explain why increased compassion is linked to 

increases in HRV, and why generating emotions such as love can down-regulate the 

psychophysiological effects of negative emotions (Fredrickson & Levenson, 1998; 

Rockliff et al., 2008). 

 

5.2. Current Study Aim and Hypothesis 
 

The current study used a between subjects design to investigate the 

psychophysiological effects of three emotion regulation strategies in response to a 

stressor manipulation (the adapted speech task from Chapter 4). The strategies evaluated 

were smiling, mindful breathing, and a loving-kindness meditation. These were 

compared to a neutral listening task and resting quietly. The aim of the current 

experiment was to establish whether or not any of the strategies of interest could 

influence the activation of the autonomic nervous system. The following hypothesis was 

tested: 
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Hypothesis 2. Emotion regulation strategies will be associated with increased activation 

of the PNS, and accelerate the down-regulation of physiological and psychological 

arousal after a stressor. 

 

Targeting the PNS should result in increases in high-frequency heart rate 

variability (HF-HRV) and cause quicker physiological returns to baseline during acute 

stress.  As  well  as  focusing  on  the  ‘undoing’  effects  of  the  emotion  regulation  strategies,  

due to the design of the speech task used it was also possible to investigate whether the 

strategies had a buffering effect on impending stress. 

 

5.3. Methodology 
 

5.3.1. Participants 
 

One hundred undergraduate psychology students (14 males, 86 females) 

volunteered to participate in the study and were awarded course credits as part of their 

undergraduate course requirements. Exclusion criteria were assessed using self-report 

questionnaires and included current or past diagnoses of Axis I or II psychiatric 

disorders, and current psychological or pharmacological treatment. The participants 

ranged in age from 18–35 with a mean age of 19.80 years (SD = 3.37). 93.0% of these 

participants identified themselves as Caucasian, 2.0% as Asian, 1.0% as Mixed, and 

4.0% as Other. Participants were allocated into five intervention groups: smiling (n = 

20: 2 males, 18 females; mean age = 19.05, SD = 1.82), mindful breathing (n = 20: 2 

males, 18 females; mean age = 20.10, SD = 4.17), loving-kindness (n = 20: 2 males, 18 

females; mean age = 18.80, SD = 0.83), neutral listening (n = 20: 4 males, 16 females; 

mean age = 19.50, SD = 1.96), and a control group (n = 20: 4 males, 16 females; mean 

age = 20.57, SD = 3.32). 

 

5.3.2. Regulatory Strategies 
 

5.3.2.1. Smiling. Smiling activates afferent pathways from the facial muscles. 

“Duchenne”  smiles  are  often  induced  in  laboratory  studies  by  getting  participants  to  grip  

pencils between the teeth and pull the corners of their lips upward (i.e., contracting the 

zygomaticus major muscle), but this technique has little ecological validity (Soussignan, 

2002). An alternative technique that activates the muscles of the face is taught in DBT: 
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the half-smile (Linehan, 1993a). The half-smile involves turning attention to the face. 

Clients are encouraged to relax the face, neck, and shoulders, and then turn up the 

corners of their lips (Linehan, 1993b). The smile is not an exaggerated smile, as tense 

smiling will signal hiding or masking; instead the half-smile is a soft smile like the 

smile of the Mona Lisa. In this experiment participants were shown a picture of the 

Mona  Lisa  for  five  minutes  and  were  asked  to  imitate  the  Mona  Lisa’s  facial  expression. 

 

5.3.2.2. Mindful breathing. Participants listened to a five-minute audio 

recording that instructed them to breathe normally whilst focusing their entire attention 

on their breath. The recording was an abbreviated version of a mindful breathing 

exercise by Kabat-Zinn (2005). Each time they exhaled they were also asked to press a 

computer key that recorded the action. The script for the mindful breathing practice can 

be found in appendix 12. 

 

5.3.2.3. Loving-kindness meditation. Participants listened to a five-minute 

audio recording of a loving-kindness meditation that paralleled the seven-minute 

visualization procedure outlined in Hutcherson et al. (2008). To try and increase the 

feelings of love and warmth participants were asked to bring a photograph of a loved 

one with them to the experiment (Master et al., 2009). The audio recording instructed 

the participants to generate feelings of love and kindness whilst viewing their 

photograph, and silently repeat a series of phrases that brought attention to the self and 

wished themselves health, happiness, and well being. The script for the loving-kindness 

meditation can be found in appendix 13. 

 

5.3.2.4. Neutral listening. Participants listened to a five-minute audio recording 

that replicated the unfocused attention condition used by Arch and Craske (2006). This 

involved participants listening to instructions which allowed their mind to wander, for 

example  “Simply  think  about  whatever  comes  to  mind.  Let  your  mind  wander  freely  

without  trying  to  focus  on  anything  in  particular.”  Variants  of  these  instructions were 

repeated every 30–60 seconds for five minutes. The script for the neutral listening task 

can be found in appendix 14. 

 

5.3.2.5. Control. To establish the effects of the regulatory strategies over and 

above the effect of time, a control task of resting quietly for five minutes was included.  



CHAPTER 5: EMOTION REGULATION STRATEGIES 124 
 

5.3.3. Performance Ratings 
 

5.3.3.1. Post-task questionnaire. At the end of the experiment participants were 

asked to think about the strategy they had used and to rate the following statements on a 

nine-point Likert scale (1 not at all true to 9 very true): I put a lot of effort into carrying 

out the task, I found the task easy to do, and I enjoyed doing the task. They were also 

asked to complete dichotomous rating scales as to whether the strategy made them feel 

happy or sad (1 happy to 9 sad), tense or relaxed (1 tense to 9 relaxed), and aroused or 

not aroused (1 aroused to 9 not aroused). Participants were also asked to think about the 

performance of their speech and to rate the following statements on a nine-point Likert 

scale (1 not at all true to 9 very true): I felt as though I had enough time to prepare my 

speech, I felt my performance was satisfactory, and I felt nervous during the speech. 

 

5.3.4. Procedure 
 

Participants attended a single testing session in an air-conditioned, sound 

attenuated room. After completing the consent form, the demographic screening 

questionnaire (see section 3.5.1), and the Hospital Anxiety and Depression Scales 

(HADS; Zigmond & Snaith, 1983, see section 3.5.3), electrodes for recording heart rate 

(HR) and skin conductance level (SCL) were applied (see section 3.4.4). Recording HR 

allowed for the calculation of heart rate variability (HRV, see section 3.4.3). A five-

minute baseline recording was carried out during which the participants were asked to 

sit quietly. Participants then completed the Profile of Mood States – Short Form 

(POMS-SF; Shacham, 1983, see section 3.5.2). After this the participants were informed 

that they would have to prepare and present a three-minute speech (see section 4.6.2). 

After the three-minute preparation period the participants were told they had a few 

minutes before they would have to present their speech (five-minute intervention 

period). During the five-minute intervention period the participants were asked to carry 

out one of five strategies: smiling, mindful breathing, a loving-kindness meditation, 

neutral listening, or a control strategy (resting quietly). After the intervention period all 

of the participants completed a second POMS-SF questionnaire and were then 

instructed to present their speech in front of the video camera for three minutes. If the 

participants stopped talking before the end of the three minutes, they were asked to 

continue talking by summarizing the main points. A flowchart diagram of the emotion 

regulation strategies procedure can be found in appendix 15.  
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5.4. Results 
 

5.4.1. Statistical Analyses 
 

For the statistical analyses PSAW Statistics (version 18.0.2, SPSS Inc., Chicago 

IL) was used, with the alpha set to .05. The dependent variables were examined for 

normality of distribution using histograms and Kolmogorov–Smirnov tests. To identify 

potential covariates, the relationships between potential confounds (i.e., age, ethnicity, 

sex, self-reported anxiety and depression symptoms) and the dependent variables (i.e., 

HR, SCL, HF-HRV, and the POMS-SF) were examined. Bivariate correlations revealed 

significant associations between sex and the SCL data (baseline SCL: r = .20, p = .045; 

preparation SCL: r = .23, p = .020; intervention SCL: r = .26, p = .10). The direction of 

the relationship suggests that females exhibited higher SCL than males. Consequently 

Sex was included as a covariate in all analyses of SCL. Correlations revealed no 

significant associations between age, ethnicity, or self-reported depression and anxiety 

symptoms with any of the other dependent variables (all ps < .10). 

 

Mean HR and SCL values were calculated for the baseline periods and each 

minute of the speech task and intervention periods. High-frequency heart rate variability 

(HF-HRV) was also calculated using the HR data for three minutes of the baseline 

period, the three-minute preparation period, and the five-minute intervention period. 

HF-HRV was not calculated for the presentation period of the speech task due to the 

known effects of respiratory changes on HRV indices (Beda, Jandre, Phillips, 

Giannella-Neto, & Simpson, 2007; Tininenko, Measelle, Ablow, High, 2012). 

 

Analyses were performed to establish if there were any baseline differences 

between the intervention groups. Chi-squared tests confirmed that the groups did not 

significantly differ in terms of sex, smoking status, coffee consumption, or self-reported 

anxiety and depression symptoms (see table 5.1 for the self-report means for each 

group, all ps > .05). A univariate analysis of variance (ANOVA) also revealed that the 

intervention groups did not significantly differ in terms of age (p > .05). Univariate 

ANOVAs with the physiological data from the baseline periods (HR, SCL, and HF-

HRV) as the dependent variables revealed no differences in physiology across the 

baseline periods (all ps > .10). The SCL analysis was repeated with Sex as a covariate, 

but still no significant group differences were revealed. A separate ANOVA with the 
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POMS-SF data for the baseline periods also failed to reveal any significant baseline 

differences between the intervention groups (all ps > .10). The raw HR, SCL, and HF-

HRV scores for the interventions groups are shown in table 5.2. 

 

Table 5.1. 

Intervention group characteristics 

 HADS-A Total HADS-D Total POMS-SF Total 
Smiling 6.65 (4.61) 1.90 (1.59) 5.50 (11.93) 
Mindful Breathing 6.45 (3.32) 2.70 (2.16) 8.00 (10.13) 
Loving-Kindness 6.20 (3.68) 2.15 (1.73) 4.70 (8.33) 
Neutral Listening 7.10 (3.40) 2.45 (2.14) 3.90 (10.55) 
Control 7.45 (3.68) 2.72 (2.59) 7.72 (10.65) 

Note. Standard deviations are reported in parentheses. HADS-A = Hospital Anxiety and 
Depression Scale – Anxiety subscale, HADS-D = Hospital Anxiety and Depression 
Scale– Depression subscale POMS-SF = Profile of Mood States – Short Form. 

 

As in Chapter 4, reactivity scores (differences from baseline) were used to 

establish differences in physiological reactivity across the intervention groups (Tomaka, 

Blascovich, Kelsey, & Leitten, 1993). Reactivity scores were calculated for HR, SCL, 

and HF-HRV by subtracting the speech preparation data from the corresponding 

baseline data (Kamarck et al., 1992; Llabre, Spitzer, Saab, Ironson, & Schneiderman, 

1991). To establish that the preparation period induced a similar level of arousal for 

each of the groups ANOVAs were performed on the reactivity scores for HR, SCL, and 

HF-HRV. The SCL ANOVA was repeated with Sex as a covariate. No significant 

differences were found suggesting that the groups found the preparation period 

comparatively stressful (all Fs > 1, all ps > .05). 

 

The main set of analyses reported in this chapter investigated the effects of the 

interventions on physiological arousal over time. To allow for clearer comparisons 

across the groups, HR and SCL recovery scores were calculated for each minute of the 

intervention period. Recovery scores were calculated for HR and SCL by subtracting the 

data for each minute of the recovery period from the last minute of the preparation 

period (Llabre et al., 1991). HF-HRV recovery was calculated by subtracting the HF-

HRV power during the preparation period from the intervention period. Repeated-

measures ANOVAs were performed on the recovery scores for HR, SCL, and HF-HRV 

with the Huynh-Feldt degrees of freedom correction applied where necessary (i.e., when 

factors violated sphericity  assumptions,  as  confirmed  by  Mauchly’s  tests).  No  

adjustments were made for baselines in these analyses, because comparable 
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physiological baselines were revealed across the intervention groups; the SCL analyses 

were however repeated with Sex as a covariate. Significant main effects for all analyses 

were followed up with pairwise comparisons, and interactions were examined through 

analyses of simple effects. All pairwise contrasts were evaluated using Bonferroni 

critical values of .05. Post hoc paired t-tests were also used to examine differences 

within each intervention group (for each minute of the recovery period raw HR and SCL 

were compared with baseline). 

 

5.4.2. Psychophysiological Recovery during the Interventions 
 

The HR recovery data is shown in figure 5.2. All of the intervention groups 

exhibited reductions in HR during the intervention period. A repeated-measures 

ANOVA on the HR recovery data revealed significant main effects of Time, F(3.14, 

298.56) = 53.20, p < .001, and Group, F(4, 95) = 2.52, p = .046. A significant Time x 

Group interaction was also revealed, F(12.57, 298.56) = 2.86, p = .001. On average, HR 

return to baseline was lowest in the control group (mean change = -4.38 beats per 

minute) and largest in the mindful breathing group (mean change = -10.20 beats per 

minute). Univariate ANOVAs investigating each minute of the recovery period revealed 

that the largest changes in HR were seen during the first two minutes of the intervention 

period: the smiling, mindful breathing, and neutral listening groups demonstrated 

significantly larger decreases in HR than the control group during the first minute; 

although only the mindful breathing and neutral listening groups maintained this 

advantage during the second minute (as confirmed by Bonferroni pairwise comparisons, 

p < .05). After the third minute there were no significant differences between the 

intervention groups. 

 

Paired t-tests were used to examine within group differences in HR recovery: By 

the fifth minute of the intervention period HR in the control group was still significantly 

above baseline, t(19) -2.92, p = .009. In contrast, HR in the smiling, mindful breathing, 

and loving kindness groups was no longer significantly different from baseline (all ts < 

0.65, all ps > .05). Only the neutral listening group exhibited significantly lower HR 

than baseline at the end of the intervention period, t(19) 2.53, p = .020. 
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Table 5.2. 

Mean heart rate, skin conductance level, and high-frequency heart rate variability by group during baseline and the phases of the speech task. 
 Baseline Speech Task F df p 
  Preparation Intervention Presentation (time)   

Smiling        
HR (bpm) 82.48 (12.99) 91.63 (12.97) 83.72 (11.35) 91.75 (10.35) 18.49 1.63, 30.92 .001 
SCL (µS) 2.22 (1.35) 4.45 (1.97) 4.56 (1.94) 5.93 (2.52) 54.09 1.41, 26.78 .001 
HF-HRV (ms2) 7.14 (1.13) 6.88 (1.12) 7.40 (1.04) --- 4.85 2, 38 .034 
        

Mindful Breathing        
HR (bpm) 80.95 (11.81) 90.25 (13.21) 80.80 (12.52) 92.76 (15.35) 37.63 2.14, 40.58 .001 
SCL (µS) 2.27 (1.33) 4.77 (4.16) 4.45 (3.43) 6.05 (4.28) 18.31 1.22, 23.18 .001 
HF-HRV (ms2) 7.18 (0.75) 6.80 (0.71) 7.60 (0.93) --- 18.35 2, 38 .001 

        

Loving-Kindness        
HR (bpm) 84.25 (11.31) 92.02 (11.56) 82.80 (11.25) 94.93 (12.86) 27.87 1.44, 27.27 .001 
SCL (µS) 2.02 (1.52) 3.84 (2.16) 3.78 (2.37) 5.31 (2.55) 82.12 1.56, 29.56 .001 
HF-HRV (ms2) 7. 15 (0.87) 6.85 (0.81) 7.34 (0.72) --- 4.91 2, 38 .013 
        

Neutral Listening        
HR (bpm) 79.90 (13.94) 89.17 (12.00) 79.29 (12.93) 95.91 (12.84) 36.14 1.26, 24.01 .001 
SCL (µS) 2.10 (1.45) 3.97 (2.33) 3.84 (2.46) 4.99 (3.10) 37.74 1.31, 24.87 .001 
HF-HRV (ms2) 6.99 (1.13) 6.67 (1.19) 7.30 (1.08) --- 11.25 2, 38 .001 
        

Control        
HR (bpm) 79.27 (10.08) 90.44 (12.79) 84.92 (11.19) 94.97 (13.78) 16.88 2.73, 51.83 .001 
SCL (µS) 1.53 (1.34) 3.32 (1.65) 3.73 (1.77) 4.41 (2.26) 58.71 1.58, 29.96 .001 
HF-HRV (ms2) 7.23 (0.92) 6.47 (1.04) 7.16 (1.00) --- 10.80 2, 38 .001 

Note. Standard deviations are reported in parentheses. HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability.
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In contrast to the HR data, SCL initially increased for all of the groups following 

the preparation period, and then exhibited a slow decline across the intervention period 

(see figure 5.3). A repeated-measures ANOVA revealed significant main effects of 

Time, F(1.48, 140.20) = 50.01, p < .001, and Group, F(4, 95) = 3.28, p = .015, as well 

as a Time x Group interaction, F(5.90, 140.20) = 4.47, p < .001. The effect of Group 

and the Time x Group interaction remained significant when Sex was entered into the 

analysis as a covariate. A linear contrast confirmed that the slope of the SCL recovery 

scores differed as a function of Group, F(4, 94) = 4.94, p < .001. Post hoc analyses 

revealed  that  the  mindful  breathing  group’s  SCL  recovery  was  significantly  steeper  than  

the smiling, control, and neutral listening groups (all ps < .05), and Bonferroni pairwise 

comparisons confirmed that the mindful breathing group was significantly lower than 

the control group at minute five of the intervention period (p = .006). Despite the Time 

x Group interaction, at the end of the intervention period SCL remained significantly 

higher than baseline in all of the groups (all ts > 3.57, all ps < .002). 

 

5.4.2.1. Heart rate variability. All of the intervention groups demonstrated 

increases in HF-HRV from the preparation period to the intervention period, see figure 

5.4. Despite notable differences in HF-HRV across the time periods, a repeated-

measures ANOVA on the HF-HRV recovery scores indicated that there was no 

significant effect of Group on HF-HRV. Paired t-tests examining within group effects 

revealed that HF-HRV during the intervention period was significantly higher than 

baseline for the smiling (p = .022), mindful breathing (p = .002), and neutral listening (p 

= .008) groups, but not the loving kindness or control groups (p > .05). 
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Figure 5.2. Mean heart rate recovery scores for each minute of the intervention period 
as a function of group. Error bars represent the standard error. 
 

 
Figure 5.3. Mean skin conductance level recovery scores for each minute of the 
intervention period as a function of group. Sex was entered into the model as a covariate 
(variable coded as male = 1, female = 2; covariate value = 1.86). Error bars represent 
the standard error. 

 
Figure 5.4. Mean high-frequency heart rate variability (HF-HRV) in milliseconds 
square (ms2) for as a function of group during the preparation period and the 
intervention period. Error bars represent the standard error.  
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5.4.3. Effects of the Interventions on Mood 
 

5.4.3.1. POMS-SF. Compared to baseline, all of the groups demonstrated an 

increase in the POMS-SF tension–anxiety subscale after the intervention period, as 

shown in table 5.3. A repeated-measures ANOVA confirmed that there was a significant 

effect of Time on self-reported tension and anxiety, F(1, 95) = 91.79, p < .001. No 

significant group differences were revealed, suggesting that the groups experienced 

equivalent changes in mood state. Paired t-tests examining within group effects revealed 

that the tension–anxiety subscale was significantly higher after the intervention period 

in all of the intervention groups (at least significant to p = .001). 

 

Table 5.3. 

Mean scores for the POMS-SF tension–anxiety subscale by intervention group 
 Tension–Anxiety Score t df p 
 Before After    

Smiling  2.60 (3.47) 6.90 (6.56)** -3.92 19 .001 
Mindful Breathing  3.30 (2.25) 7.25 (4.52)** -3.49 19 .002 
Loving-Kindness 3.50 (2.89) 7.15 (3.91)*** -4.55 19 .001 
Neutral Listening 2.85 (2.56) 8.20 (5.49)*** -5.39 19 .001 
Control 3.73 (3.21) 8.63 (5.32)*** -4.42 19 .001 

Note. Standard deviations are reported in parentheses. 
Significant change from baseline ** p < .01, ***p < .001 

 

5.4.3.2. Relationships between mood and recovery. To investigate whether 

changes in ANS function during the intervention period were related to changes in self-

reported emotion, correlations were carried out between the mean HR, SCL, and HF-

HRV recovery scores and the mean POMS-SF reactivity scores. Significant correlations 

were only found in the control group. Larger HR recovery in the control group was 

associated with larger decreases in the POMS-SF confusion–bewilderment subscale (r = 

.73, p = .027), the POMS-SF tension–anxiety subscale (r = .52, p = .020), and the 

POMS-SF anger–hostility subscale (r = .57, p = .009). The directions of these 

relationships suggest that larger decreases in SNS activation during the intervention 

period in the control group during were associated with greater decreases in self-

reported negative affect. In addition to this, negative relationships were revealed 

between HF-HRV recovery in the control group and the POMS-SF tension–anxiety 

subscale (r = -.71, p < .001) and the POMS-SF confusion–bewilderment subscale (r =  

-.68, p = .001), suggesting that larger increases in PNS activation during the 

intervention period in the control group were also associated with larger increases in 
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indices of negative affect. Although this latter relationship is counter-intuitive, increased 

negative affect may result in increased self-regulation, hence an increase in PNS 

activation being coupled with indices of negative affect. 

 

5.4.3.3. Post-task questionnaire. Only the active intervention groups completed 

the post-task questionnaire (the control group who rested quietly did not complete the 

post-task questionnaire as they did not have an active task to evaluate); the active 

intervention  groups’  responses  were  compared  using  a  univariate  ANOVA.  The  post-

task questionnaire indicated a significant difference between the groups on the 

statement:  ‘‘I  put  a  lot  of  effort  into  carrying  out  the  task”,  F(3, 76) = 7.00, p < .001. 

Bonferroni pairwise comparisons revealed that the smiling group (M = 4.50, SD = 2.07) 

reported putting significantly less effort into the task than the other groups (mindful 

breathing M = 7.00, SD = 1.84; loving kindness M = 6.60, SD = 1.27; neutral listening 

M = 6.50, SD = 2.26).  Significant  effects  of  Group  were  also  found  for  the  statement  “I  

enjoyed  the  task”,  F(3, 76) = 3.12, p = .031, and the nine-point happy – sad rating scale, 

F(3, 76) = 3.60, p = .017. In both instances the loving-kindness group reported 

significantly greater scores than the smiling group (enjoyment Ms = 6.15 vs. 4.05; 

happy–sad Ms = 2.60 vs. 4.00), suggesting that the loving-kindness task resulted in 

greater positive affect than the smiling task. 

 

5.4.4. Psychophysiological Reactivity to the Speech Presentation 
 

As shown in table 5.2, all of the groups demonstrated significant increases in HR 

and SCL during the presentation of the speech (p = .001); HF-HRV was not calculated 

for the presentation period so this change was not analysed. Univariate ANOVAs failed 

to reveal any group differences in terms of physiological reactivity to the speech 

presentation. Consequently the interventions evaluated had little effect in buffering 

individuals from future stress. Univariate ANOVAs were also carried out on the self-

report ratings evaluating the speech task performance. A significant effect of Group was 

found  for  the  rating  “I  felt  as  though  I  had  enough  time  to  prepare  my  speech”,  F(4, 95) 

= 7.78, p < .001. Bonferroni pairwise comparisons revealed that the control group felt as 

though they had more time to prepare their speech (M = 5.90, SD = 2.90) compared to 

the other groups (loving kindness M = 2.60, SD = 1.47; smiling M = 2.90, SD = 1.86; 

neutral listening M = 3.00, SD = 2.20; mindful breathing M = 3.90, SD = 2.08). A 

second  significant  effect  of  Group  was  found  for  the  rating  “I  felt  my  performance  was  
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satisfactory”,  F(4, 95) = 4.07, p = .004. The control group (M = 4.90, SD = 2.25) 

reported the greatest satisfaction with their performance (loving kindness M = 2.90, SD 

= 1.45; neutral listening M = 2.95, SD = 1.64; smiling M = 3.75, SD = 2.10; mindful 

breathing M = 4.45, SD = 2.28), although only the differences between the control 

group and the loving kindness and neutral listening groups were significant (p < .05). 

 

5.5. Discussion 
 

The aim of this study was to evaluate the effects of emotion regulation strategies 

on psychophysiological recovery from an acute stressor. The chosen strategies have 

previously been identified as techniques that can increase positive emotion, as well as 

increase activation of the PNS. It was hypothesised that interventions targeting 

physiology may be able to enhance the down-regulation of SNS arousal and subjective 

distress associated with laboratory stress. 

 

5.5.1. Psychophysiological Effects of Emotion Regulation 
 

The current experiment compared the effects of resting quietly and neutral 

listening to three emotion regulation strategies: smiling, mindful breathing, and a 

loving-kindness meditation. The psychophysiological effects of the strategies will be 

evaluated in turn. 

 

5.5.1.1. Resting quietly. Similar to the anticipation group in Chapter 4, the 

group that rested quietly in the current experiment demonstrated a limited return to 

physiological baseline. By the end of the five-minute intervention period, participants 

who had rested quietly still exhibited significantly higher HR and SCL than baseline. 

No significant changes were identified in HF-HRV. Interestingly, greater SNS 

activation whilst resting quietly was associated with greater increases in self-reported 

negative affect. The results of this group may suggest that in times of acute stress, doing 

something active may be better than simply resting quietly. 

 

5.5.1.2. Smiling. In the smiling group HR generally declined towards baseline 

(particularly in the first minute), whilst SCL levels remained high. By the end of the 

five-minute intervention period, HR was no longer significantly different from baseline 

although SCL remained elevated. The HR and SCL responses were combined with a 
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significant increase in HF-HRV during the intervention period, although this was not 

significantly different from the other groups. In summary, the smiling group did not 

tend to show greater reductions in defensive physiological arousal than the other groups, 

nor did the smiling group report feeling significantly happier than the other groups 

during the intervention period (this is in contrast to previous research on the facial 

feedback hypothesis; Strack et al., 1988; Zuckerman et al., 1981). The effects of smiling 

on down-regulating physiological arousal and increasing positive affect are therefore 

considered to be limited. The effects may haven been limited by the instructions for the 

task, as the facial feedback hypothesis is reported to be more powerful when the facial 

configuration is a representative visual analogue of enjoyment smiles (Soussignan, 

2002). 

 

5.5.1.3. Neutral listening. Letting  one’s  mind  wander  had  a  discernible  effect 
on recovery during the intervention period. Although SCL remained significantly higher 

than baseline, the neutral listening group was the only group to demonstrate a decrease 

in HR that was significantly lower than baseline at the end of the intervention period. In 

addition to the decreases in HR and SCL, HF-HRV demonstrated a significant increase 

above baseline during the intervention period, suggesting that the task increased 

activation of the PNS. It is possible that these effects were caused by distraction: 

Distraction  involves  directing  one’s  attention  away  from  the  self  and  current  problems,  

and is often used as an emotion regulation technique (McRae et al., 2009). Short-term 

distraction can be an adaptive way to regulate emotion, however chronic use of 

distraction can lead to avoidance and is thought to be maladaptive (Nolen-Hoeksema, 

Wisco, & Lyubomirsky, 2008). A potential flaw with this conclusion is that it ignores 

the fact that encouraging participants to let their mind wander is analogous to 

mindfulness. This caveat is considered to be a limitation of this experiment. Despite 

this, listening to neutral audio during acute stress may be a useful strategy that can be 

employed to help to down-regulate physiological arousal during acute stress. 

 

5.5.1.4. Mindful breathing. The mindful breathing group exhibited a rapid 

return to baseline for HR, and despite an initial increase in SCL demonstrated a notable 

return to baseline for SCL (the rate of change for SCL recovery was significantly 

greater than for the smiling, control, and neutral listening groups, p < .05). The HF-

HRV data also indicated that the mindful breathing group showed an increase in HF-

HRV during the intervention period, however this was not significantly different from 
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the other groups. It is possible that the mindful breathing group may have shown a 

greater return to baseline, over and above the other groups, had the intervention period 

been longer. It is important to take into account the fact that the individuals in the 

mindful breathing condition had no prior practice of the task, which may have limited 

the effects of the intervention (practice time is often linked to better outcomes in 

meditation studies; e.g., J. W. Carson et al., 2005; Pace et al., 2009). Had the effects 

been greater, mindful breathing would have elicited changes consistent with the 

hypothesis (i.e., decreased HR and SCL, with increased HF-HRV). 

 

5.5.1.5. Loving-kindness meditation. The loving-kindness meditation group 

demonstrated a similar response to the neutral listening group. HR showed a rapid 

return to baseline along with a decline in SCL, which demonstrated a steady reduction 

but did not return to baseline during the five minutes. HF-HRV showed an increase in 

the loving-kindness group, however this was not significantly different from baseline. 

Although the loving-kindness meditation did not show a unique physiological response 

to the stressor, the group did report notable positive affect in the post-task questionnaire 

(in terms of enjoyment, and ratings on the happy–sad scale). The ability for loving-

kindness meditations to increase positive affect is consistent with previous research 

(Fredrickson et al., 2008). It may be that brief loving-kindness meditations are limited in 

their ability to influence physiological responding, but can increase positive emotion. 

Similar to the mindful breathing group, it should be recognised that participants 

carrying out the loving-kindness meditation had no prior practice of the task, which may 

have dampened its effectiveness. 

 

5.5.2. Buffering Against Impending Stress 
 

In addition to evaluating the down-regulatory effects of the interventions, 

analyses were also conducted to investigate whether the regulatory strategies provided 

any protection against future stress. Comparisons were made across the  groups’  

reactivity to the speech presentation, which was carried out after the intervention period. 

All of the groups demonstrated equivalent changes in HR, SCL, and HF-HRV 

suggesting that the emotion regulation strategies did not buffer against impending stress. 

If anything, the strategies were associated with poorer performance ratings for the 

speech presentation: Participants in the intervention groups felt like they had less time 
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to prepare their speech and were consequently less satisfied with their performance than 

the control group which rested quietly. 

 

5.5.3. Underlying Mechanisms 
 

The findings of the current experiment suggest that the doing something may be 

better than doing nothing during times of acute stress, although this may impact on 

future performance. The mechanisms underlying the observed physiological effects are 

unclear. Although the strategies were hypothesised to activate the PNS and increase 

positive affect, limited effects were observed across the strategies. A proposed 

mechanism for the observed changes in physiology may be that engaging in emotion 

regulation serves as a distraction from the stressor. In the short term distraction can be a 

useful way of regulating emotions, however over time distraction simply serves as an 

avoidance technique (Nolen-Hoeksema et al., 2008). To partial out distraction effects 

from other regulatory mechanisms, future research needs to investigate the longer term 

effects of these emotion regulation strategies. 

 

It is notable that the largest effects were observed in the neutral listening group, 

which demonstrated a significant reduction in HR at the end of the intervention period, 

and the mindful breathing group, which exhibited the largest recovery in SCL. It is 

possible that these effects were driven by listening to the human voice. Porges and 

colleagues (2001, 2003a; Porges & Lewis, 2010) have argued that the human voice 

itself can be a soothing stimulus that can promote feelings of safety. If this is the case, 

then the audio recordings in these tasks may have elicited reductions in arousal by 

engaging the PNS via neural activation of the middle ear muscles. Although this is a 

possibility, it does not explain why the loving-kindness group did not demonstrate 

similar reductions in arousal. 

 

One prominent difference between the mindful breathing intervention and the 

other interventions that may underlie the differences in SCL recovery is the focus of the 

mindful breathing task on the breath. Although the task did not instruct participants to 

actively manipulate their breathing, participants often alter their breathing patterns when 

focusing their attention on the breath (Grossman, 2010). Breathing has been highlighted 

as one of the most direct ways to influence the autonomic nervous system, and 
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breathing practices are therefore an appealing interventions for therapies which wish to 

target both the mind and body (Jerath, Edry, Barnes, & Jerath, 2006). 

 

5.5.4. Limitations 
 

The results suggest that the effects of the interventions were fairly limited. 

Dramatic divergences in HR recovery were notable for the first two minutes of the 

intervention period, but over time the control group demonstrated a similar pattern of 

responding, and all of the groups maintained increased SCL over the five minutes. 

Response-focused tasks that  require  ‘active  coping’  have  previously  been  shown  to  

induce SNS activation (Gross, 1998b; Tomaka et al., 1993), which may explain why the 

chosen strategies only demonstrated limited effects on down-regulating SNS arousal. It 

may seem counterintuitive that tasks aimed at reducing SNS arousal should actually 

activate the SNS, but this may be a confound of investigating the effects of novel 

emotion regulation strategies in a laboratory environment. There are two main 

shortcomings associated with the current design. First of all, participants were observed 

practising the interventions for the first time. The novelty and uncertainty associated 

with the tasks is likely to have increased SNS arousal (Kelsey et al., 1999). These 

effects would most likely diminish had the participants been able to practice the 

techniques beforehand. A second consideration is that the current experiment used brief 

variants of well-established interventions, which may limit the ecological validity of the 

findings. The interventions employed in this experiment do not accurately represent the 

how these treatment interventions are used clinically, for example mindful breathing is 

often not taught as a stand-alone technique, it tends to be incorporated within 

mindfulness approaches and requires training and a large amount of practice. Indeed, as 

clients become more familiar with a technique they may habituate to the demands of the 

task, thus resulting in greater efficacy of the task. 

 

Further methodological limitations should also be considered. Each of the 

intervention groups had a relatively small number of participants, which resulted in 

limited power to demonstrate consistently significant findings. In addition to this, a 

homogenous sample was used (undergraduate students), which will limit the 

generalisability of the findings to samples representing the wider population. It is 

assumed that the current sample is representative of the wider student population, 

although several participants scored fairly high on the HADS anxiety subscale (M = 
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6.77, SD = 3.74, cut off for mild anxiety >8; Zigmond & Snaith, 1983). Research has 

highlighted that the HADS anxiety subscale psychopathologises non-clinical and 

student populations, suggesting that another measure of depression may be more 

suitable in the subsequent experiments (Andrews, Hejdenberg, & Wilding, 2006; 

Crawford, Henry, Crombie, & Taylor, 2001). As a final critique, the emotion regulation 

strategies evaluated were not equated in their design (for example different sensory 

modalities were targeted across the different tasks). To identify the mechanisms driving 

the observed physiological and subjective changes, research needs to equate strategies 

and compare their effects over a larger window of time. 

 

5.5.5. Conclusion 
 

The current experiment focused on a narrow range of emotion regulation 

strategies. The regulatory strategies of interest were chosen because it was hypothesised 

that they may be able regulate arousal and emotions by activating the PNS and 

enhancing positive affect. The interventions that demonstrated responses most 

consistent with the hypothesis (i.e. reduced SNS activation and increased PNS 

activation) were the neutral listening task and the mindful breathing task, although as 

five-minute interventions their effects were limited. The most notable shortcoming of 

the interventions was that none of the tasks were associated with a return to baseline for 

the SCL data. The maintenance of elevated SCL was unexpected as all of the groups 

exhibited increases in HF-HRV during the intervention period, which suggests that the 

PNS was being up-regulated during this time. According to polyvagal theory up-

regulation of the PNS should inhibit activation of the SNS (Porges, 1995, 2001, 2003a), 

however the findings are more in line with the doctrine of autonomic space, which 

emphasises the potential for the SNS and PNS to be co-activated (Berntson, Cacioppo, 

& Quigley, 1991). 

