Improved Understanding of Performance of Local Controls

Linking the above and below Ground Components of Urban

Flood Flows

Submitted by

Istvan Galambos

to the

University of Exeter

as a thesis for the degree of

Doctor of Philosophy in Engineering

July 2012

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

 $... dedicated\ to\ my\ family,\ with\ love\ and\ gratitude...$

Abstract

This work is devoted to investigation of the flow interaction between above and below ground drainage systems through gullies. Nowadays frequent flood events reinforce the need for using accurate models to simulate flooding and help urban drainage engineers. A source of uncertainty in these models is the lack of understanding of the complex interactions between the above and below ground drainage systems.

The work is divided into two distinct parts. The first one focuses on the development of the solution method. The method is based on the unstructured, two- and three-dimensional finite volume method using the Volume of Fluid (VOF) surface capturing technique. A novel method used to link the 3D and 2D domains is developed in order to reduce the simulation time.

The second part concentrates on the validation and implementation of the Computational Fluid Dynamics (CFD) model. The simulation results have been compared against 1:1 scale experimental tests. The agreement between the predictions and the experimental data is found to be satisfactory. The CFD simulation of the different flow configurations for a gully provides a detailed insight into the dynamics of the flow. The computational results provide all the flow details which are inaccessible by present experimental techniques and they are used to prove theoretical assumptions which are important for flood modelling and gully design.

Table of Contents

Chapter 1	Introduction	17
1.1	Motivation	18
1.2	Objectives	19
1.3	Structure of thesis	20
Chapter 2	Previous and Related Studies	21
2.1	Grate Inlet	21
2.2	Discharge Coefficient	27
2.3	Linking surface and sub-surface networks	32
2.4	CFD Modelling	35
2.5	Conclusion	38
Chapter 3	Description of Physical Experiments completed in the Sheffield	
	Laboratory	41
3.1	Experimental rig	41
3.1.1	Testing platform	41
3.1.2	Gully and grates	43

3.1.3	Pressure transducer and point-gauge	45
3.2	Terminal system	46
3.3	Intermediate system	47
3.4	Surcharged system	48
3.5	Testing protocol	49
Chapter 4	CFD Modelling	50
4.1	Interface capturing methods	52
4.2	Mathematical model	58
4.2.1	Navier-Stokes equations	58
4.2.2	Turbulence modelling	6 0
4.2.3	Final form of equations	63
4.2.4	Initial and boundary conditions	65
4.3	Numerical Model	67
4.3.1	Introduction	67
4.3.2	Full 3D model	68
4.3.3	Novel nested 2D/3D approach	82
4.4	Mesh Creation	94
4.4.1	Tetrahedral mesh	97
4.4.2	Hybrid mesh	97
4.4.3	Mesh quality1	.00

Chapter 5	Results	104
5.1	CFD Model validation	104
5.1.1	Flow into gully	105
5.1.2	Surcharged gully	122
5.2	CFD model application for flow into and from gully	125
5.3	Interception capacity	129
5.3.1	Factors affecting grating efficiency	136
5.4	Surcharging conditions	142
5.5	Discharge coefficient calculation	146
Chapter 6	Discussion and Conclusion	156
References	3	161