 

In conclusion, the findings of the current study do not suggest that emotion 

regulation strategies are ineffective at influencing the autonomic nervous system. In 

fact, all of the strategies were found to exhibit significant effects on HR and SCL, even 

if they were only minor changes that were sustained for a short period of time. With 

increased practice and sufficient fine-tuning, all of the strategies may be able to produce 

significant reductions in arousal over and above the effects observed here. Future 
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research should continue to identify strategies that target function of the autonomic 

nervous system to enhance self-regulation during times of stress. 
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Chapter 6: Defensive Physiological States and Facial Expressivity 
 

Facial expressions are just one channel through which emotions manifest 

themselves; other channels include emotional feelings, physiological changes, and 

changes in cognition (Mauss, Levenson, McCarter, Wilhelm, & Gross, 2005). However 

facial expressions are unique in that they turn the private emotional experience into a 

public display of feeling (Darwin, 1872/2009; Ekman, 1993). It is believed that 

emotional processes result in the generation of emotional facial expressions because the 

human body has been biologically prewired to co-opt the muscles of the face when 

emotions are experienced (Dimberg, 1990). This hardwiring is evolutionarily adaptive; 

humans are designed to decode and respond to the facial displays of others because 

communicative signalling helps our ability to survive and reproduce (Buck, 1994; 

Lakin, Jefferis, Cheng, & Chartrand, 2003). 

 

Emotions are conveyed through a mixture of facial expressions, behaviours, and 

gestures, and it has been conjectured that displays of emotion serve more than one 

function (Hess, 2001). First of all, emotional displays, particularly facial expressions, 

initiate and maintain social interactions (Darwin, 1872/2009; Ekman, 1993). They do 

this by conveying messages about internal states, behavioural intentions, and action 

requests (Fridlund, 1991; Lynch et al., 2006). In conjunction with this, the facial 

muscles involved in displaying emotions are thought to play an active role in feeding 

back to the brain the intra-individual experience of emotion (Izard, 1990). Consequently 

facial  muscle  activity  simultaneously  acts  as  a  “read-out system”  for  emotional  

reactions,  and  a  “feedback  system”  for  the  emotional  experience  (Buck,  1994;;  Dimberg,  

1990). This dual role means that facial displays serve a self-regulatory function as well 

as a social-communicative function (Lanzetta, Cartwright-Smith, & Kleck, 1976), thus 

facial displays are relevant to two emotional competencies: emotion production (i.e., 

encoding ability) and emotion modulation (i.e., regulation ability) (see Riggio, 1986; 

Scherer, 2007). 

 

6.1. Expressive Regulation 
 

Polyvagal theory conceptualises facial expressions as emergent behaviours 

driven by activation of the autonomic nervous system (Porges, 1995). However it is 

well known that top-down cortical control can influence facial expressions; facial 
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expressions can be up-regulated (enhanced) or down-regulated (suppressed) via 

conscious control (Bonanno, Papa, Lalande, Westphal, & Coifman, 2004; Matsumoto & 

Lee, 1993). The modulation of facial expressions can have personal and social 

consequences. Firstly, changing the outward expression of an emotion can function to 

change the subjective experience of the emotion. Enhancing facial expressions has been 

shown to increase concomitant emotional experiences (Demaree, Robinson, Everhart, & 

Schmeichel, 2004), whilst expressive suppression has been associated with limited 

effects on subjective feelings (Gross & Levenson, 1993). In addition to this, expressive 

regulation can be used to hide feelings. Sometimes our emotions can be considered 

inappropriate (i.e., they do not match the context; Bonanno et al., 2007), or at other 

times we can choose to control our facial expressions in order to deceive others (Ekman, 

2003). Controlling emotional expressions can therefore function to facilitate 

interpersonal interactions (e.g., by preserving social norms, Ekman & Friesen, 1969), 

but they can also function to protect the self (e.g., by preserving self-esteem, Ekman, 

1997). 

 

Individuals differ in their ability to up-regulate or down-regulate their facial 

expressions (Gross & John, 1997). Research suggests that people have tendencies 

towards either expressing or suppressing emotion. Everyday emotional expression has 

been associated with enhanced well-being and health (Gohm & Clore, 2002; Harker & 

Keltner, 2001), whilst emotional suppression has been linked to more negative 

outcomes such as increased sympathetic nervous system (SNS) activation and poorer 

well-being (Gross & John, 2003; Gross & Levenson, 1993). Interestingly, reduced facial 

expressiveness is often reported to be a core feature of several clinical disorders, for 

example Major Depressive Disorder (Gehricke & Shapiro, 2000), Autistic Spectrum 

Disorders (Travis & Sigman, 1998), and Schizophrenia (Gaebel & Wölwer, 1992). 

 

As well as affecting health and well-being, our tendency to express or inhibit our 

emotional expressions has been shown to influence our social relationships. Butler et al. 

(2003) found that individuals who were instructed to suppress their facial expressions in 

response to a negative film were rated by their naive counterparts as being less friendly, 

and their counterparts were less willing to spend time with them in the future. 

Suppressors themselves also notice difficulties in interpersonal functioning: students 

who habitually suppress their emotional expressions have been found to report lower 
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levels of social support, feeling less close to others, and lower social satisfaction 

(Srivastava, Tamir, McGonigal, John, & Gross, 2009). 

 

6.1.1. Expressive Flexibility 
 

The relationship between emotional expression and well-being is not as straight 

forward as it may initially appear. Even the expression of emotion can be detrimental if 

prolonged or considered inappropriate. For example, although sad expressions can 

stimulate sympathy and helping responses, eventually they can lead to withdrawal and 

rejection by others (Consedine, Magai, & Bonanno, 2002). On the other hand, the 

suppression of emotion has been shown to adaptive in certain situations. Whilst 

suppression is linked to poorer psychological health in Western cultures, Eastern 

cultures which value emotional control and restraint do not show this suppression–

health relationship (Butler, Lee, & Gross, 2007; Soto, Perez, Kim, Lee, & Minnick, 

2011; but see Roberts, Levenson, & Gross, 2008). Recently researchers have been 

giving more consideration to the role of adaptive responding and the ability to change 

one’s  expressions  to  meet  the  demands  of  the  environment.  This  line  of  enquiry  has  

stemmed from the coping literature where it has been emphasised that adaptability does 

not depend on which strategy is used, but whether coping is applied in a flexible manner 

(Cheng, 2001). 

 

The ability to flexibly down- and up-regulate facial expression has been 

explored by Bonanno and colleagues (Bonanno et al., 2004; Westphal, Seivert, & 

Bonanno, 2010). Their argument is that different contexts can call for either the 

enhancement or the suppression of emotion, and that the most adaptive response is one 

that fits with the environment (Bonanno et al., 2007). Consequently individuals who are 

most adaptive are able to modulate their facial expressions in both directions (i.e., they 

have expressive flexibility). Expressive flexibility is considered to be a trait marker of 

flexible responding, and the ability to flexibly modulate emotional facial expressions 

has been linked to greater resilience from adversity (Westphal et al., 2010). 

 

6.1.2. Autonomic Function and Facial Expressivity 
 

Polyvagal theory conjectures that the ability to control our facial expressions is 

intrinsically linked to our physiological state (Porges, 1995, 2001, 2003a). The source 



CHAPTER 6: FACIAL EXPRESSIVITY 143 
 

nuclei of the cranial motor nerves controlling the face and head are anatomically linked 

to the cardiac vagal fibres projecting from the nucleus ambiguus in the brainstem. 

Polyvagal theory posits that the cranial motor nerves communicate directly with the 

inhibitory neural system that promotes calm and self-soothing physiological states 

(Porges, 2003a). When the inhibitory effect of the vagus nerve is withdrawn to promote 

defensive physiological responding, it is theorised that the accessibility of the cranial 

motor nerves becomes restricted. Consequently, shifts in physiological state should 

cause observable changes in behavioural measures of emotional expression. 

 

Contrasting theories have arisen about the relationship between expressive 

behaviour and autonomic responding. The most notable theories are the theory of 

psychophysiological arousal and emotional discharge theory (for a review see 

Cacioppo et al., 1992). The theory of psychophysiological arousal suggests that the 

intensity of an emotional response is manifested in general physiological arousal that 

can be observed in both internal and external responses (i.e., behavioural expressivity is 

hypothesised to covary with ANS activation; Lanzetta et al., 1976; Zuckerman, 

Klorman, Larrance, & Spiegel, 1981). Emotional discharge theory on the other hand 

suggests that there is an inverse relationship between ANS function and behavioural 

expressivity (Notarius & Levenson, 1979; Notarius, Wemple, Ingraham, Burns, & 

Kollar, 1982). This relationship is commonly symbolised by internalisers (individuals 

who demonstrate high SNS activation and low facial expressivity) and externalisers 

(individuals who demonstrate low SNS activation and high facial expressivity). 

Cacioppo et al. (1992) reached a compromise and suggested that both theories are valid 

models of expressive behaviour and autonomic function: the theory of 

psychophysiological arousal tends to explain intra-individual differences in patterns of 

responding, whilst the emotional discharge theory tends to explain inter-individual 

differences in patterns of responding. It is conjectured that individual differences in 

emotional reactivity and response styles means that autonomic functioning is not 

transparently linked to facial expressivity. 

 

6.1.3. The Influence of Arousal on Facial Expressivity 
 

Bonanno and colleagues claim that expressive flexibility is a trait measure of 

behavioural responding (Bonanno et al., 2004; Westphal et al., 2010). However, despite 

individual participants demonstrating consistent scores in expressive ability over time, 
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the test-retest reliability data has been collected in similar testing conditions; whether 

these abilities generalise to other contexts in unknown. Contextual demands have been 

shown to be an important factor in determining expressive ability. For example, 

Westphal et al. (2010) themselves found that the relationship between expressive 

flexibility and adjustment is moderated by the presence of immediate threat (i.e., 

differences in expressive ability emerged across threat primes vs. neutral primes). This 

suggests that there is a state component to this ability. 

 

A major factor that may influence facial expressivity is physiology. After all, 

one’s  physiological  state  is  inherently linked to the subjective and behavioural aspects 

of  emotion  (James,  1884;;  Lange,  1885;;  Mauss  et  al.,  2005),  and  modulating  one’s  facial  

expressions has been shown to influence autonomic indices such as heart rate and skin 

conductance (Demaree, Schmeichel, Robinson, & Everhart, 2004; Gross & Levenson, 

1993, 1997). Although it is logical to suggest that the ability to produce facial displays 

of  emotion  may  be  inherently  linked  to  one’s  physiological  state,  polyvagal  theory’s  

assertion that facial expressivity is linked to calm and self-soothing states has received 

limited empirical support. Some limited support has come from research investigating 

vagal tone and emotional expressivity in infants (Stifter & Fox, 1990; Stifter, Fox, & 

Porges, 1989), but research with adults has failed to find positive links between PNS 

function and facial expressivity (Demaree, Robinson, et al., 2004). In fact some 

evidence suggests that PNS function is associated with reduced expression of negative 

affect (Demaree, Pu, Robinson, Schmeichel, & Everhart, 2006; Pu, Schmeichel, & 

Demaree, 2010). In contrast to this, SNS activation has been associated with both 

increased and decreased facial expressivity (Cacioppo et al., 1992). The lack of positive 

findings in support of polyvagal theory may be due to methodological reasons: facial 

expressivity is often measured during passive viewing tasks, and not during challenge or 

threat situations (for an exception see Notarius & Levenson, 1979). Under normal 

viewing conditions it may be difficult to reveal associations between facial expressivity 

and the function of the autonomic nervous system. 

 

6.2. Current Study Aims and Hypotheses 
 

The current study used a between subjects design to investigate whether 

defensive physiological arousal influences facial expressivity. To achieve this, the 

expressive regulation (ER) task was replicated from Bonanno et al. (2004). This task 
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provides behavioural indices of expressive enhancement ability (i.e., the ability to up-

regulate facial expressions) and expressive suppression ability (i.e., the ability to down-

regulate facial expressions). The experiment tested the following hypothesis: 

 

Hypothesis 3. Increased activation of the SNS in response to a laboratory stressor will 

be associated with decreased facial expressivity. 

 

In Bonanno et al. (2004) the ER task was presented as a single task, however for 

the current experiment the task was split into two parts: The first half of the task was 

presented after baseline to measure typical expressivity, and the second half was 

presented after a stressor manipulation to measure expressivity during increased SNS 

activation: half of the participants were asked to prepare a short speech – a task that is 

associated with increased heart rate, increased sweat response, and decreased high-

frequency heart rate variability (for a more detailed overview see Chapter 4); the other 

half of the participants completed a reading task (as a non-stressful control condition). It 

was hypothesised that individuals in the speech group would show a reduction in facial 

expressivity during the second administration of the ER task compared with the first 

half; this would be due to a decrease in expressive enhancement ability coupled with an 

increase in expressive suppression ability. 

 

6.3. Method 
 

6.3.1. Participants 
 

Eighty-two students volunteered to participate in the study for course credits or a 

small payment (£10). Exclusion criteria were assessed using self-report questionnaires 

and included current or past diagnoses of Axis I or II psychiatric disorders (including 

fear of public speaking), and current psychological or pharmacological treatment. One 

participant was excluded from taking part in the study due to a self-reported diagnosis 

of schizophrenia. After reviewing the video recordings six further participants were 

excluded from analysis due to incorrectly following the instructions on the ER Task on 

one or more trials. The final dataset is comprised of data from 75 participants (21 males, 

54 females). They ranged in age from 18–45 with a mean age of 20.27 years (SD = 

3.96). 96.0% of these participants identified themselves as Caucasian, 1.3% as Mixed, 

1.3% as Black, and 1.3% as Other. The participants were randomised into two groups 
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during the experiment: a speech group (n = 38: 12 males, 26 females; mean age = 

20.50, SD = 5.07) and a reading group (n = 37: 9 males, 28 females; mean age = 20.03, 

SD = 2.40). 

 

6.3.2. Behavioural Measure of Facial Expressivity 
 

6.3.2.1. Expressive Regulation Task. The Expressive Regulation (ER) Task 

was replicated from Bonanno et al. (2004). Participants were seated before a desktop 

computer with a webcam positioned above their line of vision. E-Prime (Version 1.1; 

Psychology Software Tools, Pittsburgh, PA) was used to display blocked sequences of 

five digitized picture stimuli selected from the International Affective Picture System 

(IAPS; Lang, Bradley, & Cuthbert, 1999). Stimuli were balanced for valence and 

arousal across blocks using the IAPS norms (Lang et al., 1999). Within each block, each 

stimulus was presented for 10 seconds, with 4 seconds between stimuli. For practice, 

participants viewed randomly presented blocks of positive or negative stimuli, and then 

for  each  block  rated  the  degree  to  which  they  felt  "negative  emotion”  (e.g.,  anger,  

revulsion, sadness, distress), by clicking a number between 1 (no negative emotion) and 

7 (extreme negative emotion) on a visual analogue scale, and then the degree to which 

they  felt  "positive  emotion”  (e.g.,  happiness,  joy,  amusement,  interest),  using  a  similar  

scale. 

 

Following the practice trials, participants were told that there was another 

participant in the adjacent room who was also taking part in the experiment (another 

participant was not actually present). They were told that they would not see the other 

person, but the other person would sometimes be able to view them on a video monitor; 

they were also told that they would always be informed when the monitor was on and 

when it was off; and that the other person would not hear them or see the picture stimuli 

but would have to guess their emotions for each block of stimuli. Participants were told 

that when the experiment began, the computer would (a) sometimes ask them to 

enhance their expression of emotion so the observer could more easily guess what they 

were feeling, (b) sometimes ask them to suppress their expression of emotion so the 

observer could not easily guess what they were feeling, and (c) sometimes inform them 

that the monitor was turned off and that the observer would be unable to see them, in 

which case they should behave as they would normally. Participants were then shown 

the three instruction paragraphs describing each condition (from Bonanno et al., 2004), 



CHAPTER 6: FACIAL EXPRESSIVITY 147 
 

and were informed that one of the instructions would always precede each block of 

stimuli, and that each block of stimuli would always be followed by the emotion ratings. 

The instructions for the enhance condition were as follows: 

 

Shortly, you will be presented with a set of images. Please view each image 

carefully. While viewing the images, please do your best to EXPRESS AS FULLY AS 

POSSIBLE THE EMOTIONS you feel while viewing the images. Remember that the 

person viewing you on the monitor can only see your head and neck, and cannot hear 

you. It is important for the sake of this study that you do your best to communicate what 

you are feeling. So please do the best you can to BEHAVE IN SUCH A WAY THAT THE 

PERSON VIEWING YOU ON A MONITOR WILL BE ABLE TO GUESS FROM YOUR 

FACIAL EXPRESSIONS what you are feeling while viewing the images. Before each 

image, focus your attention  on  the  ‘X’  in  the  middle  of  the  screen.  After  viewing  each  set  

of images, you will be asked to rate the emotional reactions you had to the images. 

 

The instructions for the suppression condition were: 

 

Shortly, you will be presented with a set of images. Please view each image 

carefully. While viewing the images, please do your best to SUPPRESS AS FULLY AS 

POSSIBLE ANY EXPRESSION OF THE EMOTIONS you feel while viewing the 

images. Remember that the person viewing you on the monitor can only see your head 

and neck, and cannot hear you. It is important for the sake of this study that you do your 

best to conceal what you are feeling. So please do the best you can to BEHAVE IN 

SUCH A WAY THAT THE PERSON VIEWING YOU ON A MONITOR WILL NOT BE 

ABLE TO GUESS FROM YOUR FACIAL EXPRESSIONS what you are feeling while 

viewing  the  images.  Before  each  image,  focus  your  attention  on  the  ‘X’  in  the  middle  of  

the screen. After viewing each set of images, you will be asked to rate the emotional 

reactions you had to the images. 

 

The instructions for the control condition were: 

 

Shortly, you will be presented with a set of images. Please view each image 

carefully. NO ONE WILL BE VIEWING YOU FOR THIS SET OF IMAGES. Simply 

view the images and behave as you would naturally do so. Before each image, focus 



CHAPTER 6: FACIAL EXPRESSIVITY 148 
 

your  attention  on  the  ‘X’  in  the  middle  of  the  screen.  After  viewing  each  set  of  images,  

you will be asked to rate the emotional reactions you had to the images. 

 

The ER task had twelve presentation blocks in total (six positive, six negative). 

The first ER task (ER T1) randomly presented half of the blocks (three positive and 

three negative blocks paired with enhancement, suppression, or control instructions), 

whilst the participant was videoed modulating their facial expression (see figure 6.1 for 

examples of participants complying with the regulation instructions). The first 

administration of the ER task provided a baseline measure of expressive ability for each 

participant. The second ER task (ER T2) was completed after the three-minute 

speech/reading task, and randomly presented the remaining blocks (three positive and 

three negative blocks paired with enhancement, suppression, or control instructions). 

The second administration allowed us to determine if there were any changes in 

expressive ability during expressive regulation after the stressor manipulation. 

 

To calculate the level of facial expression shown in each block, the video 

recordings  of  the  participants’  modulating  their facial expressions were rated for 

emotional  expressivity  using  Visual  Recognition’s  eMotion  software,  developed  at  the  

University of Amsterdam (Gevers, 2008). This software is able to categorise how fully 

six basic emotions (happiness, sadness, disgust, surprise, fear, and anger) are expressed 

in photographs and videos of facial activity. The videos in the current experiment were 

digitalised with a frame rate of 25 frames per second, resulting in 250 frames of 

eMotion output per 10-second video. Indices of positive and negative emotion were 

created by combining the percentages of the basic emotion scales: The positive emotion 

index consisted of the happy and surprise scales; the negative emotion index consisted 

of the sadness, disgust, fear, and anger scales. The positive and negative indices of 

emotional expressivity were used to calculate an expressive enhancement ability score, 

whilst the neutral scale was used to calculate an expressive suppression ability score. 

For each participant the mean percentage of emotion shown during each block of 

stimuli was calculated for the enhancement, suppression, and control blocks. The mean 

positive or negative emotion scores for each congruent block (i.e., positive or negative 

block) were then used to calculate expressive ability scores for ER T1 and ER T2. 

Expressive ability scores were derived following the methodology of Bonanno et al. 

(2004). Expressive enhancement ability was obtained by subtracting the mean 

expression of emotion in the control condition from the mean expression of emotion in 
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the enhancement condition. Expressive suppression ability was obtained by subtracting 

the mean expression of emotion in the suppression condition from the mean expression 

of emotion in the control condition. As in Westphal et al. (2010), enhancement and 

suppression ability were significantly inversely correlated (r = -.42, p < .001). 

 

In Westphal et al. (2010) the expressive enhancement scores and the expressive 

suppression scores were used to create a measure of balanced expressive flexibility 

(EF). According to Westphal et al. (2010) balanced EF is a clear marker of expressive 

flexibility because high balanced EF scores represent extreme but opposite response 

tendencies, whilst extreme scores in one form of regulation (i.e., enhancement or 

suppression) result in lower balanced EF scores. Although this argument is convincing, 

balanced EF scores are misleading; different participants who demonstrate even 

response tendencies will receive similar balanced EF scores, but these scores do not 

differentiate between the individuals who show equal levels of good enhancement and 

suppression, compared to those individuals who show equal levels of poor enhancement 

and suppression. For this reason, the current research will index facial expressivity by 

calculating enhancement and suppression abilities (as in Bonanno et al., 2004), but will 

not use these measures to calculate expressive flexibility scores (as in Westphal et al., 

2010). 
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Enhance Condition 

 
Control Condition 

 
Suppress Condition 

Figure 6.1. Examples of the eMotion software analysis with participants regulating their 
facial expressions in accordance with the Expressive Regulation instructions.  
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6.3.3. Procedure 
 

Participants attended a single testing session in an air-conditioned, sound 

attenuated room. On arrival, participants completed a written consent form and the 

demographic screening questionnaire (see section 3.5.1). Participants then completed 

questionnaires to assess their levels of psychological flexibility (Acceptance and Action 

Questionnaire II, AAQ-II; Bond et al., 2011, see section 3.5.8), usual levels of 

emotional expressivity (Berkeley Expressivity Questionnaire, BEQ; Gross & John, 

1995, see section 3.5.6), and how safe they feel in their social relationships (Social 

Safeness and Pleasure Scale, SSPS; Gilbert et al., 2009, see section 3.5.9). Participants 

also completed measures to assess trait mood (Beck Depression Inventory, BDI-II; 

Beck, Steer, & Brown, 1996, see section 3.5.4; and the Generalised Anxiety Disorder 

Scale, GAD-7; Spitzer, Kroenke, Williams, & Löwe, 2006, see section 3.5.6). The 

questionnaires were included to control for individual differences in factors that might 

influence the expressivity scores. Electrodes for recording heart rate (HR) and skin 

conductance level (SCL) were then applied following standard procedures (see section 

3.4.4) and a five-minute baseline recording was carried out during which the 

participants were asked to sit quietly. Recording HR allowed for the calculation of heart 

rate variability (HRV, see section 3.4.3). After these five minutes participants 

completed a questionnaire to assess their current emotional state (Profile of Mood States 

– Short Form, POMS-SF; Shacham, 1983, see section 3.5.1). Instructions were then 

given for the first half of the Expressive Regulation (ER T1) Task (Bonanno et al., 

2004). 

 

Once the first half of the ER task was completed, participants were randomly 

assigned to one of two conditions: a speech task vs. a reading task. The speech task was 

adapted from the procedure used by Schubert et al. (2009; see section 4.6.2). 

Participants were informed that they would have to prepare and present a three-minute 

speech. Participants in the speech task group (n = 38) were given a three-minute 

preparation period during which they were given a list of bullet points with arguments 

for and against euthanasia, and a pen and paper to help prepare their speech. The 

reading condition was employed as a non-stressful alternative to the speech task 

(Feldman, Cohen, Hamrick, & Lepore, 2004). Participants assigned the reading task (n 

= 37) were given three minutes to quietly read through written passages containing 

arguments for and against euthanasia (these corresponded with the arguments outlined 
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in the material given to participants in the speech task condition). After the three-minute 

task, both groups recompleted the questionnaire to assess their mood state (POMS-SF) 

and then carried out the second half of the ER Task (ER T2). A flowchart diagram of 

the expressive regulation procedure can be found in appendix 16. 

 

6.4. Results 
 

6.4.1. Statistical Analyses 
 

For the statistical analyses PSAW Statistics (version 18.0.2, SPSS Inc., Chicago 

IL) was used, with the alpha set to .05. The dependent variables were examined for 

normality of distribution using histograms and Kolmogorov–Smirnov tests. 

 

To evaluate the influence of possible covariates in the planned analyses 

comparing the stressor manipulation groups, bivariate correlations were computed 

among the dependent variables (expressive enhancement ability, expressive suppression 

ability, and self-reported emotion ratings) and possible covariates (age, sex, trait mood 

[BDI-II and GAD-7], self-reported expressivity [BEQ], social safeness [SSPS], and 

psychological flexibility [AAQ-II]). No significant correlations were identified for 

expressive enhancement ability. Expressive suppression ability was significantly 

correlated with the AAQ-II (r = -.23, p = .050). Higher self-reported psychological 

flexibility was associated with decreased expressive suppression. Subsequent analyses 

examining group differences in expressive suppression ability accounted for the 

influence of the AAQ-II by including the measure as a covariate. Further correlations 

revealed that self-reported emotion ratings were significantly correlated with sex (r = 

.34, p = .003), the BEQ (r = .44, p < .001), and the SSPS (r = .30, p = .008): Females 

tended to report higher levels of felt emotion than males, individuals reporting greater 

behavioural tendencies to express emotion also reported higher levels of felt emotion, 

and individuals reporting greater social safeness expressed higher levels of felt emotion. 

Sex, the BEQ total scores, and the SSPS total scores were entered into the subsequent 

analyses of the self-report ratings as covariates.
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Table 6.1. 

Mean recordings of physiological arousal during the experimental tasks by stressor group. 
 Baseline ER T1 Manipulation ER T2 F df p 

Reading Group        
HR (bpm) 74.45 (11.07) 74.06 (10.79) 72.42 (9.73)* 72.19 (9.48)** 4.63 2.74, 98.79 .006 
SCL (µS) 2.13 (1.42) 3.98 (1.91)*** 4.15 (2.17)*** 4.07 (2.26)*** 61.95 1.45, 52.15 .001 
HF-HRV (ms2) 7.64 (0.82) 7.62 (0.68) 7.64 (0.85) 7.62 (0.78) 0.06 2.62, 94.14 .974 
        

Speech Group        
HR (bpm) 78.55 (9.90) 76.92 (8.43)* 83.34 (12.75)** 75.58 (9.14)*** 22.42 1.69, 62.26 .001 
SCL (µS) 2.93 (2.03) 5.10 (2.75)*** 5.75 (2.74)*** 4.99 (2.48)*** 101.74 2.10, 77.78 .001 
HF-HRV (ms2) 7.28 (1.04) 7.44 (0.88) 7.11 (0.97) 7.41 (0.91) 2.97 2.59, 95.90 .043 

Note. Standard deviations are reported in parentheses. HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
Significant change from baseline * p < .05, ** p < .01, ***p < .001 

 

Table 6.2. 

Stressor group characteristics 

 Reading Group 
(n = 37) 

Speech Group 
(n = 38) t df p 

 M (SD) M (SD)    
AAQ-II 39.38 (7.47) 37.50 (6.86) 1.14 73 .260 
BDI-II 5.59 (6.27) 8.29 (9.05) -1.50 73 .139 
BEQ Mean 4.53 (0.87) 4.48 (0.81) 0.22 73 .830 
GAD-7 4.68 (4.79) 4.92 (4.03) -0.24 73 .811 
POMS-SF Total 2.62 (9.52) 3.89 (10.17) -0.56 73 .578 
SSPS 34.51 (8.41) 31.89 (8.67) 1.33 73 .189 

Note. AAQ-II = Acceptance and Action Questionnaire, BDI-II = Beck Depression Inventory, BEQ = Berkeley Expressivity Questionnaire, GAD-7 = 
Generalised Anxiety Disorder Scale, POMS-SF = Profile of Mood States – Short Form, SSPS = Social Safeness and Pleasure Scale. 
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Mean HR, SCL, and HF-HRV values were calculated for the baseline period, 

each block of the ER task, and the stressor manipulation period (see table 6.1). Analyses 

were then performed to establish if there were any baseline differences between the 

stressor manipulation groups (the group characteristics can be found in table 6.2). Chi-

squared tests confirmed that there were no significant differences between the stressor 

groups in terms of sex and ethnicity. Univariate analyses of variance (ANOVAs) also 

failed to identify any significant differences between the groups in terms of age, self-

reported psychological flexibility, social safeness, emotional expressivity, or mood at 

baseline. Further to this, a univariate ANOVA did not find any significant group 

differences for HR, SCL, or HF-HRV at baseline or during the ER task at T1. 

 

The first main set of analyses reported in this chapter investigated the effects of 

the ER task on subjective ratings of felt emotion, as well as facial expressivity. To 

establish whether the subjective ratings were significantly affected by valence and 

condition, the subjective ratings at T1 were compared across the individual ER blocks 

using paired t-tests and a univariate repeated-measures analysis of covariance 

(ANCOVA: repeated factor Condition; Sex, BEQ and SSPS scores as covariates). 

Further to this, a repeated-measures ANOVA was carried out to evaluate the effect of 

condition on the eMotion data (i.e., Level of Expression). Significant main effects for 

all analyses were followed up with pairwise comparisons. All pairwise contrasts were 

evaluated using Bonferroni critical values of .05. 

 

The second set of analyses evaluated the effects of the ER task on the 

physiological indices. Repeated-measures ANOVAs were carried out on the HR, SCL, 

and HF-HRV data from T1, with Condition (enhance, control, suppress) and Valence 

(positive, negative) as repeated factors. Significant main effects for all analyses were 

followed up with pairwise comparisons. All pairwise contrasts were evaluated using 

Bonferroni critical values of .05. 

 

The third main set of analyses investigated the effects of the stressor 

manipulations on the physiological indices of arousal. Reactivity scores were calculated 

for HR, SCL, and HF-HRV by subtracting the stressor manipulation period from the 

corresponding baseline data (Kamarck et al., 1992; Llabre, Spitzer, Saab, Ironson, & 

Schneiderman, 1991). To establish if the stressor manipulations induced different levels 

of arousal across the groups, univariate ANOVAs were performed on the reactivity 
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scores with Group as the fixed factor. Mixed-factorial ANOVAs (with Time as the 

repeated factor, and Group as the between subjects factor) were also performed using 

the POMS-SF means and the raw physiological data to investigate if the groups 

demonstrated different physiological profiles across the two ER tasks. 

 

Finally, the fourth set of analyses investigated whether there were any group 

differences in expressive enhancement ability and expressive suppression ability across 

the two administrations of the ER task. Mixed-factorial ANOVAs (with Time as the 

repeated factor, and Group as the between subjects factor) were performed on the 

separate expressive ability scores. As expressive suppression ability was significantly 

correlated with the AAQ-II, the suppression ability analysis was repeated with the 

AAQ-II as a covariate. 

 

6.4.2. Manipulation Check 
 

Analyses of the self-rated subjective emotion at T1 were consistent with the 

valence of the stimuli (see table 6.3). Participants rated the positive stimuli as 

significantly more positive than negative across all conditions: enhancement, t(74) 

23.27, p < .001; suppression, t(74) 23.14, p < .001; and control, t(74) 23.56, p < .001. 

Participants also rated negatively valenced stimuli as significantly more negative than 

positive across all conditions: enhancement, t(74) 23.06, p < .001; suppression, t(74) 

30.64, p < .001; and control, t(74) 20.83, p < .001.  In  line  with  Bonanno  et  al.’s  (2004)  

findings, subjective emotion ratings not matching the valence of the stimuli were low 

across conditions (positive ratings for negative stimuli M = 1.30, SD = 0.61; negative 

ratings for positive stimuli M = 1.35, SD = 0.74). As incongruent ratings from the ER 

task have not been linked to any meaningful effects, they were excluded from the 

subsequent analyses. 

 

To investigate the effects of Condition on the subjective experience of emotion 

the congruent self-report emotion ratings (i.e., mean positive ratings for positive stimuli 

and mean negative ratings for negative stimuli) were analysed using repeated-measures 

ANCOVAs (repeated measure: Condition; with Sex, the BEQ scores and the SSPS 

scores entered as covariates). Condition had a significant effect on negative ratings, F(2, 

142) = 3.59, p = .030, but not positive ratings. Although self-reported negative emotion 

was higher in the enhance and suppress conditions than the control condition, 



CHAPTER 6: FACIAL EXPRESSIVITY 156 
 

Bonferroni pairwise comparisons revealed that negative ratings were not significantly 

different across the conditions. 

 

Table 6.3. 

Mean self-rated subjective emotion during the ER Task at T1 by Condition and 
Valence. 

 Enhance Control Suppress F df p 
Positive Stimuli       
Positive rating 5.29 (1.10) 5.09 (1.09) 4.93 (1.26) 3.72 2, 148 .027 
Negative rating 1.29 (0.65) 1.47 (0.98) 1.29 (0.51) 1.71 2, 148 .187 
       

Negative Stimuli       
Positive rating 1.32 (0.66) 1.37 (0.67) 1.20 (0.46) 3.53 2, 148 .032 
Negative rating 5.56 (1.21) 5.47 (1.45) 5.59 (1.09) 0.39 2, 148 .676 

Note. Standard deviations are reported in parentheses. 
 

Analyses of the eMotion output at T1 supported the manipulation of expressive 

regulation. Level of Expression was determined for each condition by calculating the 

mean percentage of congruent emotion displayed in each block (i.e., percentage of 

positive emotions expressed during positive blocks, and percentage of negative 

emotions expressed during negative blocks). A repeated-measures ANOVA revealed a 

significant effect of Condition (enhancement, suppression, control) on Level of 

Expression, F(2, 146) = 62.18, p < .001 (see figure 6.2). As expected, Bonferroni 

pairwise comparisons indicated that Level of Expression was significantly greater in the 

enhancement condition (M = .48, SD = .17) than the control condition (M = .34, SD = 

.14), and significantly lower in the suppression condition (M = .24, SD = .15) than the 

control condition (all significant at p < .001). 
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Figure 6.2. Mean percentage of congruent emotion exhibited (as rated by eMotion) 
across the three expressive-regulation conditions. Higher percentages represent greater 
level of expression. Error bars represent the standard error. 

 

6.4.3. Physiological Effects of Expressive Regulation 
 

Previously the ER Task has not been carried out whilst simultaneously 

measuring changes in psychophysiology. The physiological data are summarised in 

table 6.4. The physiological data recorded at T1 were analysed to elucidate the effects of 

expressive regulation on physiological arousal. Repeated-measures ANOVAs for 

Condition (enhance, control, suppress) and Valence (positive, negative) were carried out 

on the HR, SCL, and HF-HRV data. For HR a significant main effect was found for 

Condition, F(2, 148) = 29.80, p < .001. Bonferroni pairwise comparisons (all significant 

at p = .002) confirmed that HR was significantly higher in the enhancement condition 

(M = 76.38, SD = 10.45) than the control condition (M = 73.81, SD = 10.83), and 

significantly lower in the suppression condition (M = 72.02, SD = 10.29) than the 

control condition. A significant main effect of Condition was also found for SCL, F(2, 

148) = 38.74, p < .001. Bonferroni pairwise comparisons (all significant p < .05) 

demonstrated that SCL was highest in the enhancement condition (M = 4.75, SD = 

2.49), followed by the suppression condition (M = 4.51, SD = 2.54), with SCL lowest in 

the control condition (M = 4.40, SD = 2.37). Finally, a significant main effect of 

Condition was also found for HF-HRV, F(2, 148) = 4.73, p = .010. Bonferroni pairwise 

comparisons (p = .002) demonstrated that HF-HRV was significantly higher in the 

suppression condition (M = 7.64, SD = .83) compared to the control condition (M = 

7.45, SD = .85). 
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Table 6.4. 

Mean recordings of physiological arousal during the ER Task at T1 
 Enhancement Control Suppression F df p 

HR (bpm) 76.38 (10.45)*** 73.81 (10.83) 72.02 
(10.29)*** 29.80 2, 148 .001 

SCL (µS) 4.75 (2.49)*** 4.40 (2.37) 4.51 (2.54)* 38.74 2, 148 .001 
HF-HRV (ms2) 7.58 (0.86) 7.45 (0.85) 7.64 (0.83)** 4.73 2, 148 .010 
Note. Standard deviations are reported in parentheses. HR = heart rate; SCL = skin 
conductance level; HF-HRV = high-frequency heart rate variability. 
Significant difference from the control condition * = p < .05. ** = p < .01. *** = p < 
.001. 

 

6.4.4. Physiological Reactivity to the Stressor Manipulations 
 

Univariate ANOVAs were carried out on the reactivity scores for HR, SCL, and 

HF-HRV. A significant effect of Group was revealed for the HR reactivity scores, F(1, 

73) = 17.21, p < .001, and the SCL reactivity scores, F(1, 73) = 6.32, p = .014, but not 

the HF-HRV reactivity scores (p > .05). Bonferroni pairwise comparisons confirmed 

that the speech group demonstrated significantly higher HR and SCL reactivity than the 

reading group (significant at p < .05), although it should be noted that both groups 

demonstrated an increase in SCL that was significantly above baseline. 

 

To investigate the effect of the stressor manipulations on arousal during the ER 

tasks a series of mixed-factorial ANOVAs (with Time as the repeated factor, and Group 

as the between subjects factor) were carried out on the POMS-SF subscales and the 

physiological variables. As shown in figure 6.3, the speech group demonstrated a 

significant Group x Time interaction showing an increase in the POMS-SF tension–

anxiety subscale from T1 to T2, which was not shown by the reading group, F(1,73) = 

38.19, p < .001. Although the speech group showed greater increases in HR and SCL 

during the manipulation task, these changes were not maintained during the second ER 

task at T2. As a result there were no significant physiological differences between the 

groups at T2. 
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Figure 6.3. Mean scores on the POMS-SF tension–anxiety subscale across the two 
Emotion Regulation Tasks as a function of Group. Error bars represent the standard 
error. 

 

6.4.4.1. Relationships between mood and physiological reactivity. To 

investigate whether changes in ANS function during the stressor manipulation period 

were related to changes in self-reported emotion, correlations were carried out between 

the mean HR, SCL, and HF-HRV reactivity scores and the mean POMS-SF reactivity 

scores. Significant correlations revealed that greater HR reactivity was associated with 

larger increases in the POMS-SF tension–anxiety subscale (r = .30, p = .006) and the 

POMS-SF confusion–bewilderment subscale (r = .25, p = .026), whilst greater SCL 

reactivity was associated with larger increases in the POMS-SF tension–anxiety 

subscale (r = .22, p = .046). The directions of these relationships suggest that larger 

increases in SNS activation were associated with greater self-reported negative affect. 

 

6.4.5. Effect of the Stressor Manipulation on Facial Expressivity 
 

It was hypothesised that the stressor manipulation would cause changes in 

arousal in the speech group that would influence expressive ability at T2. Mixed-

factorial ANOVAs (with Time and as the repeated factor, and Group as the between 

subjects factor) revealed that there were no significant differences in expressive 

enhancement ability or expressive suppression ability between the groups at T1 or T2 

(see table 6.5). The expressive suppression ability analysis was repeated with the AAQ-

II as a covariate. The AAQ-II was significantly associated with the expressive 

suppression ability scores, F(1, 72) = 4.22, p = .044, but the main effects of Time and 

Group remained insignificant. Although the speech group expressed less emotion during 
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T2, as demonstrated by their reduced expressive enhancement ability and their increased 

expressive suppression ability, the changes were small and did not reach statistical 

significance. 

 

Table 6.5. 

Mean expressive ability scores at T1 and T2 by stressor group. 
 Enhancement Ability Suppression Ability F df p 
 T1 T2 T1 T2 (time x 

ability) 
  

Reading Group 0.12 (0.17) 0.14 (0.20) 0.09 (0.03) 0.11 (0.19) 0.00 1, 36 .983 
        

Speech Group 0.15 (0.20) 0.12 (0.18) 0.12 (0.18) 0.16 (0.20) 0.04 1, 36 .390 
Note. Standard deviations are reported in parentheses. 

 

6.5. Discussion 
 

The present study aimed to investigate the effects of defensive physiological 

arousal on facial expressivity. It has previously been suggested that individual 

differences in facial expressivity are trait-like, due to high correlations between 

expressive enhancement and expressive suppression ability scores appearing over time 

(Bonanno et al., 2004). However, since immediate threat contexts have been shown to 

influence expressive flexibility factors (Westphal et al., 2010), the current research 

decided to further explore the possibility that facial expressivity is also determined by 

state factors such as physiology and state anxiety. 

 

The ER task developed by Bonanno et al. (2004) provides a behavioural 

measure of expressive regulation ability. In the present study participants completed 

half of the ER task followed by a stressor manipulation – half of the sample completed a 

reading task, and the other half completed a speech task – followed by a second version 

of the ER task. The aim of the stressor manipulation was to induce a defensive 

physiological state in the speech group in order to establish the effects of defensive 

arousal on expressive ability scores. No significant differences were found between the 

groups at T1 or T2 for any of the expressivity scores. This is despite the speech group 

showing a decrease in enhancement ability and an increase in suppression ability at T2. 

 

Despite the stressor manipulation being successful at significantly increasing 

arousal in the speech group during the manipulation period, the physiology of the 

speech group was not significantly different from the reading group during the second 
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ER task. As discussed in Chapter 4, previous research has used the speech task to 

induce social evaluative threat during experimental tasks (e.g., Garner, Mogg, & 

Bradley, 2006; Mansell, Clark, Ehlers, & Chen, 1999), however these studies have not 

reported how well arousal is maintained during the secondary tasks. The findings of this 

study suggest that after stressor manipulations healthy individuals are likely to exhibit a 

physiological return to baseline, minimising the differences seen between groups 

assigned to different stressor manipulations. 

 

Although the current experiment did not find significant differences in 

enhancement or suppression ability between the stressor groups at T2, there is still the 

possibility  that  defensive  arousal  affects  emotional  expressivity.  Porges’  (1995,  2001,  

2003a) polyvagal theory claims that facial expressions are emergent properties of calm 

and self-soothing states, and that defensive physiological states should limit the 

accessibility of neural pathways that automatically control facial expressions. What this 

premise fails to appreciate is that a reduction in spontaneous expression caused by 

defensive arousal does not prevent the regulation of expressions via consciously-

mediated pathways (e.g., participants can voluntarily produce facial displays to 

influence social interactions). Thus participants in the speech group may have been 

compensating for a reduction in natural expressivity by exerting more conscious effort 

to regulate their facial expressions during the second ER task. This may explain why the 

changes in expressivity scores at T2 for the speech group went in the expected direction, 

but were not large enough to reach significance. 

 

Evidence to support the distinction between spontaneous facial expressions and 

consciously driven facial expressions comes from two sources. First of all, research has 

shown that posed (voluntary) facial expressions involve different neuronal pathways 

from spontaneous (involuntary) facial expressions (Matsumoto & Lee, 1993; Rinn, 

1984). Secondly, in the current experiment the Behavioural Expressivity Questionnaire 

(a measure that has been shown to index behavioural tendencies to express emotion; 

Gross & John, 1995) only correlated with the subjective self-report ratings of emotion 

and not the expressive enhancement or suppression scores. This finding supports the 

argument that instructionally manipulated displays of emotion may not be equated with 

natural expressions of emotion (Notarius & Levenson, 1979). 
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6.5.1. Limitations 
 

A major limitation of this study was the inability to distinguish the stressor 

groups on the basis of physiology. It is possible that the ER task could have limited the 

effects of the stressor task. Participants in the speech group may have found the speech 

task less threatening than participants in the previous experiments because they were 

already being filmed during the ER blocks. Secondly, the physiological demands 

associated with the ER task may limit the emergence of group differences in arousal 

after the stressor manipulation: Both manipulation groups demonstrated increases in 

SCL from baseline at T1 and T2. Previous research has shown that engaging in 

expressive regulation increases arousal so this was not unexpected (Demaree, 

Schmeichel, et al., 2004; Gross & Levenson, 1993, 1997), however it was expected that 

the group differences in arousal after the stressor manipulation would be larger. A third 

consideration is that the speech task is simply not threatening enough to maintain 

heightened arousal during secondary tasks. Maintaining arousal during secondary tasks 

is a major methodological challenge for the current research. As a final consideration, 

the current sample was homogenous in terms of age, sex, and ethnicity, which means 

that the results may not be generalisable to the wider population. For example, previous 

research has demonstrated that females tend to be more expressive than males (Dimberg 

& Lundquist, 1990; Hess & Bourgeois, 2010), which was not evident in the current 

experiment. Using samples that are more diverse in age, sex, and ethnicity may reveal 

latent relationships between these factors and facial expressivity. 

 

6.5.2. Conclusion 
 

In conclusion, the current experiment failed to find a significant effect of 

defensive arousal on facial expressivity. Despite this, several interesting findings were 

observed. First of all, whilst the stressor manipulation was able to induce short-term 

increases in physiological arousal, the differences between the groups were not 

maintained during the secondary task. This finding could be attributable to various 

factors (e.g., distraction or habituation in the speech group, or excessive arousal in the 

reading group). Researchers need to be mindful of these effects when using stressor 

manipulations in conjunction with secondary tasks. The second finding that is worth 

noting, is that consistent with previous research, expressive regulation results in 

measurable changes in physiology: enhancement resulted in increased HR and SCL, 
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whilst suppression resulted in decreased HR coupled with increased SCL (Demaree, 

Schmeichel, et al., 2004; Gross & Levenson, 1993). These physiological concomitants 

support the premise that facial expressivity is linked to autonomic function. 

 

Despite associations being identified between facial expressivity and autonomic 

function, the hypothesis that increased SNS activation would be associated with 

significant reductions in facial expressivity was not supported. Although the speech 

group exhibited changes in expressive ability at T2 that were in the direction of the 

hypothesis, the changes in expressivity scores were not significant. Future research 

should consider the possibility that defensive physiological arousal affects spontaneous 

facial expressivity, but not conscious regulation of facial displays. One way to test this 

hypothesis would be to covertly measure spontaneous facial expressions of emotion 

before and after a stressor manipulation. 
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Chapter 7: Defensive Physiological Arousal and Emotional Sensitivity 
 

The previous studies have demonstrated that social evaluative threat is 

associated with reliable increases in defensive physiological arousal. Chapter 6 

attempted to investigate the effects of defensive arousal on facial expressivity, but 

despite the stressor manipulation resulting in higher arousal levels in the speech group, 

the group differences in arousal were not maintained during the secondary task. The 

lack of findings in Chapter 6 may be attributable to the expressive regulation task being 

too arousing; the secondary task itself resulted in increases in arousal, hence both the 

stressor group and the control group demonstrated increases in arousal during the 

secondary task, masking the effects of the stressor manipulation. Using a secondary task 

that is less arousing could initiate greater group differences in physiology after the 

stressor manipulation. Keeping arousal levels higher in the speech group may enhance 

the detection of stress-related changes in socio-emotional responding during the 

secondary task. 

 

The current chapter is designed to investigate the effect of defensive 

physiological states on the ability to recognise emotions in others. Research has 

suggested that when people are stressed and anxious their ability to recognise non-

verbal expressions of emotion is impaired (Hänggi, 2004). Recognising emotions in 

others is an important component of social interactions, helping us to understand the 

emotional states of others as well as the intentions of our interaction partners (Blairy, 

Herrera, & Hess, 1999; Riggio, 1986; Scherer, 1995). An inability to decode emotional 

cues can lead to interpersonal difficulties such as empathic insensitivity and 

inappropriate expression of emotion. 

 

7.1. Emotional Sensitivity 
 

Successful communication involves two complex processes: Not only do we 

need to be able to encode the displays which convey our emotional states and our 

interpersonal intent, but we also need to be able to successfully decode the signals of 

our interaction partners (Blairy et al., 1999; Riggio, 1986; Scherer, 2007). The ability to 

recognise emotions is thought to be innate; an ability that co-evolved with the capacity 

to modulate our facial expressions to communicate internal states and behavioural 

intentions (Ekman, 1997; Izard, 1994). The processes involved in recognising and 
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discriminating emotional expressions are thought to be automatic (Tracy & Robins, 

2008); we can even perceive emotional expressions without awareness (Dimberg, 

Thunberg, & Elmehed, 2000). Despite emotion recognition being a universal ability, 

individuals differ in their ability to perceive emotions in others (Martin, Berry, 

Dobranski, Horne, & Dodgson, 1996; Rozin, Taylor, Ross, Bennett, & Hejmadi, 2003). 

 

Emotional sensitivity refers to the threshold at which an individual can recognise 

emotional stimuli (Lynch et al., 2006; Riggio, 1986). Emotional sensitivity is a distinct 

measure from emotional accuracy, which relates to the ability to distinguish one 

emotion from another. Emotional sensitivity is about the level of cues needed for the 

emotion to be perceived. The most common methods  used  to  test  people’s  ability  to  

recognise emotions are with standardised batteries of emotive faces or vocal stimuli. 

The emotive stimuli can be presented statically, or techniques such as morphing the 

emotions (to form graded presentations, or blends of emotion) can be used to present the 

emotions dynamically (see section 3.6.2 for an overview). 

 

Factors that can moderate the ability to accurately identify emotional 

expressions include age (Calder et al., 2003), gender (Hoffmann, Kessler, Eppel, 

Rukavina, & Traue, 2010; Rotter & Rotter, 1988), culture (see Elfenbein & Ambady, 

2002, for a review), and psychopathology (Csukly, Czobor, Simon, & Takács, 2008; 

Sprengelmeyer, Rausch, Eysel, & Przuntek, 1998). These factors can have differential 

effects on different emotions, and this has resulted in the suggestion that emotional 

sensitivity may not be a singular capability, but may be better conceptualised as a group 

of related abilities with individuals showing varied sensitivities to different emotions 

(Sprengelmeyer et al., 1998). 

 

7.1.1. Facial Mimicry 
 

Another factor that has been associated with emotional sensitivity is facial 

reactivity to stimuli (Stel & van Knippenberg, 2008). Individuals who facially express 

more emotion are more sensitive to self-produced cues of emotion as well as the 

emotions of others (Halberstadt, Dennis, & Hess, 2010; Laird et al., 1994); this has led 

to the belief that facial expressions may play a role in emotion recognition processes. It 

is not uncommon for people to respond to emotional stimuli with facial expressions, in 

particular facial displays of emotion are likely to induce reciprocal facial displays in the 
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observer. Dimberg (1982) found that when people were shown pictures of positive or 

negative facial displays, they produced distinct facial electromyographic reactions in 

muscles  relevant  to  the  valence  of  the  display.  Facial  displays  in  response  to  others’  

facial expressions are hypothesised to facilitate social interactions and exchanges, either 

by being similar, i.e., mimicking  others’  expressions  (Hatfield,  Cacioppo,  &  Rapson,  

1993; Lakin, Jefferis, Cheng, & Chartrand, 2003), or by being complementary (Keltner 

& Kring, 1998). Using emotional expressions can help to show emotional reciprocity 

and increase empathic understanding and rapport (Butler et al., 2003; Chartrand & 

Bargh, 1999; Gueguen, Jacob, & Martin, 2009; Lakin & Chartrand, 2003). Facial 

expressivity  in  response  to  others’  facial  displays  is  therefore  an  important  social  signal  

(Adolphs, 2006). 

 

In the same way that self-generated facial expressions can initiate afferent 

feedback, facial expressions generated through mimicry can also induce changes in 

affective state (Hess, Philippot, & Blairy, 1998). This process is known as emotional 

contagion (Hatfield et al., 1993). The reverse simulation model suggests that people 

recognize emotions by mimicking observed facial expressions, which in turn generates 

the corresponding emotion in the observer (Rives Bogart & Matsumoto, 2009). The 

mechanism for emotional contagion in this model is thought to be the same mechanism 

by which self-generated facial expressions can produce emotions (c.f. the facial 

feedback hypothesis; Buck, 1980; Dimberg, 1990). An alternative explanation is that 

simply  observing  others’  facial  expressions may be enough to generate an emotional 

experience in the observer (Chartrand & Bargh, 1999; Hatfield et al., 1993). The 

production of corresponding facial expressions is something that is often unconscious 

and automatic (Dimberg, 1982; Dimberg et al., 2000). The unconscious mimicry of 

facial  expressions,  gestures,  and  mannerisms  has  been  labelled  the  “chameleon  effect”  

(Chartrand & Bargh, 1999). 

 

7.1.2. Linking Emotional Sensitivity and Facial Mimicry 
 

The links between emotional sensitivity and facial mimicry are not well-

established. Action observation and action performance share the same neural substrates 

(Decety & Grèzes, 1999), which suggests that facial mimicry should improve 

perception of emotions, however research has demonstrated that facial mimicry and 

feedback is not necessary for emotion recognition. Rives Bogart and Matsumoto (2009) 
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found that people with Moebius Syndrome (i.e., bilateral facial paralysis) were no less 

accurate in recognising emotions than healthy control subjects. They concluded that 

peripheral muscle activity is not required for emotion recognition; however neural 

substrates in the motor cortex which would normally initiate the facial movement may 

provide sufficient feedback to induce the emotional experience. In line with this, Blairy 

et al. (1999) found no evidence to support the hypothesis that mimicry (either 

spontaneous or voluntary) increased emotion recognition accuracy. An interesting 

finding of their study however, was that voluntarily mimicking facial expression did 

result in lower perceived decoding difficulty. 

 

Contrary to the findings of Rives Bogart and Matsumoto (2009), Oberman, 

Winkielman, and Ramachandran (2007) found that blocking facial mimicry (through 

behavioural manipulations) did affect recognition of specific facial expressions, 

suggesting that facial feedback does play a role emotional sensitivity. Complementary 

findings have been found in studies investigating the effects of botulinum toxin 

(commonly known as Botox), which suggests that blocking facial mimicry attenuates 

the activation of neural circuits involved in emotion (Hennenlotter et al., 2009). 

Schneider, Hempel, and Lynch (2012) also found that instructing participants to 

suppress their facial expressions when carrying out an emotion recognition task was 

associated with reduced emotional sensitivity, whilst instructing participants to actively 

mimic facial expressions had a facilitative effect. In addition to this, Stel and colleagues 

(Stel & van Knippenberg, 2008; Stel & van den Bos, 2010) have also demonstrated that 

facial mimicry can facilitate understanding the emotions of others. Stel and van 

Knippenberg (2008) found that mimicry was able to influence emotional sensitivity 

(particularly in females), but it had little effect on emotional accuracy. 

 

7.2. Experiment 1: The Effects of Arousal on Emotional Sensitivity and Facial 
Mimicry 

 

Polyvagal theory (Porges, 1995, 2001, 2003a) emphasises the role of facial 

expressions in social engagement, and suggests that facial expressivity is important 

during interpersonal interactions. As discussed in section 6.1.3, function of the 

autonomic nervous system may restrict facial expressivity due to withdrawal of the 

parasympathetic nervous system (PNS) and activation of the sympathetic nervous 

system (SNS; see Porges, 2001, 2003a). Reduced facial expressivity due to defensive 
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physiological arousal may reduce automatic mimicry of facial expressions, which in 

turn may lower emotional sensitivity. SNS activation is therefore likely to influence 

both sides of the communication process, with deficiencies in both the encoding and 

decoding of emotional signals. The present study is designed to investigate the effects of 

defensive physiological arousal on both emotional sensitivity and facial mimicry by 

using a simple behavioural measure of emotional sensitivity (the Multimorph Facial 

Affect Recognition Task; Blair, Colledge, Murray, & Mitchell, 2001) in conjunction 

with electromyography. Two hypotheses were proposed: 

 

Hypothesis 3. Increased activation of the SNS in response to a laboratory stressor will 

be associated with decreased facial expressivity. This hypothesis was also tested in 

Chapter 6, but the behavioural measure of facial expressivity in the last chapter was 

based on the ability to voluntarily modulate facial expressions in response to 

instructions. In contrast, the current research aims to investigate the effects of increased 

SNS activation on spontaneous facial expressivity (i.e., involuntary mimicry in response 

to facial displays). In addition to this, the following hypothesis will be tested: 

 

Hypothesis 4. Increased activation of the SNS in response to a laboratory stressor will 

be associated with decreased emotional sensitivity (i.e., the ability to recognise 

emotions in others). Surprisingly few studies have investigated the effects of stressors 

on emotion recognition, although Hänggi (2004) reported that stress has a negative 

effect on emotional sensitivity. Hänggi's (2004) findings result from an Internet-based 

experiment where participants carried out emotion recognition tasks during an online 

procedure designed to induce stress. During the experimental tasks participants in the 

stress condition experienced several stressor manipulations; these included negative 

feedback on performance, a form malfunction so that data entered during the 

experiment had to be repeated, and increased time pressure. Hänggi's results revealed 

that individuals in the stress condition demonstrated poorer recognition of emotional 

facial displays compared to those in a control condition. In the current experiment, it is 

proposed that participants in the speech group will exhibit decreased sensitivity (i.e., 

will be slower to recognise emotional expressions) after a stressor manipulation. 

 

Two experiments using between-subjects designs were carried out to investigate 

these hypotheses. Experiment 1 replicated the design of the study in Chapter 6: two 

groups of participants carried out an emotion recognition task before and after a stressor 
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manipulation (speech task vs. control condition). Although the emotion recognition task 

in the current research was found to be less arousing than the expressive regulation task 

from Chapter 6, there were no group differences in physiological arousal during the 

second administration of the emotion recognition task. Consequently, Experiment 2 

further refined the speech task to increase its effectiveness in maintaining arousal in the 

speech group after the stressor manipulation. The modified speech task was able to 

maintain arousal for longer in the speech group during the secondary task allowing the 

effects of defensive physiological arousal on emotional sensitivity and facial mimicry to 

be evaluated. 

 

7.3. Methodology 
 

7.3.1. Participants 
 

Eighty undergraduate students (16 males, 64 females) volunteered to participate 

in the experiment and were awarded course credits as part of their undergraduate course 

requirements. Exclusion criteria were assessed using self-report questionnaires and 

included current or past diagnoses of Axis I or II psychiatric disorders, and current 

psychological or pharmacological treatment. The participants ranged in age from 18–30 

with a mean age of 20.10 years (SD = 2.37). 96.3 % of these participants identified 

themselves as Caucasian and 3.8% as Mixed. During the experiment participants were 

randomly allocated one of two tasks: a speech task (n = 40: 6 males, 34 females; mean 

age = 21.05, SD = 2.59) or a control task (n = 40: 10 males, 30 females; mean age = 

19.15, SD = 1.67).  Due  to  recording  errors  two  participants’  data  were  excluded  from  

the skin conductance level analyses. 

 

7.3.2. Behavioural Measures of Emotional Sensitivity and Facial Mimicry 
 

7.3.2.1. The Multimorph Facial Affect Recognition Task. The Multimorph 

Facial Affect Recognition Task is a tool used to assess the speed and accuracy with 

which one identifies an emotion expression (see section 3.6.2.1; see also Blair et al., 

2001). Six distinct emotional expressions (happiness, sadness, fear, anger, surprise, and 

disgust) feature in the task, each portrayed by three male and three female actors (36 

stimuli in total). Each trial begins with a neutral face, which gradually morphs through 

39 stages of 450 ms each into one of the six prototypic emotional expressions (see 
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figure 7.1). Prior to completing the task, the participants were given the following 

instructions: 

 

You will be presented with a series of faces. These faces are initially neutral, 

that is, they have a blank expression. However, the faces will slowly change over many 

stages, to reveal one of the six target emotions listed on the screen. For each face, you 

will have to determine which expression is displayed as soon as possible in as few 

stages as possible, without merely guessing. So remember, the aim is to say which 

emotion is being shown as soon as you recognize it by choosing one of the six emotions: 

fear, sadness, disgust, surprise, happiness, or anger. Once you have given an answer, 

you can change your mind when you want to, and as often as you wish right up until the 

end of the expression. Finally, for each face, you will also be asked to give a final 

answer. 

 

 
Figure 7.1. Example of anger stimulus presentation from the Multimorph Facial Affect 
Recognition Task. Stimuli taken from Pictures of Facial Affect (Ekman & Friesen, 
1976). 

 

The principal measure of performance is the mean number of stages required to 

achieve the correct classification of emotion (maximum number of stages = 39); faster 

reaction times indicate a greater degree of emotional sensitivity. Secondary measures 

include the first stage at which any response is made and performance accuracy for the 

expressions at 100% expression. In addition to these measures facial electromyographic 

(EMG) activity was captured throughout the task to assess the degree of facial mimicry 

a person displays. 

 

For this study the Multimorph Task procedure was replicated from the original 

task using e-Prime (Version 1.1; Psychology Software Tools, Pittsburgh, PA). E-Prime 

was used so that the stimuli could be randomised appropriately across the two halves of 
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the task, and so that the program could signal the onset of stimuli to the 

psychophysiology hardware. The task was programmed so that each trial was preceded 

by a two-second fixation cross to create a small baseline period for the EMG data. 

During the first administration (T1), eighteen stimuli (three from each emotion 

category) were presented in a random order using the procedure described above. Once 

the intermediate stressor manipulation had been completed, the remaining eighteen 

stimuli were presented in a random order (T2). 

 

7.3.2.2. Electromyography. Facial muscle activity was recorded from the 

zygomaticus major (cheek; positive emotion), corrugator supercilii (brow; negative 

affect), and levator labii superioris (upper lip; disgust) muscles using pairs of 4mm 

Ag/AgCl electrodes on the left side of the face (see section 3.6.1.2; see also Fridlund & 

Cacioppo, 1986). Electromyographic activity was sampled at a frequency of 2000 Hz. 

The raw EMG data were filtered online with a high pass filter at 10 Hz, a low pass filter 

at 500 Hz, and were amplified by 1000 (BIOPAC Systems; Goleta, CA). To correct for 

the positive skew inherent to EMG data, the EMG data was integrated with a 20ms 

window. The EMG data was then standardised within participants and muscle sites to 

allow meaningful comparisons to be made (Winkielman & Cacioppo, 2001). Difference 

scores for the EMG data were calculated using the final 1000 ms of the fixation screen 

as a baseline. The amplitude of integrated EMG data has been shown to be a valid and 

reliable index of changes in muscle action potentials, making EMG a sensitive measure 

of facial expressivity (Cacioppo, Petty, Losch, & Kim, 1986). 

 

7.3.3. Procedure 
 

Participants attended a single testing session in an air-conditioned, sound 

attenuated room. After obtaining written consent participants completed the 

demographic screening questionnaire (see section 3.5.1). Participants then completed 

questionnaires to assess their usual levels of emotional expressivity (Berkeley 

Expressivity Questionnaire, BEQ; Gross & John, 1995, see section 3.5.6), their ability 

to regulate their emotions (Difficulties in Emotion Regulation Questionnaire, DERS; 

Gratz & Roemer, 2004, see section 3.5.7), and how safe they feel in their social 

relationships (Social Safeness and Pleasure Scale, SSPS; Gilbert et al., 2009, see section 

3.5.9). Participants also completed measures to assess trait mood (Beck Depression 

Inventory, BDI-II; Beck et al., 1996, see section 3.5.4; and the Generalised Anxiety 
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Disorder Scale, GAD-7; Spitzer et al., 2006, see section 3.5.6). The questionnaires were 

included to control for individual differences in factors that might influence emotional 

sensitivity and/or facial mimicry. Following the questionnaires, electrodes for recording 

heart rate (HR) and skin conductance level (SCL) were applied (see section 3.4.4) as 

well as electromyography (EMG) electrodes on the face to capture muscle activity (see 

section 7.3.2.2). Standard procedures for placing the electrodes were followed and a 

five-minute baseline recording was carried out during which the participants were asked 

to sit quietly. Recording HR allowed for the calculation of heart rate variability (HRV, 

see section 3.4.3). After the five minutes participants completed a questionnaire to 

assess their current emotional state (Profile of Mood States – Short Form, POMS-SF; 

Shacham, 1983, see section 3.5.1). Instructions were then given for the first half of the 

Multimorph Facial Affect Recognition Task (T1). Following this, the participants were 

randomised to either a speech task (speech group; see section 4.6.2) or a control task 

(reading group; see section 6.3.3). After the three-minute stressor manipulation, both 

groups recompleted the questionnaire to assess their mood state (POMS-SF) and then 

carried out the second half of the Multimorph Facial Affect Recognition Task (T2). A 

flowchart diagram of the emotion recognition procedure can be found in appendix 17. 

 

7.4. Results 
 

7.4.1. Statistical Analyses 
 

For the statistical analyses PSAW Statistics (version 18.0.2, SPSS Inc., Chicago 

IL) was used, with the alpha set to .05. The dependent variables were examined for 

normality of distribution using histograms and Kolmogorov–Smirnov tests. To evaluate 

the influence of possible covariates in the planned analyses comparing the stressor 

manipulation groups, bivariate correlations were computed among the dependent 

variables (emotional sensitivity, emotional accuracy, and EMG means) and possible 

covariates (age, sex, trait mood [BDI-II and GAD-7], self-reported expressivity [BEQ], 

social safeness [SSPS], and difficulties in emotion regulation [DERS]). The findings 

from the correlations are discussed in section 7.4.2. 

 

Mean HR, SCL, and high-frequency heart rate variability (HF-HRV) values 

were calculated for the baseline period, each block of the Multimorph task, and the 

stressor manipulation period. Mean EMG amplitudes were also calculated for each 
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stimulus presentation from the Multimorph task. Analyses were then performed to 

establish if there were any baseline differences between the stressor manipulation 

groups (the group characteristics can be found in table 7.1). Chi-squared tests confirmed 

that there were no significant differences between the stressor groups in terms of sex 

and ethnicity. Univariate analyses of variance (ANOVAs) also failed to identify any 

significant differences between the groups in terms of age, self-reported difficulties in 

emotion regulation, social safeness, emotional expressivity, or mood at baseline. Further 

to this, univariate ANOVAs did not find any significant group differences for HR, SCL, 

or HF-HRV at baseline or during the Multimorph task at T1 (the physiological data are 

shown in table 7.2). It is worth noting however, that only the reading group exhibited a 

significant decrease in HF-HRV from baseline during the Multimorph task at T1, t(39) 

= 2.93, p = .006. Finally, mixed factorial ANOVAs (repeated measure: Emotion; 

between subjects factor: Group) did not find any significant differences between the 

groups for Emotional Sensitivity or Emotional Accuracy at T1 (the group means can be 

seen in table 7.1). 

 

Table 7.1. 

Stressor group characteristics 

 Reading Group 
(n = 40) 

Speech Group 
(n = 40) t df p 

 M (SD) M (SD)    
BDI-II 6.80 (6.06) 6.23 (5.61) -0.44 78 .661 
BEQ Mean 4.60 (0.73) 4.60 (0.89) -0.27 78 .979 
DERS Total 79.97 (20.28) 83.13 (18.59) 0.72 78 .471 
GAD-7 4.23 (3.96) 3.80 (3.01) -0.54 78 .590 
POMS-SF Total 4.25 (11.89) 3.43 (9.55) -0.34 78 .733 
SSPS 32.95 (7.17) 33.13 (6.43) 0.12 78 .909 
       

Multimorph      
Sensitivity T1 22.35 (3.54) 23.87 (3.53) 0.63 78 .530 
Sensitivity T2 22.62 (3.06) 22.32 (3.38) -0.42 78 .679 
Accuracy T1 (%) 87.31 (7.65) 89.67 (8.03) 1.35 78 .182 
Accuracy T2 (%) 90.39 (5.75) 91.53 (6.29) 0.85 78 .400 

Note. BDI-II = Beck Depression Inventory, BEQ = Berkeley Expressivity 
Questionnaire, DERS = Difficulties in Emotion Regulation Scale, GAD-7 = Generalised 
Anxiety Disorder Scale, POMS-SF = Profile of Mood States Questionnaire, SSPS = 
Social Safeness and Pleasure Scale. 

 

The first main set of analyses in this chapter evaluated the effects of the 

Multimorph task on facial mimicry at T1. A repeated-measures ANOVA was carried 

out on the EMG amplitude data with Muscle and Emotion as repeated factors. The 

Huynh-Feldt degrees of freedom correction was applied where necessary (i.e., when 
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factors  violated  sphericity  assumptions,  as  confirmed  by  Mauchly’s  test).  Significant  

main effects for all analyses were followed up with pairwise comparisons, and 

interactions were examined through analyses of simple effects. All pairwise contrasts 

were evaluated using Bonferroni critical values of .05. To investigate the effects of 

facial mimicry bivariate correlations were conducted between the dependent variables 

(i.e., EMG amplitudes, emotional sensitivity scores, and emotional accuracy scores). 

 

The second main set of analyses investigated the effects of the stressor 

manipulations on the physiological indices of arousal. Reactivity scores were calculated 

for HR, SCL, and HF-HRV by subtracting the stressor manipulation period from the 

corresponding baseline data (Kamarck et al., 1992; Llabre, Spitzer, Saab, Ironson, & 

Schneiderman, 1991). To establish if the stressor manipulations induced different levels 

of arousal across the groups, univariate ANOVAs were performed on the reactivity 

scores with Group as the fixed factor. The physiological reactivity scores were also 

correlated with the POMS-SF reactivity data to investigate whether changes in ANS 

function during the stressor manipulation period were related to changes in self-reported 

emotion. Significant correlations revealed that greater HR reactivity was associated with 

larger increases in the POMS-SF tension–anxiety subscale (r = .35, p = .001) and the 

POMS-SF confusion–bewilderment subscale (r = .35, p = .002), whilst greater SCL 

reactivity was associated with larger increases in the POMS-SF tension–anxiety 

subscale (r = .24, p = .032). Taken together, the directions of these relationships suggest 

that larger increases in SNS activation were associated with greater self-reported 

negative affect. To investigate if the changes in mood and physiology were carried over 

to the Multimorph tasks mixed-factorial ANOVAs (with Time as the repeated factor, 

and Group as the between subjects factor) were also performed using the POMS-SF 

means and the raw physiological data. 

 

The third set of analyses investigated whether there were any group differences 

in emotional sensitivity and emotional accuracy across the two administrations of the 

Multimorph task. Mixed-factorial ANOVAs (with Time and Emotion as the repeated 

factors, and Group as the between subjects factor) were performed on the separate 

emotional sensitivity and accuracy scores. Significant main effects for all analyses were 

followed up with pairwise comparisons, and interactions were examined through 

analyses of simple effects. All pairwise contrasts were evaluated using Bonferroni 

critical values of .05.
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Table 7.2. 

Mean heart rate, skin conductance level, and high-frequency heart rate variability by stressor group 
 Baseline Multimorph (T1) Preparation Multimorph (T2) F df p 

Reading Group        
HR (bpm) 74.19 (9.28) 74.20 (9.56) 75.12 (9.47) 74.29 (9.82) 1.53 2.48, 96.77 .217 
SCL (µS) 1.69 (1.18) 2.06 (1.40)** 2.53 (1.77)*** 2.32 (1.65)** 14.03 2.23, 82.37 .001 
HF-HRV (ms2) 7.58 (1.13) 7.34 (1.01)** 7.57 (1.03) 7.38 (1.02)* 7.00 2.45, 95.62 .001 
        

Speech Group        
HR (bpm) 71.65 (7.87) 71.25 (8.28) 83.43 (12.40)*** 71.99 (8.54) 48.47 1.38, 53.83 .001 
SCL (µS) 1.55 (1.29) 1.95 (1.54)*** 2.91 (1.81)*** 2.45 (1.73)*** 40.68 2.48, 96.66 .001 
HF-HRV (ms2) 7.48 (0.93) 7.35 (0.98) 7.13 (0.93)** 7.41 (0.92) 4.68 2.56, 99.76 .007 

Note. Standard deviations are reported in parentheses. HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
Significant change from baseline * p < .05, ** p < .01, ***p < .001 
 

Table 7.3. 

Mean scores for the POMS-SF subscales before the first (T1) and second (T2) administrations of the Multimorph task. 
 Reading Group 

(n = 40) 
Speech Group 

(n = 40) F df p 

 Multimorph (T1) Multimorph (T2) Multimorph (T1) Multimorph (T2) (time x group)   
Depression–Dejection  1.35 (1.35) 0.40 (0.93)** 0.85 (2.08) 0.88 (1.34) 4.43 1, 78 .039 
Vigour–Activity 5.43 (3.88) 3.95 (3.27)** 5.55 (4.00) 4.23 (3.92)** 0.54 1, 78 .817 
Anger–Hostility 0.50 (1.28) 0.23 (0.66) 0.97 (2.51) 0.53 (1.13) 0.15 1, 78 .704 
Tension–Anxiety 2.62 (3.76) 2.05 (2.41) 2.28 (2.87) 7.47 (5.30)*** 46.78 1, 78 .001 
Confusion–Bewilderment 1.38 (1.78) 1.20 (1.59) 1.27 (1.28) 3.08 (3.27)** 14.08 1, 78 .001 
Fatigued–Inertia 3.82 (3.86) 3.83 (3.84) 3.60 (2.48) 1.88 (2.23)*** 13.74 1, 78 .001 

Note. Standard deviations are reported in parentheses. 
Significant change from T1 ** = p < .01 *** = p < .001 
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Finally, to investigate the effects of the stressor manipulations on facial 

mimicry, analyses investigated whether there were any group differences in EMG 

reactivity across the two administrations of the Multimorph Task. To achieve this, a 

mixed-factorial ANOVA (repeated measures: Time, Muscle, Emotion; between subjects 

factor: Group) was carried out using the EMG amplitude data from T1 and T2. 

 

7.4.2. Individual Differences in Emotional Sensitivity and Accuracy at T1 
 

Data collected from the first half of the Multimorph (T1) were analysed to 

identify individual differences in Emotional Sensitivity and Emotional Accuracy. 

 

7.4.2.1. Emotional sensitivity. At T1 the mean number of stages taken to 

correctly identify an emotion was 23.60 (SD = 3.52). Bivariate correlations revealed 

significant relationships between Emotional Sensitivity and Sex (r = 2.80, p = .012) and 

Emotional Sensitivity and the non-acceptance scale of the DERS (r = -.26, p = .021). 

Emotional Sensitivity tended to be lower for men, with women correctly identifying the 

emotional expressions 2.5 stages quicker on average. The relationship between 

Emotional Sensitivity and the non-acceptance scale of the DERS was negative, 

suggesting  that  greater  difficulties  in  accepting  one’s  own  emotional  responses  is  related 

to earlier correct responses on the Multimorph (i.e., increased sensitivity to the emotions 

of others). Due to their effects, Sex and the non-acceptance scale of the DERS were 

entered as covariates in subsequent analyses relating to Emotional Sensitivity. 

 

7.4.2.2. Emotional accuracy. At T1 the mean percentage of emotions correctly 

identified by all participants at full expression was 88.48% (SD = 7.88). None of the 

baseline questionnaire measures were significantly correlated with Emotional Accuracy. 

Emotional Sensitivity however was found to be negatively correlated with Emotional 

Accuracy (r = -.24, p = .035), suggesting that people who were quicker to identify the 

emotional expressions were more likely to correctly distinguish the emotions from one 

another by the time they reached full expression. 

 

7.4.3. EMG Correlates of Emotional Sensitivity and Accuracy 
 

To investigate the effects of facial mimicry on emotional sensitivity and 

emotional accuracy two analyses were carried out. First of all, to confirm that observing 
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facial displays results in facial mimicry, a 3 x 6 repeated-measures ANOVA was carried 

out on the EMG amplitude data from T1 with the repeated factors of Muscle 

(corrugator, zygomaticus, and levator) and Emotion (anger, disgust, sadness, fear, 

surprise, and happiness). A significant Muscle x Emotion interaction was found, F(4.42, 

58.43) = 5.98, p < .001, which can be seen in figure 7.2. Generally corrugator activity 

was higher for negative emotions and zygomaticus activity was higher for positive 

emotions (although the zygomaticus also exhibited an increase for facial displays of 

anger). Contrary to expectations, activation of the levator labii muscle did not show 

increased activation for disgust stimuli. A second set of analyses was carried out to 

investigate the effects of facial mimicry on emotional sensitivity and emotion accuracy. 

Bivariate correlations were conducted using the EMG amplitude data and the emotional 

sensitivity and emotional accuracy scores for each emotion. No significant relationships 

were found between the mean EMG amplitude of each muscle site and Emotional 

Sensitivity, although Emotional Accuracy for anger was positively correlated with 

activation of the zygomaticus major (r = .26, p = .020), that is participants who 

exhibited higher levels of zygomaticus major activity during anger displays were more 

likely to correctly identify the emotion at 100%. 

 

 
Figure 7.2. Mean activation of the corrugator supercilii (CS), zygomaticus major (ZM) 
and levator labii (LL) muscle sites as a function of Emotion during the Multimorph at 
T1. Error bars represent the standard error. 

 

7.4.4. Physiological Reactivity to the Stressor Manipulations 
 

To investigate the effects of the stressor manipulations, univariate ANOVAs 

(fixed factor: Group) were carried out separately for the HR, SCL, and HF-HRV 
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reactivity scores; the raw means for each group are shown in table 7.2. A significant 

effect of Group was revealed for all of the physiological variables: HR reactivity F(1, 

78) = 36.67, p < .001; SCL reactivity F(1, 78) = 6.03, p = .016; and HF-HRV reactivity 

F(1, 78) = 6.41, p = .012. Bonferroni pairwise comparisons confirmed that the speech 

group demonstrated significantly higher reactivity to the stressor manipulation than the 

reading group across all of the physiological variables (larger increases in HR and SCL, 

and a larger decrease in HF-HRV; significant at p < .05), although it should be noted 

that both groups demonstrated increases in SCL that were significantly above baseline. 

 

To investigate the effect of the stressor manipulations on arousal during the 

Multimorph tasks a series of mixed-factorial ANOVAs were carried out with the 

POMS-SF data and the physiological variables. A mixed-factorial ANOVA was carried 

out on the raw POMS-SF scores with Time and Scale (depression–dejection, vigour–

activity, anger–hostility, tension–anxiety, confusion–bewilderment, and fatigue–inertia) 

as repeated factors, and with Group as the between subjects factor. A significant main 

effect was found for Scale, F(2.60, 20.04) = 43.28, p < .001, as well as significant two-

way interactions for Time x Group, F(1, 78) = 15.20, p < .001, Scale x Group, F(2.60, 

20.04) = 5.52, p = .002, and Time x Scale, F(3.53, 274.95) = 23.93, p < .001. These 

were superseded by a significant three-way interaction of Time x Scale x Group, F(3.53, 

274.95) = 21.88, p < .001. Paired t-tests revealed that the reading group reported being 

significantly less depressed and vigorous at T2, whilst the speech group reported feeling 

significantly less vigorous and fatigued, but significantly more tense and confused 

(significance is marked in table 7.3). 

 

Mixed-factorial ANOVAs (with Time as the repeated factor, and Group as the 

between subjects factor) were carried out using the raw physiological data. Although the 

speech group exhibited greater HR, SCL, and HF-HRV reactivity during the stressor 

manipulation (i.e., greater SNS activation), these changes were not maintained during 

the second ER task at T2. As a result there were no significant physiological differences 

between the groups at T2. Again, only the reading group demonstrating a significant 

decrease in HF-HRV from baseline during the Multimorph task at T2, t(39) = 2.46, p = 

.018. 
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7.4.5. Effects of the Stressor Manipulations on Emotional Sensitivity and Accuracy 
 

The mean number of stages to correctly identify each emotion can be seen in 

figure 7.3. Mixed-factorial ANCOVAS (repeated measures: Time, Emotion; between 

subjects factor: Group; covariates: Sex, DERS non-acceptance) were carried out on the 

emotional sensitivity scores to assess the impact of the stressor manipulation on 

performance during the Multimorph (T1 compared to T2). Consistent with the baseline 

analyses Sex was significantly associated with Emotional Sensitivity, F(1, 73) = 9.22,  

p = .003, with females being consistently faster at correctly identifying emotions than 

males. In contrast, the DERS non-acceptance scale was not significant, F(1, 73) = 3.65, 

p = .060. Emotional Sensitivity was also significantly influenced by a main effect of 

Emotion, F(5, 365) = 4.60, p < .001; happiness was the emotion quickest to be correctly 

identified overall, followed by surprise, disgust, anger, sadness, and fear. In addition to 

this, a significant two-way interaction was revealed for Time x Emotion, F(4.70, 

343.08) = 2.57, p = .030, which was superseded by a Time x Emotion x Sex interaction, 

F(4.70, 343.08) = 2.37, p = .043. Participants were more sensitive to surprise and fear 

during the second administration of the Multimorph (M = 3.5 and M = 1.5 stages 

quicker respectively, as shown in figure 7.3); post hoc analyses revealed that this 

increase in sensitivity was more pronounced for male participants, although female 

participants were still quicker at identifying all emotions. The ANCOVA did not reveal 

any significant main effects or interaction effects involving Group. 

 

 
Figure 7.3. Mean number of stages taken to correctly identify each emotion across the 
two administrations of the Multimorph Task. Covariates were controlled at the 
following values: Sex = 1.81, DERS non-acceptance = 13.21. Error bars represent the 
standard error. 
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Figure 7.4. Mean level of accuracy at 100% expression. Error bars represent the 
standard error. 

 

A second mixed-factorial ANOVA revealed that Emotional Accuracy was also 

significantly affected by Emotion, F(4.23, 308.45) = 20.47, p < .001; overall happiness 

was the emotion most likely to be correctly identified at 100% expression, followed by 

surprise, sadness, anger, fear, and disgust (as shown in figure 7.4). No significant effects 

were revealed involving Time or Group. 

 

7.4.6. Effects of the Stressor Manipulations on Facial Mimicry 
 

A 2 x 3 x 6 x 2 mixed-factorial ANOVA (repeated measures: Time, Muscle, 

Emotion; between subjects factor: Group) was carried out to investigate the effects of 

the stressor manipulations on facial mimicry. A significant two-way interaction was 

found for Emotion x Muscle, F(7.58, 590.93) = 9.43, p < .001. Consistent with the 

EMG findings at T1, overall corrugator activity was higher for negative emotions and 

zygomaticus activity was higher for positive emotions (as in figure 7.2). It was 

originally hypothesised that the speech group would exhibit less facial mimicry during 

the Multimorph task after the stressor manipulation, but there were no significant effects 

involving Time or Group meaning this hypothesis was not supported. 

 

7.5. Discussion 
 

The aim of this study was to investigate the effects of defensive physiological 

arousal on emotional sensitivity, as well as facial mimicry. In Experiment 1, despite 

several of the findings being consistent with the existing literature, the primary 
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hypotheses regarding the effects of the stressor manipulation on emotional sensitivity 

and facial mimicry were not supported. 

 

7.5.1. Baseline Correlates of Emotional Sensitivity and Accuracy 
 

Emotional Sensitivity at baseline was correlated with sex and the non-

acceptance scale of the DERS. This is in line with previous research that has indicated 

that emotional sensitivity is moderated by factors such as gender (Hoffmann et al., 

2010) and symptoms of psychopathology (Csukly et al., 2008; Sprengelmeyer et al., 

1998). Female participants were quicker to identify all emotions during both 

administrations of the Multimorph tasks, whilst difficulties in emotion regulation were 

associated with increased sensitivity to emotional expressions. 

 

The EMG data was consistent with previous research which has consistently 

found that increased activation of the corrugator supercilii is associated with viewing 

negative stimuli, whilst increased zygomaticus major activity is associated with viewing 

positive stimuli (Cacioppo et al., 1986; Fridlund & Cacioppo, 1986; Larsen, Norris, & 

Cacioppo, 2003). Inconsistent with previous findings was the lack of correspondence 

between facial displays of disgust and activation of the levator labii (Lundqvist, 1995; 

Vrana, 1993). Disgust was the emotion most likely to be misidentified at full 

expression, which may explain why the observed patterns of EMG activity did not 

correspond to this emotion (on average disgust was only correctly identified on 79.5% 

of occasions, whereas the other emotions were correctly identified more than 88% of the 

time). A second inconsistent finding was the association between anger displays and 

increased activation of the zygomaticus major. Interestingly increased activation of the 

ZM muscle was correlated with emotional accuracy for anger displays. The observed 

pattern of EMG activation for anger may be the result of counter-mimicry effects (i.e., 

opposite facial displays produced in response to angry facial expressions; see Englis, 

Vaughan, & Lanzetta, 1982; Lanzetta & Englis, 1989), although this is not consistent 

with the increase in corrugator activation also seen in response to the anger displays. 

 

The complementary patterns of EMG activity observed for most of the emotions 

during the Multimorph task does suggest that participants were mimicking the facial 

displays presented (Dimberg, 1982; Hatfield et al., 1993). Despite this, there was no 

evidence to suggest that facial mimicry was associated with emotional sensitivity. This 
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is parallel to the findings of Blairy et al. (1999) and Rives Bogart and Matsumoto 

(2009), but is at odds with the research by Stel and colleagues (Stel & van Knippenberg, 

2008; Stel & van den Bos, 2010). It is possible that the current findings are disparate 

from Stel and colleagues because the current experiment used shorter displays of stimuli 

to elicit facial mimicry. 

 

7.5.2. Effects of Defensive Arousal on Emotional Sensitivity and Accuracy 
 

No significant differences were found between the groups in terms of emotional 

sensitivity or emotional accuracy at T2. Both groups demonstrated an increase in 

sensitivity, suggesting that the Multimorph task is vulnerable to practice effects. Male 

participants were more likely to show a greater increase in emotional sensitivity across 

the two tasks, but females remained quicker at correctly identifying all of the emotional 

categories (this is consistent with previous research, for example Hoffmann et al., 2010; 

Rotter & Rotter, 1988). There are two possible explanations for the current lack of 

findings. First of all, the Multimorph task may not be a sensitive enough measure of 

emotional sensitivity. Evidence opposing this conclusion comes from a range of studies, 

which have previously demonstrated  the  Multimorph’s  capacity  to  discriminate  between  

different populations (e.g., psychopaths, Blair et al., 2004; boys with autism spectrum 

disorder, Rogers, Viding, Blair, Frith, & Happé, 2006; borderline personality disorder, 

Lynch et al., 2006; and avoidant personality disorder, Rosenthal et al., 2011). A second, 

more likely possibility, is that the stressor manipulation used in the current research is 

not strong enough. The speech task is unable to induce changes in arousal that are 

sustained over the secondary task. This means that the stressor groups cannot be 

discriminated on the basis of arousal at T2, which may have contributed to the lack of 

differences in emotional sensitivity, emotional accuracy, and facial mimicry observed at 

T2. 

 

7.5.3. Limitations 
 

The most notable limitation is that the current stressor manipulation appears to 

be ineffective during secondary tasks. Previous studies have utilised social evaluative 

threat tasks that have resulted in observable differences in behavioural outcomes 

following the manipulation period. This could be because participants in these studies 

are often selected based on how they score on questionnaire measures (e.g., high 
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socially anxious vs. low socially anxious participants; Garner, Mogg, & Bradley, 2006; 

Mansell, Clark, Ehlers, & Chen, 1999). The current studies are interested in how socio-

emotional responding is affected by changes in autonomic function in healthy control 

participants; this factor may be underpinning the physiological return to baseline seen in 

the speech group. 

 

A simple way to overcome the limitation of the speech task may be to follow 

other researchers and select participants based on questionnaire measures (e.g., 

participants reporting high anxiety or depression symptoms), however I believe that 

using this does not provide an adequate test of polyvagal theory. Differences observed 

in analogue populations can be informative, but polyvagal theory suggests that the 

communicative deficits associated with defensive physiological responding should be 

applicable all mammalian organisms when they are under threat/challenge (Porges, 

1995, 2001, 2003a). Polyvagal theory hypothesises that the some of the deficits in 

emotional responding seen in clinical and sub-clinical populations are due to functional 

abnormalities, as opposed to anatomical or biological deficiencies (Austin, Riniolo, & 

Porges, 2007; Porges, 2003a). Identifying and isolating populations who are vulnerable 

to the effects of defensive physiological arousal does not shed light on this argument. 

To evaluate the utility of polyvagal theory as a universal model of emotional and 

physiological responding requires healthy samples to demonstrate deficits in socio-

emotional behaviours during challenging situations, even if only to a minor degree. 

 

7.5.4. Conclusion 
 

The current experiment failed to support the hypothesis that defensive physiological 

arousal is associated with reduced facial expressivity. Participants in the speech group 

did not exhibit less facial mimicry after the manipulation period, and in turn there were 

no differences between the stressor groups in emotional sensitivity or emotional 

accuracy at T2. A major limitation of this experiment was the inability of the stressor 

manipulation to induce a prolonged defensive physiological response in the speech 

group (i.e., increased SNS activation was not maintained during the Multimorph task at 

T2). To address this limitation the current design needs to be revised in order to ensure 

secondary tasks occur with concurrent defensive physiological arousal. Only then can 

conclusions be drawn about the influence of defensive physiological arousal on facial 

expressivity and emotional sensitivity.  
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7.6. Experiment 2: Emotional Sensitivity and Facial Mimicry in Response to a 
Repetitive Stressor Task 

 

Experiment 1 was unable to find any supporting evidence to suggest that 

increased activation of the SNS is associated with decreases in facial expressivity; 

defensive physiological arousal was not linked to any changes in facial mimicry or 

emotional sensitivity. A limitation of Experiment 1 was the lack of residual arousal 

remaining after the stressor manipulation in the speech group. Although participants in 

the speech group demonstrated larger increases in physiological arousal during the 

manipulation period (i.e., increased SNS activation), along with increases in self-

reported tension and anxiety, these increases were not maintained during the second 

Multimorph task. Although previous research has shown the utility of using social 

evaluative tasks to induce challenge/threat during secondary tasks, often these have used 

analogue populations (e.g., Garner, Mogg, & Bradley, 2006; Mansell, Clark, Ehlers, & 

Chen, 1999). The current studies are unique in that they purposefully sample a healthy 

population. A difficulty of using healthy control participants is that they are 

insusceptible to the effects of the speech task once a secondary task has been employed. 

In Experiment 2 the between-subjects design of Experiment 1 was repeated but with a 

modification to the speech task preparation period. 

 

7.7. Repetitive Stress and the Speech Task Adaptation II 
 

The findings from the previous studies in this thesis have emphasised the 

reliability of using a speech task preparation period to induce arousal. However, they 

have also highlighted that arousal is quickly down-regulated during the completion of a 

second, unrelated task. To enhance the utility of the speech task in this experiment the 

preparation period of the speech task was split into three blocks. The task was divided 

into smaller sections because individuals tend to habituate to stressors over long periods 

of time, and in contrast arousal levels will tend to remain high when stressors are 

consistently novel and involve uncertainty (Kelsey, Ornduff, & Alpert, 2007; Kelsey, 

Soderlund, & Arthur, 2004). The secondary task, the Multimorph Facial Affect 

Recognition Task (Blair et al., 2001), was modified to incorporate three one-minute 

breaks during the second administration of the task (T2), during which the stressor 

manipulation could be completed. Participants allocated to the speech group used the 

one minute blocks to prepare their speech, whilst participants in the reading group were 
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given time to silently read through material corresponding to the content of the speech 

task. It was hypothesised that alternating between the stressor manipulations and the 

Multimorph task would increase the amount of residual arousal during the secondary 

task. It was hoped that in turn, this would make the effects of the stressor manipulation 

more apparent in the behavioural measures at T2. 

 

7.8. Method 
 

7.8.1. Participants 
 

Sixty-four undergraduate students (13 males, 51 females) volunteered to 

participate in the experiment and were awarded course credits as part of their 

undergraduate course requirements. Exclusion criteria were assessed using self-report 

questionnaires and included current or past diagnoses of Axis I or II psychiatric 

disorders, and current psychological or pharmacological treatment. The participants 

ranged in age from 18–34 with a mean age of 19.53 years (SD = 3.30). 92.2% of these 

participants identified themselves as Caucasian, 3.1% as Asian, 3.1% as Mixed, and 

1.6% as Other. During the experiment participants were randomly allocated one of two 

tasks: the speech task (n = 32: 4 males, 28 females; mean age = 19.56, SD = 3.17) or 

the control task (n = 32: 9 males, 23 females, mean age = 19.19, SD = 2.89). Three 

participants’  HR  data  were  excluded  from  analyses:  two  due  to  excessive  noise  in  the  

HR recording, and one due to the heart-rate monitor failing during data collection. 

Subsequently some of the HR and HF-HRV analyses have a sample size of 61 

participants (speech group n = 30, reading group n = 31). 

 

7.8.2. Procedure 
 

The procedure was replicated from Experiment 1, however the second half of 

the Multimorph task was modified to incorporate the blocks of the stressor 

manipulation: The second half of the Multimorph Facial Affect Recognition Task (T2) 

was completed whilst alternating the task with one-minute blocks of the stressor 

manipulation (either preparing a speech [see section 4.6.2], or reading quietly [see 

section 6.3.3]). During the manipulation blocks the e-Prime program instructed 

participants to complete the task assigned to them. Participants were signalled to resume 

the Multimorph task at the end of the one-minute blocks by a beep and an alert on the 
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screen. A flowchart diagram of the adapted emotion recognition procedure can be found 

in appendix 18. 

 

7.9. Results 
 

7.9.1. Statistical Analyses 
 

Similar analyses were conducted to Experiment 1 (see section 7.4.1). For the 

statistical analyses PSAW Statistics (version 18.0.2, SPSS Inc., Chicago IL) was used, 

with the alpha set to .05. The dependent variables were examined for normality of 

distribution using histograms and Kolmogorov–Smirnov tests. Mean HR, SCL, and HF-

HRV values were calculated for the baseline period, each block of the Multimorph task, 

and each block of the stressor manipulation. Mean EMG amplitudes were also 

calculated for each stimulus presentation from the Multimorph task. First, analyses were 

conducted to establish whether there were any differences between the stressor 

manipulation groups at baseline. Secondly, bivariate correlations were carried out to 

identify confounds that might affect emotional sensitivity, emotional accuracy, or facial 

mimicry. Thirdly, analyses were carried out to investigate the effects of the repetitive 

stressor manipulations on physiology and mood state. Fourthly, analyses were 

conducted to evaluate the effects of the repetitive stressor manipulations on emotional 

sensitivity and emotional accuracy. Finally, analyses were conducted to investigate the 

effects of the repetitive stressor manipulations on facial mimicry. As in Experiment 1, 

the Huynh-Feldt degrees of freedom correction was applied where necessary (i.e., when 

factors  violated  sphericity  assumptions,  as  confirmed  by  Mauchly’s  test). Significant 

main effects for all analyses were followed up with pairwise comparisons, and 

interactions were examined through analyses of simple effects. All pairwise contrasts 

were evaluated using Bonferroni critical values of .05. 

 

7.9.2. Stressor Group Characteristics 
 

As in Experiment 1, the two groups were compared using their demographic 

data and baseline self-report measures (see table 7.4 for group characteristics). The 

groups did not significantly differ in terms of age, sex, or baseline questionnaire 

measures. Univariate ANOVAs did not reveal any significant differences between the 

groups for HR, SCL, or HF-HRV at baseline or during the Multimorph at T1 (see table 
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7.5 for raw physiological means). Further to this, mixed-factorial ANOVAs (repeated 

measure: Emotion; between subjects factor: Group) did not find any significant 

differences between the groups for Emotional Sensitivity or Emotional Accuracy at T1. 

 

Table 7.4. 

Stressor group characteristics 

 Reading Group 
(n = 32) 

Speech Group 
(n = 32) t df p 

 M (SD) M (SD)    
BDI-II 10.22 (9.27) 8.81 (7.20) 0.68 62 .501 
DERS Total 81.41 (26.16) 78.91 (19.72) 0.43 62 .667 
GAD-7 4.88 (4.69) 4.09 (3.08) 0.79 62 .434 
POMS-SF Total 6.84 (14.71) 5.72 (11.90) 0.34 62 .738 
SSPS 31.81 (8.81) 33.97 (7.84) -1.04 62 .305 
      

Multimorph      
Sensitivity T1 23.99 (4.67) 23.65 (3.87) 0.31 62 .755 
Sensitivity T2 22.19 (4.22) 22.54 (5.02) -0.31 62 .762 
Accuracy T1 (%) 89.72 (8.22) 90.24 (7.45) -0.27 62 .791 
Accuracy T2 (%) 92.92 (6.11) 91.14 (6.89) 1.09 62 .281 
Note. BDI-II = Beck Depression Inventory, DERS = Difficulties in Emotion Regulation 
Scale, GAD-7 = Generalised Anxiety Disorder Scale, POMS-SF = Profile of Mood 
States Questionnaire, SSPS = Social Safeness and Pleasure Scale. 

 

7.9.3. Individual Differences in Emotional Sensitivity and Accuracy at T1 
 

Data collected from the first half of the Multimorph (T1) were analysed to 

identify individual differences in Emotional Sensitivity and Emotional Accuracy. 

 

7.9.3.1. Emotional sensitivity. With the current sample none of the baseline 

questionnaire measures or baseline psychophysiology variables were correlated with 

Emotional Sensitivity at T1. 

 

7.9.3.2. Emotional accuracy. In contrast to the previous experiment, Emotional 

Accuracy at T1 was correlated with the POMS-SF baseline total (r = -.30, p = .017). 

Higher self-reported distress at baseline was associated with decreased accuracy. A 

negative relationship was again found between Emotional Sensitivity and Emotional 

Accuracy, but this time the relationship did not reach significance (r = -.23, p = .069). 

In analyses relating to Emotional Accuracy the POMS-SF baseline total was included as 

a covariate. 
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7.9.4. EMG Correlates of Emotional Sensitivity and Emotional Accuracy 
 

To investigate the effects of facial mimicry on emotional sensitivity and 

emotional accuracy two analyses were carried out. First of all, a 3 x 6 repeated-

measures ANOVA was carried out on the EMG amplitude data from T1 with Muscle 

(corrugator, zygomaticus, and levator) and Emotion (anger, disgust, sadness, fear, 

surprise, and happiness) as repeated factors. Significant main effects were found for 

Muscle, F(2, 126) = 6.03, p = .003, and Emotion, F(5, 315) = 4.00, p = .002. These 

were superseded by a significant Muscle x Emotion interaction, F(8.25, 519.60) = 

10.03, p < .001, which can be seen in figure 7.5. As in Experiment 1, corrugator activity 

was higher for negative emotions. In addition to this, zygomaticus activity was higher 

for happiness, and activation of the levator was increased for disgust stimuli. In the 

present experiment the zyogmaticus and levator also demonstrated increased activation 

for facial displays of fear. Bivariate correlations were conducted using the EMG 

amplitude data and the emotional sensitivity and emotional accuracy scores for each 

emotion. A significant negative relationship was found between Emotional Sensitivity 

scores for disgust and activation of the levator labii (r = -.28, p = .028), that is 

participants who exhibited higher levels of levator labii activity during disgust displays 

were more likely to correctly identify the emotion at lower levels of intensity. No 

significant relationships were identified between the mean EMG amplitude data and 

Emotional Accuracy scores. 

 

 
Figure 7.5. Mean activation of the corrugator supercilii (CS), zygomaticus major (ZM) 
and levator labii (LL) muscle sites as a function of Emotion during the Multimorph at 
T1. Error bars represent the standard error. 
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7.9.5. Reactivity to the Stressor Manipulations 
 

Mixed-factorial ANOVAs (repeated measure: Time; between subjects factor: 

Group) were carried out separately for the HR, SCL, and HF-HRV data. Because the 

stressor manipulation was carried out over several blocks, the raw mean data for each 

block was entered into the analyses instead of reactivity scores to allow for more 

meaningful comparisons across the blocks; the raw means for each group are shown in 

table 7.5. For HR a significant main effect of Group was found, F(1, 59) = 5.07, p = 

.028. Bonferroni pairwise comparisons confirmed that HR in the speech group (M = 

77.22, SD = 12.43) was consistently higher during the manipulation blocks than HR in 

the reading group (M = 72.39, SD = 8.28). The SCL analysis found a significant main 

effect of Time, F(1.73, 107.13) = 30.40, p < .001, which occurred because SCL was 

significantly higher in the first one-minute block for both groups (p < .001); SCL then 

exhibited a decline in both groups during the second and third stressor block. Although 

the speech group generally demonstrated higher SCLs during the one-minute blocks, the 

effect of Group was not significant, F(1, 62) = 3.43, p = .069. For HF-HRV there was a 

significant Time x Group interaction, F(2, 118) = 4.12, p = .019. During the 

manipulation blocks HF-HRV was consistently suppressed in the speech group, whereas 

the reading group demonstrated a significant increase in HF-HRV during the first block 

of the stressor manipulation that then returned to baseline. 

 

The POMS-SF subscales also demonstrated that the speech group responded 

differently during the stressor manipulation period than the reading group (see table 

7.6). A mixed-factorial ANOVA was carried out on the POMS-SF data with Time and 

Scale (depression–dejection, vigour–activity, anger–hostility, tension–anxiety, 

confusion–bewilderment, and fatigue–inertia) as repeated factors, and with Group as the 

between subjects factor. A significant main effect was found for Scale, F(2.87, 178.09) 

= 29.42, p < .001, as well as significant two-way interactions for Time x Group, F(1, 

62) = 8.92, p = .004, and Time x Scale, F(3.57, 221.27) = 21.58, p < .001. These were 

superseded by a significant three-way Time x Scale x Group interaction, F(3.57, 

221.27) = 9.38, p < .001. Paired t-tests revealed that both groups reported being 

significantly less vigorous at T2, but only the speech group reported feeling 

significantly more tense (significance is marked in table 7.6).
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Table 7.5. 

Mean heart rate, skin conductance level, and high-frequency heart rate variability during the manipulation periods by stressor group 
 Baseline Stressor Manipulation F df p 
  Block 1 Block 2 Block 3 (time)   

Reading Group        
HR (bpm) 74.00 (4.49) 72.21 (9.30) 72.34 (8.32) 72.63 (8.93) 0.80 1.58, 47.35 .429 
SCL (µS) 2.79 (1.75) 3.72 (2.18)*** 3.28 (2.16)* 3.36 (2.26)** 2130.35 1.01, 31.30 .001 
HF-HRV (ms2) 7.44 (0.83) 7.76 (0.82)* 7.36 (0.73) 7.47 (0.81) 5.16 3, 90 .002 
        

Speech Group        
HR (bpm) 71.88 (8.92) 78.78 (11.27)*** 77.37 (10.51)*** 77.16 (10.06)*** 16.01 2.33, 67.50 .001 
SCL (µS) 2.86 (1.55) 4.67 (1.79)*** 4.20 (1.87)*** 4.27 (2.10)*** 1999.84 1.01, 30.32 .001 
HF-HRV (ms2) 7.54 (1.00) 7.32 (0.82) 7.35 (0.96) 7.34 (0.89) 1.81 3, 90 .152 

Note. Standard deviations are reported in parentheses. HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
Significant difference from Baseline * = p < .05 ** = p < .01 *** = p < .001 

 

Table 7.6. 

Mean scores for the POMS-SF subscales before the first (T1) and second (T2) administrations of the Multimorph task. 
 Reading Group (n = 32) Speech Group (n = 32) F df p 
 Multimorph (T1) Multimorph (T2) Multimorph (T1) Multimorph (T2) (time x group)   

Depression–Dejection  1.59 (2.75) 1.94 (2.98) 1.37 (3.05) 1.94 (3.39) 0.17 1, 62 .686 
Vigour–Activity 6.22 (3.94) 4.28 (3.42)** 7.13 (3.81) 5.50 (4.03)*** 0.29 1, 62 .635 
Anger–Hostility 0.91 (2.18) 1.00 (2.65) 1.09 (3.31) 1.75 (3.93) 1.51 1, 62 .224 
Tension–Anxiety 3.13 (3.07) 3.12 (3.24) 2.84 (2.69) 7.16 (5.06)*** 30.70 1, 62 .001 
Confusion–Bewilderment 2.38 (2.47) 2.50 (2.64) 2.59 (2.34) 2.91 (2.64) 0.28 1, 62 .691 
Fatigued–Inertia 5.06 (4.79) 4.78 (4.25) 4.94 (3.94) 4.50 (3.91) 0.08 1, 62 .780 

Note. Standard deviations are reported in parentheses. 
Significant difference from Multimorph T1 ** = p < .01 *** = p < .001 
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Table 7.7. 

Mean heart rate, skin conductance level, and high-frequency heart rate variability by stressor group 
 Multimorph (T1) Multimorph (T2) F df p 
  Block 1 Block 2 Block 3 (time)   

Reading Group        
HR (bpm) 72.61 (8.73) 72.13 (8.88) 72.99 (9.40) 73.06 (8.63) 2.30 2.89, 89.66 .085 
SCL (µS) 2.95 (2.00) 3.42 (2.09)*** 3.30 (2.25)** 3.36 (2.32)** 8.78 2.08, 64.41 .001 
HF-HRV (ms2) 7.38 (0.80) 7.50 (0.78)* 7.34 (0.79) 7.45 (0.81) 3.21 3, 93 .027 
        

Speech Group        
HR (bpm) 71.54 (8.55) 71.29 (8.57) 71.61 (8.70) 72.20 (8.34) 1.19 2.73, 81.86 .319 
SCL (µS) 3.06 (1.73) 4.09 (1.62)*** 4.01 (1.71)*** 4.11 (1.66)*** 47.14 1.39, 43.02 .001 
HF-HRV (ms2) 7.35 (0.92) 7.66 (0.83)*** 7.60 (0.83)*** 7.68 (0.73)*** 15.26 2.72, 81.52 .001 

Note. Standard deviations are reported in parentheses. HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
Significant difference from Multimorph T1 * = p < .05 ** = p < .01 *** = p < .001 
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To investigate whether the changes in ANS function during the stressor 

manipulation period were related to changes in self-reported emotion, correlations were 

carried out between the physiological reactivity scores and the POMS-SF reactivity 

scores. Significant correlations revealed that greater HR reactivity was associated with 

larger decreases in the POMS-SF fatigue–inertia subscale (r = -.26, p = .039), whilst 

greater SCL reactivity was associated with larger increases in the POMS-SF vigour–

activity subscale (r = .28, p = .029). Taken together, the directions of these relationships 

suggest that larger increases in SNS activation were associated with lower levels of 

tiredness (i.e, less fatigue coupled with more vigour). 

 

Mixed-factorial ANOVAs were carried out on the blocks of the Multimorph task 

to establish if arousal was maintained during the secondary task (see table 7.7). 

Although HR did not show any significant effects involving group, Time x Group 

interactions were found for both SCL, F(1.72, 106.33) = 8.73, p = .001, and HF-HRV, 

F(3, 183) = 5.48, p = .001. Both groups demonstrated increases in SCL at T2, but this 

increase was greater in the speech group. Contrary to expectation, the speech group also 

demonstrated a larger increase in HF-HRV during T2 compared to T1 (all blocks 

significant at p < .001), although t-tests revealed that HF-HRV at T2 was not 

significantly different from baseline. 

 

7.9.6. Effects of the Repetitive Stressor Manipulations on Emotional Sensitivity 
and Accuracy 
 

Mixed-factorial ANOVAs (repeated measures: Time, Emotion; between subjects 

factor: Group) were carried out to assess the impact of the repetitive stressor 

manipulations on performance during the Multimorph (T1 compared to T2). Emotional 

Sensitivity was significantly influenced by main effects of Time, F(1,60) = 12.32, p = 

.001, and Emotion, F(5, 300) = 75.43, p < .001. In addition to this, a significant two-

way Time x Emotion interaction was revealed, F(5, 300) = 5.44, p < .001. As in 

Experiment 1, happiness was the quickest emotion to be identified, followed by 

surprise, disgust, anger, sadness, and fear. During the second administration of the 

Multimorph both stressor manipulation groups were significantly more sensitive to fear 

(M = 2.0 stages quicker), sadness (M = 3.5 stages quicker), and disgust (M = 3.5 stages 

quicker), as shown in figure 7.6. No significant main effects or interaction effects were 

found involving Group.  
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Figure 7.6. Mean number of stages taken to correctly identify each emotion across the 
two administrations of the Multimorph Task. Error bars represent the standard error. 

 

A mixed-factorial ANCOVA (with POMS-SF baseline total as a covariate) 

revealed that Emotional Accuracy was also significantly influenced by Emotion, F(4.26, 

242.68) = 24.07, p < .001. A main effect for the POMS-SF baseline total was also 

found, F(1, 57) = 4.40, p = .040. These main effects were superseded by a Time x 

POMS-SF baseline total two-way interaction, F(1.00. 57.00) = 4.48, p = .039, and a 

Time x Emotion x POMS-SF baseline total three-way interaction, F(4.51, 257.00) = 

4.35, p = .001. As for Emotional Sensitivity, participants were better at recognising 

sadness and disgust expressions at T2 (increases in accuracy of 6.5% and 7.0% 

respectively, as shown in figure 7.7), however only participants reporting higher distress 

on the POMS-SF at baseline improved at recognising fear expressions: a median split 

based on the POMS-SF baseline score revealed that participants with higher POMS-SF 

baseline totals demonstrated a 5% increase in accurately identifying anger at T2 

compared to a 4% decrease for individuals with lower POMS-SF baseline totals. No 

significant effects were revealed involving Group. 
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Figure 7.7. Mean level of accuracy at 100% expression across the two administrations 
of the Multimorph Task. POMS-SF baseline total was controlled at 7.12. Error bars 
represent the standard error. 

 

7.9.7. Effects of the Repetitive Stressor Manipulations on Facial Mimicry 
 

Finally, a 2 x 3 x 6 x 2 mixed-factorial ANOVA (repeated measures: Time, 

Muscle, Emotion; between subjects factor: Group) was carried out to investigate the 

effects of the repetitive stressor manipulations on facial mimicry. A significant main 

effect was found for Emotion, F(5, 310) = 2.47, p = .033, and significant two-way 

interactions were found for Emotion x Muscle, F(8.14, 504.49) = 13.38, p < .001, Time 

x Emotion, F(5, 310) = 3.14, p = .009, and Time x Muscle, F(2, 214) = 6.00, p = .003. 

Consistent with the EMG findings at T1, overall corrugator activity was higher for 

negative emotions and zygomaticus activity was higher for positive emotions (as in 

figure 7.5). Participants tended to exhibit less corrugator activity at T2, particularly for 

fear, sadness, and disgust. The decrease in corrugator activity for these emotions could 

be due to practice effects: Increased accuracy for these emotions suggests that less effort 

may have been needed to identify these emotions at T2. Reductions in effort can be 

indexed by corrugator activity as people tend to crease their forehead when confused or 

concentrating (Rozin & Cohen, 2003). As in Experiment 1 there were no significant 

effects involving Group. 

 

7.10. Discussion 
 

The aim of Experiment 2 was to replicate the design of Experiment 1, but with a 

further adaptation to the stressor manipulation. The modification made to the speech 
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task preparation period was more successful in maintaining increases in SCL arousal 

during the Multimorph task at T2, but again no significant differences were found 

between the stressor groups in terms of emotional sensitivity, emotional accuracy, or 

facial mimicry at T2. 

 

7.10.1. Baseline Correlates of Emotional Sensitivity and Accuracy 
 

In the current experiment, emotional sensitivity was not related to any of the 

baseline measures. This is in contrast to Experiment 1, which found that Emotional 

Sensitivity could be predicted by sex and the non-acceptance scale of the DERS. This 

discrepancy may be due to the smaller sample size in the this experiment, or could be a 

function of higher depression symptoms in the sample from Experiment 2 (M = 9.52, 

SD = 8.30 vs. Experiment 1 sample M = 6.51, SD = 5.81), t(109.05) = -2.46, p = .015. 

The former is a more likely explanation as there were no significant differences between 

the samples in Emotional Sensitivity at baseline, and the BDI-II was not a significant 

predictor of performance on the Multimorph. 

 

Current distress (as indexed by the POMS-SF baseline total) was negatively with 

decreased Emotional Accuracy at T1 in the current experiment. This finding is in line 

with previously reported findings (e.g., Csukly et al., 2008, reported an inverse 

relationship between emotional accuracy and the Symptom Checklist-90). To add to 

this, the current findings suggest that emotional sensitivity is related to emotional 

accuracy, with individuals who are quicker at identifying emotions being more likely to 

correctly label them at full expression (although in Experiment 2 this relationship failed 

to reach significance, p = .069). 

 

The EMG findings in this experiment complement the results from Experiment 

1. Corrugator activity was associated with viewing negative facial displays, whilst 

zygomaticus and levator activation were indicative of happy and disgust stimuli 

respectively. The observed patterns of EMG activation for each emotion category is 

further confirmation that viewing facial displays results in facial mimicry (Dimberg, 

1982; Hatfield et al., 1993). A notable finding in Experiment 2 was the relationship 

found between the levator labii amplitude and Emotional Sensitivity for the disgust 

stimuli. This relationship suggests that facial mimicry is associated with the recognition 

of emotion in others (in line with Stel & van Knippenberg, 2008; Stel & van den Bos, 
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2010), although in the current research this effect was confined to the recognition of 

disgust. As no impairments were identified in facial mimicry at T2, the relationship 

between facial mimicry and emotional sensitivity is still unresolved. 

 

7.10.2. Effectiveness of the Repetitive Stressor Manipulation 
 

The altered presentation of the stressor manipulation caused notable changes in 

the arousal levels of the stressor groups. As in Experiment 1, during the preparation 

period the speech group demonstrated larger increases in HR and SCL than the reading 

group, coupled with a decrease in HF-HRV. However in the current experiment, the 

speech group also maintained a larger increase in SCL across the blocks of the 

Multimorph task compared to the reading group. The increased SCL in the speech group 

was also accompanied by a significant increase in HF-HRV. Increased HF-HRV 

indicates higher levels of self-regulatory effort (Segerstrom & Solberg Nes, 2007), 

which may suggest that individuals in the speech group were working harder to self-

regulate during the Multimorph task. 

 

7.10.3. Effects of Defensive Arousal on Emotional Sensitivity and Accuracy 
 

No significant differences were found between the groups in terms of emotional 

sensitivity, emotional accuracy, or facial mimicry at T2. As in the previous experiment, 

both groups demonstrated an increase in Emotional Sensitivity, particularly for fear, 

sadness, and disgust expressions. The absence of disparate findings between the stressor 

groups challenges the hypothesis that increased SNS activation after a stressor should be 

associated with a decrease in these competencies. In the current experiment the revision 

of the stressor manipulation task meant that the speech group continued to exhibit 

increases in arousal during the Multimorph task (as indexed by SCL). The ability to 

now discriminate between the stressor groups on the basis of their physiological arousal 

suggests that the current lack of findings may not be due to the stressor manipulation 

being ineffective. Instead, questions may begin to be raised about the validity of 

polyvagal theory. 
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7.10.4. Limitations 
 

A limitation of the current experiment is the small sample size of the groups, 

which may have limited the ability to identify individual differences in emotional 

sensitivity and emotional accuracy at baseline. Further to this, the sample in Experiment 

2 was higher in self-reported depression symptoms (BDI-II scores). This occurrence 

may be due to a sampling bias, with the second experiment recruiting participants later 

in the academic term. A methodological limitation of the current experiments is that 

they only focus on one form of emotional sensitivity: the ability to recognise emotions 

from facial expressions. Emotions can be inferred from other channels of 

communication, such as vocal expressions or gestures (Scherer, 1995; Wallbott, 1998). 

Further research is needed to explore the effects of defensive physiological arousal on 

emotional sensitivity in these channels, as the abilities needed to decode these signals 

may also be vulnerable to activation of the SNS. 

 

In Experiment 1 it was argued that a strength of the current studies was the use 

of healthy populations, however the use of this sample may be obscuring the effects of 

defensive physiological arousal on socio-emotional responding. Analogue populations 

are useful because they often demonstrate distinctive responses during experimental 

tasks (e.g., increased reactivity to stimuli), and these responses are known to be diluted 

when such samples include individuals with only mild characteristics of the target 

population (Borkovec & Rachman, 1979). As the current research is specifically using 

samples without self-reported deficits in emotion regulation and psychopathology, this 

may be reducing the impact of the stressor manipulation. The ability of the samples to 

self-regulate when under challenge/threat is clear; for example in the second experiment 

the stressor group exhibited a larger increase in HF-HRV during the second 

administration of the Multimorph task suggesting that they were engaging self-

regulatory effort (Segerstrom & Solberg Nes, 2007). Successful self-regulation in the 

samples, resulting in increased PNS activation, may be preventing the stressor 

manipulations from influencing the secondary tasks; perhaps it is only when self-

regulation is unsuccessful (i.e., in clinical and sub-clinical populations) that deficits are 

likely to appear. 
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7.10.5. Conclusion 
 

The findings of the current study were consistent with the findings from Chapter 

6: the results did not support the hypothesis that defensive physiological arousal is 

associated with reduced facial expressivity. Participants in the speech group did not 

exhibit less facial mimicry after the stressor manipulation period, and in turn there were 

no differences between the stressor groups in emotional sensitivity or emotional 

accuracy at T2. Thus far the findings do not provide sufficient empirical support for the 

hypotheses stemming from polyvagal theory (Porges, 1995, 2001, 2003a). In the current 

study, the only finding that may provide limited indirect support for polyvagal theory is 

the association found between the levator labii activation and the speed at which 

participants recognised disgust. The direction of the relationship suggests that emotional 

sensitivity for this emotion may be contingent on afferent feedback from the face. 

Consequently, if SNS activation does decrease facial expressivity, this would suggest 

that emotional sensitivity for disgust (if not other emotions) may also be impaired as a 

result of SNS activation. 

 

In conclusion, the use of a stressor manipulation has not been associated with 

deficits in facial expressivity or emotional sensitivity. It is possible that defensive 

physiological arousal does influence socio-emotional responding, but not via the 

mechanisms already examined in the current collection of studies. The final empirical 

chapter aims to investigate the effects of defensive physiological arousal on affiliation 

tendencies. 
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Chapter 8: Expressive Regulation and Willingness to Affiliate 
 

Chapter  6  demonstrated  the  effects  of  regulating  facial  expressions  on  one’s  own  

physiological state. Enhancing emotional expressions was associated with increases in 

heart rate and sweat response, whilst suppressing emotional expressions was associated 

with increased sweat response and high-frequency heart rate variability, but decreased 

heart rate (see also Demaree, Schmeichel, Robinson, & Everhart, 2004; Gross & 

Levenson, 1993, 1997). Studies researching the psychophysiological effects of 

expressive regulation often only focus on negative emotions (e.g., Demaree, 

Schmeichel, et al., 2006; Gross & Levenson, 1993), and tend to compare expressive 

suppression with antecedent-focused techniques such as reappraisal, as opposed to other 

response-focused techniques such as expressive exaggeration (for example Gross & 

Levenson, 1997, but see Demaree, Schmeichel, et al., 2004; and Jackson, Malmstadt, 

Larson, & Davidson, 2000). The focus also tends to be on the responses of the 

regulators who are modulating their emotions (i.e., the senders), rather than the 

observers who are decoding the expressions of emotion. 

 

In the current chapter two experiments are described. The first experiment 

investigated how expressive regulation affects observers in terms of their 

psychophysiology and their willingness to spend time with others. The second 

experiment then tested the hypothesis that activation of the sympathetic nervous system 

(SNS) is associated with a decreased willingness to spend time with others. 

 

8.1. Experiment 1: The Psychophysiological Effects of Observing Expressive 
Regulation 

 

Previous research has shown that regulating facial expressions has effects on 

both observers and regulators. Butler et al. (2003) found that individuals who were 

instructed to suppress their facial expressions were rated by their naive counterparts as 

being less friendly, and the counterparts were less willing to spend time with the 

regulators in the future. Not only this, but observers had notable increases in blood 

pressure. Experiment 1 was designed to investigate the effects of expressive regulation 

on  observers’  physiological  states  and  their  willingness  to  affiliate  with  regulators.  The  

experiment used a within-subjects design to establish whether observing individuals 

either suppressing or exaggerating their facial expressions would cause different 
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physiological responses (indexed by heart rate and sweat response). As well as 

recording physiological responses, subjective ratings were also collected to establish if 

expressive regulation would affect the amount of time observers would be willing to 

spend with the regulators. 

 

It was hypothesised that observers would be more willing to spend time with 

individuals showing more emotion, and that this effect would be particularly robust with 

regulators displaying positive affect. Positive emotions are theorised to facilitate 

pleasurable interactions (Harker & Keltner, 2001), and have been associated with 

feelings of social connectedness (Mauss et al., 2011), trustworthiness (Oosterhof & 

Todorov, 2009), and co-operation (Boone & Buck, 2003). Interestingly co-operation is 

associated with general expressivity, and is not confined to positive facial displays 

(Schug, Matsumoto, Horita, Yamagishi, & Bonnet, 2010). Evidence suggests that 

general expressivity is associated with engendering feelings of rapport and likability 

(Bernieri, Gillis, Davis, & Grahe, 1996; Riggio & Friedman, 1986). This is because in 

certain situations using negative facial expressions to signal aversion can be pro-social, 

for example expressing disgust in response to unfairness (Chapman, Kim, Susskind, & 

Anderson, 2009) or expressing embarrassment in response to violations of social 

convention (Feinberg, Willer, & Keltner, 2011). Consequently facial expressions of 

both positive and negative emotion can be adaptive; this means that overt emotional 

displays  in  general  should  increase  others’  willingness  to  affiliate. 

 

In addition to affecting affiliation, it was expected that viewing regulators 

modulating  their  facial  expressions  would  also  influence  observers’  physiological  

responses. Viewing affective stimuli is known to elicit changes in physiology, with 

valence and arousal both able to effect changes in heart rate and sweat response (Lang, 

Greenwald, Bradley, & Hamm, 1993). Viewing positive and negative facial displays has 

also been shown to elicit consistent changes in heart rate and sweat response (Dimberg, 

1982). Interestingly little research has been carried out to evaluate the effects of 

expressive regulation on observers. Butler et al. (2003) reported that expressive 

suppression resulted in higher SNS activation in observers (as indexed by blood 

pressure); however this experiment involved real-time interactions. To date, the effect 

of  expressive  regulation  on  the  physiology  of  passive  observers’  has  not  been  reported. 
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8.2. Methodology 
 

8.2.1. Participants 
 

Forty-two undergraduate psychology students (10 males, 32 females) 

volunteered to participate in the study and were awarded course credits as part of their 

undergraduate course requirements. Exclusion criteria were assessed using self-report 

questionnaires and included current or past diagnoses of Axis I or II psychiatric 

disorders, and current psychological or pharmacological treatment. The participants 

ranged in age from 18–24 with a mean age of 19.74 years (SD = 1.50). 90.5% of these 

participants identified themselves as Caucasian, 7.1% as Mixed, and 2.4% as Other. 

Due  to  movement  artefacts  two  participants’  data were excluded from the heart rate 

analyses. 

 

8.2.2. Behavioural Measure of Affiliation 
 

8.2.2.1. Rating Faces Task. The Rating Faces Task involved participants 

viewing video clips, which showed  individuals’  facial  reactions  to  emotive  pictures.  The  

video stimuli were obtained from the experiment described in Chapter 6, where 

participants viewed emotive pictures from the International Affective Picture System 

(IAPS; Lang, Bradley, & Cuthbert, 1999) whilst regulating their facial expressions 

(enhance, suppress, or maintain). All of the participants filmed gave written consent for 

their videos to be stored and used in future research, which resulted in a video library of 

people voluntarily controlling their facial expressions. 

 

For this experiment, thirty-six videos were edited into 10-second clips of 

individuals enhancing, suppressing, or maintaining their facial expressions. The videos 

were presented using e-Prime (Version 2.0; Psychology Software Tools, Pittsburgh, 

PA). Participants in the current experiment were shown the IAPS picture seen by the 

regulator  for  4  seconds,  followed  by  the  video  clip  of  the  regulator’s  corresponding  

facial expression, and were asked to complete four Likert scales for each clip (as shown 

in figure 8.1):  one  rating  the  individual’s  attractiveness  (attractiveness:  1  not at all 

attractive to 7 very attractive),  one  rating  the  individual’s  familiarity  (familiarity:  1  not 

at all familiar to 7 very familiar),  one  rating  the  individual’s  distinctiveness  

(distinctiveness: 1 not at all distinctive to 7 very distinctive), and one rating how much 
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time they would like to spend with the individual (affiliation: 1 not much time to 7 a lot 

of time). The current participants were not informed that the individuals in the videos 

were following instructions to control their facial expressions. At the end of the video 

clips, the participants were shown stills from the videos and were be asked to complete 

a further Likert scale rating the level of facial expression shown by the individual 

(expressivity: 1 too little to 7 too much). At the end of the experiment participants were 

asked to identify if they knew any of the individuals rated in the task. 

 

 
Figure 8.1. Example time rating from the Rating Faces Task. 

 

8.2.3. Procedure 
 

Participants attended a single testing session in an air-conditioned, sound 

attenuated room. After obtaining written consent participants completed the 

demographic screening questionnaire (see section 3.5.1). Participants then completed 

questionnaires to assess their current mood state (Profile of Mood States – Short Form, 

POMS-SF; Shacham, 1983, see section 3.5.1) and how safe they feel in their social 

relationships (Social Safeness and Pleasure Scale, SSPS; Gilbert et al., 2009, see section 

3.5.9). Electrodes for recording heart rate (HR) and skin conductance level (SCL) were 

applied following standard procedures (see section 3.4.4) and a five-minute baseline 

recording was carried out during which the participants were asked to sit quietly. 

Recording HR allowed for the calculation of heart rate variability (HRV, see section 

How much time would you like to spend with this person?

1 2 3 4 5 6 7
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3.4.3). The participants then completed the Rating Faces Task, which involved viewing 

short videos and completing several rating scales. Once the Rating Faces Task was 

completed the session was terminated and the participant debriefed. A flowchart 

diagram of the rating faces task procedure can be found in appendix 19. 

 

8.3. Results 
 

8.3.1. Statistical Analyses 
 

In total, 1512 sets of ratings were completed: 30 (1.98%) of the regulators in the 

videos were marked as acquaintances of the observers and this data was subsequently 

removed from the analyses, resulting in 1482 ratings in the final data set. Three 

participants were unable to complete the final expressivity ratings due to technical 

problems, resulting in 1378 ratings for this measure. 

 

For the statistical analyses PSAW Statistics (version 18.0.2, SPSS Inc., Chicago 

IL) was used, with the alpha set to .05. The dependent variables were examined for 

normality of distribution using histograms and Kolmogorov–Smirnov tests. Mean HR, 

SCL, and high-frequency heart rate variability (HF-HRV) values were calculated for the 

baseline period. Mean HR and SCL were also calculated for each 10-second video. To 

evaluate the influence of possible covariates in the planned analyses, bivariate 

correlations were computed among the dependent variables and possible covariates 

(age, sex, social safeness [SSPS], and mood state [POMS-SF]). Bivariate correlations 

revealed that the affiliation ratings (i.e., the amount of time observers would be willing 

to spend with regulators) were significantly correlated with the SSPS (r = .08, p = .001) 

and baseline HF-HRV (r = .16, p < .001). Individuals who reported higher levels of 

social safeness and higher levels of HF-HRV, a marker of parasympathetic nervous 

system (PNS) function, were more willing to spend time with the regulators. The SSPS 

scores and baseline HF-HRV were entered into the subsequent affiliation analyses as 

covariates. 

 

The main analyses in this experiment were carried out to evaluate the 

psychophysiological effects of expressive regulation on observers. Separate analyses of 

variance (ANOVAs) were carried out on the dependent variables (expressivity ratings, 

physiological indices, and affiliation ratings), with the factors Condition (enhance, 
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maintain, suppress) and Valence (positive, negative). Significant main effects for all 

analyses were followed up with pairwise comparisons, and interactions were examined 

through analyses of simple effects. All pairwise contrasts were evaluated using 

Bonferroni critical values of .05. 

 

8.3.2. Manipulation Check 
 

Analyses of the expressivity ratings supported the manipulation of the 

expressive regulation strategies. A repeated-measures ANOVA revealed a significant 

effect of Condition (enhancement, suppression, maintain) on rated expressivity, F(1.37, 

51.85) = 246.95, p < .001. As expected, Bonferroni pairwise comparisons indicated that 

the expressivity ratings were significantly greater in the enhancement condition (M = 

4.72, SD = 0.58) than the maintain condition (M = 3.25, SD = 0.55), and were 

significantly lower in the suppress condition (M = 2.63, SD = 0.66) than the maintain 

condition (all significant at p < .001). 

 

8.3.3. The Social Consequences of Expressive Regulation 
 

To investigate the social consequences of expressive regulation, the affiliation 

ratings were evaluated. A univariate analysis of covariance (ANCOVA), with SSPS 

total scores and baseline HF-HRV as covariates, revealed that the time observers were 

willing to spend with regulators varied as a function of Condition, F(2, 1474) = 99.37, p 

< .001, Valence, F(1, 1474) = 6.54, p = .011, SSPS Total, F(1, 1474) = 14.17, p < .001, 

and baseline HF-HRV, F(1, 1474) = 46.34, p < .001. There was also a significant 

Condition x Valence interaction, F(2, 1474) = 19.31, p < .001. As shown in figure 8.2, 

observers were most willing to spend time with individuals in the enhance condition, 

followed by the maintain and suppress conditions (all differences significant at p < 

.001). Valence influenced the affiliation ratings, but the effect was only significant in 

the enhance condition, with observers being significantly more willing to spend time 

with individuals showing more positive emotion than individuals showing more 

negative emotion, t(439) = 5.89, p < .001. To investigate whether individual 

characteristics were driving these effects, bivariate correlation analyses were carried out 

using the main ratings data. The analyses revealed that the affiliation ratings were 

positively correlated with the ratings for attractiveness (r = .61, p < .001), familiarity (r 

= .32, p < .001), and distinctiveness (r = .34, p < .001). When the attractiveness, 



CHAPTER 8: AFFILIATION TENDENCIES 205 
 

familiarity, and distinctiveness ratings were included in the original ANCOVA all of the 

effects involving Condition and Valence remained significant (p < .001). 

 

 
Figure 8.2. Mean willingness to spend time with regulators by Condition and Valence. 
Error bars represent the standard error. Covariates were controlled at the following 
values: Attractiveness = 3.54, Distinctiveness = 3.45, Familiarity = 2.38, SSPS total = 
35.58, HF-HRV = 7.36. 

 

8.3.4. The  Effects  on  Expressive  Regulation  on  Observers’  Physiology 
 

Repeated-measures ANOVAs on the physiological indices with Condition and 

Valence  as  repeated  factors  revealed  that  expressive  regulation  did  influence  observers’  

physiology. For HR a significant main effect of Condition was revealed, F(2, 78) = 

11.70, p < .001; HR was lowest when viewing enhanced expressions and highest when 

viewing suppressed expressions, as shown in figure 8.3. Bonferroni pairwise 

comparisons confirmed that HR during the suppress condition was significantly higher 

than HR during the maintain and enhance conditions (p < .05). There were no 

significant effects of Condition or Valence on SCL. 
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Figure 8.3. Mean heart rate by Condition. Error bars represent the standard error. 

 

8.4. Discussion 
 

The results of Experiment 1 replicated the findings of previous research. In 

conjunction with the findings from Chapter 6, the current findings strengthen the 

evidence base that suggests that expressive regulation has personal and social 

consequences (Butler et al., 2003). Taken together, the findings from Chapter 6 and the 

current experiment indicate that both regulators and observers are affected by 

expressive regulation. Enhancing emotional expressions was shown to result in 

increased HR and SCL in regulators (Chapter 6; see also Demaree, Schmeichel, et al., 

2006, Demaree, Schmeichel, et al., 2004). The increase in sympathetic functioning in 

regulators could be due to mobilisation effects, with the muscles of the face requiring 

more energy when facial expressions are up-regulated (Gross & Levenson, 1993). 

 

In contrast to the effects of enhancement, regulators instructed to suppress 

emotional expressions are found to exhibit decreases in HR coupled with increased SCL 

and HF-HRV (Chapter 6). Decreases in HR are thought to occur during suppression 

because of reduced bodily movement and energy expenditure (Gross & Levenson, 

1993), whilst increases in SCL and HF-HRV are indicative of increased self-regulatory 

effort (Butler, Wilhelm, & Gross, 2006; Gross, 1998b; Segerstrom & Solberg Nes, 

2007). In observers, viewing individuals suppressing emotional expressions was 

associated with increased HR (this study). It is proposed that the increase in HR occurs 

because reduced facial expressivity may act as a danger signal. Facial displays are 

important signals of safety and danger that help to regulate social interactions (McHugo 

& Smith, 1996; Orr & Lanzetta, 1980). Whilst greater expression of emotion signals 
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safety, the absence of facial expressions may signal danger or deception, resulting in 

decreased  likability  and  a  reduction  in  the  observers’  willingness  to  interact  with  the  

person signalling (see Riggio & Friedman, 1986). This association may explain why 

observers were less willing to affiliate with regulators following suppression 

instructions. 

 

It  is  possible  that  the  observers’  affiliation  ratings  were  influenced  by  peripheral  

feedback from the ANS; that is, increased SNS activation in response to regulators 

suppressing  their  facial  displays  may  have  affected  the  observers’  willingness  to  spend  

time with the regulators. On the other hand, the positive social outcomes associated with 

emotional expression, such as increased social connectedness and trustworthiness 

(Boone & Buck, 2003; Mauss et al., 2011) are also plausible explanations as to why 

regulators enhancing their emotions were rated more favourably by observers than 

regulators in the maintain and suppress conditions. 

 

An interesting finding of the current experiment was that affiliation ratings were 

positively associated with social safeness and baseline HF-HRV. The Social Safeness 

and Pleasure Scale indexes feelings of belonging, acceptance, and feelings of warmth 

from others (Gilbert et al., 2009), whilst HF-HRV is a marker of PNS function 

(Cacioppo, Uchino, & Berntson, 1994). Thayer and Lane (2000) have previously argued 

that  individuals  with  low  HRV  are  less  able  to  experience  ‘safety’  when  it  is  present, 

suggesting that HF-HRV may in fact be a biological analogue of social safeness. The 

influence  of  these  measures  on  one’s  willingness  to  spend  time  with  others  provides  

some support for the emotional and behavioural components of polyvagal theory: 

Porges (2001, 2003a) claims that individuals are more likely to exhibit social 

engagement behaviours when they feel safe, which is contingent of the activation of the 

PNS. This suggests that withdrawal of the PNS during a stressor may be associated with 

reductions in affiliation tendencies. 

 

8.4.1. Limitations 
 

There are several limitations to Experiment 1. First of all, the experiment was 

not based on real-time interactions. It is possible that the physiological responses of the 

observers in the current study would be different if they were actively involved in an 

interaction with the regulators (similar arguments arise in studies on mimicry, for 
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example Blairy, Herrera, & Hess, 1999). More information is conveyed in face-to-face 

interactions, so it is interesting that the current experiment revealed such a strong effect 

of expressive regulation on affiliation ratings from visual presentations alone. A second 

limitation is that the current results suggest that higher levels of facial expressivity 

should result in a higher willingness to affiliate in observers: I would argue that this is 

not always the case. 

 

Although open expression of emotion can signal pro-social intentions as well as 

safety signals, expressions are mediated by context (Bonanno et al., 2007). In the 

current experiment regulators were shown to produce expressions that were congruent 

with the valence of the stimuli presented. If the experiment had manipulated the 

congruence of the IAPS stimuli and the regulators reactions (i.e., falsely pairing 

negative stimuli with positive expressions and vice versa) this probably would have 

been seen as a violation of social norms, and observers would have been less willing to 

affiliate with individuals displaying inappropriate affect (Cole, Michel, & Teti, 1994; 

Keltner & Kring, 1998). Further to this, regulators were instructed to enhance their 

expressions and make it obvious what they were feeling; they were not instructed to 

exaggerate their responses. As the participants from Chapter 6 were expecting others to 

view them, they are likely to have conformed to display rules during the expressive 

regulation task (Ekman & Friesen, 1969). Future research should also consider the 

effect of exaggerated facial  expressions  on  others’  willingness  to  spend  time  with  

regulators. Future findings may suggest that the relationship between expressivity and 

affiliation is in fact curvilinear, with too much or too little emotion being detrimental. 

 

8.4.2. Conclusion 
 

The current study was designed to investigate the effects of expressive 

regulation on observers. The current results replicated previous findings, and extended 

the literature by demonstrating that positive and negative emotional enhancement have 

disparate effects  on  observers’  willingness  to  affiliate  with  regulators.  The  results  

provided some support for polyvagal theory (Porges, 1995, 2001, 2003a), as decreased 

facial expressivity was associated with negative social consequences, and affiliation was 

influenced by perceived feelings of social safety and cardiac vagal tone (as indexed by 

HF-HRV). However there still remains the question as to whether or not there is a link 

between defensive physiological arousal and deficits in social functioning. Experiment 
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2 was therefore designed to evaluate whether defensive physiological arousal is 

associated with changes in affiliation. 

 

8.5. Experiment 2: Defensive Physiological Arousal and Willingness to Affiliate 
 

Experiment 1 confirmed that expressive regulation plays an important role in 

social interactions. Observers were less willing to spend time with individuals who 

suppressed emotional expressions. Conversely, individuals who expressed emotion 

were rated more favourably, particularly if they exhibited positive emotional 

expressions. The previous experiment revealed a significant relationship between the 

affiliation ratings and activation of the PNS (HF-HRV at baseline). Consequently it is 

proposed  that  one’s  willingness  to  affiliate  with  others  in  contingent  on  physiological 

state. The current experiment was carried out to investigate the effects of social 

evaluative  threat  on  individuals’  willingness  to  spend  time  with  others.  If  polyvagal  

theory is valid, defensive physiological arousal should be associated with decreased 

affiliation tendencies, as individuals feel less safe (Porges, 1998, 2003a). Polyvagal 

theory suggests that during defensive physiological states individuals should be 

prioritising behaviours that promote survival not socialisation (Porges, 2007a). 

Interestingly, this argument is at odds with the tend-and-befriend literature. I will first 

give an overview of the tend-and-befriend literature before introducing the main 

hypothesis of the current experiment. 

 

8.5.1. The Physiological Substrates of Affiliation 
 

To recapitulate, polyvagal theory suggests that social engagement behaviours are 

an emergent property of the ventral vagal complex (VVC; i.e., activation of the PNS). 

In calm and self-soothing states we are able to explore our social environments and 

socially engage with others (Porges, 2001, 2003b). Without activation of the VVC, as in 

times of threat, there is a retraction of the neural regulation of the striated muscles of the 

face and head. Thus in times of stress we are supposedly less able to modulate our facial 

activity, which leads to the suppression of emotional facial expressions. Our ability to 

communicate and socially interact with others is impaired reducing the success of social 

interactions.  Although  polyvagal  theory’s  argument  it  logical,  it is well documented that 

in times of threat people can often seek the presence of others, and that stress can 
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increase affiliation tendencies (Gump & Kulik, 1997; Schachter, 1959; Taylor et al., 

2000). Thus polyvagal theory appears deficient. 

 

The absence of VVC activation in the polyvagal framework does not mean that 

affiliation seeking behaviours cannot occur. Porges (2003a) does suggest that social 

behaviours can be sought to regulate physiological activation. Usually social 

engagement behaviours are considered an emergent property of the VVC, but it is 

possible that during stress socially-oriented behaviours become consciously mediated 

(this parallels the argument put forward in Chapter 6 regarding the voluntary control of 

facial expressions during stress; see section 6.2.3). In threat or challenge situations we 

may use our facial muscles to try to engage others and find safety cues to reactivate the 

VVC. The advantage of this strategy is that using facial muscles automatically activates 

the neural pathways of the social engagement system and provides afferent feedback to 

the VVC even in the absence of reinforcement, which may act as a further safety signal. 

Despite this, there is still the assumption made by polyvagal theory that threats activate 

a mobilising fight–flight response or an immobilising freeze response, neither of which 

promotes affiliative behaviours (Porges, 2007a). 

 

Although attachment is possible within the polyvagal framework (Porges, 1998), 

this is usually confined to calm and self-soothing states. Attachment behaviours are 

generally not well-supported by the physiological or behavioural responses determined 

by the physiological systems that activated during times of challenge or threat (e.g., the 

SNS). In order for attachment and social engagement behaviours to occur the VVC 

must be up-regulated, meaning that in stressful environments if social engagement is to 

successfully occur threats need to be eliminated or reappraised as non-threatening. From 

a polyvagal perspective positive social interactions can occur and act as safety signals 

(Porges, 2003a), but social behaviours are not an emergent property of defensive 

behavioural states. 

 

8.5.2. Tend-and-Befriend 
 

In contrast to polyvagal theory, Taylor and colleagues (Taylor, 2006; Taylor et 

al., 2000; Taylor et al., 2008) advocate that stressful situations do not automatically 

result in the physiological or behavioural responses of fight or flight. Instead, Taylor et 

al. (2000) argue that in certain situations fight–flight behaviours are not always the most 
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adaptive responses to stress, for example if a female caring for her offspring is 

threatened, fight–flight behaviours may jeopardize their safety. Taylor et al. propose an 

alternative;;  that  stress  can  prompt  “tend-and-befriend”  behaviours.  These behaviours 

during periods of threat help to promote safety and reduce distress, as well as create and 

maintain social networks. 

 

The ability to befriend others during times of stress has survival-related 

advantages. Schachter (1959) believed that increased affiliation during stress has two 

important purposes: it provides a chance for social comparison, as well as a source of 

mutual comfort and support. Schachter (1959) hypothesised that affiliation tendencies 

would be strongest during stress when being with others was likely to help eliminate 

threatening  aspects  of  the  stress,  or  increase  one’s  ability  to  cope  with  the  stress.  Taylor  

et al. (2000) propose that the biobehavioural mechanism underlying tend-and-befriend 

behaviours builds on attachment–care-giving processes. It is suggested that in situations 

of stress oxytocin and endogenous opioid mechanisms can be activated which down-

regulate sympathetic and neuroendocrine stress responses. In experimental studies 

oxytocin has been found to enhance parasympathetic-vagal activity and decrease 

sympathetic activity, patterns of activation that are antithetical to the fight-or-flight 

response (Uvnäs-Moberg, 1998). Oxytocin is also known to help co-ordinate the causes 

and effects of positive social interactions (Uvnäs-Moberg, 1998). These findings help to 

explain why oxytocin can increase positive social behaviours, including social bonds, 

and how in turn these can reduce HPA activity (Carter, 1998; Heinrichs, Baumgartner, 

Kirschbaum, & Ehlert, 2003). 

 

Tend-and-befriend behaviours are not incompatible with polyvagal theory; the 

reason they are neglected from the polyvagal framework is because they are mostly 

driven by the neuroendocrine system rather than the ANS (a caveat of polyvagal theory 

is that it concentrates on neurophysiological mechanisms, and tends to exclude the role 

of other homeostatic systems such as the neuroendocrine and immune systems). 

Theoretical isolation of the autonomic regulatory systems minimises the significant 

interrelationships between autonomic, neuroendocrine, and immune responses, and 

limits the range of physiological states and behaviours that can occur during periods of 

threat (Cacioppo et al., 1995). In polyvagal theory it is accepted that oxytocin and 

opioids inhibit SNS activation, which is why socialisation and attachment are safety 

behaviours that initiate and maintain activation of the VVC (Porges, 1998). However, 
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polyvagal theory assumes that threats automatically activate protective defensive 

behaviours driven by the ANS, rather than initiate the up-regulation of attachment and 

care-giving processes driven by the neuroendocrine system. Focusing on the flexibility 

of the ANS alone fails to appreciate the true range of physiological and behavioural 

repertoires that are available during times of threat. Instead we need to appreciate the 

dynamic  interplay  between  the  body’s  systems  that  allows  the  promotion  of  fight–flight 

behaviours, immobilization behaviours, but also attachment and affiliation behaviours. 

 

8.5.3. Current Aims and Hypotheses 
 

The aim of Experiment 2 was to investigate the effects of defensive 

physiological  arousal  on  individuals’  willingness  to  spend  time  with  others.  There  is  

some evidence to suggest that stress may increase affiliation tendencies (Gump & 

Kulik, 1997; Taylor et al., 2000; Taylor, 2006), although as Park and Maner (2009) 

have pointed out, social support during threat can have its own risks (e.g., social 

rejection), which may prevent affiliative motivation from leading to strategic affiliation 

behaviours. A recent study carried out by von Dawans, Fischbacher, Kirschbaum, Fehr, 

and Heinrichs (2012) found that engaging participants in a laboratory stressor increased 

pro-social behaviours, namely trust and sharing, however these behaviours do not 

directly measure affiliation tendencies. In line with polyvagal theory, the following 

hypothesis was proposed: 

 

Hypothesis 5. Increased activation of the SNS in response to a laboratory stressor will 

be associated with decreased affiliation tendencies.  

 

To test this hypothesis the current experiment used a between subjects design. 

Participants completed the Rating Faces Task from Experiment 1, but similar to the 

previous studies, midway through the task participants were assigned to a stressor 

manipulation: half of the participants were instructed to prepare a speech (n = 35) and 

the other half were randomised to a reading task (n = 37). The stressor manipulation 

was carried out in between blocks of the Rating Faces Task (similar to Chapter 7, 

Experiment 2). It was hypothesised that after the stressor manipulation participants in 

the speech group would be less willing to spend with the regulators in the videos. 
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8.6. Method 
 

8.6.1. Participants 
 

Seventy-two undergraduate psychology students (15 males, 57 females) 

volunteered to participate in the study and were awarded course credits as part of their 

undergraduate course requirements. Exclusion criteria were assessed using self-report 

questionnaires and included current or past diagnoses of Axis I or II psychiatric 

disorders, and current psychological or pharmacological treatment. The participants 

ranged in age from 18–42 with a mean age of 20.11 years (SD = 3.94). 88.9% of these 

participants identified themselves as Caucasian, 6.9% as Mixed, and 4.2% as Asian. The 

participants were randomised into two groups during the experiment: a speech group (n 

= 35: 5 males, 32 females; mean age = 19.83, SD = 2.84) and a reading group (n = 37: 

10 males, 25 females; mean age = 20. 83, SD = 4.78). 

 

8.6.2. Procedure 
 

Experiment 2 followed a similar procedure to Experiment 1. The main 

differences between the two experiments were that trait measures of depression (BDI-II; 

Beck et al., 1996, see section 3.5.4) and anxiety GAD-7; Spitzer et al., see section 3.5.6) 

were added in Experiment 2, and the Rating Faces Task was altered. Two main changes 

were made to the Rating Faces Task. Firstly, the wording of the affiliation rating was 

changed  so  that  participants  were  asked  “how  much  time  would  you  like  to  spend  with  

this person right now”  (1  not much time to 7 a lot of time).  The  “right  now”  wording  

was added to emphasise the state nature of this rating. Secondly, the e-Prime task was 

reprogrammed so that half of the video stimuli were randomly presented at baseline 

(T1: 18 stimuli in total; counterbalanced for instruction and valence). The remaining 

stimuli were subsequently presented in three blocks (T2: 6 stimuli per block); these 

blocks were counterbalanced with three one-minute blocks of the stressor manipulation 

(participants were assigned to either the speech task [see section 4.6.2] or the reading 

condition [see section 6.3.3]). During the manipulation blocks the e-Prime program 

instructed participants to complete the task assigned to them. Participants were signalled 

to resume the Rating Faces Task at the end of the one-minute blocks by a beep and an 

alert on the screen. A flowchart diagram of the rating faces task stressor procedure can 

be found in appendix 20.  
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8.7. Results 
 

8.7.1. Statistical Analyses 
 

In total, 2592 sets of ratings were completed: 24 (0.9%) of the regulators in the 

videos were marked as acquaintances of the observers and this data was subsequently 

removed from the analyses. The final data set consists of 2568 ratings (reading group 

T1 n = 659, speech group T1 n = 626; reading group T2 n = 660, speech group T2 n = 

623). 

 

For the statistical analyses PSAW Statistics (version 18.0.2, SPSS Inc., Chicago 

IL) was used, with the alpha set to .05. The dependent variables were examined for 

normality of distribution using histograms and Kolmogorov–Smirnov tests. Mean HR, 

SCL, and HF-HRV values were calculated for the baseline period, each block of the 

Rating Faces Task, and each block of the stressor manipulation period. Mean HR and 

SCL were also calculated for each 10-second video. Similar analyses were conducted to 

Experiment 1 (see section 8.3.1). First, analyses were conducted to establish whether 

there were any differences between the stressor manipulation groups at baseline. 

Secondly, bivariate correlations were carried out to identify confounds that might affect 

the rating variables. Thirdly, the manipulation check was repeated to ascertain whether 

individuals were sensitive to the expressive regulation manipulation. Fourthly, analyses 

were carried out to investigate the effects of the repetitive stressor manipulations on 

physiology and mood state. Finally, analyses were conducted to evaluate the effects of 

the repetitive stressor manipulations on the affiliation ratings. As in Experiment 1, the 

Huynh-Feldt degrees of freedom correction was applied where necessary (i.e., when 

factors  violated  sphericity  assumptions,  as  confirmed  by  Mauchly’s  test). Significant 

main effects for all analyses were followed up with pairwise comparisons, and 

interactions were examined through analyses of simple effects. All pairwise contrasts 

were evaluated using Bonferroni critical values of .05. 

 

8.7.2. Stressor Group Characteristics 
 

The stressor groups were compared using their demographic data and baseline 

self-report measures (see table 8.1 for group characteristics). The groups did not 

significantly differ in terms of age, sex, smoking status, coffee consumption, self-
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reported depression symptoms, current mood, or social safeness. The groups did 

significantly differ in terms of trait anxiety, t(70) = -2.49, p = .015, with the speech 

group reporting higher anxiety levels (M = 4.54, SD = 3.38) than the reading group (M 

= 2.70, SD = 2.89). Independent t-tests did not reveal any significant differences 

between the groups for HR, SCL, or HF-HRV at baseline or T1 (see table 8.2). Further 

to this, mixed-factorial ANOVAs (repeated measure: Condition; between subjects 

factor: Group) did not find any significant differences between the groups for 

willingness to affiliate at T1. In the subsequent analyses comparing the stressor groups, 

the analyses were repeated with GAD-7 scores included as a covariate to control for 

group differences in trait anxiety. A caveat of carrying out the between subjects 

analyses with GAD-7 scores as a covariate, is that controlling for trait anxiety may also 

remove some of the effects of state anxiety that relate to the stressor manipulations (for 

a discussion on the use of analyses of covariance, see Miller & Chapman, 2001). 

Consequently,  caution  was  used  when  interpreting  the  findings  comparing  the  groups’  

affiliation ratings. 

 

Table 8.1. 

Stressor group characteristics 

 Reading Group 
(n = 37) 

Speech Group 
(n = 35) t df p 

 M (SD) M (SD)    
BDI-II 5.76 (6.64) 7.83 (6.49) -1.34 70 .185 
GAD-7 2.70 (2.89) 4.54 (3.38)* -2.49 70 .015 
POMS-SF Total 3.84 (13.03) 3.77 (9.82) 0.02 70 .981 
SSPS 33.27 (8.34) 30.23 (9.52) 1.45 70 .153 

Note. BDI-II = Beck Depression Inventory, GAD-7 = Generalised Anxiety Disorder 
Scale, POMS-SF = Profile of Mood States Questionnaire, SSPS = Social Safeness and 
Pleasure Scale. 
Significant difference between the stressor groups * = p < .05 

 

8.7.3. Individual  Differences  in  Observers’  Willingness  to  Affiliate. 
 

Data collected from the first half of the Rating Faces Task (T1) were analysed to 

identify  individual  differences  in  observers’  willingness to affiliate with others (as 

indexed by the mean amount of time individuals would be willing to spend with 

regulators across all conditions). Bivariate correlations revealed that the affiliation 

ratings were significantly correlated with self-reported social safeness (SSPS total; r = 

.24, p = .040); the correlation between affiliation ratings and anxiety symptoms just 
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failed to research significance (GAD-7 total; r = -.23, p = .053). The direction of the 

relationship between the affiliation ratings and the SSPS scores confirmed that 

willingness to affiliate was greater for individuals with higher social safeness. As a 

result, the SSPS scores were included as a covariate in the subsequent affiliation 

analyses. 

 

8.7.4. Manipulation Check 
 

Analyses of the expressivity ratings supported the manipulation of the 

expressive regulation strategies. A repeated-measures ANOVA revealed a significant 

effect of Condition (enhancement, suppression, maintain) on the ratings of expressivity, 

F(1.52, 107.85) = 509.19, p < .001. As expected, Bonferroni pairwise comparisons 

indicated that the expressivity ratings were significantly greater in the enhancement 

condition (M = 4.67, SD = 0.53) than the maintain condition (M = 3.14, SD = 0.46), 

and were significantly lower in the suppression condition (M = 2.52, SD = 0.59) than 

the maintain condition (all significant at p < .001). 

 

8.7.5. Physiological Reactivity to the Stressor Manipulations 
 

Mixed-factorial ANOVAS (repeated measure: Time; between subjects factor: 

Group) were carried out separately for the HR, SCL, and HF-HRV data; the raw means 

for each group are shown in table 8.2. For HR a significant main effect of Group was 

found, F(1, 70) = 7.27, p = .009. Bonferroni pairwise comparisons (p < .05) confirmed 

that HR in the speech group (M = 84.09, SD = 13.08) was consistently higher during 

the stressor manipulation blocks than HR in the reading group (M = 77.02, SD = 8.91). 

Both groups demonstrated an increase in SCL during the stressor manipulation blocks. 

A significant main effect of Time was revealed, F(1.28, 89.49) = 19.84, p < .001, as 

both groups demonstrate declines in SCL during the Rating Faces blocks at T2. 

Although the speech group tended to exhibit higher levels of SCL through the blocks, 

the main effect of Group did not reach significance, F(1, 70) = 3.26, p = .075. For HF-

HRV there was a significant Time x Group interaction, F(2, 140) = 9.83, p < .001. 

During the manipulation blocks the reading group showed an initial increase in HF-

HRV, whilst the speech group exhibited a significant decrease in HF-HRV during the 

first two stressor blocks (p < .05). 
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Table 8.2. 

Mean heart rate, skin conductance level, and high-frequency heart rate variability during the manipulation periods by stressor group 
 Baseline Stressor Manipulation F df p 
  Block 1 Block 2 Block 3 (time)   

Reading Group        
HR (bpm) 79. 20 (11.20) 76.52 (8.72)** 77.06 (9.18)* 77.48 (9.25)* 6.32 2.14, 76.90 .002 
SCL (µS) 2.51 (1.22) 4.20 (1.98)*** 3.86 (2.00)*** 3.86 (2.08)*** 54.80 1.63, 58.49 .001 
HF-HRV (ms2) 7.27 (0.81) 7.46 (0.67) 7.21 (0.75) 7.13 (0.63) 5.24 3, 108 .002 
        

Speech Group        
HR (bpm) 76.15 (10.88) 84.32 (13.71)*** 83.69 (12.95)*** 84.27 (13.68)*** 22.32 2.22, 75.53 .001 
SCL (µS) 2.34 (1.48) 5.04 (1.87)*** 4.70 (1.88)*** 4.65 (1.92)*** 126.47 1.64, 55.79 .001 
HF-HRV (ms2) 7.37 (1.17) 7.00 (0.95)* 7.06 (0.76)* 7.22 (0.79) 3.46 3, 102 .025 

Note. Standard deviations are reported in parentheses. HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
Significant difference from baseline * = p < .05 ** = p < .01 *** = p < .001 

 

Table 8.3. 

Mean scores for the POMS-SF subscales before the first (T1) and second (T2) administrations of the Rating Faces Task. 
 Reading Group (n = 37) Speech Group (n = 35) F df p 
 Rating Task (T1) Rating Task (T2) Rating Task (T1) Rating Task (T2) (time x group)   

Depression–Dejection  1.22 (3.50) 0.92 (2.64) 0.57 (1.31) 1.46 (2.67)* 3.92 1, 70 .052 
Vigour–Activity 6.11 (4.03) 4.46 (3.31)*** 6.06 (3.76) 3.83 (3.83)*** 1.27 1, 70 .263 
Anger–Hostility 0.49 (1.10) 0.68 (1.08) 0.66 (2.11) 1.09 (3.02) 0.45 1, 70 .504 
Tension–Anxiety 2.51 (3.00) 1.41 (1.66)** 3.11 (2.58) 7.09 (4.72)*** 39.98 1, 70 .001 
Confusion–Bewilderment 2.05 (2.19) 1.68 (2.10) 1.97 (1.92) 2.46 (2.20) 6.38 1, 70 .014 
Fatigued–Inertia 3.68 (3.58) 3.46 (3.10) 3.51 (3.78) 2.83 (3.72)* 1.39 1, 70 .243 

Note. Standard deviations are reported in parentheses. 
Significant difference from Rating Task T1 * = p < .05 ** = p < .01 *** = p < .001 
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When the analyses were rerun with the GAD-7 scores entered as a covariate, all 

of the effects remained significant with the exception of the main effect of Time for 

SCL; this was replaced with a significant Time x GAD-7 interaction, F(1.31, 90.59) = 

4.10, p = .035. The SCL response of high and low GAD-7 scorers was evaluated by 

creating two groups using the sample median for the GAD-7: The groups demonstrated 

similar increases in SCL during the first stressor block, but individuals with higher 

GAD-7 scores demonstrated a quicker decline in SCL during the second and third 

stressor blocks (p < .05). 

 

The POMS-SF subscales demonstrated that the speech group responded 

differently during the stressor manipulation period than the reading group (see table 

8.3). A mixed-factorial ANOVA was carried out with Time and Scale as repeated 

factors and with Group as the between subjects factor. A significant main effect was 

found for Scale, F(2.75, 192.49) = 31.97, p < .001, as well as significant two-way 

interactions for Time x Group, F(1, 70) = 13.81, p < .001, Time x Scale, F(2.59, 

181.00) = 20.81, p < .001, and Scale x Group, F(2.75, 192.49) = 5.05, p = .003. These 

were superseded by a significant three-way Time x Scale x Group interaction, F(2.59, 

181.00) = 18.45, p < .001. Paired t-tests revealed that both groups reported being 

significantly less vigorous at T2, but whilst the reading group also reported being less 

tense, the speech group reported feeling significantly more tense and depressed but 

significantly less fatigued (significance is marked in table 8.3). These effects remained 

significant when the analysis was repeated the GAD-7 as a covariate; the main effect of 

the GAD-7 also reached significance: F(1, 69) = 7.45, p = .008, which is not surprising 

as both scales index anxiety symptoms. 

 

To investigate whether changes in ANS function during the stressor 

manipulation period were related to changes in self-reported emotion, correlations were 

carried out between the mean HR, SCL, and HF-HRV reactivity scores and the mean 

POMS-SF reactivity scores. Significant correlations were found between HR reactivity 

and the POMS-SF confusion–bewilderment subscale (r = .30, p = .011), the POMS-SF 

tension–anxiety subscale (r = .42, p < .001), and the POMS-SF vigour–activity subscale 

(r = -.28, p = .018). In addition to this, positive correlations were revealed between SCL 

reactivity and the POMS-SF tension–anxiety subscale (r = .43, p < .001), the POMS-SF 

confusion–bewilderment subscale (r = .35, p = .003), the POMS-SF anger–hostility 

subscale (r = .25, p = .032), and the the POMS-SF depression–dejection subscale (r = 
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.38, p = .001). Taken together these correlations suggest that larger increases in SNS 

activation were associated with larger increases in indices of negative affect. 

 

Mixed-factorial ANOVAs were carried out on the blocks of the Rating Faces 

Task at T2 to establish if arousal was maintained during the secondary task (see  

 

 

 

table 8.4). HR was associated with a significant main effect of Time, F(2.54, 

178.00) = 2.95, p = .042, as well as a Time x Group interaction, F(2.54, 178.00) = 7.38, 

p < .001. The speech group maintained increases in HR across all of the Rating Faces 

Task blocks at T2 (p = .007), whilst the reading group demonstrated a decrease in HR 

that was only significant during the first block. SCL also demonstrated a significant 

effect of Time, F(1.67, 117.04) = 34.69, p < .001, and a Time x Group interaction, 

F(1.67, 117.04) = 8.10, p = .001. Both stressor groups demonstrated significant 

increases in SCL at T2, but this increase was larger and maintained for longer in the 

speech group (p < .05). Finally, a significant main effect of Time was found for HF-

HRV, F(2.92, 204.07) = 5.08, p = .002. HF-HRV demonstrated a steady decline during 

the Rating Faces blocks at T2 in both groups. Despite the speech group demonstrating a 

significant increase in HF-HRV from T1 during the first rating block at T2 (p = .002), 

none of the effects involving Group were significant. Again, when the analyses were 

repeated with GAD-7 scores entered as a covariate all the effects remained significant. 
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Table 8.4. 

Mean heart rate, skin conductance level, and high-frequency heart rate variability by stressor group 
 Rating Task (T1) Rating Task (T2) F df p 
  Block 1 Block 2 Block 3 (time)   

Reading Group        
HR (bpm) 77.14 (9.79) 75.90 (9.54)* 77.01 (9.55) 76.47 (9.18) 2.46 3.00, 107.83 .067 
SCL (µS) 3.58 (1.74) 3.93 (1.87)*** 3.88 (1.94)** 3.88 (2.09)** 8.24 2.21 .001 
HF-HRV (ms2) 7.10 (0.72) 7.18 (0.68) 7.03 (0.67) 7.01 (0.72) 3.42 3, 108 .022 
        

Speech Group        
HR (bpm) 74.16 (10.63) 75.94 (10.82)** 76.14 (11.20)** 76.53 (11.07)** 7.57 2.02, 68.80 .001 
SCL (µS) 3.59 (1.77) 4.53 (1.73)*** 4.40 (1.75)*** 4.51 (1.87)*** 25.84 1.47, 49.80 .001 
HF-HRV (ms2) 7.26 (0.93) 7.47 (0.87)** 7.33 (0.88) 7.32 (1.00) 2.84 3, 102 .046 

Note. Standard deviations are reported in parentheses. HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
Significant difference from Rating Task T1 * = p < .05 ** = p < .01 *** = p < .001 
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8.7.6. The  Effects  on  Expressive  Regulation  on  Observers’  Physiology 
 

To investigate whether the stressor manipulations influenced the effects of 

observing expressive regulation on HR and SCL, repeated-measures ANOVAs were 

carried out on the mean HR and SCL data for the 10-second video observations at T1 

and T2. A repeated-measures  ANOVA  on  the  HR  data  revealed  that  observers’  

physiological responses were again influenced by Condition, F(1, 70) = 30.61, p < .001; 

Bonferroni pairwise comparisons confirmed that HR was lowest when viewing 

enhanced expressions and highest when viewing suppressed expressions (p < .05). In 

addition to this there was also evidence of a significant Time x Group interaction, 

F(1,70) = 12.68, p = .001. As shown in figure 8.4, the reading group exhibited a slight 

overall decrease in HR at T2, whilst the speech group exhibited a significant overall 

increase in HR at T2 (p = .002). These effects remained significant when the GAD-7 

was entered as a covariate. 

 

 
Figure 8.4. Mean heart rate by Condition as a function of Time and Group. 

 

A  repeated  measures  ANOVA  also  revealed  that  observers’  physiological  SCL  

responses were influenced by significant effects of Time, F(1, 70) = 48.87, p < .001, 

and a Time x Group interaction, F(1, 70) = 11.31, p = .001. As shown in figure 8.5, both 

groups exhibited significant increases in SCL at T2 (p < .001), but the magnitude of the 

increase was larger in the speech group. Again, these effects remained significant when 

the GAD-7 was entered as a covariate. 
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Figure 8.5. Mean skin conductance level by Condition as a function of Time and Group. 

 

8.7.7. Effects of the Stressor Manipulations on Willingness to Affiliate 
 

A mixed-factorial ANCOVA (repeated measures: Time, Condition, Valence; 

between subjects factor: Group; covariate: SPSS total) was carried out to assess the 

impact of defensive arousal on willingness to affiliate as measured by the Rating Faces 

Task (T1 compared to T2). Significant main effects were found for Condition, F(1.59, 

109.43) = 8.16, p = .001, and Time, F(1, 69) = 4.36, p = .041. Significant interactions 

were also revealed for Condition x Valence, F(2, 138) = 6.83, p = .001, and Time x 

Condition x Valence, F(2, 138) = 3.16, p = .045. These were superseded by a four-way 

Time x Condition x Valence x Group interaction, F(2, 138) = 3.37, p = .037. 

 

The main effect of Condition and the Condition x Valence interaction effect 

parallel the findings from Experiment 1: Observers were more willing to spend time 

with regulators expressing more emotion, particularly if they expressed positive 

emotion. The main affiliation finding of Experiment 2, was the four-way interaction 

between Time x Condition x Valence x Group, which suggests that the stressor 

manipulation did influence observers’  willingness  to  affiliate  (see  figure 8.6). Generally 

speaking, at T2 observers in the reading group exhibited increases in the amount of time 

they would spend with regulators. In particular, the reading group demonstrated a 

notable increase in their willingness to spend time with regulators suppressing negative 

emotion (p < .001). The speech group on the other hand did not exhibit increases in the 

amount of time they would spend with the regulators. Repeating the ANCOVA with 

GAD-7 scores to control for group differences in trait anxiety meant that the four-way 

interaction was no longer significant, F(2, 136) = 2.97, p = .055. As mentioned 
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previously, entering the GAD-7 scores as a covariate is an imperfect way of removing 

the group differences in trait anxiety. In this instance, controlling for GAD-7 scores did 

not alter the behaviour of the speech group only the control group. The current 

experiment therefore suggests that a stressor manipulation did not have a significant 

impact  on  observers’  willingness  to  affiliate  with  others. 

 

 

 
Figure 8.6. Willingness to spend time with regulators as a function of Condition, 
Valence, Time (T1 vs. T2), and Group. Covariates were entered into the model at the 
following values: SPSS total = 31.79. 

 

8.8. Discussion 
 

Experiment 2 extended the findings of Experiment 1. First of all, the use of a 

different  sample  was  able  to  confirm  that  social  safeness  was  predictive  of  observers’  

willingness to affiliate at T1. The positive relationship between the SSPS and the 

affiliation ratings from Rating Faces Task suggests that the safer we feel the more time 

we are willing to spend with others. A. C. Kelly, Zuroff, Leybman, and Gilbert (2012) 
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have reported an association between low social safeness and social avoidance, the 

direction of this relationship is yet to be established. It is possible that social withdrawal 

reduces opportunities for individuals to yield feelings of safeness, however our results 

lend support to the argument that individuals low in social safeness are less willing to 

seek social interactions. Further research to confirm the direction of this relationship is 

warranted. It should be noted that the SSPS is a trait measure of social safeness, and 

how safe we feel can vary according to the immediate environment (A. C. Kelly et al., 

2012). A measure of state changes in social safeness would have been useful in this 

experiment to investigate the effect of the stressor manipulation on this construct. 

 

8.8.1. Defensive  Arousal  and  Observers’  Willingness  to  Affiliate 
 

Experiment 2 confirmed that the repetitive stressor manipulation is effective at 

maintaining defensive physiological arousal in the speech group; the speech group 

exhibited larger increases in HR and SCL that were maintained during the blocks of the 

Rating Faces Task at T2. As well as the speech groups exhibiting differences in arousal, 

they also demonstrated differences in their willingness to affiliate during the secondary 

task. Observers in the reading group demonstrated increases in their willingness to 

affiliate with regulators, particularly for regulators who displayed suppressed negative 

emotion. Observers in the speech group however showed little change in their 

willingness to affiliate over the two tasks. Controlling for trait anxiety removed the 

significant change in affiliation in the reading group, but did not affect the performance 

of the speech group. The hypothesis that a laboratory stressor would decrease affiliation 

tendencies was therefore not supported. It is proposed that the observers in the reading 

group may have been more willing to spend time with regulators at T2 because they 

were better able to perceive safety in the facial displays of the regulators over time. The 

observers in the speech group failed to show this pattern of responding, suggesting that 

their perception of the regulators may have been impaired by their physiological state. 

This  hypothesis  would  be  in  line  with  Porges’  (2004b,  2009a)  theory  of  neuroception  

(i.e., the ability for the nervous system to detect danger in the environment). However, 

as there were significant group differences in trait anxiety these findings are tenuous. 

 

Porges  (2007a)  has  suggested  that  withdrawal  of  the  VVC  can  affect  “social  

awareness”  as  well  as  limit  spontaneous  social  engagement  behaviours. It is not clear 

which  faculties  are  impaired  when  “social  awareness”  is  affected,  although  Porges  
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(2007a) does suggest that the reading of social cues is one capacity that can be impaired 

during defensive physiological states. This supposition relates nicely to the theory that 

perceived social safeness is dependent on the immediate context (A. C. Kelly et al., 

2012). Future research should endeavour to investigate the links between defensive 

physiological arousal, state social safeness, and affiliation tendencies. Relevant findings 

in this area may help to shed light on both polyvagal theory and the tend–and–befriend 

hypothesis. 

 

8.8.2. Limitations 
 

As with the previous studies there are several limitations to consider. Firstly, the 

Rating Faces Task in a new measure  of  individuals’  willingness  to  affiliate.  Although  

the task has face validity it has not been validated as to whether or not affiliation ratings 

actually index how much time observers would spend with the regulators in real-life 

settings. It is also unknown whether or not the task is sensitive to social desirability 

effects. Although observers indicated how much time they would spend with regulators, 

it would have been interesting to relate this to other affiliation measures (i.e., quantity 

and quality of usual social interactions, and other established measures of affiliation). In 

addition to this, the current sample was homogenous in terms of age, sex, and ethnicity, 

which means that the results may not be generalisable to the wider population. This is in 

spite of the group differences in self-reported anxiety, which may be a significant 

confound of the current findings. An interesting finding of previous research is that 

females tend to be more affiliative than males (Luxen, 2005), which was not 

demonstrated in the current research, possibly because the current sample was not 

diverse enough in terms of sex. Repeating the experiment using more diverse samples in 

terms of age, sex, and ethnicity would help to establish the veracity of the current 

findings. 

 

Before concluding, it is worth considering some of the strengths of the current 

experiments. The videos used in current study have good ecological validity. 

Participants were contemporary students of the current sample, and were filmed 

modulating their facial expressions in the belief that they were being observed. The 

videos are therefore good representations of voluntary expressive regulation. A second 

strength is that the current experiments are the first to report the simple effects of 

expressive regulation  on  observers’  physiology:  participants  were  exposed  to  regulators  
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enhancing and suppressing both positive and negative emotion whilst HR and SCL were 

recorded. Previous studies have tended to only focus on one dimension of expressive 

regulation (i.e., enhancement or suppression), and more often than not the focus has 

been on the regulator rather than their intended target. Taken together with the findings 

from Chapter 6, the current research emphasises the need to evaluate both the sending 

and receiving aspects of emotional communication. 

 

8.9. General Discussion 
 

The current study provided some interesting findings relating to the effects of 

expressive  regulation  on  observers,  as  well  as  how  an  observer’s  physiological  state  

affects their willingness to spend time with regulators. Experiment 1 demonstrated that 

observers are more willing to spend time with regulators who express more emotion, 

particularly if they express positive emotion. Experiment 2 confirmed this pattern of 

responding,  but  also  suggested  that  defensive  arousal  affects  one’s  willingness  to  spend  

time with others: whilst participants in the reading group were likely to increase their 

willingness to spend time with regulators over the task, participants in the speech group 

were not. These findings are not consistent with the claims of the tend–and–befriend 

literature, however they do provide some support for polyvagal theory (Porges, 1995, 

2001, 2003a). It is hypothesised that the speech group were less willing to spend time 

with regulators during the second administration of the Rating Faces Task because they 

were less receptive to safety cues in the facial displays presented. Future research would 

benefit from measuring state changes in social safeness during defensive physiological 

arousal, as this may be a mechanism underlying the observed effects.
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Chapter 9: General Discussion 
 

Porges’  (1995,  2001,  2003a)  polyvagal  theory  purports  that  successful  social  

engagement is contingent on activation of the ventral vagal complex (VVC; i.e., calm 

and self-soothing states). When individuals are challenged or threatened, activation of 

the sympathetic nervous system (SNS) or dorsal vagal complex (DVC) is hypothesised 

to be accompanied by withdrawal of the VVC and reduced accessibility of the social 

engagement system. Although polyvagal theory is consistent with other models of 

physiological responding such as the neurovisceral integration model (Thayer & Lane, 

2000) and Schauer and Elbert's (2010) fear response cascade, only polyvagal theory 

makes claims about the effects of defensive arousal on social functions such as facial 

expressivity and social awareness. To date there is very little empirical work with adult 

populations that supports Porges’  claims.  The  current  research  was  designed to address 

this gap in the literature and investigate the social consequences of defensive 

physiological states. 

 

Due to methodological limitations it is currently impossible to directly challenge 

Porges’  claims  by investigation of the VVC and DVC pathways. Although this has led 

to some criticism (see Berntson, Cacioppo, & Grossman, 2007; Grossman & Taylor, 

2007; Ritz, 2009), this does not mean that tenets arising from polyvagal cannot be 

empirically tested. In Chapter 2 five main research hypotheses were identified: (1) 

laboratory stressors will be associated with decreased parasympathetic nervous system 

(PNS) activation, increased SNS activation, and increased negative affect (2) emotion 

regulation strategies will be associated with increased activation of the PNS, and 

accelerate the down-regulation of physiological and psychological arousal after a 

stressor, (3) increased activation of the SNS in response to a laboratory stressor will be 

associated with decreased facial expressivity, (4) increased activation of the SNS in 

response to a laboratory stressor will be associated with decreased emotional sensitivity, 

and (5) increased activation of the SNS in response to a laboratory stressor will be 

associated with decreased affiliation tendencies. 

 

Before addressing the hypotheses stemming from polyvagal theory the thesis 

first considered which methodological techniques were suitable for the current research 

(Chapter 3). The following chapters then established a suitable way of activating and 

down-regulating defensive physiological states as a test of hypotheses 1 and 2: Chapter 
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4 confirmed that speech tasks are a suitable stressor manipulation whilst Chapter 5 

compared the effects of several emotion regulation strategies on physiological return to 

baseline and self-reported  affect.  The  thesis  then  focused  on  the  investigation  of  Porges’  

claims regarding socio-emotional responding (testing hypotheses 3-5); experiments 

were carried out to examine the effects of defensive physiological arousal on facial 

expressivity (Chapter 6), emotional sensitivity (Chapter 7), and affiliation tendencies 

(Chapter 8). The findings suggest that the social consequences of defensive 

physiological arousal in healthy adult populations are minimal, with social evaluative 

threat having little or no influence on the social functions explored. As a result several 

of the hypotheses in this thesis were not supported. 

 

9.1. Summary of the Main Findings 
 

As  discussed  in  chapters  2  and  3,  polyvagal  theory’s  (Porges,  1995,  2001,  

2003a) claims regarding the effect of defensive physiological arousal on social 

functioning are largely theoretical in nature, and there is a dearth of experimental 

research  testing  Porges’  hypotheses in adult populations. The following sections will 

provide an overview of the main findings from the current thesis. 

 

9.1.1. Social Evaluative Threat and Defensive Physiological Arousal 
 

Although social evaluative threat is often invoked as a stressor manipulation, 

previous studies have failed to report on how well defensive physiological states are 

maintained during secondary tasks (e.g., Mansell, Clark, Ehlers, & Chen, 1999; 

Mansell, Ehlers, Clark, & Chen, 2002). Chapter 4 demonstrated some of the difficulties 

of using virtual reality as a stressor induction, however the findings confirmed that 

speech tasks result in reliable increases in heart rate (HR) and skin conductance (SCL), 

and reliable decreases in high-frequency heart rate variability (HF-HRV) (Feldman, 

Cohen, Hamrick, & Lepore, 2004; Kirschbaum, Pirke, & Hellhammer, 1993). This 

pattern of autonomic responding was interpreted as being consistent with a defensive 

physiological response; with increases in systems corresponding to SNS activation and 

decreases  in  systems  corresponding  to  PNS  activation  (Lang,  Davis,  &  Ӧhman, 2000; 

Tuvblad et al., 2010). In conjunction with Feldman et al. (2004) and Gregg, James, 

Matyas, and Thorsteinsson (1999), the current experiments suggested that utilising the 

manipulation period of the speech task was more effective at maintaining arousal than 



CHAPTER 9: GENERAL DISCUSSSION 229 
 

the presentation period. From this it was hypothesised that the residual arousal may be 

sufficient to impact on the behavioural tasks employed in chapters 5 to 8. 

 

Chapter 5 utilised the speech task and demonstrated that regulatory strategies 

can facilitate the down-regulation of residual arousal (for full discussion of the effects 

see section 9.1.2). However when the speech task was employed along with secondary 

tasks measuring social behaviours (particularly in chapters 6 and 7), it was discovered 

that arousal in the speech group did not remain significantly higher than arousal in the 

control group during the secondary tasks. At first it was conjectured that the expressive 

regulation task in Chapter 6 may have been initially too arousing, which may have 

limited observable group effects in response to the stressor manipulation, however 

similar group responses were found in Chapter 7 when using an emotion recognition 

task that was less arousing. As a result it was concluded that the original stressor was 

ineffective at maintaining arousal, and in the later experiments the speech task was 

adapted by splitting the preparation period into blocks that were counterbalanced with 

blocks of the secondary tasks. This adaptation to the speech task was considered to be a 

more suitable design than simply lengthening the stressor period, because individuals 

tend to habituate to stressors over time (Kelsey, Ornduff, & Alpert, 2007; Kelsey, 

Soderlund, & Arthur, 2004). The later findings confirmed the utility of splitting the 

preparation period into blocks because continued arousal in the stressor group allowed 

the groups to be differentiated on the basis of their psychophysiological profiles. 

Consequently, future research using stressor manipulations may wish to consider how 

physiological responses to stressor tasks can change over time, particularly when using 

healthy control samples. Where prolonged arousal is required researchers may want to 

consider repeating short blocks of a stressor task to reinforce the effects of the stressor 

manipulation. 

 

A caveat of using stressor manipulations in laboratory settings is the ability to 

initiate measurable changes in physiology that reflect physiological responses to real-

life stressors. Laboratory-based experiments allow for high levels of control, but 

laboratory stressors often elicit milder physiological responses than natural stressors 

(Dimsdale, 1984). It has long been debated how well responses to laboratory stressors 

predict responses to real-life stressors outside of the laboratory (Kamarck & Lovallo, 

2003; van Egeren & Sparrow, 1989). This poses a difficulty for researchers as 

experiments can lack ecological validity. A further challenge of designs using 
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laboratory-based stressors is that the observed physiological responses to stress are 

likely to be short-lived. Stressors result in measurable changes in physiology, as the 

body shifts out of a state of homeostasis (Fabes & Eisenberg, 1997; Jänig, 2006). As 

soon as the body moves into a defensive physiological state, processes will be at work 

to return the body to its natural baseline: Increased SNS activation is likely to be rapidly 

followed by increased PNS activation to counter increases in arousal (Mezzacappa, 

Kelsey, Katkin, & Sloan, 2001). Returning to physiological baseline after a stressor is a 

sign of physiological health, with chronic elevations in arousal being indicative of poor 

autonomic functioning (Rozanski & Kubzansky, 2005; Sapolsky, 1997; Tuvblad et al., 

2010). Physiological health means that control populations are likely to respond to 

laboratory stressors by showing elevations in arousal that are mild in magnitude and 

short in duration. 

 

The stressor manipulation employed in the preceding chapters increased SNS 

activation and this was assumed to represent increases in defensive physiological 

arousal, however there is no guarantee that the observed changes in physiology were not 

attributable to co-activation of the SNS and VVC, as opposed to pure defensive arousal 

(i.e., SNS activation coupled with withdrawal of the VVC). This pattern of responding 

could be why the increases in arousal in the speech groups were not maintained during 

the secondary tasks and why there were no noticeable changes in social behaviour in the 

speech groups after the stressor manipulations. Further discussion of the limitations of 

using a healthy control sample is given in section 9.2. 

 

9.1.2. Regulatory Strategies and their Effects on Defensive Physiological Arousal 
 

The subjective experience of emotion is an important concomitant of 

physiological responding: How we feel is likely to impact on how we think and behave, 

and our ability to regulate our emotions has been shown to affect our social competence 

(Eisenberg, Fabes, Guthrie, & Reiser, 2000). Negative affect is often coupled with 

increases in SNS activation (Feldman et al., 1999; Sloan et al., 1994), which in turn is 

hypothesised to affect social engagement behaviours (Porges, 2001, 2003a; but see 

Taylor, 2006). Chapter 5 compared the psychophysiological effects of several 

regulatory strategies on down-regulating defensive physiological arousal. The focus was 

on emotion regulation strategies that are hypothesised to target activation of the PNS 

and increase positive affect. In general the findings suggest that engaging in active 
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emotion regulation may be able to facilitate the down-regulation of psychophysiological 

arousal (when compared to resting quietly). The mindful breathing and neutral listening 

strategies had the most pronounced effects on HR and SCL, which may be a function of 

the human voice activating the VVC via the muscles of the middle ear (Porges, 2001, 

2003a; Porges & Lewis, 2010). Importantly, the role of distraction was also considered 

as a potential mechanism underlying the down-regulation seen in arousal. 

 

In the short term the loving-kindness meditation was able to significantly 

increase positive affect (see Fredrickson, Cohn, Coffey, Pek, & Finkel, 2008), whilst the 

mindful breathing meditation demonstrated the most notable decrease in physiological 

arousal (see Jerath, Edry, Barnes, & Jerath, 2006). It is argued that these strategies work 

by mechanisms other than distraction; distraction is helpful in the short term, but in the 

long term it becomes maladaptive (Nolen-Hoeksema, Wisco, & Lyubomirsky, 2008). 

Increased practice of mindfulness and loving-kindness has been shown to enhance the 

observed effects of meditation practices (Carson et al., 2005; Pace et al., 2009), 

suggesting that mechanisms other than distraction are at work. The effects of loving-

kindness and mindful breathing meditations make them promising strategies for 

reducing subjective distress and defensive physiological arousal. Further research is 

needed however, to identify the mechanisms that make these strategies so successful in 

order to maximise their efficacy. 

 

Consistent with previous research, none of the regulation strategies examined 

demonstrated signs of buffering against future stress in the short term (Fredrickson, 

Mancuso, Branigan, & Tugade, 2000). Interestingly, the groups that carried out the 

emotion regulation strategies rated their preparation and performance of the speech task 

as being significantly poorer than the group that simply rested quietly. Consequently, 

although emotion regulation strategies can be beneficial, the timing of their deployment 

is an important consideration. Individuals relying on emotion regulation strategies will 

need to be taught which techniques are appropriate, as well as when to recognise that the 

behaviours are needed (Sheppes & Gross, 2011). Timing is important in two respects: 

Firstly, one must consider the timing of the strategy in relation to the emotion 

generation process (i.e., early vs. late processing), and secondly it is important to 

recognise whether or not the chosen strategy is feasible and/or appropriate in the current 

context (Sheppes & Gross, 2011). The present research has confirmed the potential role 

of emotion regulation strategies in down-regulating defensive physiological arousal, 
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however further research is needed to explore their effectiveness in clinical populations, 

as well as their acceptability and accessibility. 

 

A strength of the current research is that it highlights the role of doing nothing in 

times of stress. Often researchers compare different emotion regulation strategies in the 

belief that they will facilitate coping and self-regulation; in healthy populations however 

sometimes the most effective way forward may be to take a step back from the situation. 

When an individual is stressed, that is not always the most appropriate time to be 

learning a new emotion regulation skill. If an individual does not feel overly distressed 

by the presence of physiological arousal, then doing nothing may be a surprising way of 

helping individuals to cope with an impending stressor. For example, in the current 

experiment participants who did nothing reported higher levels of satisfaction with their 

speech performance than those who carried out an emotion regulation strategy. 

 

9.1.3. Defensive Physiological Arousal and Facial Expressivity 
 

A key issue raised in the initial literature review (Chapter 2) was the premise 

that defensive physiological arousal should reduce facial expressivity (see Porges, 2001, 

2003a). To date there have been few empirical studies that have approached this 

question, and most of the research that has been carried out has been with infants rather 

than adult populations (for example Stifter & Fox, 1990; Stifter, Fox, & Porges, 1989). 

A comprehensive review relevant to this topic was carried out by Cacioppo et al. 

(1992). The model formulated by Cacioppo and colleagues acknowledged that different 

relationships can occur between SNS function and facial expressivity: Individuals can 

exhibit increases in SNS activation coupled with low facial expressivity (internalisers) 

or high facial expressivity (externalisers). The mechanisms underlying this relationship 

are unclear (individual differences in expressivity may result from natural tendencies 

and/or conscious control), however Cacioppo et al.'s (1992) model suggests that there is 

not a transparent link between autonomic functioning and facial expressivity. 

 

Despite research indicating that the relationship between autonomic responding 

and facial expressivity tends to vary within and across individuals, polyvagal theory 

posits that increased activation of the SNS should result in withdrawal of the social 

engagement system and subsequently reduce facial expressivity (Porges, 2001, 2003a, 

2007b). To examine this proposition, two experiments were carried out in the present 
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thesis using healthy adult populations: In Chapter 6 participants completed an 

expression regulation task whilst facial expressivity was captured using eMotion (an 

emotion recognition software package; Gevers, 2008), and in Chapter 7 participants 

completed an emotion recognition task whilst facial mimicry was measured using 

electromyography. In both experiments facial expressivity was measured before and 

after a stressor manipulation to investigate changes in facial expressivity that may have 

been associated with increases in defensive physiological arousal. The findings of each 

chapter will be discussed in turn. 

 

The  ability  to  modulate  one’s  facial  expression  in  accordance  to  situational  

demands is often considered to be a trait ability (Bonanno, Papa, Lalande, Westphal, & 

Coifman, 2004), however it has also been shown that the immediate context can 

influence facial expressivity (Westphal, Seivert, & Bonanno, 2010). In Chapter 6 

participants carried out an expressive regulation task that required the participants to 

enhance, maintain, or suppress their facial expressions in response to positive and 

negative visual stimuli (Bonanno et al., 2004). The participants were divided into a 

stressor group and a control group so that the role of defensive physiological arousal in 

expressive enhancement ability and expressive suppression ability could be explored. 

Following Porges (1995, 2001, 2003a), it was hypothesised that increased SNS 

activation would be associated with reduced facial expressivity in the stressor group 

after the stressor manipulation but not the control group. Although participants in the 

stressor group did demonstrate reduced enhancement ability and increased suppression 

ability these changes were not significant within or across the groups. Consequently the 

hypothesis was not supported. It was concluded that the findings may have been 

obscured because both groups demonstrated increased physiological arousal during the 

expressive regulation task. However, a second line of reasoning suggested that 

defensive arousal may reduce spontaneous facial expressivity but not consciously 

mediated facial expressivity. This potential confound was addressed in the following 

chapter. 

 

In Chapter 7 two experiments used electromyography to measure spontaneous 

facial expressivity in response to facial displays of emotion. It is well-established that 

viewing facial expressions results in facial mimicry in observers (Dimberg, 1982; 

Hatfield, Cacioppo, & Rapson, 1993). In the current experiments, participants 

completed an emotion recognition task (the Multimorph Facial Affect Task; Blair, 
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Colledge, Murray, & Mitchell, 2001) and were again divided into a stressor group and a 

control group. The general hypothesis was that participants in the stressor groups would 

show reduced spontaneous facial mimicry to the facial displays presented after the 

stressor manipulation, and that this in turn would increase the amount of time it would 

take to correctly identify the emotions (this second measure was termed emotional 

sensitivity and is discussed in section 9.1.4). The hypothesis regarding spontaneous 

facial expressivity was not supported by the results: The findings in Experiment 1 

indicated that the stressor group did not vary in the amount of emotion expressed across 

the two administrations of the emotion recognition task. Although concerns were raised 

regarding the effectiveness of the stressor manipulation, these were addressed in 

Experiment 2 by splitting the stressor manipulation into blocks that were 

counterbalanced with blocks of the emotion recognition task. Despite increasing the 

physiological arousal of the stressor group during the second administration of the 

emotion recognition task in Experiment 2, this still failed to affect the spontaneous 

facial mimicry of the stressor group. 

 

Taken together, the findings of chapters 6 and 7 indicate that there is not a direct 

relationship between defensive physiological arousal and facial expressivity. The 

current research did not support a central tenet of polyvagal theory, which suggests that 

increased activation of the SNS inhibits the social engagement system (Porges, 2001, 

2003a). This has important implications for some of the proposals made in the literature 

review, where by reduced facial affect was identified as a characteristic of several 

psychiatric disorders (see sections 2.4.5.1-2.4.5.5). Although polyvagal theory (Porges, 

1995, 2001, 2003a, 2007b) is a compelling model for explaining reduced facial 

expressivity in clinical populations, the current evidence provides some doubt for 

Porges’  model as a model of universal responding. 

 

9.1.4. Defensive Physiological Arousal and Emotional Sensitivity 
 

The ability to recognise emotions in others was identified as an area of interest 

because it has been suggested that emotional sensitivity is contingent on facial feedback 

(Oberman, Winkielman, & Ramachandran, 2007). If defensive physiological arousal 

results in decreased facial expressivity, as suggested by polyvagal  theory,  one’s  ability  

to recognise emotional facial expressions may also be impaired during defensive 

physiological arousal due to reduced afferent feedback from the facial muscles. Chapter 
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7 was designed to concurrently investigate the effects of defensive physiological arousal 

on facial expressivity and emotion recognition. Surprisingly, there has been little 

research on the effects of stress responding on emotion recognition. Hänggi (2004) 

carried out an Internet-based experiment where participants carried out emotion 

recognition tasks during an online procedure designed to induce stress (stressors 

included negative feedback, form malfunction, and increased time pressure). Hänggi's 

results suggested that stress impairs decoding ability, with individuals in the stress 

condition demonstrating poorer recognition of emotional facial displays. 

 

In Chapter 7 participants completed the Multimorph Facial Affect Task (Blair et 

al., 2001). The task requires participants to classify 6 basic emotional facial expressions 

as quickly as they can whilst each stimulus morphs through 39 stages into a prototypical 

emotional expression. On the basis of Porges (2001, 2003a) and Hänggi (2004) it was 

hypothesised that participants would take longer to correctly classify the emotional 

expressions after a stressor manipulation (i.e., they would be less sensitive to the 

emotional facial expressions). This hypothesis was not supported in Experiment 1, as 

the stressor group did not show a significant change in emotional sensitivity after the 

stressor manipulation. After reviewing the physiological data from Experiment 1 it was 

conjectured that the stressor manipulation may have been ineffective at maintaining 

arousal during the secondary emotion recognition task. The stressor manipulation was 

revised in Experiment 2 and counterbalanced with blocks of the emotion recognition 

task, which maintained arousal in the speech group for longer. Although the change in 

design resulted in greater differences between the groups in terms of physiology, these 

differences were not associated with measurable behavioural differences between the 

groups in terms of emotional sensitivity (i.e., both groups took similar amounts of time 

to correctly identify the emotions presented). Consequently, neither of the experiments 

supported the hypothesis that defensive physiological arousal dampens facial 

expressivity which in turn reduces emotional sensitivity. 

 

The lack of evidence to support the link between defensive physiological arousal 

and emotional sensitivity  undermines  Porges’  claims  that  activation  of  SNS  impacts  on  

“social  awareness”  (Porges,  2003a,  2009a).  The  findings  of  this  thesis  suggest  that  

physiological  arousal  does  not  necessarily  impair  one’s  ability  to  perceive  and  decode  

others’  emotional states. Previous research has suggested that although emotion 

recognition and emotion regulation are complementary proficiencies, they are not 
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analogues of each other (Papousek, Freudenthaler, & Schulter, 2008). Thus the emotion 

recognition deficits seen in specific clinical disorders may not result from the deficits in 

autonomic function that also tend to be observed in these populations. 

 

A finding from Chapter 7 that does provide some limited support for polyvagal 

theory, was the relationship found between the activation of the levator labii and the 

speed at which participants recognised disgust. This finding is in line with the work of 

Stel and colleagues (Stel & van Knippenberg, 2008; Stel & van den Bos, 2010), and 

suggests that emotional sensitivity for disgust may be contingent on afferent feedback 

from the face. If reduced activation of the levator labii decreases emotional sensitivity 

for disgust, this would support the notion that decreased facial expressivity in response 

to  a  threat  may  reduce  “social  awareness”  (Porges,  2009b).  It  is  possible  that  different  

forms of threat result in differential reductions in facial expressivity and/or emotional 

sensitivity that are emotion-specific. This has implications for researchers who only 

focus on one or two emotions as representative facial expressions of positive and 

negative emotion (e.g., happiness and anger are often used as prototypical positive and 

negative emotions respectively; Dimberg & Lundquist, 1990; Dimberg & Petterson, 

2000; Jönsson & Sonnby-Borgström, 2003). This was not however a limitation of the 

current experiment. 

 

9.1.5. Defensive Physiological Arousal and Affiliation 
 

The  final  area  of  interest  in  this  thesis  was  Porges’  claims  regarding  social  

engagement and affiliation (see Porges, 2001, 2003a, 2007b). Porges proposed the 

existence of functional neuroanatomical networks that link physiological state and 

affiliation tendencies, but this relationship has not been subjected to empirical testing. 

From a theoretical point of view polyvagal theory is inconsistent with the tend–and–

befriend model: Porges (1995, 2001, 2003a) believes that social engagement only 

occurs in calming and self-soothing states, whereas Taylor and colleagues (Taylor et al., 

2000; Taylor, 2006; Taylor et al., 2008) claim that stressful situations can elicit 

affiliation tendencies. In Chapter 8 two experiments were carried out to shed further 

light on this research question: Experiment 1 investigated the assertion that facial 

displays influence social interactions, whilst Experiment 2 investigated how the 

relationship between facial expressivity and willingness to affiliate is affected by stress.  
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The findings from Experiment 1 indicate that facial expressivity does play an 

important role in interpersonal interactions. Participants watched videos of individuals 

voluntarily regulating their facial expressions and rated their willingness to spend time 

with them (the Rating Faces Task was created using the video stimuli collected from the 

experiment in Chapter 6). Greater expression of emotion was associated with increases 

in the amount of time observers would be willing to spend with regulators. This 

relationship was accompanied by significant changes in heart rate; regulators who 

suppressed their emotional expressions elicited increases in heart rate in observers. The 

rationale given for this pattern of results was the premise that facial displays are 

important signals of safety and danger that help to regulate social interactions (McHugo 

& Smith, 1996; Orr & Lanzetta, 1980). Whilst greater expression of emotion signals 

safety, the absence of facial expressions may signal danger or deception, resulting in 

decreased likability and a reduced willingness to interact with the person signalling (see 

Riggio & Friedman, 1986). Experiment 1 therefore provided partial support for 

polyvagal theory by confirming a link  between  facial  expressivity  and  others’  

willingness to affiliate. 

 

A second line of evidence in favour of polyvagal theory found in Experiment 1 

relates to perceived safety. Bivariate  correlations  established  that  one’s  willingness  to  

affiliate with others is positively related to feeling safe, as indexed by the Social 

Safeness and Pleasure Scale (Gilbert et al., 2009) and HF-HRV, which has been linked 

to the ability to perceive safety (Thayer & Lane, 2000). The current findings are 

consistent with research suggesting that individuals with low trait social safeness are 

less willing to seek social interactions with others (A. C. Kelly, Zuroff, Leybman, & 

Gilbert, 2012). The findings also corroborate the notion that perceived safety is 

associated  with  affiliation  tendencies  (Porges,  2001,  2003a).  Consequently  Porges’  

(2009a) claims that feelings of safety promote positive social interactions are supported 

by the current research. 

 

Experiment 2 sought to further elaborate the relationship between facial 

expressivity and affiliation by investigating whether this relationship is affected by 

defensive physiological arousal. Two contrasting theories have arisen regarding 

affiliation during stress: polyvagal theory would predict decreased affiliation during 

stress whilst the tend–and–befriend hypothesis would predict increased affiliation 

during stress. A between subjects design was used to investigate the effects of a stressor 
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manipulation on the Ratings Faces Task developed in Experiment 1. Despite 

confirmation  that  social  safeness  was  related  to  observers’  willingness  to  spend  time  

with others, the stressor group did not exhibit changes in the affiliation ratings after the 

stressor manipulation. Consequently the results were not in favour of polyvagal theory 

or the tend–and–befriend hypothesis. 

 

9.2. Limitations of the Research 
 

There are several limitations in the current thesis that need to be addressed when 

interpreting the usefulness of the findings. First of all the use of healthy control 

populations to challenge polyvagal theory may have obscured the relationship between 

autonomic functioning and social engagement behaviours. If polyvagal theory is a valid 

model of socio-emotional responding, all populations should experience reductions in 

social functioning during defensive physiological arousal because of a functional 

restriction of the social engagement system (Porges, 1995, 2001, 2003a). Previous 

research with healthy adult populations has tended to investigate links between 

autonomic function and socio-emotional behaviours during passive tasks such as 

viewing films, as opposed to during threat. A strength of the current experiments is that 

socio-emotional responding was investigated during laboratory challenge, making the 

findings more applicable to the predictions made by polyvagal theory. Despite this, 

several of the hypotheses were not supported, and this may be a result of using healthy 

control populations to test the tenets of polyvagal theory. It should be noted that the 

findings may suggest that polyvagal theory does adequately model socio-emotion 

responding in healthy populations, although this does not mean that polyvagal theory is 

not a valid model of socio-emotional responding in clinical populations. 

 

It is possible that healthy populations may not show physiological responses to 

laboratory stressors that are large enough to impact on the socio-emotional behaviours 

measured in the current studies. In healthy populations, proficiencies in emotion 

regulation, emotion perception, and emotion production skills, may buffer against the 

emergence of deficits in social functioning during a social stressor. Arguably stronger 

stressor manipulations could be used to induce larger shifts in physiological state to 

encourage full withdrawal of the VVC, however this would be difficult to achieve in 

laboratory settings using stressor manipulations that abide by ethical considerations. As 
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a result, a major limitation of the current research is that it was difficult to suitably 

stress participants, and then keep them in a stressed state. 

 

One way forward could be to try and find a more effective way of stressing 

healthy control participants. It is proposed that perceived safety should be a key target 

for laboratory stressors; this is for two reasons. Firstly, in the current research perceived 

social safeness was significantly correlated with both self-reported emotion (Chapter 6) 

and affiliation tendencies (Chapter 8). Taken together, these findings suggest that 

perceived safety is an important moderator of socio-emotional responding. Secondly, it 

is claimed that feelings of perceived safety vary according to the immediate 

environment, and that in threatening situations individuals will feel less safe (A. C. 

Kelly  et  al.,  2012).  It  is  therefore  argued  that  stressors  which  challenge  participants’  

perceived safety may be the most effective means of eliciting stress responses in 

laboratory settings. Tasks that reduce social safeness may not only influence the 

autonomic nervous system, but may also be the mechanism by which stressors induce 

changes in socio-emotional behaviours. Research is therefore needed to further 

investigate the effects of state feelings of perceived safety on socio-emotional 

responding. 

 

An alternative way forward for the current research could be to replicate the 

experiments from this thesis using clinical populations. Although this is a viable avenue 

for further research, as mentioned in section 3.2, using clinical populations to test 

polyvagal theory limits the generalisability of the findings. It would be impossible to 

demonstrate that any deficits in social function in clinical populations did not result 

from disorder specific abnormalities, such as anatomical flaws. A second alternative 

could be to repeat the experiments with healthy populations responding to life stressors, 

for example Bonanno and colleague have investigated the role of facial expressivity in 

coping with bereaved populations, survivors of sexual abuse, and New York City 

college students adjusting to college life after the 9/11 terrorist attacks (Bonanno et al., 

2002, 2004; Gupta & Bonanno, 2011). This latter approach may provide a test of 

polyvagal theory that is more ecologically valid. At the same time it is also possible that 

populations responding to life stressors may still show signs of healthy social 

functioning, and not respond to social stressors with deficits in socio-emotional 

behaviour. 
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One must consider the possibility that environmental stressors may only reduce 

social functioning in individuals with other notable predisposing factors, such as genetic 

and/or socio-demographic influences: A combination of individual differences in neural 

processing and environmental stressors may be required for the development of 

psychiatric symptomatology and associated deficits in social function (Leppänen, 2006). 

This would suggest that polyvagal theory may be appropriate as a model of socio-

emotional responding in clinical populations, but does not adequately represent normal 

socio-emotional functioning. To test this theory, researchers need to capture a range of 

indices, including autonomic functions, genetic polymorphisms, socio-demographic 

factors, self-reports from participants and peers, as well as observable behaviours, in 

order to establish how and when defensive physiological arousal can influence socio-

emotional responding (Porges, 2006). 

 

A further limitation of the current thesis is that even though the samples used 

were healthy control participants, the generalisability of the findings is still limited by 

the characteristics of the populations sampled. All of the samples comprised of 

undergraduate students with no history of psychiatric treatment or symptomatology, and 

the samples were fairly narrow in age, sex, and ethnicity. This means that the ability to 

detect significant effects of socio-demographic factors was restricted. For example, 

gender differences were identified in Chapter 7 in emotion recognition as expected 

(with female participants demonstrating higher emotional sensitivity than male 

participants), but gender effects were not found in chapters 6 (facial expressivity) and 8 

(affiliation) which conflicts with previous research on gender differences (see for 

example Hess & Bourgeois, 2010; and Luxen, 2005). Although the findings cannot be 

extended beyond this demographic group, the internal validity of the studies is enhanced 

by having such a narrow sample demographic. 

 

Another consideration that is important to address is methodological issues 

regarding the psychophysiological measures. In line with previous research, skin 

conductance level (SCL) was used as an index of SNS activation and high-frequency 

heart rate variability (HF-HRV) was used as a measure of PNS activation (Berntson et 

al., 1997; Dawson, Schell, & Filion, 2000; Jänig, 2006). These measures have been 

shown to map onto two separate latent factors of autonomic activity (Tuvblad et al., 

2010), however their ability to accurately reflect the overall physiological state of an 

individual is questionable. SCL indexes widespread arousal but does not indicate the 
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effects of the SNS on specific effector organs (Boucsein, 1992), whilst HF-HRV 

measures cardiac vagal control, but not widespread PNS function (Ritz, 2009). 

Although some researchers choose to measure the influences of the SNS and PNS on 

the same effector organ (e.g., HRV and pre-ejection period respectively index PNS and 

SNS innervation of the heart; Cacioppo, Uchino, & Berntson, 1994), this still does not 

overcome the problem of inferring how the autonomic nervous system is responding as 

a whole (both the SNS and PNS are heterogeneous in their effects on effector organs). 

Arguably it would be better to use measures of autonomic functioning that reflect the 

central outflow of vagal and sympathetic activity, however current imaging techniques 

are not refined enough to isolate the origins of neural signals from the brainstem 

(Grossman & Taylor, 2007; Ritz, 2009). 

 

As a final limitation, some attention should also be given to the behavioural 

measures and their utility in revealing the effects of defensive physiological arousal on 

social engagement behaviours. It is debatable how accurately the behavioural measures 

reflect competencies in emotional expression, emotion recognition, and affiliation. The 

measures did not reflect the outcomes of real-time interactions, and as tasks that are 

analogues of real world behaviours they may not translate directly to how individuals 

would behave in face-to-face interactions in real-life (Kamarck & Lovallo, 2003). Thus 

prospective research is needed to address how well the chosen behavioural measures 

predict social behaviour outside the laboratory. 

 

9.3. Final Conclusions 
 

The experiments presented in this thesis are some of the first to evaluate 

polyvagal theory as a model of socio-emotional functioning in healthy adult 

populations. The findings only provide partial support for the polyvagal theory: afferent 

feedback from the face was associated with emotional sensitivity (even if only for 

disgust),  emotional  expressivity  was  shown  to  influence  observers’  willingness  to  

affiliate with regulators, and self-reported social safeness was also associated with 

affiliation tendencies. It is interesting to note, that the strongest evidence in the current 

thesis is not related to the biological tenets of polyvagal theory, but comes from its 

hypotheses regarding psychological and behavioural systems. Despite these 

encouraging findings, several of the assumptions of polyvagal theory were not 
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supported, including the main hypothesis that defensive physiological arousal would be 

associated with changes in facial expressivity and emotional sensitivity. 

 

Although some of the conclusions of this thesis did not support the main tenets 

of polyvagal theory, several of the findings are in line with previous research. The 

current findings confirmed that social stress results in increased activation of the SNS 

(Kirschbaum et al., 1993; Schubert et al., 2009). It was also confirmed that emotion 

regulation strategies can be deployed to down-regulate increases in physiological 

arousal, however their ability to buffer against impending stress is limited (Fredrickson 

& Levenson, 1998; Fredrickson et al., 2000). Despite the chosen stressors resulting in 

increased defensive physiological arousal, no direct links between physiological arousal 

and facial expressivity, emotional sensitivity, or affiliation tendencies were identified. 

The lack of a positive association between increased SNS activation and the behaviours 

of interest may be a function of using healthy control populations, as their ability to 

successfully regulate their emotional responses to the stressor task may mask notable 

associations between autonomic functioning and social engagement behaviours. Future 

research should continue to assess the utility of polyvagal theory as a valid model of 

socio-emotional responding in both healthy and clinical populations. 

 

Although this thesis did not find conclusive evidence to support the existence of 

the  social  engagement  system  per  se,  polyvagal  theory’s  (Porges,  1995,  2001,  2003a)  

assertion that heart rate variability is a marker of autonomic health is being widely 

recognised elsewhere. Low heart rate variability has been identified as a marker for poor 

autonomic functioning (Pumprla, Howorka, Groves, Chester, & Nolan, 2002), and it has 

been proposed that increased vagal activity is associated with greater psychological 

(Thayer, Hansen, Saus-Rose, & Johnsen, 2009) and physiological health (Thayer & 

Lane, 2007). Increased psychological and physiological health may help to bolster 

social functioning in a way that is difficult to capture in laboratory experiments. 

 

A promising future avenue for researchers is the link between physiological state 

and perceived feelings of safety. Infant studies have demonstrated that heart rate 

variability is a suitable index of self-soothing capabilities (Fox, 1989), whilst Gilbert 

has demonstrated that self-reported social safeness is related to heart rate variability (P. 

Gilbert, personal communication, October 2, 2010). Taken together, this evidence 

suggests that the VVC is indeed a system that indexes self-soothing and calm states, and 
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promotes feelings of safety (in line with Porges, 1998, 2001, 2003a). If increasing 

activation of the PNS can be used to increase feelings of safety, this may be a potential 

mechanism for increasing affiliation tendencies. As demonstrated in Chapter 8, higher 

self-reported social safeness was associated with greater willingness to affiliate with 

others.  Increasing  one’s  willingness  to  affiliate  with  others  may  function  to  increase  

social contact and support (A. C. Kelly et al., 2012), and social contact can act as an 

added source of safety signals to reinforce the activation of the VVC (Porges, 2003a). 

Consequently, polyvagal theory is still in need of verification, and this thesis has 

highlighted several potential areas for future research. 
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APPENDIX 1: Demographic Screening Questionnaire 
1.  Gender: Male  ____ Female  ____ 

 

2.  Age:______ years  Date of Birth   ________/_______/_______ 
                      day      month        year 

3.  Current marital status: (check all that apply) 
 ____  married with spouse 
 ____  living with partner 
 ____  separated 
 ____  divorced 
 ____  widowed 
 ____  in an intimate relationship but not living together 
 ____  never married 
 

4.  Highest level of education reached:(please tick any that apply) 
 ____  Left school before 16 
 ____  Finished school at 16 
 ____  Finished school at 18 
 ____  Attended university or equivalent 
 ____  Completed university or equivalent 
 ____  Completed postgraduate qualification 
 

4b. Total number of years of Higher Education (e.g. university) completed _____ years 

If the above options do not fit exactly (e.g. you left education at 16 and then returned as 
a mature student), please specify here: 
…………………………………………………………………………………………… 

…………………………………………………………………………………………… 

 

5.  Ethnicity:  

What is your ethnic group?  (please tick as many boxes as you feel apply to you) 
1  White 

 11  British (white) 
  111  English 
  112  Scottish 
  113  Welsh 
  114  Other British (white) - please  specify...…………………... 
 12  Irish 
 13  Any other White background - please  specify…………………… 
2  Mixed 
 21  White & Black Caribbean 
 22  White & Black African 
 23  White & Asian 
 24  Any other Mixed background - please  specify…………………… 

Continued  overleaf…………….. 
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3  Asian, Asian British, Asian English, Asian Scottish or Asian Welsh 

 31  Indian 
 32  Pakistani 
 33  Bangladeshi 
 34  Any other Asian background - please  specify…………………… 
4  Black, Black British, Black English, Black Scottish or Black Welsh 

 41  Caribbean 
 42  African 
 43  Any other Black background - please  specify…………………… 
5  Other ethnic background 

 51  Chinese 
 52  Middle Eastern/North African 
 53  Any other background - please  specify………………………… 
 

6.  Have you ever been prescribed medications for emotional or psychiatric problems? 

____  Yes     ____  No 
If yes, please complete the following chart: 

Medication name Dates used  

(e.g., January, 2000-December, 
2001) 

Was the 
medication helpful 
for you? 

  Yes  /  No 

  Yes  /  No 

  Yes  /  No 

  Yes  /  No 

  Yes  /  No 

  Yes  /  No 

 

7.  Have you ever been in therapy?   ____  Yes     ____  No:  
 

If yes, are you currently in therapy?   ____  Yes     ____  No 

 

Please complete the following chart 

What was the treatment for? 
Include diagnosis, if known. 

Dates of treatment  Was the therapy 
helpful for you? 

  Yes  /  No 

  Yes  /  No 

  Yes  /  No 

  Yes  /  No 

  Yes  /  No 

  Yes  /  No 
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APPENDIX 2: Profile of Mood States - Short Form (Shacham, 1983) 
Please rate the following statements according to how you feel right now by circling the 
corresponding number. 

  Not at all A little Moderately Quite a bit Extremely 
1. Tense 0 1 2 3 4 
2. Angry 0 1 2 3 4 
3. Worn out 0 1 2 3 4 
4. Unhappy 0 1 2 3 4 
5. Lively 0 1 2 3 4 
6. Confused 0 1 2 3 4 
7. Peeved 0 1 2 3 4 
8. Sad 0 1 2 3 4 
9. Active 0 1 2 3 4 
10. On edge 0 1 2 3 4 
11. Grouchy 0 1 2 3 4 
12. Blue 0 1 2 3 4 
13. Energetic 0 1 2 3 4 
14. Hopeless 0 1 2 3 4 
15. Uneasy 0 1 2 3 4 
16. Restless 0 1 2 3 4 

17. Unable to 
concentrate 0 1 2 3 4 

18. Fatigued 0 1 2 3 4 
19. Annoyed 0 1 2 3 4 
20. Discouraged 0 1 2 3 4 
21. Resentful 0 1 2 3 4 
22. Nervous 0 1 2 3 4 
23. Miserable 0 1 2 3 4 
24. Cheerful 0 1 2 3 4 
25. Bitter 0 1 2 3 4 
26. Exhausted 0 1 2 3 4 
27. Anxious 0 1 2 3 4 
28. Helpless 0 1 2 3 4 
29. Weary 0 1 2 3 4 
30. Bewildered 0 1 2 3 4 
31. Furious 0 1 2 3 4 
32. Full of pep 0 1 2 3 4 
33. Worthless 0 1 2 3 4 
34. Forgetful 0 1 2 3 4 
35. Vigorous 0 1 2 3 4 
36. Uncertain 0 1 2 3 4 
37. Bushed 0 1 2 3 4 
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APPENDIX 3: Hospital Anxiety and Depression Scale (Zigmond & Snaith, 1983) 

 

[This material has been removed by the author of this thesis for copyright reasons] 
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[This material has been removed by the author of this thesis for copyright reasons] 
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APPENDIX 4: Beck Depression Inventory II (Beck, Steer, & Brown, 1996) 

 
[This material has been removed by the author of this thesis for copyright reasons] 
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[This material has been removed by the author of this thesis for copyright reasons] 
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APPENDIX 5: Generalised Anxiety Disorder-7 Scale 
(Spitzer, Kroenke, Williams, & Löwe, 2006) 

 

Over the last two weeks, how often have you been bothered by the following problems? 
 

 

 
 Not at all Several 

days 

More than 
half the 

days 

Nearly 
every day 

1. Feeling nervous, anxious or on edge 0 1 2 3 

2. Not being able to stop or control 
worrying 0 1 2 3 

3. Worrying too much about different 
things 0 1 2 3 

4. Having trouble relaxing 0 1 2 3 

5. Being so restless that it is hard to sit still 0 1 2 3 

6. Becoming easily annoyed or irritable 0 1 2 3 

7. Feeling afraid that something awful 
might happen 0 1 2 3 
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APPENDIX 6: Berkeley Expressivity Questionnaire (Gross & John, 1995) 
 

For each statement below, please indicate your agreement or disagreement. Do so by 
filling in the blank in front of each item with the appropriate number from the following 
rating scale: 

 

1---------------2----------------3------------4---------------5----------------6-------------7 

strongly                                                      neutral                                        strongly 

disagree           agree 

 

(1) Whenever I feel positive emotions, people can easily see exactly  

what I am feeling.  _____ 

(2) I sometimes cry during sad movies.  _____ 

(3) People often do not know what I am feeling.  _____ 

(4) I laugh out loud when someone tells me a joke that I think is funny.  _____ 

(5) It is difficult for me to hide my fear.  _____ 

(6) When  I’m  happy,  my  feelings  show.   _____ 

(7) My body reacts very strongly to emotional situations.  _____ 

(8)  I’ve  learned  it  is  better  to  suppress my anger than to show it.  _____ 

(9) No matter how nervous or upset I am, I tend to keep a calm exterior.  _____ 

(10) I am an emotionally expressive person.  _____ 

(11) I have strong emotions. _____ 

(12) I am sometimes unable to hide my feelings, even though I would like to.  _____ 

(13) Whenever I feel negative emotions, people can easily see exactly  

what I am feeling.  _____ 

(14) There have been times when I have not been able to stop crying even  

though I tried to stop. _____ 

(15) I experience my emotions very strongly.  _____ 

(16)  What  I’m  feeling  is  written  all  over  my  face. _____
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APPENDIX 7: Difficulties in Emotion Regulation Scale (Gratz & Roemer, 2004) 

 

Please indicate how often the following statements apply to you by writing the 
appropriate number from the scale below on the line beside each item:  

 

1------------------2----------------------3---------------------4-------------------5 

almost never     sometimes     about half the time    most of the time     almost always 

(0-10%)          (11-35%)             (36-65%)                    (66-90%)                (91-100%) 

______________________________________________________________________ 

  

(1) I am clear about my feelings. _____ 

(2) I pay attention to how I feel.  _____ 

(3) I experience my emotions as overwhelming and out of control.  _____ 

(4) I have no idea how I am feeling.  _____ 

(5) I have difficulty making sense out of my feelings.  _____ 

(6) I am attentive to my feelings. _____ 

(7) I know exactly how I am feeling.  _____ 

(8) I care about what I am feeling.  _____ 

(9) I am confused about how I feel. _____ 

(10) When I’m upset, I acknowledge my emotions. _____ 

(11) When I’m upset, I become angry with myself for feeling that way.  _____ 

(12) When I’m upset, I become embarrassed for feeling that way.  _____ 

(13) When I’m upset, I have difficulty getting work done.  _____ 

(14) When I’m upset, I become out of control. _____ 

(15) When I’m upset, I believe that I will remain that way for a long time.  _____ 

(16) When I’m upset, I believe that I’ll end up feeling very depressed.  _____ 

(17) When I’m upset, I believe that my feelings are valid and important. _____ 

(18) When I’m upset, I have difficulty focusing on other things. _____ 

(19) When I’m upset, I feel out of control.  _____ 

(20) When I’m upset, I can still get things done.  _____ 

(21) When I’m upset, I feel ashamed with myself for feeling that way. _____ 

(22) When I’m upset, I know that I can find a way to eventually feel better. _____ 

(23) When I’m upset, I feel like I am weak.  _____ 

(24) When I’m upset, I feel like I can remain in control of my behaviours. _____ 
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1------------------2----------------------3---------------------4-------------------5 

almost never     sometimes     about half the time    most of the time     almost always 

(0-10%)          (11-35%)             (36-65%)                    (66-90%)                (91-100%) 

 

(25) When I’m upset, I feel guilty for feeling that way. _____ 

(26) When I’m upset, I have difficulty concentrating.  _____ 

(27) When I’m upset, I have difficulty controlling my behaviours.  _____ 

 (28) When I’m upset, I believe that there is nothing I can do to make myself  

feel better.  _____ 

(29) When I’m upset, I become irritated with myself for feeling that way. _____ 

(30) When I’m upset, I start to feel very bad about myself. _____ 

(31) When I’m upset, I believe that wallowing in it is all I can do. _____ 

(32) When I’m upset, I lose control over my behaviours.  _____ 

(33) When I’m upset, I have difficulty thinking about anything else.  _____ 

(34) When I’m upset, I take time to figure out what I’m really feeling. _____ 

(35) When I’m upset, it takes me a long time to feel better.  _____ 

(36) When I’m upset, my emotions feel overwhelming. _____ 
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APPENDIX 8: Acceptance and Action Questionnaire–II (Bond et al., 2011) 
 

Below you will find a list of statements. Please rate how true each statement is for you 
by circling a number next to it. Use the scale below to make your choice. 

 

  never 
 true 

very 
seldom 

true 

seldom 
true 

sometimes 
true 

frequently 
true 

almost 
always 

true 

always 
true 

1. 

My painful experiences 
and memories make it 
difficult for me to live a 
life that I would value. 

1 2 3 4 5 6 7 

2. I’m  afraid  of  my  
feelings. 1 2 3 4 5 6 7 

3. 
I worry about not being 
able to control my 
worries and feelings. 

1 2 3 4 5 6 7 

4. 
My painful memories 
prevent me from having 
a fulfilling life. 

1 2 3 4 5 6 7 

5. Emotions cause 
problems in my life. 1 2 3 4 5 6 7 

6. 
It seems like most 
people are handling their 
lives better than I am. 

1 2 3 4 5 6 7 

7. Worries get in the way 
of my success 1 2 3 4 5 6 7 
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APPENDIX 9: Social Safeness and Pleasure Scale (Gilbert et al., 2009) 
 

We are interested in how people experience pleasure, positive feelings and emotions in 
social situations. Below are a series of statements about how you may feel in various 
situations. Please read each statement carefully and circle the number that best describes 
how you feel. 

 

 Almost 
never    

Almost 
all the 
time 

1. I feel content within my relationships 0 1 2 3 4 

2. I feel easily soothed by those around 
me 0 1 2 3 4 

3. I feel connected to others 0 1 2 3 4 

4. I feel part of something greater than 
myself 0 1 2 3 4 

5. I have a sense of being cared about in 
the world 0 1 2 3 4 

6. I feel secure and wanted 0 1 2 3 4 

7. I feel a sense of belonging 0 1 2 3 4 

8. I feel accepted by people 0 1 2 3 4 

9. I feel understood by people 0 1 2 3 4 

10. I feel a sense of warmth in my 
relationships with people 0 1 2 3 4 

11. I find it easy to feel calmed by people 
close to me 0 1 2 3 4 
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APPENDIX 10: Flowchart of the Laboratory Stressors Procedure 

 
Figure 10.1. Flowchart of the laboratory stressors procedure (from Chapter 4, 
Experiment 1). Mean cell values for each arm are shown in Table 10.1 and Table 10.2 
(as the experiment was a within subjects design the HADs scores [cell 1] were the same 
across the two arms; the qualitative results of the post-task questionnaire [cell 8a and 
8b] are described in section 4.3.3.1 and 4.3.3.2). 

Questionnaires 
Demographic Screening 

HADS 

POMS-SF 

Pre-task baseline 
(5 minutes) 

Speech task preparation 
(3 minutes) 

Virtual reality maze 
(3 minutes) 

Speech task presentation 
(3 minutes) 

Recovery 
(5 minutes) 

Recovery 
(5 minutes) POMS-SF 

POMS-SF 

POMS-SF 

Post-task questionnaire 

Post-task questionnaire 

Stressor 
allocation 

Pre-task baseline 
(5 minutes) 

1 

4a 4b 

5b 5a 

2 

3b 3a 

6b 

8a 

7a 

6a 

8b 

7b 

5c 

Virtual reality maze arm Speech task arm 
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Table 10.1 

Mean values for each cell from the flowchart diagram for the virtual reality maze arm (figure 10.1) 
 Pre-task baseline POMS-SF Virtual reality maze Recovery POMS-SF 
Flowchart Cell 3a 4a 5a 6a 7a 
Mean Total Score  5.07 (8.11)   7.73 (9.40) 
Mean HR (bpm) 76.11 (10.20)  75.00 (8.99) 76.08 (9.03)  
Mean SCL (µS) 2.71 (3.06)  3.18 (2.16) 2.97 (2.13)  
Mean HF-HRV (ms2) 7.24 (1.18)  6.91 (0.74) 7.18 (0.84)  

Note. Standard deviations are reported in parentheses. Cell 1: HADS-A mean = 7.87 (SD = 3.93); HADS-D mean = 3.87 (SD = 3.56). HR = heart rate; 
SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
 
 
 
Table 10.2 

Mean values for each cell from the flowchart diagram for the speech task arm (figure 10.1) 
 Pre-task baseline POMS-SF Speech Task 

Preparation 
Speech Task 
Presentation Recovery POMS-SF 

Flowchart Cell 3b 4b 5b 5c 6b 7b 
Mean Total Score  6.20 (10.70)    11.70 (12.55) 
Mean HR (bpm) 77.05 (9.71)  86.99 (11.57) 89.92 (9.65) 76.60 (10.23)  
Mean SCL (µS) 1.78 (1.26)  3.77 (2.11) 4.50 (2.93) 3.56 (2.49)  
Mean HF-HRV (ms2) 6.98 (1.02)  6.71 (1.02) -- 7.44 (0.93)  

Note. Standard deviations are reported in parentheses. Cell 1: HADS-A mean = 7.87 (SD = 3.93); HADS-D mean = 3.87 (SD = 3.56). HR = heart rate; 
SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
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APPENDIX 11: Flowchart of the Speech Task Anticipation Procedure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.1. Flowchart of the speech task anticipation procedure (from Chapter 4, 
Experiment 2). Mean cell values are shown in Table 11.1. 
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HADS 
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(5 minutes) 
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Table 11.1 

Mean values for each cell from the flowchart diagram for the speech task anticipation procedure (figure 11.1) 
 Pre-task baseline POMS-SF Speech Task 

Preparation Anticipation POMS-SF Speech Task 
Presentation 

Flowchart Cell 2 3 4 5 6 7 
Mean Total Score  8.90 (12.07)   18.05 (20.11)  
Mean HR (bpm) 78.74 (9.85)  90.44 (12.79) 84.91 (11.19)  91.75 (10.35) 
Mean SCL (µS) 1.43 (1.04)  3.32 (1.65) 3.73 (1.77)  4.42 (2.26) 
Mean HF-HRV (ms2) 7.27 (1.07)  6.52 (1.08) 7.19 (1.00)  -- 

Note. Standard deviations are reported in parentheses. Cell 1: HADS-A mean = 8.25 (SD = 3.40); HADS-D mean = 3.75 (SD = 2.94). HR = heart rate; 
SCL = skin conductance level; HF-HRV = high-frequency heart rate variability
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APPENDIX 12: Mindful Breathing Script  
(abridged from Kabat-Zinn, 2005) 

 
Over the next 5 minutes you will be guided through a mindful breathing practice. 
Before we begin gently rest your spare hand over the green key on the keyboard in front 
of you. Now, as you sit in a comfortable, upright position close your eyes. Bring your 
awareness to your breath and body as a whole. Rest here for a moment in time, and 
allow your attention to alight gently on the breath, as it moves in and out of the body. 
 
Feel the breath sensation at the tip of your nose where the passage of air enters your 
body. And as you feel your breath pass from your nose into your lungs, press the green 
key on the keyboard each time.  
 
(30-second pause) 
 
Continue to press the green key as the in-breath begins. Keep your awareness on your 
breath so that you are fully present for the full duration of the in-breath and the full 
duration of the out-breath. If you notice that you mind wanders from the breath, without 
giving yourself a hard time, gently guide your attention back to it. Without pulling the 
breath in or pushing the breath out. Without any forcing whatsoever. Just allowing the 
breath to be as it is, moment-by-moment, and breath, by breath, by breath. 
 
(90-second pause) 
 
Continuing to press the key, allow your attention to include the full embracing of each 
and every breath. Gently, lightly with mindfulness, so the breath is known, felt, 
experienced in the moment of its arising and full unfolding of the in-breath and falling 
away in the out-breath. Remember, if you feel your mind wandering gently guide it 
back to your breath. 
 
(60-second pause) 
 
So just this very moment with the breath moving in, the feeling, sensing, knowing of the 
breath, as it is, moment by moment, breath by breath, sitting here, resting in awareness 
itself. Featuring in this moment. This breath. 
 
(90-second pause) 
 
Continue to sit here peacefully concentrating on your breathing until the researcher tells 
you otherwise. 
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APPENDIX 13: Loving-Kindness Meditation Script 

(abridged from Hutcherson, Seppala, & Gross, 2003) 

 

To begin with, sit in a comfortable, upright position. Open the folder that contains the 
picture of the loving individual you have experience of feeling loving-kindness for. As 
you look at this picture, bring into your heart the feelings of deep affection, appreciation 
or positive connection you have. 
 
Rest in the warmth and radiance of this feeling of loving-kindness as you gaze at the 
picture. Feel the loving-kindness from the centre of your chest. Give yourself over to 
these feelings and qualities of kindness and love. Take in the whole aura or field of the 
love you have experienced. Right here, right now. Breathe in these feelings, bathe in 
them. Rest in the warm and radiance of their heartfelt embrace of you. Just as you are. 
 
(45-second pause) 
 
Feeling the loving-kindness from the centre of your chest, extend warm wishes of 
loving-kindness to this loved one. Resting here in this field of loving-kindness, silently 
say to yourself: May this person be at ease... May they be content with their life... May 
they be joyful... May they be safe and secure. 
 
(15-second pause) 
 
Gently, at your own pace, over and over. Inwardly whispering, inwardly hearing, 
feeling, sensing, affirming: May this person be at ease... May they be content with their 
life... May they be joyful... May they be safe and secure. 
 
(60-second pause) 
 
May this person be at ease... May they be content with their life... May they be joyful... 
May they be safe and secure. 
 
(30-second pause) 
 
Allow yourself to bask in the feelings of loving-kindness as best as you can whilst you 
gaze at the picture. Continue to sit there peacefully feeling the loving-kindness until the 
researcher tells you otherwise.
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APPENDIX 14: Neutral Listening Script 
(replicated from Arch & Craske, 2006) 

 
You will now be guided through a brief 5-minute exercise. Sit in a comfortable upright 
position with your eyes closed. Simply think about whatever comes to mind. Let your 
mind wander freely without trying to focus on anything in particular.  
 
(45-second pause) 
 
You may find that your mind becomes very active, with thoughts, memory or plans. 
Allow this to happen and give attention to whatever comes to mind. 
 
(45-second pause) 
 
As you sit here indulging in your mental activity. Fully embrace your daydream. Simply 
think about whatever comes to mind. 
 
(30-second pause) 
 
Let your mind wander, let your mind go wherever it wants to go, without restricting it, 
or challenging it, or pushing it in any direction. Simply get involved with whatever your 
mind wants to do. 
 
(30-second pause) 
 
As you sit here continuously follow these thoughts, fantasies, ideas and concerns. 
Mindlessly follow these patterns of mental activity. 
 
(30-second pause) 
 
Continue to let your mind wander freely without focusing on anything in particular. 
 
(10-second pause) 
 
Continue to let your thoughts wander until the researcher tells you to do the next task. 
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APPENDIX 15: Flowchart of the Emotion Regulation Strategies Procedure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.1. Flowchart of the emotion regulation strategies procedure (from Chapter 
5). Mean cell values are shown in Tables 15.1-15.5 (the qualitative results of the post-
task questionnaire [cell 9] are described in section 5.4.3.2). 
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Table 15.1 

Mean values for each cell from the flowchart diagram for the smiling arm of the emotion regulation strategies procedure (figure 15.1) 
 Baseline POMS-SF Speech Task 

Preparation Smiling POMS-SF Speech Task 
Presentation  

Flowchart Cell 2 3 4 6a 7a 8a 
Mean Total Score  5.50 (11.93)   12.60 (16.28)  
Mean HR (bpm) 82.48 (12.99)  91.63 (12.97) 83.72 (11.35)  91.75 (10.35) 
Mean SCL (µS) 2.22 (1.35)  4.45 (1.97) 4.56 (1.94)  5.93 (2.52) 
Mean HF-HRV (ms2) 7.14 (1.13)  6.88 (1.12) 7.40 (1.04)  -- 

Note. Standard deviations are reported in parentheses. Cell 1: HADS-A mean = 6.65 (SD = 4.61); HADS-D mean = 1.90 (SD = 1.59). HR = heart rate; 
SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
 
 
Table 15.2 

Mean values for each cell from the flowchart diagram for the mindful breathing arm of the emotion regulation strategies procedure (figure 15.1) 
 Baseline POMS-SF Speech Task 

Preparation Mindful breathing POMS-SF Speech Task 
Presentation  

Flowchart Cell 2 3 4 6b 7b 8b 
Mean Total Score  8.00 (10.13)   11.40 (15.62)  
Mean HR (bpm) 80.95 (11.81)  90.25 (13.21) 80.80 (12.52)  92.76 (15.35) 
Mean SCL (µS) 2.27 (1.33)  4.77 (4.16) 4.45 (3.43)  6.05 (4.28) 
Mean HF-HRV (ms2) 7.18 (0.75)  6.80 (0.71) 7.60 (0.93)  -- 

Note. Standard deviations are reported in parentheses. Cell 1: HADS-A mean = 6.45 (SD = 3.32); HADS-D mean = 2.70 (SD = 2.16). HR = heart rate; 
SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
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Table 15.3 

Mean values for each cell from the flowchart diagram for the loving-kindness arm of the emotion regulation strategies procedure (figure 15.1) 
 Baseline POMS-SF Speech Task 

Preparation Loving-kindness POMS-SF Speech Task 
Presentation  

Flowchart Cell 2 3 4 6c 7c 8c 
Mean Total Score  4.70 (8.33)   12.30 (11.56)  
Mean HR (bpm) 84.25 (11.31)  92.02 (11.56) 82.80 (11.25)  94.93 (12.86) 
Mean SCL (µS) 2.02 (1.52)  3.84 (2.16) 3.78 (2.37)  5.31 (2.55) 
Mean HF-HRV (ms2) 7. 15 (0.87)  6.85 (0.81) 7.34 (0.72)  -- 

Note. Standard deviations are reported in parentheses. Cell 1: HADS-A mean = 6.20 (SD = 3.68); HADS-D mean = 2.15 (SD = 1.73). HR = heart rate; 
SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
 
 
Table 15.4 

Mean values for each cell from the flowchart diagram for the neutral listening arm of the emotion regulation strategies procedure (figure 15.1) 
 Baseline POMS-SF Speech Task 

Preparation Neutral listening POMS-SF Speech Task 
Presentation  

Flowchart Cell 2 3 4 6d 7d 8d 
Mean Total Score  3.90 (10.55)   14.00 (15.58)  
Mean HR (bpm) 79.90 (13.94)  89.17 (12.00) 79.29 (12.93)  95.91 (12.84) 
Mean SCL (µS) 2.10 (1.45)  3.97 (2.33) 3.84 (2.46)  4.99 (3.10) 
Mean HF-HRV (ms2) 6.99 (1.13)  6.67 (1.19) 7.30 (1.08)  -- 

Note. Standard deviations are reported in parentheses. Cell 1: HADS-A mean = 7.10 (SD = 3.40); HADS-D mean = 2.45 (SD = 2.14). HR = heart rate; 
SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
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Table 15.5 

Mean values for each cell from the flowchart diagram for the resting quietly arm of the emotion regulation strategies procedure (figure 15.1) 
 Baseline POMS-SF Speech Task 

Preparation Resting quietly POMS-SF Speech Task 
Presentation  

Flowchart Cell 2 3 4 6e 7e 8e 
Mean Total Score  7.72 (10.65)   19.57 (15.91)  
Mean HR (bpm) 79.27 (10.08)  90.44 (12.79) 84.92 (11.19)  94.97 (13.78) 
Mean SCL (µS) 1.53 (1.34)  3.32 (1.65) 3.73 (1.77)  4.41 (2.26) 
Mean HF-HRV (ms2) 7.23 (0.92)  6.47 (1.04) 7.16 (1.00)  -- 

Note. Standard deviations are reported in parentheses. Cell 1: HADS-A mean = 7.45 (SD = 3.68); HADS-D mean = 2.72 (SD = 2.59). HR = heart rate; 
SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
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APPENDIX 16: Flowchart of the Expressive Regulation Procedure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 16.1. Flowchart of the expressive regulation procedure (from Chapter 6). 
Mean cell values are shown in Table 16.1 and Table 16.2. 
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Table 16.1 

Mean values for each cell from the flowchart diagram for the speech task arm of the expressive regulation procedure (figure 16.1) 
 Baseline ER Task T1 POMS-SF Speech Task 

Preparation POMS-SF ER Task 2 

Flowchart Cell 2 3 5a 6a 7a 8a 
Mean Total Score   3.89 (10.17)  14.11 (14.24)  
Mean HR (bpm) 78.55 (9.90) 76.92 (8.43)  83.34 (12.75)  75.58 (9.14) 
Mean SCL (µS) 2.93 (2.03) 5.10 (2.75)  5.75 (2.74)  4.99 (2.48) 
Mean HF-HRV (ms2) 7.28 (1.04) 7.44 (0.88)  7.11 (0.97)  7.41 (0.91) 
Mean Expressive Ability  0.15 (0.20)    0.12 (0.18) 
Mean Suppressive Ability  0.12 (0.18)    0.16 (0.20) 

Note. Standard deviations are reported in parentheses. Cell 1: AAQ-II = 37.50 (SD = 6.86); BDI-II = 8.29 (SD = 9.05); BEQ Mean = 4.48 (SD = 0.81); 
GAD-7 = 4.92 (SD = 4.03); SSPS = 31.89 (SD = 8.67). HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate 
variability. 

 

Table 16.2 

Mean values for each cell from the flowchart diagram for the reading task arm of the expressive regulation procedure (figure 16.1) 
 Baseline ER Task T1 POMS-SF Reading Task POMS-SF ER Task 2 
Flowchart Cell 2 3 5b 6b 7b 8b 
Mean Total Score   2.62 (9.52)  9.78 (12.96)  
Mean HR (bpm) 74.45 (11.07) 74.06 (10.79)  72.42 (9.73)  72.19 (9.48) 
Mean SCL (µS) 2.13 (1.42) 3.98 (1.91)  4.15 (2.17)  4.07 (2.26) 
Mean HF-HRV (ms2) 7.64 (0.82) 7.62 (0.68)  7.64 (0.85)  7.62 (0.78) 
Mean Expressive Ability  0.12 (0.17)    0.14 (0.20) 
Mean Suppressive Ability  0.09 (0.03)    0.11 (0.19) 

Note. Standard deviations are reported in parentheses. Cell 1: AAQ-II = 39.38 (SD = 7.47); BDI-II = 5.59 (SD = 6.27); BEQ Mean = 4.53 (SD = 0.87); 
GAD-7 = 4.68 (SD = 4.79); SSPS = 34.51 (SD = 8.41). HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate 
variability. 
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APPENDIX 17: Flowchart of the Emotion Recognition Procedure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 17.1. Flowchart of the emotion recognition procedure (from Chapter 7, 
Experiment 1). Mean cell values are shown in Table 17.1 and Table 17.2. 
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Table 17.1 

Mean values for each cell from the flowchart diagram for the speech task arm of the emotion recognition procedure (figure 17.1) 
 Baseline Multimorph 

Task T1 POMS-SF Speech Task 
Preparation POMS-SF Multimorph 

Task T2 
Flowchart Cell 2 3 5a 6a 7a 8a 
Mean Total Score   3.43 (9.55)  9.60 (11.52)  
Mean HR (bpm) 71.65 (7.87) 71.25 (8.28)  83.43 (12.40)  71.99 (8.54) 
Mean SCL (µS) 1.55 (1.29) 1.95 (1.54)  2.91 (1.81)  2.45 (1.73) 
Mean HF-HRV (ms2) 7.48 (0.93) 7.35 (0.98)  7.13 (0.93)  7.41 (0.92) 
Mean Emotional Sensitivity  23.87 (3.53)    22.32 (3.38) 
Mean Emotional Accuracy  89.67 (8.03)    91.53 (6.29) 

Note. Standard deviations are reported in parentheses. Cell 1: BDI-II = 6.23 (SD = 5.61); BEQ Mean = 4.60 (SD = 0.89); DERS = 83.13 (SD = 18.59); 
GAD-7 = 3.80 (SD = 3.01); SSPS = 33.13 (SD = 6.43). HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate 
variability. 

 

Table 17.2 

Mean values for each cell from the flowchart diagram for the reading task arm of the emotion recognition procedure (figure 17.1) 
 Baseline Multimorph 

Task T1 POMS-SF Reading Task POMS-SF Multimorph 
Task T2 

Flowchart Cell 2 3 5b 6b 7b 8b 
Mean Total Score   4.25 (11.89)  3.75 (8.52)  
Mean HR (bpm) 74.19 (9.28) 74.20 (9.56)  75.12 (9.47)  74.29 (9.82) 
Mean SCL (µS) 1.69 (1.18) 2.06 (1.40)  2.53 (1.77)  2.32 (1.65) 
Mean HF-HRV (ms2) 7.58 (1.13) 7.34 (1.01)  7.57 (1.03)  7.38 (1.02) 
Mean Emotional Sensitivity  22.35 (3.54)    22.62 (3.06) 
Mean Emotional Accuracy  87.31 (7.65)    90.39 (5.75) 

Note. Standard deviations are reported in parentheses. Cell 1: BDI-II = 6.80 (SD = 6.06); BEQ Mean = 4.60 (SD = 0.73); DERS = 79.97 (SD = 20.28); 
GAD-7 = 4.23 (SD = 3.96); SSPS = 32.95 (SD = 7.17). HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate 
variability. 
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APPENDIX 18: Flowchart of the Adapted Emotion Recognition Procedure 

Figure 18.1. Flowchart of the adapted emotion recognition procedure (from Chapter 
7, Experiment 2). Mean cell values are shown in Table 18.1 and Table 18.2. 
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Table 18.1 

Mean values for each cell from the flowchart diagram for the speech task arm of the adapted emotion recognition procedure (figure 18.1) 
 Baseline Multimorph 

Task T1 
POMS-

SF 
Speech Task 
Preparation 

Multimorph 
Task T2 

Speech Task 
Preparation 

Multimorph 
Task T2 

Speech Task 
Preparation 

Multimorph 
Task T2 

POMS
-SF 

Flowchart Cell 2 3 5a 6a 7a 8a 9a 10a 11a 12a 
Mean Total Score   5.72 

(11.90)       12.75 
(15.45) 

Mean HR (bpm) 71.88 (8.92) 71.54 (8.55)  78.78 (11.27) 71.29 (8.57) 77.37 (10.51) 71.61 (8.70) 77.16 (10.06) 72.20 (8.34)  
Mean SCL (µS) 2.86 (1.55) 3.06 (1.73)  4.67 (1.79) 4.09 (1.62) 4.20 (1.87) 4.01 (1.71) 4.27 (2.10) 4.11 (1.66)  
Mean HF-HRV (ms2) 7.54 (1.00) 7.35 (0.92)  7.32 (0.82) 7.66 (0.83) 7.35 (0.96) 7.60 (0.83) 7.34 (0.89) 7.68 (0.73)  
Emotional Sensitivity  23.65 (3.87)   21.51 (5.83)  22.51 (86.98)  23.28 (5.80)  
Emotional Accuracy  90.24 (7.45)   92.71 (10.32)  86.98 (15.11)  92.19 (11.18)  

Note. Standard deviations are reported in parentheses. Cell 1: BDI-II = 8.81 (SD = 7.20); DERS = 78.91 (SD = 19.72); GAD-7 = 4.09 (SD = 3.08); 
SSPS = 33.97 (SD = 7.84). HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 

 

Table 18.2 

Mean values for each cell from the flowchart diagram for the reading task arm of the adapted emotion recognition procedure (figure 18.1) 
 Baseline Multimorph 

Task T1 POMS-SF Reading 
Task 

Multimorph 
Task T2 

Reading 
Task 

Multimorph 
Task T2 

Reading 
Task 

Multimorph 
Task T2 POMS-SF 

Flowchart Cell 2 3 5b 6b 7b 8b 9b 10b 11b 12b 
Mean Total Score   6.84 (14.71)       9.06 (15.06) 
Mean HR (bpm) 74.00 (4.49) 72.61 (8.73)  72.21 (9.30) 72.13 (8.88) 72.34 (8.32) 72.99 (9.40) 72.63 (8.93) 73.06 (8.63)  
Mean SCL (µS) 2.79 (1.75) 2.95 (2.00)  3.72 (2.18) 3.42 (2.09) 3.28 (2.16) 3.30 (2.25) 3.36 (2.26) 3.36 (2.32)  
Mean HF-HRV (ms2) 7.44 (0.83) 7.38 (0.80)  7.76 (0.82) 7.50 (0.78) 7.36 (0.73) 7.34 (0.79) 7.47 (0.81) 7.45 (0.81)  
Emotional Sensitivity  23.99 (4.67)   23.01 (5.23)  22.53 (5.13)  20.89 (4.90)  
Emotional Accuracy  89.72 (8.22)   90.10 (11.87)  92.71 (12.66)  93.23 (10.25)  
Note. Standard deviations are reported in parentheses. Cell 1: BDI-II = 10.22 (SD = 9.27); DERS = 81.41 (SD = 26.16); GAD-7 = 4.88 (SD = 4.69); 
SSPS = 31.81 (SD = 8.81). HR = heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
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APPENDIX 19: Flowchart of the Rating Faces Task Procedure 

 
Figure 19.1. Flowchart of the rating faces task procedure (from Chapter 8, Experiment 
1). Mean cell values are shown in Table 19.1. 
 
 
 
Table 19.1 

Mean values for each cell from the flowchart diagram for the speech task arm of the 
rating faces task procedure (figure 19.1) 

 Questionnaires Baseline Rating Faces Task 
Flowchart Cell 1 2 3 
Mean POMS-SF Total 3.06 (13.18)   
Mean SSPS Total 35.59 (6.52)   
Mean HR (bpm)  71.25 (12.66) 70.77 (11.35) 
Mean SCL (µS)  2.06 (1.73) 3.11 (2.48) 
Mean HF-HRV (ms2)  7.36 (1.04) 7.37 (0.88) 
Mean Attractiveness Rating   3.54 (1.44) 
Mean Familiarity Rating   2.38 (1.57) 
Mean Distinctiveness Rating   3.45 (1.50) 
Mean Affiliation Rating   3.46 (1.45) 
Mean Emotion Rating   3.53 (1.39) 

Note. Standard deviations are reported in parentheses. HR = heart rate; SCL = skin 
conductance level; HF-HRV = high-frequency heart rate variability. 
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APPENDIX 20: Flowchart of the Rating Faces Task Stressor Procedure 

Figure 20.1. Flowchart of the rating faces task stressor procedure (from Chapter 8, 
Experiment 2). Mean cell values are shown in Table 20.1 and Table 20.2. 
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Table 20.1 

Mean values for each cell from the flowchart diagram for the speech task arm of the rating faces task procedure (figure 20.1) 
 Baseline Rating Faces 

Task T1 POMS-SF Speech Task 
Preparation 

Rating Faces 
Task T2 

Speech Task 
Preparation 

Rating Faces 
Task T2 

Speech Task 
Preparation 

Rating Faces 
Task T2 POMS-SF 

Flowchart Cell 2 3 5a 6a 7a 8a 9a 10a 11a 12a 
Mean Total 
Score   3.77 (9.82)       11.09 (13.67) 

Mean HR 
(bpm) 

76.15 
(10.88) 74.16 (10.63)  84.32 (13.71) 75.94 (10.82) 83.69 (12.95) 76.14 (11.20) 84.27 (13.68) 76.53 (11.07)  

Mean SCL 
(µS) 2.34 (1.48) 3.59 (1.77)  5.04 (1.87) 4.53 (1.73) 4.70 (1.88) 4.40 (1.75) 4.65 (1.92) 4.51 (1.87)  

Mean HF-HRV 
(ms2) 7.37 (1.17) 7.26 (0.93)  7.00 (0.95) 7.47 (0.87) 7.06 (0.76) 7.33 (0.88) 7.22 (0.79) 7.32 (1.00)  

Attractiveness 
Rating  3.21 (1.39)   3.38 (1.41)  3.19 (1.36)  3.23 (1.46)  

Familiarity 
Rating  2.19 (1.27)   2.22 (1.31)  2.34 (1.43)  2.22 (1.43)  

Distinctiveness 
Rating  3.19 (1.44)   3.39 (1.46)  3.27 (1.49)  3.46 (1.39)  

Affiliation 
Rating  3.10 (1.45)   3.22 (1.45)  3.09 (1.37)  3.08 (1.42)  

Emotion 
Rating  3.48 (1.44)   3.45 (1.35)  3.47 (1.34)  3.45 (1.40)  

Note. Standard deviations are reported in parentheses. Cell 1: BDI-II = 7.83 (SD = 6.49); GAD-7 = 4.54 (SD = 3.38); SSPS = 30.23 (SD = 9.52). HR = 
heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability.  
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Table 20.2 

Mean values for each cell from the flowchart diagram for the reading task arm of the rating faces task procedure (figure 20.1) 
 Baseline Rating Faces 

Task T1 POMS-SF Reading Task Rating Faces 
Task T2 Reading Task Rating Faces 

Task T2 Reading Task Rating Faces 
Task T2 POMS-SF 

Flowchart Cell 2 3 5b 6b 7b 8b 9b 10b 11b 12b 
Mean Total 
Score   3.84 (13.03)       3.68 (8.64) 

Mean HR 
(bpm) 

79. 20 
(11.20) 77.14 (9.79)  76.52 (8.72) 75.90 (9.54) 77.06 (9.18) 77.01 (9.55) 77.48 (9.25) 76.47 (9.18)  

Mean SCL 
(µS) 2.51 (1.22) 3.58 (1.74)  4.20 (1.98) 3.93 (1.87) 3.86 (2.00) 3.88 (1.94) 3.86 (2.08) 3.88 (2.09)  

Mean HF-
HRV (ms2) 7.27 (0.81) 7.10 (0.72)  7.46 (0.67) 7.18 (0.68) 7.21 (0.75) 7.03 (0.67) 7.13 (0.63) 7.01 (0.72)  

Attractiveness 
Rating  3.46 (1.43)   3.50 (1.50)  3.49 (1.37)  3.60 (1.41)  

Familiarity 
Rating  2.37 (1.31)   2.18 (1.25)  2.29 (1.29)  2.44 (1.45)  

Distinctiveness 
Rating  3.37 (1.41)   3.47 (1.45)  3.51 (1.45)  3.67 (1.50)  

Affiliation 
Rating  3.16 (1.37)   3.30 (1.26)  3.26 (1.35)  3.42 (1.37)  

Emotion 
Rating  3.47 (1.35)   2.40 (1.22)  3.36 (1.38)  3.41 (1.39)  

Note. Standard deviations are reported in parentheses. Cell 1: BDI-II = 5.76 (SD = 6.64); GAD-7 = 2.70 (SD = 2.89); SSPS = 33.27 (SD = 8.34). HR = 
heart rate; SCL = skin conductance level; HF-HRV = high-frequency heart rate variability. 
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